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Abstract

Clustering is a common task in the field of cheminformatics. A key parameter that needs to be set
for non-hierarchical clustering methods, such as k-means, is the number of clusters, k. Traditionally
the value of k is obtained by performing the clustering with different values of k and selecting that
value that leads to the optimal clustering. In this study we describe an approach to selecting k, a
priori, based on the R-NN curve algorithm described by Guha et al. (J. Chem. Inf. Model., 2006,
46, 1713-1722) which uses a nearest neighbor technique to characterize the spatial location of
compounds in arbitrary descriptor spaces. The algorithm generates a set of curves for the dataset
which are then analyzed to estimate the natural number of clusters. We then performed k-means
clustering with the predicted value of k as well as with similar values to check that the correct number
of clusters was obtained. In addition we compared the predicted value to the number indicated by
the average silhouette width as a cluster quality measure. We tested the algorithm on simulated data
as well as on two chemical datasets. Our results indicate the the R-NN curve algorithm is able to
determine the natural number of clusters and is in general agreement the average silhouette width in
identifying the optimal number of clusters

1 Introduction

One of the common tasks in cheminformatics is the clustering of chemical datasets.. The
fundamental goal of a clustering is to divide a set of molecules into groups such that the
molecules within a group are more similar to each other than to molecules outside the group.
A variety of clustering methods are available2 and can be divided into two groups hierarchical
(such as Wards algorlthm ) and partitional (such as the k-means algorlthm ). The former type
of clustering either divides a dataset into successively smaller clusters or builds up clusters
starting from individual compounds. In the case of partitional clustering, there is no such
hierarchical relationship between clusters, which are simply disjoint groups of compounds.

Clustering has been used in a wide varlegl of appllcatlon areas rangln? from compound
ach|5|t|on,5 conformational analy5|s visualization,? docklng 3 and database
searching.la‘15 In applications of an exploratory nature one is usually interested in observing
how the data is clustered and specifying the number of clusters is not necessarily important.
On the other hand certain situations may warrant the specification of a certain number of
clusters to be generated.

The concept of the number of clusters is fundamentally different between hierarchical and
partitional clustering algorithms. In the case of a hierarchical partitioning, one can generate
varying numbers of clusters depending on what level the tree is cut. Thus, one does not
necessarily need to specify the number of clusters beforehand. On the other hand, partitional
clustering algorithms require that the number of clusters, k, be specified before the clustering
can be performed. This presents us with a problem: how does one decide on the number of
clusters before performing the clustering? The simplest approach is to perform the clustering
and then obtain a measure of the quality of the clustering. The optimal number of clusters is
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determined by this measure. It is clear that this is a trial and error process. For small datasets
this is not a significant problem. However for larger datasets repeated clustering can be time
consuming.

An alternative approach to this problem is to visualize the data such that one can manually
identify the number of clusters. This can be problematic both due to the size of the dataset as
well as the possibly high-dimensional nature of the dataset. One alternative is to use a multi-
dimensional scaling algorithm16‘18 to view the dataset in 2 or 3 dimensions. One could also
use principal components analysis, though in this case it is possible that the structure of the
dataset is not obvious by simply viewing the first two or three principal components.

Clearly, it is useful to be able to estimate the number of clusters in a dataset of arbitrary
dimensions a priori. In this paper we present an approach to identifying the number of clusters
based on a nearest neighbor approach. We focus on its application to partitional clustering
(more specifically the k-means algorithm) and do not consider its application to hierarchical
clustering algorithms. We test the algorithm on manual data as well as two different chemical
datasets. The estimated numbers of clusters in all cases is confirmed by visual inspection of
dataset (or the scaled data when the dimensionality is greater than three).

2 Methodology

The approach to predicting the number of natural clusters in a dataset is based on the R-NN
curve algorithm described by Guha et al.19 Before describing the algorithm to determine the
number of clusters we provide a brief overview of the R-NN curve algorithm.

The algorithm is based on the observation that when the radius around a query point is
increased, the number of neighbors that lie within the radius will also increase. This is
schematically shown in Fig. 1A, where the query point is colored blue. In general the values
of the radius are taken as percentages of the maximum pairwise distance (which is calculated
exactly or obtained by sampling in the case of large datasets). It follows that, when the radius
is equal to the maximum pairwise distance in the dataset, the whole dataset will be considered
neighbors of the query point. When the nearest neighbor count is plotted versus radius a
sigmoidal plot is generated. The characteristic feature of this plot is that the length of the lower
tail characterizes the query points location in the space being considered. Thus for a point in
a dense region of the descriptor space, there will be an appreciable number of points even for
small radii. On the other hand for a query point located in a sparse region of the descriptor
space, there will be no or very few neighbors for small to intermediate radii. Only when, the
hypersphere reaches the bulk of the dataset, will the nearest neighbor count start increasing.
The result of this behavior is that a sigmoidal curve with a short lower tail indicates that the
query point is located in a dense region of the descriptor space and a long lower tail indicates
that it is located in a sparse region of the descriptor space. Examples of these curves for points
located in a sparse and dense region of a descriptor space are shown in Figs. 1B and 1C,
respectively.

Now, when the data is clustered, it is observed that the sigmoidal curve is characterized by
steps. This can be understood by the fact that when a point is located in, say the bulk of one
cluster, and as we increase the radius, the number of nearest neighbors increases. At one point
the radius will encompass the entire cluster and subsequent increases will not add any new
neighbors. Thus the nearest neighbor count will be constant. However, at a certain value of the
radius, it will encounter the another cluster. From this point onwards, the nearest neighbor
count will again increase with increase in radius. Clearly, for two clusters, the number of steps
in the curve will be 1, for three clusters there will be 2 steps and so on. Thus by identifying the
number of steps in the sigmoidal curves, one should be able to estimate the number of clusters
present in the datasets, for a given descriptor space.

J Chem Inf Model. Author manuscript; available in PMC 2008 September 19.
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2.1 Counting Clusters

A number of approaches were considered to count the number of steps in a sigmoidal curve.
One possible approach involves matching the generated curve against a set of canonical curves
with a known number of steps. The curve matching problem has been addressed and a number
of metrics such as the Frechét distance20 and the Hausdorff distance?? have been investigated.
However this does not always work well for a variety of curves and can be computationally
intensive.

Algorithm 1 The R-NN curve cluster counting algorithm

Nroot;max— 71_

for molecule in dataset do
C«Evaluate R-NN curve
Cg—smooth (C)
d?c,

dr?!,

Nroot <= Number of roots of Cg
if Nyoot > Nigot max then
Nroot;max‘_ Nroot
endi
end for
if Nyoor:max Mod 2 = 0 then

Nejustere— N root;max/2
else

Ncluster‘_(Nroot:max +1)/2
end if

”

CS < smooth

root

A simple approach is to consider the fact that the slope of the sigmoidal curve will exhibit
maxima (corresponding to the linear portions of the curve) and minima (corresponding to the
plateaus or steps in the curve). Thus by obtaining the first derivative of the R-NN curve we
could then apply a peak picking routine to the result, the number of peaks being equal to the
number of clusters. Our initial attempt resulted in a curve with a large number of peaks. This
was partly due to the discontinuous nature of the original R-NN curves, since it was evaluated
at 100 values of the radius. We then considered a smoothed version of the R-NN curve and is
shown in Fig. 2A. Though the resultant curve is much smoother, the first derivative still
contained some smaller, but broad maxima. Visually, it would be easy to ignore such peaks,
but our automated peak picking routine would consider them in addition to the real (sharp)
peaks. Thus our next step was to smooth the first derivative (Fig. 2B) and takes its slope. That
is, we end up with the second derivative of the original R-NN curve (Fig. 2C). Given the second
derivative, we then fit a spline and then evaluate the number of roots of the curve, Nyqqt, Which

can be used to evaluate the number of clusters as
Neoot

N _ . if Nyoor 1S €ven,
cluster = Nroot+1
2

if Nioor 18 odd. (1)

The above procedure only considers an R-NN curve for a single molecule. It is apparent that
not all the R-NN curves for a dataset will exhibit the steps characteristic of a clustering. An
example would be the R-NN curve for a point located between two clusters. Thus to reliably
identify the number of clusters we must consider multiple R-NN curves. Our current
implementation evaluates N,qq for all the R-NN curves in the dataset and then uses the
maximum value of Nyqq: to evaluate N¢juster in EQ. 1. The procedure is summarized in Algorithm
1.
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2.2 Measuring Cluster Quality

After performing the clustering we must then determine the quality of the clustering. One
approach is to visualize the clustering. However this is only possible when the clustering is
performed in a 2D or 3D space. A more general approach is to use a measure that indicates the
quality of the clustering. Many such measures are available such as the Goodman-Kruskal
index,22 HubertsT" statistic,23 the silhouette Width,2 the Dunn index24 and the Davies-Bouldin
index.2° Many of the traditional cluster quality measures are conceptually similar in that they
try to ascertain whether an object is better placed in a specific cluster as opposed to some other
cluster. In general, this question is answered by looking at some sort of distance (or similarity)
between the object in question and the members of each cluster being considered. It should be
noted that this study does not attempt to compare the utility of different measures of cluster
quality. Rather we desire to use a given measure to provide an external confirmation of the
number of clusters predicted by the R-NN curve algorithm. Given this observation, we
considered two of the many available cluster quality measures. More specifically, we
investigated the use of the silhouette width and the Dunn index. Since we observed very similar
results for both measures, we only report and discuss the results obtained using the silhouette
width.

The silhouette width is a method that characterizes a clustering by providing a measure of the
confidence of cluster assignments and has been used in a wide variety of studies.26-29 The
silhouette width is defined for each member, i, of a cluster, j, as

()= b(i)—a(i)

‘ max (a (i) ,b (i) )

where a(i) is the average distance between i and all the other members of the cluster j and b
(i) is the minimum of the average distance between i and the members of the other clusters.
The above definition implies that —1 <s(i) < 1. A value close to 1.0 indicates that object i has
been placed in the correct cluster, such that the average distance of the object i to other members
of the cluster is small compared to the average distance to members of the closest cluster. A
value of —1.0 indicates that the object i has been placed in the wrong cluster, so that the average
distance to the members of the cluster is larger than the average distance to the members of
the closest cluster. Finally a value of 0 would indicate that the cluster membership of the object
is unclear - the average distance to members of the two nearby clusters are essentially the same.
The larger the value of the silhouette width for an object, the surer we can be that it has been
placed in the correct cluster. If many objects have silhouette widths close to 0, one might infer
that the data simply cannot be clustered distinctly.

Given the silhouette width of a single cluster member we can then define the silhouette width
for the entire clustering, termed the average silhouette width, as

1 & ]N/ .
AS W:zj; [sz;s (1)l

where N; is the number of objects in cluster j and k is the number of clusters. The ASW is a
dimensionless measure that characterizes the extent of cluster structure found in the dataset.
A general rule of thumb suggests that values of the ASW between 0.25 and 0.50 are indicative
of cluster structure, though additional analysis may be required and values greater than 0.5 are
indicative of reasonable to strong cluster structures.

(3)

We considered three datasets for this study. The first dataset was in fact a collection of simulated
2D datasets that were generated using a Thomas cluster process.31 We considered a number
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of such datasets with the number of clusters ranging from 2 to 4. The distribution of points are
plotted in Fig. 3. These datasets were considered since the visualization of the clusters was
obvious and thus would allow us to easily verify whether the R-NN curve algorithm was indeed
identifying the number of clusters correctly. Similarly, these datasets also allowed us to judge
whether the quality of the k-means clusterings when performed with a variety of k.

Though the use of simulated data is useful for verification purposes we are naturally more
interested in the algorithms ability to count clusters that may occur in chemical datasets. To
this end, the second dataset was created by combining two sets of structures. We considered a
set of 277 DHFR inhibitors taken from the 756 inhibitors studied by Sutherland et al32anda
set of 277 compounds from the Design Institute for Physical Property Data (DIPPR) Project
801 database that had been previously modeled by Goll and Jurs.33 The reason for choosing
these datasets was that there was in general significant structural differences between the two
groups. The DHFR inhibitors were based around a 5-(4-chlorophenyl)-6-ethyl-2,4-
pyrimidinediamine or 2,4-diaminopteridine scaffold and some representative structures are
shown in Fig. 4. The DIPPR set consisted mainly of substituted hydrocarbons and did not have
any specific common scaffold, though it is possible to broadly divide the dataset into aliphatic
and aromatic compounds. The differences in the two sets are characterized by their average
Tanimoto similarity of 0.38 and 0.14 respectively (based on 1052 bit BCI fingerprints34). The
structural differences in the two sets of molecules thus allowed us to derive measures the
clustering quality in a relatively easy fashion. We then evaluated a set of 147 molecular
descriptors using the Molconn-Z3° software package. For future reference we term this dataset
the mixed dataset. The initial descriptor pool was reduced by randomly removing descriptors
that had a Pearson correlation greater than 0.6 with other descriptors as well as removing
descriptors that exhibited zero variance. This resulted in 23 descriptors.

The final dataset we considered was derived from the aqueous solubility dataset studied by
Huuskonen.38 The original dataset consisted of 1236 compounds along with the logarithm of
their measured aqueous solubility (log S, where S is the solubility measured in mol/L). Though
the dataset consisted of structurally diverse compounds, we decided to consider a subset that
represented the most soluble and the most insoluble compounds. Thus we selected 94
compounds whose log S was less than —6.0 and 84 compounds whose log S was greater than
0. Representative structures from these two groups are shown in Fig. 5. We then evaluated a
set of 147 descriptors using MOE37 which was then reduced to a 47-descriptor pool by
randomly removing descriptors that had a Pearson correlation greater than 0.6 with other
descriptors as well as remaoving descriptors that exhibited zero variance.

Before describing the results of our tests on the three datasets, we performed an experiment
that would serve as a control. We generated a set of 2D data points from a uniform random
distribution which should not exhibit any clustering. Visual inspection of the plot in Fig. 6
indicates that this is so. Thus we expect that the R-NN algorithm should also predict that there
are no clusters present, that is, the dataset characterizes a boundary condition of the algorithm.
On applying the algorithm to the dataset we observed that it predicted no clusters were present.

4.1 Simulated Data

The plots of the simulated 2D datasets are shown in Fig. 3. It is clear that visual inspection can
be used to clearly identify the number of clusters present. However the number of clusters in
datasets C and D are a little subjective. In the case of C the left hand cluster of points appears
to be joined by a bridge but visually one would expect that the left hand cluster is really
composed of two individual clusters. For the case of D, it is apparent that there are three clusters.
However one of them is composed of only two points and is thus near-singleton. However
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since it is significantly far from the other two clusters we consider it as a unique cluster. With
the exception of A these datasets provide insight into the behavior of the R-NN and k-means
algorithms and the utility of the silhouette width as a measure of cluster quality.

Table 1 summarizes the quality of clustering for each of the simulated datasets using various
values of k. The values of k that are in bold indicate the number of clusters that were predicted
by the R-NN algorithm. For the case of A we see that the predicted number of clusters is 2.
When k-means clustering was performed using k = 2 and k = 3 we see that the former led to a
significantly higher value of the average silhouette width, indicating a better quality of
clustering. However this is not surprising as the plot indicates two well separated clusters. We
have also included the silhouette values for each of the clusters for a given k. Thus for the
dataset A we see that the for k = 2 each of the individual clusters exhibits a high degree of
clustering, whereas when k = 3 one of the clusters has a high degree of structure but the
remaining two can be said to exhibit a low degree of clustering.

Dataset B is a slightly tougher test of the R-NN curve algorithm. Visually there are four distinct
clusters. However the average silhouette width listed in Table 1 indicates that the best clustering
is obtained when k = 2. This is clearly in opposition to what we observe in the plot. If we
consider the individual silhouette values for each cluster for a given k we see that the values
for two of clusters for k = 4 are quite similar to the values observed for k = 2. The extra two
clusters do not exhibit a high degree of clustering. Thus based on the individual silhouette
values one mighttend to accept k =4 as the proper clustering, even though the average silhouette
value is lower than when k = 2. It is also interesting to note that when k = 3, only one of the
clusters has a high silhouette value, where as the other two have quite poor values. More
interestingly, the R-NN algorithm predicts that there should be 3 clusters. This can be
understood by considering the fact that when clusters are radial in nature, the R-NN algorithm
will not be able to differentiate between them. However thought the ASW is lower for k = 3
compared to k = 2 it is only marginally poorer compared to k = 4. That is, by mispredicting the
number of clusters as 3 rather than 4, the clustering quality is not significantly decreased.

Dataset C presents an interesting problem. The points on the left hand side of the plot could
be considered as two separate clusters. However the fact they are joined together indicates that
it is also possible to consider them to be a single, albeit distorted, cluster. For this case the R-
NN algorithm predicted 3 clusters. However when we perform the clustering using k-means,
the ASW indicates that the optimal clustering occurs when k = 2. If we look at the silhouette
values for individual clusters for a given k we see that when k = 2, one of the clusters has a
high value. However when k = 3, the highest value of silhouette width is lower compared to
when k = 2, but the next cluster has a higher silhouette width compared to the second cluster
when k = 2. The overall average is pulled down by the value for the third cluster. It is clear,
that by looking at individual silhouette widths one is able to get a clearer picture of the situation.
However it is also true, that if one is to consider the individual silhouette widths, choosing an
optimal k does become more subjective than simply using an average silhouette width. In this
case, the R-NN algorithm is able to correctly identify the natural number of clusters in the
dataset.

Finally for dataset D it is visually clear that the dataset consists of three clusters. The R-NN
algorithm predicts this as the natural number of clusters. However when we perform the k-
means clustering using k = 3 it is significantly lower than for k = 2. Clearly, the ASW metric
considers the clustering whereby the two points in the lower right hand corner are merged with
one of the other clusters as a better clustering, and this is indicated by the individual silhouette
widths.

J Chem Inf Model. Author manuscript; available in PMC 2008 September 19.
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4.2 Mixed Dataset

The first step in the clustering of this dataset was the choice of chemical space. As noted above
we evaluated a set of 147 Molconn-Z topological descriptors. This was processed to remove
correlated and zero-variance descriptors resulting in a reduced pool of 23 descriptors. Without
prior knowledge as to the suitability of a specific subset of these descriptors we selected two
random subsets and also considered the entire 23-descriptor space for the purposes of
clustering. For all the scenarios we applied the R-NN curve algorithm to predict the number
of clusters and then performed a k-means clustering as described previously. The results of the
clusterings are summarized in Table 2.

It can be seen that for two of the three descriptor sets chosen the R-NN algorithm predicts 4
clusters. This is not too surprising since the DHFR inhibitors are, broadly, based on two
scaffolds, both of which are structurally dissimilar to the DIPPR dataset which itself consists
of branched aliphatic and aromatic compounds. As a result when combined with the DIPPR
dataset, one could expect that there would be clusters. However the fact that the 6-descriptor
subsets leads to a prediction of three clusters is not too surprising since the spatial distribution
of points from one descriptor space does not necessarily carry over to different descriptor
spaces.

When we consider the average silhouette width for the various clusterings we see that the values
are relatively consistent with the predictions made by the R-NN curve technique for all the
descriptor sets considered. If we also consider the silhouette widths for the individual clusters
for a given k, we see that the values are quite consistent as well. Thus for the 4-descriptor case,
we see that when k = 4, the two best clusters, have a higher silhouette width than the maximum
silhouette widths observed for k = 2 or k = 3. On the other hand, this is not the case for the 6-
descriptor case. For this case, we can see that when k = 4, one of the clusters is of very poor
quality, with a silhouette width of 0.14. As a result this lowers the average silhouette width for
the clustering. For the k = 2 case, we see that the difference in silhouette widths is relative
large, whereas for the k = 3 case the the two best clusters have silhouette widths which are
somewhat close to each other. In addition the lowest silhouette width for k = 3 is still higher
than the lowest for k = 2.

We next attempted to visualize the distribution of the structures in the given chemical spaces
using principal components analysis. Plots of the first two principal components for the 3
descriptor sets are displayed in Fig. 7. In each of the plots the point are colored by their class
membership-black circles for DHFR inhibitors and blue squares for the molecules from the
DIPPR collection. In the case of the 4-descriptor subset there is a relatively clean separation
between the two classes along the horizontal. An immediate feature of the plot is the banding
in the vertical direction. However it is also possible to consider the two small groups towards
the bottom right as belonging to a single cluster. These two principal components explain a
total of 97% of the total variance, and thus can be expected to be a faithful representation of
the structure of the 4-dimensional data.

The situation is a little clearer for the 6-descriptor case. The first two principal components
explain 94% of the total variance and can thus be expected to be a good representation of the
overall structure of the 6-dimensional dataset. As before, we observe banding the vertical
direction but the distinction between the bands is much clearer. For this case, the fact that there
are three clusters is relatively clear. However note, the small group of points between the two
right most bands. One could consider this a separate cluster, but as was noted for the case of
the simulated datasets, a k-means clustering will tend to merge this into one of the larger
clusters. In addition, due to the design of the R-NN algorithm, such a cluster may be hidden
from view by the large ones next to it.

J Chem Inf Model. Author manuscript; available in PMC 2008 September 19.
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Finally for the all-descriptor case it is evident that the clustering is not very distinct and this is
confirmed by the low values of the average silhouette width. Furthermore, the first two principal
components only explain 66% of the total variance. Clearly, one cannot fully explain the
structure of the dataset using just the first two principal components. As before if one considers
the banding then 3 or 4 clusters are discernible. However given the ASW and the principal
components plot for the all-descriptor case, a definitive answer is not forthcoming.

4.3 Aqueous Solubility Dataset

As with the mixed dataset we had no prior knowledge as to a good subset of descriptors to
perform clustering. However since the dataset was generated based on a property value (log
S) we decided to build a classification model. Thus molecules whose log S <—6:0 were assigned
to the “insoluble” class and those with log S > 0 were assigned to the “soluble” class. To develop
the classification model we considered a random forest39 due to its ability to perform automatic
feature selection. The model was built using the whole 47-descriptor pool and the out-of-bag
estimate of the error was 0% over a number of runs. This is not surprising since the molecules
were selected from the original dataset36 such that they were clearly separated in terms of their
log S values. The model was then analyzed to determine the 4 most important descriptors39
(using the mean decrease in accuracy as the importance measure). We then performed the R-
NN analysis and subsequent k-means clustering using these four descriptors. We also
considered the whole 47-descriptor pool to investigate the behavior in absence of feature
selection. The results are summarized in Table 3. In both cases, the value of k predicted by the
R-NN method agrees with the value of k determined using the average silhouette width. In the
4-descriptor case, we see that for k = 2 one of the clusters has a silhouette width of 0.78
indicating a high degree of clustering. This is confirmed if we view the plot of the first two
principal components (which account for 95% of the total variance) the 4-descriptor dataset in
Fig. 8A. The soluble compounds form a relatively tight cluster whereas the insoluble
compounds a relatively more scattered. It is evident that the k = 2 is the natural number of
clusters. For k = 3 and k = 4 we see that the average silhouette widths are significantly lower
than for k = 2.

A similar situation is observed when we consider the whole 47-descriptor pool. However in
this case we see that though k is correctly predicted as 2 by both the R-NN curve algorithm as
well as the average silhouette width, the cluster quality is in general quite poor, compared to
the four descriptor case. The first two principal component for this case only explain 49% of
the total variance and are plotted in Fig. 8. It is clear that there is a large degree of scatter and
that the clustering is not very distinct. This is not surprising since the four descriptor were
chosen based on their importance to the predictive ability of the random forest model. Thus
the four descriptor should characterize a good partitioning of the dataset into soluble and
insoluble classes. This observation is further strengthened when we consider the representative
structures shown in Fig. 5. The insoluble compounds are characterized by hydrophobic features
whereas the soluble compounds are characterized by polar features. These features are
characterized well by the four descriptors which include log P, and the water accessible
surface area.

5 Discussion

Though the ability of the R-NN curve algorithm to detect the natural number of clusters is clear
for well defined clusters, the validity of the predicted value of k can be doubtful when clusters
are less crisp. Furthermore, the R-NN curve algorithm cannot handle datasets where the clusters
may be distributed in a concentric fashion. In such cases one or more clusters may be hidden
from view and will end up being considered as a single cluster. One possible approach to
alleviating this problem is to replace the hypersphere around a query point with an angular
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slice. By rotating the slice we would then be able to take into account the density of neighbors
in different directions. The disadvantage of this approach is that it would significantly increase
the running time of the algorithm. Further investigation is required to decide whether the
increased reliability is worth the increased time requirement.

Another aspect of the current implementation of the R-NN curve algorithm is that it considers
all the points in the dataset. For large datasets this can become time-consuming. One approach
to avoid this is to sample the R-NN curves that are to be analyzed for cluster detection. The
simplest solution is to randomly sample the R-NN curves. However it is not entirely clear what
percentage of the R-NN curves for the dataset should be sampled. Our experiments indicate
that a random sample of 60% of the dataset is sufficient to be able to predict k correctly
(compared to the prediction when the whole dataset is used). In two of the three datasets were
able to correctly predict k with 45% of the dataset. However, a more logical approach is to only
consider the R-NN curves for the data points that lie in the densest regions of the dataset. This
is because in the presence of clustering, the steps in the R-NN curves for the compounds in the
main body of a cluster will be more pronounced than if we consider the R-NN curves for
outlying compounds (whose R-NN curves would be characterized by long lower tails, see Fig.
1B). Thus for a point lying in the middle of a cluster, as we increase the radius, we get a
significant number of neighbors. As the radius increases beyond the cluster, the number of
neighbors will become very small (or zero) and thus the R-NN curve will become close to flat.
If there is another cluster nearby, then as the radius increases, the number of neighbors will
start to increase again. This type of behavior will be less distinct if we start with a point that
lies in a sparse region of the descriptor space.

The implementation of this approach is relatively simple since by selecting a suitable Rpnax(s)
value as a cutoff we can choose the R-NN curves of the compounds in the dense regions of the
descriptor space. Since the evaluation of Ryax(s) involves a numeric differentiation of the R-
NN curve this approach does not take significantly longer than the more simplistic random
sampling approach.

This study employed the k-means algorithm for the actual clustering. We also investigated the
use of the Partitioning Around Medioids? algorithm. This method is an extension of the
traditional k-means algorithm is and is designed to be more robust. The results obtained using
this algorithm were identical to what was obtained using k-means and hence are not included
here. We also considered the use of a hierarchical clustering algorithm. However the results
obtained from such an algorithm are not directly comparable to our approach since no k has to
be specified. Rather the tree structure obtained by hierarchical clustering algorithms can be cut
at a specific level, leading to individual clusters. A number of level selection algorithms are
available and have been reviewed in Ref. 40. The goal of level selection in hierarchical
clustering is to indicate where in the tree one can perform a cut, leading to k number of clusters
such that they are optimal. In this context optimality is generally a trade-off between the number
of clusters and the tightness of the individual clusters as characterized by inter- and intra-cluster
variances. Though not directly comparable, we were interested in seeing whether a given level
selection method would lead to the same number of clusters as predicted for the dataset by the
R-NN curve algorithm. For this purpose we used the Kelley41 level selection algorithm. In
general the number of clusters indicated by the level selection algorithm was much higher than
indicated by the R-NN curve algorithm. Part of the reason is due to the difference in the
underlying clustering algorithms. However another reason for this difference is that the R-NN
curve approach is limited by the resolution of the R-NN curves being analyzed. Small changes
in the slope are not captured due to the relatively low resolution as well as due to the smoothing
process. One could increase the resolution of the R-NN curves but this would also lead to an
increase in run-time.
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This aspect of the R-NN algorithm also leads to the observation that even when there is no
distinct clustering, the method may predict a certain number of clusters. Part of this reason is
that small, localized variations in the neighbor density will be lead to stepping in the R-NN
curve. This steps may have non-zero slopes, but it is possible that the smoothing process will
cause the algorithm to consider these artifacts as indicative of clustering. Whether such
variations in local density can be considered as clusters is subjective. At the same time, this
observation also allows us to provide a measure of confidence in the predicted number of
clusters. That is, if the step in the sigmoidal R-NN curve has a slope of 0, we can be relatively
sure that we are indeed characterizing a distinct cluster. As the slope increases away from zero,
we would conclude that we are faced with an increasingly indistinct clustering. Though useful,
this approach would be challenging to implement since it could be confused by artifacts in the
R-NN curve arising due to low resolution.

Finally, we consider the computational complexity of the algorithm. Let f be the complexity
to evaluate the roots in each step. Since there are n points, our current algorithm determines
the R-NN curve for each point. Given a linear scan algorithm for near neighbors, the complexity
of this step is O(n). This is because we evaluate the R-NN curves for a fixed set of radii,
independent of n. Thus, the overall time complexity for the cluster counting algorithm is O
(fn?). Given the quadratic complexity, this approach is not very feasible for large datasets. To
improve the time complexig/ one can use faster near neighbor methods such as KD-trees#2 or
locality sensitive hashing,1 4310 getasub-linear near neighbor query time (nearest neighbors
are detected in o(n) time). Thus, the execution time can then be shown to be sub-quadratic in
n. In addition, as noted above, rather than evaluating the R-NN curve for all the points in a
dataset, a sampling procedure (such as biased sampling based on the L, norm) could be
employed.

6 Conclusions

We have presented an algorithm that determines the number, k, of natural clusters present in
a dataset of arbitrary dimensions. The algorithm is based on the notion of R-NN curves which
are a graphical representation of the spatial location of a compound in a chemical descriptor
space. The characteristic feature of such R-NN curves is that in the presence of clustering the
normally sigmoidal curves exhibit steps. By identifying the number of steps in these curves,
taken over the whole dataset, we are able to determine the number of clusters present. This
approach provides an alternative to the trial and error approach of performing multiple
clusterings with different values of k and then choosing that k which leads to the best cluster
quality.

We measured the performance of our algorithm on one artificial and two chemical datasets of
dimensionality ranging from 2 to 47. In general the value of k predicted by the R-NN curve
algorithm matched the number of clusters when the datasets were viewed visually. For the
datasets with dimensionality greater than 2, multi-dimensional scaling was performed and the
results appear to confirm the predicted values of k. It was also interesting to note that the number
of clusters predicted by use of the average silhouette width matched the number of clusters
predicted by the R-NN curve algorithm in most of the cases. However in cases where the
average silhouette width led to the wrong number of clusters being suggested, the R-NN
algorithm was able to identify the correct number of clusters.
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Figure 1.
A schematic description of the calculation of R-NN curves (A). The percentages indicate the

radius as a percentage of the maximum pairwise distance in the dataset. Plots B and C are
examples of the R-NN curve for a molecule in a sparse and dense region of the chemical space,
respectively..
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Some representative structures from the aqueous solubility dataset.
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A set of 2D points derived from a uniform random distribution. The points exhibit no
discernable clustering and thus serve as a control dataset for the R-NN curve algorithm
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A summary of the quality of the k-means clusterings for the simulated datasets. The quality is measure using the average
silhouette width. Bold values of k indicate the number of clusters predicted by the R-NN algorithm.

Simulated Dataset k Average Silhouette Width ASW / Cluster
A 2 0.81 0.83,0.77
3 0.56 0.81, 0.44, 0.49
2 0.66 0.88, 0.61
3 0.54 0.87, 0.42, 0.49
4 0.55 0.86, 0.69, 0.48, 0.30
C 2 0.69 0.81, 0.61
3 0.65 0.77,0.67,0.51
4 0.53 0.67, 0.53, 0.51, 0.43
D 2 0.65 0.65, 0.66
3 0.45 0.61, 0.35,0.23
4 0.47 0.36, 0.34, 0.33,0.21
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Table 2
A summary of the quality of clustering of the DHFR+DIPPR combined dataset for the three descriptor sets considered.
Note that the first two sets were selecetd randomly from the reduced pool of 24 descriptors. Values of k in bold indicate
the number of clusters predicted by the R-NN algorithm.

Descriptors k ASW ASW / cluster
SsssN, SdssC, SsOH, SHBd 2 0.71 0.77,0.51

3 0.67 0.91, 0.59,0.51

4 0.73 0.91, 0.78, 0.59, 0.55
SaasC, SdssC, Qv, SaaN, Xvc3, 2 0.67 0.79,0.51
SHCsats

3 0.70 0.74,0.69, 0.59

4 0.61 0.74,0.68,0.42,0.14
All 23 descriptors 2 0.19 0.27,0.17

3 0.35 0.47,0.42,0.34

4 0.53 0.54, 0.46, 0.46, 0.26

SsssN - sum of E-State values for sp3 nitrogens;44 SdssC - sum of E-State values for sp2 carbons;#4 SsOH - sum of E-State values for oxygen in hydroxyl
groups;44 SHBd - sum of E-State values for strong hydrogen bond donors;#4 SaasC - sum of E-State values for aromatic carbons; 44 Qv - general polarity;

SaaN - sum of E-State value for pyrrole nitrogens;44 Xve3 - 3" order valence cluster index?5
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A summary of the quality of clustering of the aqueous solubility dataset for the two descriptor sets considered. Values

of k in bold indicate the number of clusters predicted by the R-NN algorithm.

Descriptors k ASW

ASW / cluster

0.67
0.31
0.27
0.31
0.22
0.26

PEOE-VSA, pmiY, ASA-H, log Py,

All 47 descriptors

BOWNDWN

0.78, 0.57
0.52,0.43,0.33
0.43,0.42,0.33,0.33
0.43,0.18
0.36,0.32,0.08

0.46, 0.15, 0.06, —0.02

PEOE-VSA - Sum of approximate Van der Waals surface area for atoms with partial charge in the range [0:05; 0:10); pmiY -y component of the principal
moment of interia; ASA-H - water accessible surface area of all hydrophobic atoms; log Pg/y - log of the octanol/water partition coefficient.
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