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Abstract

A central area of current philosophical debate in the foundations of
mathematics concerns whether or not there is a single, maximal, uni-
verse of set theory. Universists maintain that there is such a universe,
while Multiversists argue that there are many universes, no one of which
is ontologically privileged. Often model-theoretic constructions that
add sets to models are cited as evidence in favour of the latter. This
paper informs this debate by developing a way for a Universist to inter-
pret talk that seems to necessitate the addition of sets to V . We argue
that, despite the prima facie incoherence of such talk for the Universist,
she nonetheless has reason to try and provide interpretation of this dis-
course. We present a method of interpreting extension-talk (V -logic),
and show how it captures satisfaction in ‘ideal’ outer models and re-
lates to impredicative class theories. We provide some reasons to regard
the technique as philosophically virtuous, and argue that it opens new
doors to philosophical and mathematical discussions for the Universist.

Introduction

Recent discussions of the philosophy of set theory have often focussed whether
there is a maximal set-theoretic universe or structure for our discourse about
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sets.1 We begin with two views:

Universism. There is a proper-class-sized universe (denoted by ‘V ’), which
is (a) unique, (b) cannot be extended, and (c) contains all the sets.

However, some have seen set-theoretic results (such as forcing and ultra-
powers) as providing evidence that the subject matter of set theory is not con-
stituted by some single ‘absolute’ universe, but rather a plurality of different
universes.2 Universism thus contrasts sharply with the following view:

Multiversism. The subject matter of set theory is constituted by a plurality
of different universes, and no single one of them contains all3 the sets.

This question of ontology can be linked to the following idea: Do set the-
orists merely study models of set theory (similar to a group theorist’s study
of groups), or can set theory be understood as about a single domain of sets?
The former idea is naturally motivated by Multiversism, and the latter by
Universism. The current paper concerns how a Universist might bring a ver-
sion of the algebraic Multiverse-inspired perspective to bear on her universe
of sets.

There are several ways of fleshing out Multiversism. For instance, one
might hold that the intended universes contain all the ordinals, but that sub-
sets can be added to any given universe.4 Alternatively, one might hold that
there is a definite powerset operation, but any universe can be extended to
another with more ordinals.5 Still further, one might take a universe to be ex-
tendable both by adding more ordinals and/or by adding subsets.6 Some
views advocate that in addition to extension by adding subsets and ordi-
nals, every intended universe is non-well-founded from the perspective of
another.7

The present paper is concerned with how we might interpret width ex-
tensions of universes (i.e. the addition of subsets but not ordinals) for the
Universist, clarifying the dialectic with respect to certain constructions in set
theory (which we discuss later), and showing how she can use resources one
might be tempted to think are prohibited. We will therefore contrast Univer-
sism with the following species of Multiversism:

1Obviously, because of the set-theoretic paradoxes, we are using the terms ‘universe’ and
‘structure’ informally here, rather than as understood through their set-theoretic definitions.
As we’ll see, different philosophical views will understand this term differently. The unified
core among all views seems to be that a universe, in this philosophical sense, provides a do-
main for our first-order set-theoretic quantifiers.

2See here, for example, [Hamkins, 2012] or [Steel, 2014].
3Of course, the Multiversist is likely to run into the usual problems of expressibility and

generality relativism here with their use of the quantifier ‘all’. There are options available,
however—see [Rayo and Uzquiano, 2006] for an excellent collection of essays on the topic.

4See [Steel, 2014] and [Meadows, 2015].
5See here [Rumfitt, 2015], [Isaacson, 2011], and [Hellman, 1989], with historical roots in

[Zermelo, 1930].
6See [Arrigoni and Friedman, 2013].
7See [Hamkins, 2012].
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Width Multiversism. Letting V be a variable ranging over universes, for any
particular set-theoretic universe V , there is another universe V ′ such that:

(i) V ′ is an end extension of V .8

(ii) V is a proper subclass of V ′.

(iii) V and V ′ have the same ordinals.

One critique of the Universist’s position from width multiversists con-
cerns how they are able to interpret talk of width extensions (i.e. construc-
tions that add subsets, but not ordinals, to some V).9 As we shall argue in
detail later, certain axioms appear to require higher-order relations between
universes and their extensions in order to be formulated properly. Just to
briefly foreshadow, we shall discuss the Inner Model Hypothesis10, the Ax-
iom of ♯-Generation11, and certain axioms coming from set-theoretic geol-
ogy12. This paper is thus addressed towards the following pair of questions:

(1.) Can the Universist provide an interpretation of the discourse required to
formulate these extension-requiring axioms as concerned with V ?

(2.) How natural is the interpretation they can provide?

We shall argue for the following claims:

(I) If one holds that the Universist should be able to interpret set-theoretic
discourse naturally (in a sense we make precise later), then there is pres-
sure to provide an interpretation of axioms that seem concerned with
higher-order relations between V and extensions thereof.

(II) There is a logical system (V -logic), formalisable with the use of re-
sources beyond first-order, that suffices to provide an interpretation of
these axioms.

(III) By arguing for the use of higher-order set theory, and the existence of
countable transitive models elementarily equivalent to V for portions
of its higher-order theory, the Universist can also provide a natural in-
terpretation of these axioms.

8V ′ is an end-extension of V iff whenever V ′ thinks that a ∈ b (for b ∈ V) then V thinks that
a ∈ b. In other words, V ′ cannot see new elements of sets in V that V was oblivious to. This
version of Width Multiversism is formulated so as to not depend on an independent notion of
transitivity, and so could work on pictures such as [Hamkins, 2012]. If one believes that there
is an absolute notion (philosophically speaking) of transitivity, then one might wish to replace
this condition with the stronger claim that both V and V ′ are transitive. Nothing hangs on this
modification for the points we wish to make.

9See here [Hamkins, 2012], which we discuss in detail later.
10See [Friedman, 2006].
11See [Friedman and Honzik, 2016b].
12See [Fuchs et al., 2015].
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The main goal is thus philosophical; to argue that the Universist has a
well-motivated way of interpreting axioms that seem to need extensions of
V . However, along the way we will articulate several mathematical theories
and results that are useful in establishing this conclusion. Some readers may
only be interested in the mathematical details, and these can be understood
solely from reading sections 4,5, and 6. Other readers may not be interested
in the mathematical details, in which case the summary just before the start
of section 6 can be treated as a black box, and sections 4 and 5 skipped. In
more detail, here’s the plan:

After these introductory remarks, we discuss (§1) a challenge for the Uni-
versist; to make sense of talk concerning extensions of V . We discuss a con-
straint on interpreting extensions that motivates Multiversist criticisms—that
the interpretation provided preserve as much naive thinking as possible. We
then (§2) discuss a way in which a Universist might miss insight from ex-
tensions of V : One can formulate axioms using extensions that relate to V .
We mention some existing interpretations, in particular the use of countable
transitive models. Next (§3) we identify a way this strategy (as stated) might
be viewed as limiting; it fails to account for axioms relating to higher-order
properties. We provide some examples of these; Inner Model Hypotheses,
♯-generation, and certain axioms coming from set-theoretic geology. The next
sections (§4, §5, and §6) provide the elements of a positive response to the
problem. §4 provides an exposition of a logical system (V -logic) that suffices
to interpret extensions. §5 then shows how V -logic can be coded within class
theory. §6 then discusses how we can use the mathematical results of §4 and
§5 to reduce V -logic to the countable, and argues that this interpretation is
philosophically natural. Finally (§7) we identify some open questions and
conclude that new avenues of philosophical and mathematical research are
opened by this interpretation of extensions.

1 Extensions and insight

Before we start getting into the details, some philosophical set up is necessary
to elucidate the problem and some constraints on a solution. In this section
we do this by explaining some commitments a Universist might have, some
challenges raised by criticisms of Universism and the constraints they sug-
gest, and the rough shape of the problem. Specific examples will then be
given more detailed consideration in §2.

One salient feature of the Universist’s position is that often they can find
interpretations of statements involving extensions.13 A good example here is
with set forcing, which adds a subsetG to a universe V (for nontrivial forcing).
From the Universist’s perspective there are a number of options for interpret-
ing occurrences of terms like ‘V [G]’ in the practice of set theory. They could,

13In certain cases they may need to use large cardinals, but we suppress this detail for the
moment.
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for example, interpret this via the use of the forcing relation or taking ‘V ’ to
denote some countable transitive model of the required form.14 There is thus
a question of if and/or why the Universist should be perturbed by the use
of extensions in set-theoretic practice. Width Multiversists are well-aware of
this strategy and often supplement the mere existence of model-construction
methods with appeals to philosophical desiderata. Hamkins is a somewhat
representative example here:

A stubborn geometer might insist—like an exotic-travelogue writer
who never actually ventures west of seventh avenue—that only
Euclidean geometry is real and that all the various non-Euclidean
geometries are merely curious simulations within it. Such a posi-
tion is self-consistent, although stifling, for it appears to miss out
on the geometrical insights that can arise from the other modes
of reasoning. Similarly, a set theorist with the universe view can
insist on an absolute background universe V , regarding all forc-
ing extensions and other models as curious complex simulations
within it. (I have personally witnessed the necessary contortions
for class forcing.) Such a perspective may be entirely self-consistent,
and I am not arguing that the universe view is incoherent, but
rather, my point is that if one regards all outer models of the
universe as merely simulated inside it via complex formalisms,
one may miss out on insights that could arise from the simpler
philosophical attitude taking them as fully real. ([Hamkins, 2012],
p426)

Central to Hamkins’ point is that often set-theorists will examine exten-
sions of universes whilst using the symbol ‘V ’ to denote the ground model.
‘V ’ and terms for sets in the extension cannot literally denote V and sets in
an extension of V for the Universist, as in that case there would be sets out-
side V (by the design of the extending construction), and hence her position
would be false. Thus, she has to reinterpret use of the relevant theoretical
terms so as not to commit herself to sets outside V (for example, in the case
of forcing extensions, through the use of the forcing relation, countable tran-
sitive models, or Boolean ultrapower map). Hamkins’ point is that the kinds
of interpretation given (in his words “curious complex simulations”) obscure
possible mathematical insight. While we remain agnostic on to what degree
the Universist should be troubled by Hamkins’ remarks, it is nonetheless a
worthwhile philosophical and mathematical endeavour (and an important
motivator for this paper) to examine ways in which the Universist might
counteract this potential loss of mathematical ‘insight’. A few remarks are
thus in order to clarify what this might come down to.

One important point that we will spell out in detail later is that there are
axioms that appear to require the use of extensions of V in their formulation,

14For some philosophical discussion of these options regarding forcing see [Barton, 2019].
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and this is the problem that forms the focus of this paper. We will examine
interpretations that legitimise the use of such talk on the Universist’s picture.
The position is somewhat similar to the one Hilbert took concerning infinite
sets (under one interpretation of a period of Hilbert’s thought)—infinite sets
for him are fictitious but discourse involving them might be useful insofar
as it facilitates an understanding of finitary objects. Similarly for the Univer-
sist, axioms involving extensions are useful insofar as they allow us to make
claims concerning V , even if the extensions do not strictly speaking exist. We
therefore pose the following:

Hilbertian Challenge. 15 Provide philosophical reasons to legitimise the use
of extra-V resources for formulating axioms concerning V .

Before we embark on the details, a salient question here is exactly how
the Hilbertian Challenge should be answered. It is one thing to provide an
interpretation of extensions, and another for that interpretation to be good or
natural facilitating the ‘insight’ Hamkins talks about. In order to examine the
strongest possible challenge to Universism, we therefore impose the follow-
ing additional constraint:

The Methodological Constraint. In responding to the Hilbertian Challenge,
do so in a way that accounts for as much as possible of our naive thinking
about extensions and links it to structural features of V . In particular, if we
wish to apply an extending construction to V , there should be an actual set-
theoretic model, resembling V as much as possible, that has an extension
similar to the one we would like V to have.16

Immediately there is a problem: the most ‘naive’ way of interpreting the
talk would simply be to interpret ‘V ’ as denoting V , and ‘ideal’ sets as de-
noting actual sets outside V , which is obviously problematic. However, we
should keep in mind that the Universist only wishes to make claims (to be
discussed later) about sets in V using talk that appears to involve resources
external to V . She is thus not interested in objects that would have to be out-
side V were they to exist. Rather her interest is in the objects of V , and how

15We use the name ‘Hilbertian Challenge’ to echo Hilbert’s desire to show that transfinite
resources would never lead to finitary contradiction. Of course, by Gödel’s Second Incom-
pleteness Theorem, Hilbert’s Programme in its original form was doomed from the outset
(though for a heroic defence of Hilbert’s aims see [Detlefsen, 1986], [Detlefsen, 1990], and
[Detlefsen, 2001]). In the present context then, we want to provide philosophical and mathe-
matical reasons to accept the use of extension-talk in formulating axioms about V . There is a
substantial and interesting question as to how Hilbertian this challenge really is. We certainly
do not claim that it accords with all of Hilbert’s writing. Indeed, one might take Hilbert as
requiring conservativity rather than merely a lack of contradictions. All we wish to identify
here is that there are certain parallels between Hilbertian Finitism and Universism. Thanks to
Giorgio Venturi for emphasising this point.

16A similar constraint is examined solely with respect to forcing constructions in
[Barton, 2019], where some conditions on the ‘naturalness’ of interpretations of forcing are
discussed.
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our thinking relates to them. Thus, the challenge is to see how much of our
naive thinking can be interpreted on her picture, without actually committing
to the existence of sets outside V .

In [Barton, 2019], the second author argued that many insights relating to
forcing could be captured through the use of a countable transitive model el-
ementarily equivalent to V . Here we will extend this line of thought, arguing
that a Universist can capture far more than one might think (even statements
concerning certain higher-order axioms) and that this paves the way for new
and interesting philosophical and mathematical discussions from Universist
points of view. In particular, we shall argue that we can capture more than
just forcing extensions, but can in fact naturally interpret talk concerning arbi-
trary extensions of V on a Universist picture. Indeed, we shall show that us-
ing some impredicative class theory, we can capture satisfaction in arbitrary
outer models in which V appears standard. This provides a definition of
satisfaction in both forcing extensions of various kinds and also non-forcing
extensions (such as if V resulted from a generating sharp). Reduction of this
situation to the countable (again, possibly using impredicative class theory)
then facilitates a philosophically virtuous way of interpreting extension-talk
for a Universist.

2 Formulating axioms with extensions

With the philosophical backdrop in place, we will now state the rough ab-
stract shape of the problem we shall consider. In formulating axioms, we
shall see that the use of ‘ideal’ objects outside V can lead to triviality or ap-
parent falsehood, even when we are trying to make a claim about objects
within V . Before we dig into the details, a toy example is helpful to under-
stand how consideration of extensions might be useful for making a claim
about V . Let Φ and Ξ be conditions on universes. Suppose we wish to assert
the following principle about V :

Principle-ΞV . If there is a proper width extension of V such that Φ, then Ξ
holds of V .

The problem with Principle-ΞV is that, given a naive interpretation, it will
always come out as true, but fail to capture the intended aspect of V (namely
that Ξ holds of V ). For the antecedent (on its natural reading) is trivially false,
and so the conditional is true. But this provides us with no reason to think
that Ξ is actually true of V which, presumably, was the intended consequence
of asserting the putative axiom in the first place.

Some axioms can indeed be formulated in this way. Consider the follow-
ing case. Martin’s Axiom is a well-known proposed axiom, and is normally
formulated as follows:17

17One can also find a use of this analogy in [Barton and Friedman, 2017].
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Definition 1. (ZFC) Martin’s Axiom. Let κ be a cardinal such that κ < |P(ω)|.
MA(κ) is the claim that for any partial order P in which all maximal antichains
are countable (i.e. P has the countable chain condition), and any family D of
dense sets of P such that |D| 6 κ, there is a filter F on P such that for every
D ∈ D, F ∩D 6= ∅. Martin’s Axiom (or MA) is then the claim that ∀κ < |P(ω)|,
MA(κ).

Effectively, Martin’s Axiom rendered in this form states that the universe
has already been saturated under forcing of a certain kind.18 However, we
could equivalently formulate Martin’s Axiom as the following absoluteness
principle:

Definition 2. (ZFC) [Bagaria, 1997] Absolute-MA. We say that M satisfies
Absolute-MA iff whenever M[G] is a generic extension of M by a partial or-
der P with the countable chain condition in M, and φ(x) is a Σ1(P(ω1)) for-
mula (i.e. a first-order formula containing only parameters from P(ω1)), if
M[G] |= ∃xφ(x) then there is a y in M such that φ(y).

This version of Martin’s Axiom is interesting given our current focus; it
asserts that if something is true in an extension of a particular kind, then it
already holds in M. In this way, it conforms to the natural idea for the Uni-
versist that if a set of a certain kind is possible then it is (in some sense) actual.19

Suppose then that the Universist is only aware of Absolute-MA and not Mar-
tin’s Axiom as usually stated. Supposing that she viewed it as a maximality
principle worthy of study, could she meaningfully analyse the axiom for its
truth or falsity in V despite its apparent reference to extensions?

The answer is clearly “Yes!”. This is because (as will be familiar to special-
ists) despite the fact that the Universist does not countenance the literal exis-
tence of the extensions, she can nonetheless capture the notion of satisfaction
in a particular set-generic forcing extension using formulas that are first-order
definable over V . More specifically, given a formula φ (or set of formulas of
some bounded complexity), the Universist can define a class of P-names in V ,
and a relation P (known as a forcing relation) such that: For p ∈ P, if pwere in
some (‘ideal’, ‘non-existent’) P-generic G, and p P φ holds in V , then V [G]
would have to satisfy φ were it to exist. Moreover, if some ‘ideal’ V [G] were
to satisfy φ, then there is a q ∈ G ⊆ P such that q P φ.20 In this way, her
V has access to the satisfaction relation of ‘ideal’ outer models. To be clear,
from the Universist perspective, all she is really doing here is schematically
talking about the various relations P for the relevant φ, and various q ∈ P in
her model, it just so happens that this talk of P mimics what would be true
in extensions of V (were they to exist). The Universist can then reformulate
Absolute-MA as follows:

18The same goes for other similar forcing axioms.
19A full examination of this line of thinking is outside the scope of the current paper, but

further discussion of the idea is available in [Bagaria, 2005], [Bagaria, 2008], and [Barton, S].
20See [Kunen, 2013], Ch. IV (esp. §IV.5.2) for details.
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Definition 3. (ZFC) Absolute-MA. We say that V satisfies Absolute-MA iff
whenever P ∈ V is a partial order with the countable chain condition in
V , and φ(x) is a Σ1(P(ω1)) formula, if there is a p ∈ P and P, such that
p P ∃xφ(x), then there is a y in V such that φ(y).

Thus, by coding satisfaction in outer models (without admitting their exis-
tence), the Universist can express the content of Absolute-MA through Absolute-
MA.21 Now, the use of such a forcing relation is very syntactic, and so it is
unclear how the Methodological Constraint is satisfied—there is no model
very similar to V being extended. However, it is well-known that if one
moves to a countable transitive model M of the required form, many exten-
sions of M are readily available, and some of these models can bear a close
resemblance to V . It is then false (as Hamkins acknowledges) to say that the
Universist cannot provide an interpretation on which the set theorist’s state-
ments come out as true. It is simply that, given many of the interpretations,
‘V ’ does not denote V . Koellner expresses the point as follows:

Hamkins’ aim is to “legitimize the actual practice of forcing, as it
is used by set theorists”... The background is this: Set theorists
often use ‘V ’ instead of ‘M ’ and so write ‘V [G]’. But if V is the
entire universe of sets then V [G] is an “illusion”. What are we to
make of this? Most set theorists would say that it is just an abuse
of notation. When one is proving an independence result and one
invokes a transitive model M of ZFC to form M [G] one wants to
underscore the fact that M could have been any transitive model
of ZFC and to signal that it is convenient to express the univer-
sality using a special symbol. The special symbol chosen is ‘V ’.
This symbol thus has a dual use in set theory—it is used to de-
note the universe of sets and (in a given context) it is used as a
free-variable to denote any countable transitive model (of the rel-
evant background theory). ([Koellner, 2013], p19)

Koellner’s point here is that the Universist can interpret extension con-
structions (in particular those concerned with independence), by moving to
a countable transitive model (where extensions are uncontroversially avail-
able) and conducting the construction there. To transfer the strategy to the
current case, we could argue that axioms using extension talk concerning V
could be formulated about a countable transitive model M satisfying ZFC,
and then whatever is proved about M merely on the basis of its ZFC-satisfaction
can be exported back to V .

We defer a detailed consideration of extant interpretations of certain kinds
of extension-talk (e.g. forcing) to different work.22 Nonetheless, a review of

21This will, of course, be equivalent to the standard version of Martin’s Axiom. See
[Bagaria, 1997] for details.

22Hamkins himself has several criticisms of these techniques (including the countable tran-
sitive model strategy) which the second author addresses in [Barton, 2019]. For examination
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the challenges faced and a standard response will be helpful for seeing the
main aims and strategy of the current paper.

We start by noting the following weakness in the countable transitive
model strategy (as stated) for the purposes of interpreting axioms concern-
ing V that make mention of extensions: There is no guarantee that M and
V satisfy the same sentences (though they agree on ZFC). This is of central
importance in the current context, part of the point of asserting new axioms
for the Universist is to reduce independence concerning V , and so we require
(according to the Methodological Constraint) as much similarity between V
and a countable transitive model as possible.

The situation can be somewhat remedied by having a countable transitive
model that satisfies exactly the same parameter-free first-order sentences as V .
We will denote such an object by V. Later (§6) we will discuss possible rea-
sons why a Universist might accept the existence of such an entity, however
for now let us assume that such a V exists to see the rough shape of a re-
sponse to the Hilbertian Challenge. On this picture, when a theorist uses the
term ‘extension of V ’, we interpret them as talking about some V (which is
elementarily equivalent to V ) and its relationship to V . We have a model, very
similar to V that really is being extended. Any result in the first-order language
of ZFC that holds in V can then be exported back to V via the elementary
equivalence. Moreover, we have an explanation of how talk of forcing over
V is related to forcing in the context of V , both V and V will have forcing
relations for the relevant formulas and partial orders, it is just that in the case
of V these relations correspond to the actual existence of generics. Use of a
countable transitive model elementarily equivalent to V is thus a viable al-
ternative for interpreting extension talk in line with the Hilbertian Challenge
and Methodological Constraint, at least as far as parameter-free first-order
truth goes. Whilst there are other options for how one might interpret exten-
sions of V (such as via use of a forcing relation or Boolean-valued models, or
considering substructures of V obtained by a Boolean ultrapower map), for
now we will simply take it as given that the countable transitive model strat-
egy works well for parameter-free first-order truth:23 We have a model very
similar to V actually being extended and explained how it is linked to truth
in V . This is the rough form of problem and response we shall articulate in
the rest of the paper, but with respect to arbitrary extensions.

The core difficulty, to be explained in the next section and overcome in the
sections thereafter, is that we might still regard this version of the countable
transitive model strategy as somewhat limited. In particular, there are axioms
that we can state using higher-order resources in combination with extensions,
for which such a V might not be appropriately linked to truth in V . If we
want to allow for interpretation of these axioms, we require a modification

of axioms using countable transitive models elementarily equivalent to V (or some V), see
also [Arrigoni and Friedman, 2013] and [Antos et al., 2015].

23These options, and why we might regard the countable transitive model strategy as priv-
ileged, are discussed by the second author in [Barton, 2019].
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of the countable transitive model strategy. The next section (§3) provides an
exposition of these axioms, before we show how to modify the countable
transitive model strategy to accommodate them (§§4,5,6).

3 Higher-order axioms

This section provides exposition of several axioms that possibly require more
for their satisfactory formulation than what we can guarantee through the
existence of a countable transitive model elementarily equivalent to V . In
particular, as we shall see, the issue concerns the resemblance between the
relevant countable model and higher-order properties.

3.1 Inner model richness

Extensions of V are useful for postulating the existence of many inner models.
The Inner Model Hypothesis does exactly this, using extensions of a model M
in order to make claims about the inner models of M:

Definition 4. (Informal24) [Friedman, 2006] M (a model of ZFC) satisfies the
M-Inner Model Hypothesis (henceforth ‘M-IMH’) iff wheneverφ is a parameter-
free first order sentence that holds in an inner model IM

∗
of an outer model

M
∗ of M, there is an inner model IM of M that also satisfies φ. The Inner

Model Hypothesis (henceforth ‘IMH’) is the V -Inner Model Hypothesis.

Remark 5. As we shall see (and this is one of the foci of this paper) the con-
tent of this claim depends on the interpretation we give to the notion of ‘outer
model of V ’ and ‘inner model of V ’. Later, we will show that admitting cer-
tain impredicative resources facilitates the coding of the IMH, thus for now
we leave it informally formulated. The reader experiencing metaphysical
queasiness can, for the moment, think about the M-IMH as formulated about
an arbitrary countable transitive model M of ZFC.

The M-IMH thus states that M has many inner models, in the sense that
any sentence φ true in an inner model of an outer model of M is already true
in an inner model of M. In this way, M has been maximised with respect to
internal consistency (see Figure 1 for visual representation of an application of
the M-IMH).

There are a number of reasons to find the M-IMH interesting, not least be-
cause it maximises the satisfaction of consistent sentences within structures
internal to some M. If we could formulate the IMH as about V , it would thus
be foundationally significant: The IMH gives us an inner model for any sen-
tence model-theoretically compatible with the initial structure of V , and thus
serves to ensure the existence of well-founded, proper-class-sized structures
in which we can do mathematics. It also has a similarity to Absolute-MA;
the IMH is just more general in that it permits the consideration of arbitrary

24We will show how to code this axiom formally in §§4–6.
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Figure 1: A visual representation of an application of the M-IMH
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extensions instead of merely set forcing extensions. The M-IMH also has sub-
stantial large cardinal strength; it implies the existence of inner models (of M)
with measurable cardinals of arbitrarily large Mitchell order, and is consistent
relative to the existence of a Woodin cardinal with an inaccessible above.25

However, it is also interesting in that it has various anti-large cardinal prop-
erties, the M-IMH implies that there are no inaccessibles in M.26

Whence the problem then for the Universist? If the Universist wishes to
use the IMH as a new axiom about V , she has to examine issues concerning
extensions of V . If they ascribe no meaning to claims concerning extensions,
then the IMH is utterly trivial (when viewed as a principle true of the uni-
verse, rather than some substructure thereof). Under this analysis, every-
thing true in an inner model of an outer model of V is also true in an inner
model of V , as either (i) the outer model is proper, does not exist, and hence
nothing is true in an inner model of that proper outer model of V , or (ii) the
outer model is V itself, and obviously anything true in an inner model of V
is true in an inner model of V . Thus, if the Universist ascribes no meaning to
the term ‘outer model of V ’ the inner model hypothesis fails to capture what
it was designed to state (i.e. a richness of inner models).

However, even supposing that the Universist allows some interpretation
of extension talk, the content that the IMH has is going to vary according to
the resources one allows. We begin by making the following definitions:

25See [Friedman et al., 2008] for details.
26See [Friedman, 2006], p. 597 for details.
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Definition 6. (NBG) Let (V , CV ) denote the structure (satisfying NBG) com-
posed of V with all its classes27. The Set-Generic Inner Model Hypothesis is the
claim that if a (first-order, parameter free) sentence φ holds in an inner model
of a set forcing extension (V [G], CV [G]) of (V , CV ) (where V [G] consists of the
interpretations of set-names in V using G, and CV [G] consists of the interpre-
tations of class-names in CV using G), then φ holds in an inner model of V .
If we insist that CV consists only of V -definable classes, and that the inner
models of V and V [G] are definable with set parameters, then we shall call
this principle the Definable Set-Generic Inner Model Hypothesis.

Definition 7. (NBG) Again, let (V , CV ) be the NBG structure consisting of
V with all its classes. The Class-Generic Inner Model Hypothesis is the claim
that if a (first-order, parameter free) sentence φ holds in an inner model of a
tame class forcing extension (V [G], CV [G]) of (V , CV ) (where V [G] and CV [G]
are defined as above), then φ holds in an inner model of V .

Remark 8. Before we begin teasing apart the two possible axioms, we make
the following observation regarding the expressibility of these principles.28

The Definable Set-Generic Inner Model Hypothesis is expressible in V as a
scheme of assertions in first-order ZFC, since we can first-order quantify
over set forcings, and talk definably about their forcing relations, and using
these forcing relations speak about definable inner models of the set-forcing
extensions. For the full Set-Generic and Class-Generic Inner Model Hypothe-
ses, we need to use class theory; in the first case to quantify over inner models
(that may not be definable), and in the second case to quantify over the forc-
ings in question. Note that for class forcings, one can make the inner model
of the outer model definable using Jensen coding, and so the assumption on
the definability of the inner models of V and V [G] would result in equiva-
lent principles. Later (in the omniscience subsection of §6), we will see that
given some (non-first order) conditions on the universe, the full IMH can be
expressible in NBG. In any case, the results of §6 will show that a variant of
MK (in fact a variant of NBG+Σ1

1-Comprehension) also suffices to formu-
late all versions of the IMH. For the time being then, we will restrict to the
versions of the IMH that we can express in NBG, i.e. the Set-Generic Inner
Model Hypothesis and the Class-Generic Inner Model Hypothesis.

We then have the following simple fact for the Set-Generic Inner Model
Hypothesis:

Theorem 9. (NBG) If the Set-Generic Inner Model Hypothesis holds then V 6= L.

Proof. Assume V = L and the Set-Generic Inner Model Hypothesis. Then
there is an inner model of an outer model in which V = L is false (the ad-
dition of a single Cohen real x over L to L[x] will suffice, with the relevant
inner model simply being the forcing extension L[x]). By the Generic Inner

27We discuss how to interpret classes over V later; see §5.2.
28We thank an anonymous reviewer for suggesting that we examine this question.
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Model Hypothesis there is an inner model of L in which V 6= L. But L is the
smallest inner model, and so V = L and V 6= L, ⊥.

However, though this restricted version of the IMH is sufficient to get us a
certain richness of inner models (enough to break V = L) we get more if we
allow class forcings. This is brought out in the following:

Theorem 10. (NBG) Assuming the consistency of the existence of a Vκ elementary
in V , there is a model satisfying the Set-Generic Inner Model Hypothesis that violates
the Class-Generic Inner Model Hypothesis.

Proof. Take a model M of V = L containing a VM
κ = LM

κ ≺ VM = LM. We
work from the perspective of M. For any particular β, let Col(ω,β) be the
Lévy collapse of β to ω, and let G be generic for Col(ω,κ). We claim that
(L[G],DefL[G]) satisfies the Set-Generic Inner Model Hypothesis. It suffices
to show that if a sentence holds after forcing with Col(ω,λ) for some λ, then
this λ can be chosen to be less than κ. This is because any set-forcing can be
absorbed into Col(ω,λ) for some λ,29 and any two Col(ω,λ)-generic exten-
sions satisfy the same sentences.

Now if φ holds after forcing with Col(ω,λ) for some λ, then as Lκ is el-
ementary in L, φ also holds after forcing over Lκ with Col(ω,λ′) for some
λ′ < κ. But if G(λ′) is generic over Lκ for Col(ω,λ′), then Lκ[G(λ

′)] is ele-
mentary in L[G(λ′)] as Col(ω,λ′) is a forcing of size less than κ, using the fact
that κ is a cardinal of L. So φ holds after forcing with Col(ω,λ′) for some
λ′ < κ, as desired.

However, (L[G],DefL[G]) does not satisfy the Class-Generic Inner Model
Hypothesis because every real in L[G] is set-generic over L, and by Jensen
coding any model of the Class-Generic Inner Model Hypothesis must have
reals which are not set-generic over L.

Thus, we see how inner model hypotheses are dependent for their content
and implications upon what we allow as extensions. Indeed, the difference
between set forcing and class forcing is brought out by the following:

Definition 11. (ZFC) We say that a model M = (M ,∈) κ-globally covers V
if for every function f (in V ) with dom(f) ∈ M and rng(f) ⊆ M , there is a
function g ∈M such that for all i ∈ dom(f), f(i) ∈ g(i) and M |= |g(i)| < κ.

Theorem 12. (ZFC) [Bukovský, 1973] Let V be a transitive model of ZFC, and M

an inner model of V definable in V , and κ a regular uncountable cardinal in M. Then
M κ-globally covers V if and only if V is a κ-c.c. set-generic extension of M.30

The theorem highlights that being a set-forcing extension is a relatively re-
stricted kind of extending construction in comparison to others: If one model

29See here [Cummings, 2010] (§14) for technical explanation, and [Barton, 2019] for further
philosophical remarks. We thank Monroe Eskew for helpful discussion here.

30For further discussion of this theorem, see [Friedman et al., F].
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is a set forcing extension of another (by some κ-c.c. forcing), then every func-
tion in the extension is already κ-covered by some function in the ground
model. There is no such requirement for class forcing. For example, consider
an x ⊆ κ that is κ-Cohen generic over V , and let f be the increasing enumer-
ation of x. Then, f is not κ-covered by a function in V . Thus, the class forc-
ing that adds a single κ-Cohen at every regular κ violates global κ-covering
at every κ. The question of whether or not there could be an analogue of
Bukovský’s Theorem for class forcing is currently unresolved, however any
such result would have to transcend the notion of κ-global covering.

Suppose then that we do wish to assert that the IMH is true of V for ar-
bitrary extensions. Then we need to give meaning (in whatever appropriate
codification) to the claim that V has various kinds of extension. The intra-
V (i.e. internal to V ) consequences provable from the IMH may then vary
depending on the kinds of extension we can interpret.

How does this play out with respect to the countable transitive model
strategy? Here, there is a prima facie limitation. As it stands, a V elementarily
equivalent to V is only accurate for first-order statements about V . Because
of the inherent incompleteness in second-order properties over V , there is no
guarantee that V perfectly mirrors V ’s higher-order properties. This diffi-
culty is especially interesting given that a large part of set theory comprises
examining the structural relationships between models. Simply because an
axiom is not first-order is not a reason (without significant further argument)
to establish that it is not of independent interest.

The situation can be brought into sharper focus by initially considering
the behaviour of arbitrary higher-order properties. Letting CM denote a col-
lection of classes for a model M (i.e. to serve as interpretation of the second-
order variables), and (M ,∈, CM) be the resulting model of second-order set
theory, then it is clear that we can have a V elementarily equivalent to V for
parameter-free first-order truth, but diverging in the higher-order realm. To
see this, consider the following set-sized case. Let some universe V be of the
form (Vκ,∈,Vκ+1), where κ is inaccessible. Now use AC to obtain a countable
elementary (in the language of MK) submodel, and collapse to obtain some
countable and transitive U = (U ,∈, CU) (note here that both U and CU are
countable). Letting Def(M) denote the set of classes of a model M definable
with first-order parameters, we then have that (U ,∈, CU) and (Vκ,∈,Vκ+1)
satisfy MK class theory, whereas (U ,∈,Def(U)) and (Vκ,∈,Def(Vκ)) each
satisfy the weaker NBG class theory, despite all four models having the same
first-order theory. This shows that though we might have a V elementary
equivalent to V for first-order truth, it may radically diverge from V in its
higher-order properties, possibly even (dependent on the class theory we ac-
cept for V , and the classes we choose for V) having ‘more’ classes (in the
sense of sentences of class theory satisfied) than V .

While we see that V need not resemble V with respect to arbitrary higher-
order truth, there is the question of whether or not it need resemble V with
respect to the higher-order truth relevant for satisfaction of the IMH. We will
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show how to code outer models of V later, in order to give meaning to this
question concerning the IMH. However, even in the case of countable transi-
tive models, the question does not have an obvious answer:

Question 13. Could there be a countable transitive model M = (M ,∈,CM)
of NBG, such that M has a countable (from the perspective of M) transitive
submodel M′ = (M ′,∈,CM′

), also a model of NBG, with M and M
′ agreeing

on parameter-free first-order truth in ZFC but disagreeing on the IMH?

The mathematics surrounding this question seems difficult, yielding a po-
tentially philosophically and mathematically interesting line of inquiry. For
now, we merely point out that it is at least an open (epistemic) possibility that
a V equivalent to V for first-order truth might fail to resemble V with respect
to the IMH when we admit some conception of classes for each (assuming
that the IMH can be given a reasonable interpretation over V ). Later, we will
see that if we allow impredicative class comprehension, this difficulty can be
circumvented. A small amount of impredicative similarity between V and
V is sufficient to yield enough resemblance for the satisfaction of the IMH to
covary between V and V.

3.2 ♯-generation

Interestingly, width extensions (i.e. universes containing the same ordinals
but more subsets) allow us to encapsulate many large cardinal consequences
of reflection properties. It is here that the notion of a sharp becomes useful.
Before we give the definition, we will require a notion of iteration in class
theory. We therefore need a preliminary:

Definition 14. (NBG) Let ETR (for ‘Elementary Transfinite Recursion’) be
the statement that every first-order recursive definition along any well-founded
binary class relation has a solution.31

We make the following definition (and provide a visual representation in
Figure 2):

Definition 15. (NBG + ETR) A transitive structure N = (N ,U) is called a
class-iterable sharp with critical point κ or just a class-iterable sharp iff32:

(i) N is a transitive model of ZFC− (i.e. ZFC with the power set axiom
removed) in which κ is the largest cardinal and is strongly inaccessible.

(ii) (N ,U) is amenable (i.e. x ∩ U ∈ N for any x ∈ N ).

(iii) U is a normal measure on κ in (N ,U).

31For discussions of ETR, see [Fujimoto, 2012] and [Gitman and Hamkins, 2017].
32This way of defining sharps is modified from the discussion in [Friedman, 2016] and

[Friedman and Honzik, 2016b].
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Figure 2: A visual representation of the initial ultrapowers corresponding to
a sharp (N ,U)

N = (N ,U)
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(iv) N is iterable in the sense that all successive ultrapower iterations along
class well-orders (over the ambient model containing the sharp) start-
ing with (N ,U) are well-founded, providing a sequence of structures
(Ni,Ui) (for i a set or class well-order) and correspondingΣ1-elementary
iteration maps πi,j : Ni −→ Nj where (N ,U) = (N0,U0).

Remark 16. The original work of [Friedman, 2016] and [Friedman and Honzik, 2016b]
defined sharps in terms of ‘all’ successive ultrapowers being well-founded in
a height potentialist framework (i.e. where any universe can be extended
in height). Since we are shooting for axioms on the Universist framework,
we will allow the iteration of the ultrapower along any class well-order, and
hence make the definitions in NBG + ETR. In any case, we will see later
(§6) that ETR can be eliminated in the presence of some impredicative class
theory.

Using the existence of the maps πi,j : Ni −→ Nj , we can then provide the
following definition:

Definition 17. (NBG + ETR) A transitive model M = (M ,∈) is class iter-
ably sharp generated iff there is a class-iterable sharp (N ,U) and an iteration

N0 −→ N1 −→ N2... such that M =
⋃
β∈OnM V

Nβ
κβ .

In other words, a model is class iterably sharp generated iff it arises through
collecting together the V Ni

κi
(i.e. each level indexed by the largest cardinal of

the model with index i) resulting from the iteration of a class-iterable sharp
through the ordinal height of M. Note than in producing the model, we only
require that the sharp is iteratedOrdM-many times, despite the fact that it can
be iterated far further.33

33Elsewhere the third author argued that any maximal reflection principle will require a
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A model’s being class iterably sharp generated engenders some pleasant
features. In particular, it implies that any satisfaction (possibly with param-
eters drawn from M) obtainable in height extensions of M adding ordinals
(through the well-orders in the class theory of the ambient universe) is al-
ready reflected to an initial segment of M.34 In this way, we are able to
coalesce many reflection principles into a single property of a model. For
example a model M being class iterably sharp generated already entails re-
flection from M to initial segments of nth-order logic for any n.35 One might
then suggest the following kind of axiom in attempting to capture reflection
properties:

Axiom 18. (Informal)36 The Class Iterable Sharp Axiom. V is class iterably sharp
generated.

which would allow us to assert in one fell swoop that V satisfies many re-
flection axioms (rather than having to assert them in a piecemeal fashion).
However, such an axiom is also clearly problematic from the Universist per-
spective; claiming that V is class iterably sharp generated depends upon the
existence of an iterable class sharp for V , which cannot be in V . If it were, one
could obtain a class club resulting from iterating the sharp (namely the class
of κi), which in turn forms a club of regular V -cardinals. The ωth element of
any club of ordinals with proper initial segments in V must be singular with
cofinality ω, and so we would obtain a contradiction at κω ; it would have to
be both regular and singular.

Thus, the claim that V is class iterably sharp generated comes out as triv-
ially false; there simply is no such sharp. Moreover, sharps are especially
problematic as they cannot be reached by known forcing constructions, so
many of our usual simulations of satisfaction for extensions (such as the use
of a forcing relation or Boolean-valued model) will not help in their discus-
sion.37 Moreover, whilst the first-order consequences of V being class iterably
sharp generated will be mirrored in V , there is not yet any interpretation of
the embeddings yielding the sharp (these being higher-order objects). As
we’ll see in §§4,5, and 6, we can develop an interpretation of these objects.
For now, we look at some other possible uses of extensions.

3.3 Set-theoretic geology

A final kind of higher-order axiom that uses extensions emerges from set-
theoretic geology.38 The study of the geological properties of a model concerns

formulation external to the model in which it is witnessed, since one can always strengthen
any internal reflection principle Φ with the statement Φ+“There exists an α such that Vα |= Φ”.
See [Friedman, 2016], §4.4.

34See [Friedman, 2016] and [Friedman and Honzik, 2016b] for discussion.
35See here [Friedman and Honzik, 2016b] and [Friedman, 2016].
36We will show how to code this axiom formally in §§4–6.
37See [Friedman, 2000], §5.2 for details.
38See [Fuchs et al., 2015] for a description of set-theoretic geology.
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how different models could have arisen by some variety of extension con-
struction (the metaphor of geology indicates tunnelling down into the ground
models of a particular starting model). In the original paper of [Fuchs et al., 2015],
the authors are almost exclusively concerned with set-generic forcing exten-
sions. We might examine, however, how this can be extended to arbitrary
extensions. We now repeat some definitions of [Fuchs et al., 2015] to show
how this can be done:

Definition 19. (ZFC) [Fuchs et al., 2015] A class W is a ground of V iff V is
obtained by set forcing over W , that is if there is some P ∈ W and W -P-
generic filter such that V =W [G].

Definition 20. (ZFC) [Fuchs et al., 2015] A class W is a bedrock for V iff it is a
ground of V and minimal with respect to the forcing-extension relation.

Definition 21. (ZFC) [Fuchs et al., 2015] The mantle M of a model of set the-
ory is the intersection of all its grounds.

[Fuchs et al., 2015] then goes on to prove several facts about the geological
properties models may possess. In particular, the paper shows that many of
these statements, which appear second-order (given their reference to struc-
tural interrelations of proper class models), can actually be rendered in first-
order terms. For example they discuss the following:

Theorem 22. (ZFC) [Laver, 2007] (The Ground Model Definability Theorem). Ev-
ery ground model W of V is definable in V using a parameter from W . Moreover,
there is a specific formula φ(y,x) such that if W is a ground of V , then there exists
an r ∈W such that:

W = {x|φ(r,x)}

This theorem facilitates the study of the geological structure of set-generic
multiverses from within a given model in first-order terms. However, we
might consider generalisations of the idea of geology to other extensions.
[Fuchs et al., 2015] goes some way towards this, considering the structure
present when we allow pseudo-grounds into the picture: models that have cer-
tain covering and approximation properties that facilitate the definability of
the ground model in the (possibly class) forcing extension.

Despite this, the ground-model definability theorem can fail badly when
we fully admit class forcing extensions into the picture, as shown by the fol-
lowing:

Theorem 23. (MK) [Antos, 2018] There is a ZFC-preserving class forcing such
that the ground model M is not definable in the extension M[G].

The theorem shows that for many class forcings, the definability of the
ground model in the extension can fail. Thus, by insisting that we exam-
ine any geological structure only in cases where we do have definability, we
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lose a possible route for discovering facts about V . Moreover, insisting on
the use of set forcing obscures other possible routes of inquiry. For example,
instead of looking at forcing extensions, one could examine arbitrary exten-
sions which preserve cardinals. This is a deep and challenging form of set-
theoretic geology. Or, one can look at inner models obtained by iterating the
HOD-operation (i.e. looking at theHOD of theHOD, theHOD of theHOD
of the HOD etc.).

How might the use of geology be useful in formulating axioms for V ?
A natural thought for a Universist is that V cannot be ‘reached’ by particular
kinds of construction. In the case of the set-generic multiverse, we might then
postulate that the following is true:

Definition 24. (ZFC) [Fuchs et al., 2015] V satisfies the ground axiom iff it is
not a non-trivial set-forcing extension of an inner model.

In the present case, we might consider the following sort of axiom:

Definition 25. (Informal) V satisfies the Φ-ground axiom iff for extensions of
kind Φ (e.g. set forcing, class forcing, appropriate arbitrary extensions), V is
not a non-trivial extension of kind Φ of an inner model.

Axioms of this form would provide a formalisation of the idea that V
is ‘unreachable’ in some sense: it cannot be obtained from an inner model
by certain kinds of extension. As it stands, we do not need to talk about
extensions in order to talk about the geological structure of V ; most of the
discussion here concerns how V can be obtained by extending inner models.
However, often geological structure is elucidated by considering how par-
ticular grounds (possibly satisfying some Φ-ground axiom) behave within a
wider multiverse context. A salient concept here is the following:

Definition 26. (ZFC) [Fuchs et al., 2015] The set-generic mantle is the intersec-
tion of all the grounds of set forcing extensions of V .39

In the case of set forcing, this class will be definable, owing to the Laver
definability of the ground model of an extension. In fact, by recent results
of Usuba40, the mantle (the intersection of all grounds of V ) and set-generic
mantle coincide. However, the loosening of the requirement on set forcing in
the definition of the mantle (say to cardinal preserving arbitrary extensions),
and the use of this (possibly non-definable) higher-order entity in postulating
an axiom to hold of V (for example that the ‘arbitrary’ mantle is a proper
subclass of V ), requires some interpretation of arbitrary outer models of V .

39By the results of [Fuchs et al., 2015], this is parametrically definable in the extension.
40Namely his proof of the Downward Directed Grounds Hypothesis (that any two grounds

have a common ground) and the Set-Downward Directed Grounds Hypothesis (that a set-sized
parameterised family of grounds have a common ground). See [Usuba, 2017] for details.
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4 The syntactic coding of extensions using V -logic

We thus find ourselves in a tricky situation. We wish to see if we can use
extension talk to make claims about V , but are at a loss how to do this for
certain axioms relating to higher-order properties of V . In the rest of the
paper, we provide a new method for a Universist to interpret extensions of
V , and argue that it is philosophically virtuous. First, we provide a sketch of
the proposal.

The central idea will be to use an infinitary proof system (V -logic) to code
satisfaction in extensions of V syntactically. This has already been mentioned
in [Antos et al., 2015] and [Friedman, 2016], but we provide three important
additional contributions. First (§4) we provide a full and detailed technical
account of the mechanisms of V -logic, which has not yet appeared. Second
(§5) we will show how V -logic relates to impredicative class theories, in par-
ticular showing how certain modifications of V -logic facilitate a coding in
class theory with some impredicative comprehension. In particular, we show
how it is possible, given an impredicative class theory, to code consistency
in V -logic by a single class. While we’ll argue that this gives some mean-
ing to the notion of outer model for V (and hence we can provide some in-
terpretation of the axioms we have mentioned) we will also point out that
more is needed to satisfy the Methodological Constraint. For our third con-
tribution, we then (§6) discuss methods for remedying this defect by finding
appropriate countable transitive models. For example, we can introduce a
predicate for this class and use the resulting theory to reduce our claims to
the countable, providing an interpretation that links truth in V to our naive
thinking concerning extensions, much as the earlier discussed countable tran-
sitive model strategy did for first-order truth. Separately, we will also con-
sider second-order conditions that V might satisfy which yield a first-order
definition of satisfaction in arbitrary outer models.

4.1 Exposition of V -logic

That infinitary logics relate to talk concerning extensions was known since
[Barwise, 1975], and utilised by [Antos et al., 2015] in providing an interpre-
tation of extension talk in a framework where any universe could be extended
to another with more ordinals. We provide a more technically detailed expo-
sition of the system of V -logic than has been hitherto provided, and show
how it can be captured using impredicative class theories, facilitating a pos-
sible line of response on behalf of the Universist. Since we will be showing
how to code the logic later, we will leave the theory in which the definitions
are formulated for §§5–6.

We first set up the language:

Definition 27. L V
∈ is the language ofZFC with the following symbols added:

(i) A predicate V̄ to denote V .
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(ii) A constant x̄ for every x ∈ V .

We can then define V -logic:

Definition 28. V -logic is a system in L V
∈ , with provability relation ⊢V (de-

fined below) that consists of the following axioms:

(i) x̄ ∈ V̄ for every x ∈ V .

(ii) Every atomic or negated atomic sentence of L∈ ∪ {x̄|x ∈ V } true in V is
an axiom of V -logic.41

(iii) The usual axioms of first-order logic42 in L V
∈ .

For sentences in L V
∈ , V -logic contains the following rules of inference:

(a) Modus ponens: From φ and φ→ ψ infer ψ.

(b) The Set-rule: For a, b ∈ V , from φ(b̄) for all b ∈ a infer ∀x ∈ āφ(x).

(c) The V -rule: From φ(b̄) for all b ∈ V , infer ∀x ∈ V̄ φ(x).

Proof codes in V -logic are thus (possibly infinite) well-founded trees with
root the conclusion of the proof. Whenever there is an application of the V -
rule, we get proper-class-many branches extending from a single node. More
formally, we define the notion of a proof code in V -logic (an example of which
is visually represented in Figure 3) as follows:

Definition 29. A proof code of χ in V -logic is a (possibly infinite) well-founded
tree, with root the conclusion of the proof (i.e. χ) and where previous nodes
are either codes of axioms of V -logic or follow from one of its inference rules.
Since we will be proving facts about codes of these proofs later, we provide
the following inductive definition:

(A) Base cases:

(i) For every x ∈ V , the tree that has as its domain the code of x̄ ∈ V̄

and as its relation ∅ is a proof in V -logic.

(ii) For every atomic or negated atomic sentence φ of L∈ ∪ {x̄|x ∈ V }
true in V , the tree that has as its domain the code of φ and as its
relation ∅ is a proof in V -logic.

(iii) The trees that have as their domains a single axiom of first-order
logic in L V

∈ and as their relations the empty relation are all proofs
in V -logic.

41An anonymous reviewer points out that one might also wish to add a full first-order
satisfaction predicate here. However, the V -rule (stated below) will ensure that any first-order
sentence true in V is proved to hold in V̄ (our symbol for V ) in V -logic. We find it clearer to
just put in atomic satisfaction and let the V -rule do the rest, but one can also incorporate a
satisfaction predicate, if so desired.

42See, for example, [Enderton, 1972], p. 112.
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(iv) If we are proving from some set of premises T, each tree with do-
main a single sentence of T and empty relation is a proof in V -logic.

(B) Inductive steps:

(i) If Tφ and Tφ→χ are proofs in V -logic, then the tree obtained by join-
ing the code of χ as the root to the two trees Tφ and Tφ→χ is a proof
in V -logic.

(ii) If a is a set, and we have a non-empty set of proof trees of the form
Tφ(b̄) coding proofs of φ(b̄) for all b ∈ a, then the tree that has as a
root the code of ∀x ∈ āφ(x), and all Tφ(b̄) extending from that node
is also a proof in V -logic.

(iii) If we have a non-empty class of proof trees of the form Tφ(b̄) coding

proofs of φ(b̄) for all b ∈ V , then the tree that has as a root the code
of ∀x ∈ V̄ φ(x) and all Tφ(b̄) extending from that node is also a proof
in V -logic.

Definition 30. For a theory T and sentence φ in the language of V -logic,
we say that T ⊢V φ iff there is a proof code of φ in V -logic from T. We
furthermore say that a set of sentencesT is consistent in V -logic iff T ⊢V φ∧¬φ
is false for all formulas of L V

∈ .

Remark 31. We discuss how these proof codes relate to admissible sets (de-
fined in §5) and can be coded in the class theory later (§5). The eagle-eyed
reader may notice that we do not require that there is only one proof of φ(b̄)
for every b ∈ V at a particular level of the tree, but that proofs can be re-
peated for some b. This differs from previous presentations of V -logic43 (or
M-logic in the terminology of [Barwise, 1975]), and will be essential for some
interactions between Hyp(V ) and the class-theoretic coding (we define and
code Hyp(V ) below; one can think of it as a class giving meaning to the term
“the least admissible containing V as an element”). There we are not guar-
anteed the existence of a well-ordering of Hyp(V ) and thus cannot a priori
pick ‘least’ proof codes. We regard it as a benign feature of our modified
definition of V -logic proof codes that they can be applied to more structures
without problem.

With the mechanisms of V -logic set up, we now describe how its use is
relevant for interpreting extensions of universes.

4.2 Interpreting extensions in V -logic

We have provided explanation of a logic that rigidifies the structure of V ;
adding constants and axioms to fix V ’s properties within the syntax of V -
logic. How might this allow us to interpret satisfaction in outer models of
V ? As we shall argue, consistency in V -logic of theories in L V

∈ serves that

43See, for example, [Antos et al., 2015].
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Figure 3: Visual representation of a proof of χ in V -logic

For every y ∈ a...ψ(ȳ2)ψ(ȳ1)ψ(ȳ0)

∀y ∈ ā ψ(y)∀y ∈ ā ψ(y) → (∀xφ(x) → χ)for every x ∈ V...φ(x̄2)φ(x̄1)φ(x̄0)

∀xφ(x) → χ∀xφ(x)

χ

An application of the V -rule

An application of the Set-rule over a

purpose.44 For the moment, we will work with V -logic as a system in its own
right, and show how it can be coded in a manner acceptable to the Universist
in §5.

We first introduce a constant W̄ to our language. Letting Φ be a condition
in any particular formal language on universes we wish to simulate in an
extension, we then introduce the following ‘axioms’ into our theory of V -
logic:

(i) W̄ -Width Axiom. W̄ is a universe satisfying ZFC with the same ordinals
as V̄ and containing V̄ as a proper subclass.

(ii) W̄ -Φ-Width Axiom. W̄ is such that Φ.

We can then have the following axiom to give meaning to the notion of
an extension such that Φ, and hence yield intra-V consequences of said ex-
tension:

Φ⊢V -Axiom. The theory in V -logic with the W̄ -Width Axiom and W̄ -Φ-Width
Axiom is consistent under ⊢V .45

We can use this axiom to give meaning to the notion of an intra-V con-
sequence of the axiom mentioning extensions. Any syntactic consequence
concerning either some x̄ or V̄ derived from the axioms mentioning W̄ will
hold of the respective actual structures: we simply trace the consequences to
the relevant constant.

44This idea is also discussed (but only for set-sized models) in [Antos et al., 2015],
[Friedman, 2016], and [Barton and Friedman, 2017]. In this paper, we expand these results
to the Universist perspective, and show how to interpret V -logic in class theory.

45Strictly speaking, this will involve a new consequence relation ⊢′
V , that includes mention

of any axioms involving W̄ . In fact, any collection of additional axioms will result in a new
consequence relation involving those axioms. The consequence relation is simply ⊢V but with
any additional axioms added to our original definition of V -logic. For clarity we suppress this
detail, continue to use ⊢V (thereby mildly abusing notation), and show how these relations
can be coded formally later.
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To see this in concrete contexts, let us examine V -logic in action with re-
spect to some of the examples outlined earlier (we’ll show how to code V -
logic in §5, but proceed intuitively for now). In the case of a set forcing we
could have the following:

Definition 32. W̄ -G-Width Axiom. W̄ is such that it contains some V̄ -P̄-generic
G.

If the resulting V -logic theory is consistent, then any syntactic conse-
quence of the existence of W̄ concerning V̄ will then be true in V .

The situation with class forcing is similar, but with a small twist. For, in
the case of class forcing using some class poset P

C , the existence of a V -PC

generic GC is not a first-order property of W̄ . Despite this, in V -logic we have
the ability to add predicates (as we did with V̄ and W̄ ). Thus, we can add
additional predicates P̄C and ḠC for P

C and GC into the usual syntax of V -
logic, and state the following axiom:

Definition 33. W̄ -GC -Width Axiom. W̄ is such that ḠC ⊆ W̄ and ḠC is P̄C-
generic over V .

and then examine whether the resulting theory is consistent in V -logic. Any
intra-V consequence of such a (consistent) theory would, for exactly the same
reasons as in the case of set forcing, naturally transfer to truths concerning V .

This liberation of methods via syntactic means also allows us to formulate
axioms that capture non-forcing extensions. For example:

Definition 34. W̄ -Class-♯-Width Axiom. W̄ has the same ordinals as V̄ , satis-
fies NBG+ ETR, and contains a class sharp that generates V .

This then allows us to express the claim that V is sharp generated:

Definition 35. The Class Iterable Sharp Axiom⊢V . The theory in V -logic with
the W̄ -Width Axiom and W̄ -Class-♯-Width Axiom is consistent under ⊢V .

Again, anything provable about V using this theory will be represented
by the relevant constants in the theory of V -logic, allowing us to give mean-
ing to the claim that V is class iterably sharp generated. Later (§6) we will
see that this corresponds in a neat way to the actual existence of sharps over
certain (countable) models of set theory.

We noted earlier (§2) that much extension talk could be interpreted by
conducting the construction over a countable transitive model V that satis-
fied exactly the same parameter-free first-order sentences as V . It was noted
there, however, that the production of such a model provided no guarantee
that the model would respect greater than first-order features of V , in partic-
ular the existence of many inner models provided by the IMH. The key fact
here is that now we have the notion of interpreting extensions via consistency
in V -logic, we are able to simulate statements about the existence of arbitrary
models and their interrelations.
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Again, we add a constant W̄ to our language and formulate axioms con-
cerning width extensions represented syntactically by the relevant W̄ . We
can then express the intended content of the IMH as follows:

Definition 36. IMH⊢V . Suppose that φ is a parameter-free first-order sentence.
Let T be a V -logic theory containing the W̄ -Width Axiom and also the W̄ -φ-
Width Axiom (i.e. W̄ satisfies φ). Then if T is consistent under ⊢V , there is an
inner model of V satisfying φ.46

Thus, by interpreting the existence of outer models through the consis-
tency of theories, we can now make claims concerning consequences (about
V ) of the existence of outer models. In particular, we can say that if φ is satis-
fiable in an extension of V (syntactically formulated as W̄ ) then it is satisfied
in an inner model of V . So, the IMH⊢V holds iff whenever the mathematical
structure of V does not preclude the V -logic consistency of an outer model
satisfying φ, there is an inner model of V satisfying φ. In this way, we make
claims concerning greater than first-order properties of V needed to express
the IMH in its maximal sense.

Moreover, we can use this to talk about V ’s place within a set-theoretically
geological structure. Satisfaction in the relevant kinds of extension can be for-
mulated as the consistency of some particular V -logic theory or theories, and
V ’s geological properties can thereby be studied. Thus V -logic also allows us
to talk about V within a higher-order multiverse structure. In fact:

Remark 37. We can even interpret satisfaction in non-well-founded exten-
sions of V , simply by adding an axiom that states that the extension is non-
well-founded and includes V as a standard part.

46The eagle-eyed reader will notice that the formulation in the IMH
⊢V is somewhat different

from the IMH, stating that anything true in an outer model of V is true in an inner model of
V , rather than anything true in an inner model of an outer model is true in V . In this way, we
have formulated a V -logic version of the following principle:

Definition. The IMH
′ is the claim that if φ is true in an outer model of V , then φ is true in an

inner model of V .

One way to rectify this is (as an anonymous reviewer points out) to introduce further pred-
icate letters to stand for the inner model of the outer model. However, it is somewhat simpler
(in terms of formulating the IMH

⊢V ) to simply note that:

Claim. The IMH
′ and the IMH are equivalent.

Proof. Clearly the IMH implies the IMH
′, since every outer model is also an inner model of an

outer model (i.e. the IMH
′ is a sub-principle of the IMH). To go in the other direction, we need

to show that under the IMH
′, if φ holds in an inner model W0 of an outer model W1 of V then

φ holds in an inner model of V . We use Jensen coding to enlargeW1 further to an outer model
W in which W0 is a definable inner model (without parameters). We then know that W0 is
defined by some formula ψ in W . We can then apply the IMH

′ to the sentence “ψ defines an
inner model of φ”. This holds in W , and therefore by IMH

′ there is an inner model of V with
φ.
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Thus, if we allow the use of V -logic, we are able to syntactically code
satisfaction in arbitrary extensions of V in which V appears standard, and
hence the effects of extensions of V on V .

There are two slight wrinkles here, however. First, while we have defined
the system, we have yet to show that it can be formulated in a theory accept-
able to the Universist. Second, while we have ‘given meaning’ to the idea of
an outer model via the use of V -logic, we have yet to show that the idea actu-
ally does the job we want it to; namely mimicking the existence of extensions.
These issues can be brought into sharper focus by contrasting our current sit-
uation with the use of forcing relations in interpreting set forcing, possibly in
conjunction with a countable transitive elementary submodel V of V . There,
we know (1) We have the resources in V to talk about the relevant forcing
relations (via the use of the forcing language), and (2) Whenever V has an
extension by some P-V-generic G to V[G] |= φ, there will be a corresponding
partial order P

′ in V , forcing relation P′ , and p ∈ P
′ such that p P′ φ. In this

way, the forcing relation is certified as an acceptable interpretation of forcing
over V ; as it is mirrored in the countable (in line with the Methodological
Constraint). In the next two sections we will show that, given an impredica-
tive class theory, we can be in a similar position but with arbitrary extensions
(and thus adequately formalise the axioms discussed in §3).

5 V -logic, admissibility, and class theory

We are now in a position where we have provided a logical system (V -logic)
that allows us to interpret the axioms we discussed earlier. However, it re-
mains to show that the Universist can legitimately utilise this philosophical
system. We proceed as follows: First, we show how we can code a particular
height extension of V (namely Hyp(V )) using impredicative class theory. Of
course such a height extension does not really exist for the Universist, rather
we are simply talking about what structures can be coded using classes. Next,
we’ll show how our version of V -logic can be represented within this struc-
ture.

5.1 Admissibility

First, we need to explain the structure we will be coding. We first recall the
system of Kripke-Platek set theory KP:

Definition 38. Kripke-Platek Set Theory (or simply ‘KP’) comprises the follow-
ing axioms:

(i) Extensionality

(ii) Union

(iii) Pairing
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(iv) Foundation

(v) ∆0-Separation: If φ is a ∆0 formula in which b does not occur free, then:

(∀a)(∃b)(∀x)[x ∈ b↔ (x ∈ a ∧ φ(x))]

(vi) ∆0-Collection: If φ is a ∆0 formula in which b does not occur free:

(∀a)[(∀x ∈ a)(∃y)φ(x, y) → (∃b)(∀x ∈ a)(∃y ∈ b)φ(x, y)]

We make a further pair of definitions:

Definition 39. A set N is admissible over M iff N is a transitive model of KP

containing M as an element.

Definition 40. Hyp(M) is the smallest (transitive) x such that x is admissible
over M.

Our interest will be inHyp(V ); the least admissible structure containing V
as an element. Of course this structure does not really exist. However, we will
show that something isomorphic to Hyp(V ) can be coded in an impredicative
class theory.

5.2 Class theory

We now provide a short explanation of the impredicative class theory that
we will be using (a variant of MK). Later, we will show that full MK (with
a certain extra axiom on the existence of isomorphisms) is far more than is
required. While a philosophical and mathematical analysis of greater than
first-order set theory is merited, considerations of space prevent a full exam-
ination. A couple of remarks, however, are in order regarding Universism
and impredicative class theory.

There are several options available for the Universist in interpreting proper
class discourse over V . While one method is to simply regard class talk
as shorthand for the satisfaction of a first-order formula (a method which
yields no impredicative comprehension), this is not the only possibility. We
might, for example, interpret the class quantifiers nominalistically through
the use of plural resources (as in [Boolos, 1984] and [Uzquiano, 2003]). An-
other approach is to interpret classes through some variety of property the-
ory as in [Linnebo, 2006] (or with a little massaging to the set-theoretic con-
text [Hale, 2013]). Still further, we might interpret the class quantifiers using
mereology (as in [Welch and Horsten, 2016]).

Key to each is that there is at least the possibility for motivating some im-
predicative class comprehension. For example, the plural interpretation is of-
ten taken to motivate full impredicative comprehension for classes.47 Many
views of property theory suggest that impredicatively defined properties are

47See [Uzquiano, 2003] for discussion.
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acceptable.48 Again, for mereological views the amount of class comprehen-
sion licensed will depend on one’s views and axioms concerning mereology,
however the possibility is open to allow some impredicativity.

For simplicity, we will simply adopt full Morse-Kelly class theory (hence-
forth ‘MK’), and discuss how much is required for our purposes later (for
most applications, we will require Σ1

1-Comprehension for classes). We thus
might view the present work as not only providing an interpretation of ex-
tension arguments over V , but also informing what is possible on various
class-theoretic approaches. We start by defining our class theory:

Definition 41. LMK has two sorts of variables, one for sets (denoted by
lower-case Roman letters x, y, z,x0, ...) and one for classes (denoted by upper-
case Roman letters X,Y ,Z,X0, ...), and a single non-logical relation symbol
∈ that holds between two variables of the first sort or between a variable of
the first sort and second sort.49

MK consists of the following axioms:

(A) Set Axioms:

(i) Set Extensionality

(ii) Pairing

(iii) Infinity

(iv) Union

(v) Power Set

(B) Class Axioms:

(i) Class Extensionality: (∀X)(∀Y )[(∀z)(z ∈ X ↔ z ∈ Y ) → X = Y ]
(i.e. Classes with the same members are identical).

(ii) Foundation: Every non-empty class has an ∈-minimal element.

(iii) Scheme of Impredicative Class Comprehension:
(∀X1), ..., (∀Xn)(∃Y )(Y = {x|φ(x,X1, ...,Xn)}),
where φ is a formula of LMK in which Y does not occur free, may
contain both set and class parameters, and in which unrestricted
quantification over classes and sets is allowed.

(iv) Class Replacement: If F is a (possibly proper-class-sized) function,
and x is a set, then ran(F ↾ x) is a set (i.e. {F (y)|y ∈ x} is a set).

(v) Global Choice: There is a class function F such that for every non-
empty x ∃y ∈ xF (x) = y. Equivalently, there is a class that well-
orders V .50

48Certainly this is the case for [Hale, 2013], though the focus there is not an interpretation of
proper classes. [Linnebo, 2006] proposes a theory of properties to facilitate semantic theorising
concerning set theory, but also licenses some additional higher-order comprehension.

49Really, this is not the same as the set membership relation, however we use the same
symbol for ease of expression.

50Note that since Global Choice and Class Replacement imply their set-sized incarnations,
we do not need to include Choice and Replacement in our Set Axioms.
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Before we delve into the details, we provide a sketch of our strategy.
Some of the work and basic ideas occur in [Antos and Friedman, 2017] and
[Antos, 2015]. There, however, additional axioms were required for certain
applications51 of the coding. We will show that within a variant of MK,
Hyp(V ) can be coded by a single class. We then provide some arguments as
to how the theory of Hyp(V ) might be reduced to the countable.

5.3 Coding Hyp(V ) in impredicative class theory

We first need to code the notion of an ordered pair of classes. Initially, this
seems problematic; normal pairing functions on sets are type-raising in the
sense that they have the things they pair as members. We will assume that
this is not available on the current interpretation; most Universist interpre-
tations of proper classes do not permit proper classes being members and
so constructions that are necessarily type-raising are impermissible. Despite
this, we can use the abundance of sets within V (in particular the closure of
V under pairing) to code pairs using a standard trick:

Definition 42. (MK) Let X and Y be classes. We define the class that repre-
sents the ordered pair of X and Y , or ‘REP (〈X,Y 〉)’ as follows:

REP (〈X,Y 〉) = {〈z, i〉|(z ∈ X ∧ i = 1) ∨ (z ∈ Y ∧ i = 2)}

Effectively, we talk about coding an ordered pair of classes by tagging
all the members of X with 1 and all the members of Y with 2, and referring
to the resulting class. Moreover, short reflection on the above coding shows
that it is easy to generalise this to α-tuples by letting α tag α-many copies
of V . We are now able to make use of the following definition (with visual
representation of some examples provided in Figures 4 and 5):

Definition 43. (MK) [Antos, 2015], [Antos and Friedman, 2017] A pair 〈M0,R〉
is a coding pair iff M0 is a class with distinguished element a, and R is a class
binary relation on M0 such that:

(i) ∀z ∈ M0∃!n such that z has R-distance n from a (i.e. for any element z
of M0, z is a single finite R-distance away from a), and

(ii) let 〈M0,R〉 ↾ x denote theR-transitive closure below x. Then if x, y, z ∈M0

with y 6= z, yRx, and zRx, then 〈M0,R〉 ↾ y is not isomorphic to 〈M0,R〉 ↾ z,
and

(iii) if y, z ∈ M0 have the same R-distance from a, and y 6= z, then for all v,
vRy → ¬vRz, and

51Namely hyperclass forcing. Antos and Friedman use a version of Class Bounding, equiva-
lent (modulo MK) toAC∞; a particular kind of choice principle for classes. It is an interesting
question (though one we lack the space to address here) whether or not a Universist should
accept that such a principle holds of V , not least because the principle is necessary for a good
deal of mathematical work (such as second-order ultrapowers). The coding goes through far
more easily with the principle, but since we do not need it for the purpose of representing
extensions of V , we show the coding works without it.
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Figure 4: An example of a tree corresponding to a coding pair showing mem-
bership.
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Figure 5: More complicated coding pair tree structures.
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(iv) R is well-founded.

These coding pairs shall be essential in coding the structure of ideal sets
that would have to be ‘above’ V were they to exist. One can think of the
coding pair as a tree T which has as its nodes the elements of M0, a as top
node, andR the extension relation of T. For each tree there are only countably
many levels, but each level can have proper-class-many nodes.

Next, we code the ideal objects using coding pairs. For any particular
ideal set x, we will code the transitive closure of {x}. A fact of the above
coding is that any tree will have many isomorphic subtrees, and hence will
not be isomorphic to TC({x}).52 We therefore need to form quotient pairs
that provide a coding of ideal sets (we provide a visual representation of an
example in Figure 6).

Definition 44. (MK) [Antos, 2015], [Antos and Friedman, 2017] Quotient Pairs.
Let 〈M0,R〉 be a coding pair and a be a set in M0. We then define the equiva-
lence class of a (denoted by ‘[a]’) of all top nodes of the coding trees isomor-
phic to the subtree Ta:

52See [Antos, 2015] and [Antos and Friedman, 2017] for details and further explanation. We
would like subtrees to correspond to elements in the transitive closure. However, isomorphic
subtrees would code the same element, and so as it stands our coding pairs are not extensional.
As we’ll see below, this can be easily fixed.
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Figure 6: The quotient process for a coding pair of 3
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[a] = {b ∈M0|“〈M0,R〉 ↾ b is isomorphic to 〈M0,R〉 ↾ a”}

Since we have Global Choice, we let ã be a fixed representative of [a]. We
then define the quotient pair 〈M̃0, R̃〉 as follows:

M̃0 = {ã| “ã is the representative of the class [a] for all a ∈M0}

ãR̃b̃ iff “There is an a0 ∈ [a] and a b0 ∈ [b] such that a0Rb0.”

Remark 45. The quotient pairs work by taking fixed representatives of the
equivalence class of top nodes of isomorphic subtrees. We then define the re-
lation on these representatives by searching through the equivalence classes
to find a relevant subtree in which two members of the equivalence class are
R-related.

We now have a quotient structure for the coding pairs. Next, we mention
some useful properties of these coding pairs for the purposes of showing that
they code ideal sets:

Lemma 46. (MK) [Antos, 2015], [Antos and Friedman, 2017]53 Let 〈M0,R〉 be a
coding pair. Then the quotient pair 〈M̃0, R̃〉 is extensional and well-founded.

Let us take stock. We have quotient structures of coding pairs that behave
extensionally and in a well-founded manner, and are coded by individual
classes. We are now ready to establish a useful theorem, showing that these
quotient coding pairs obey certain operations, and thus we have a code for
Hyp(V ). We first, however, explain how we will state what we wish to say.

We will be interested in the theory of these quotient coding pairs, and
what codes they can produce. For ease of proof, we will speak as though
they are first-order objects, despite the fact that we are using this as an abbre-
viation for class-theoretic language. We therefore need to make the following:

53See [Antos and Friedman, 2017], Lemma 2.5.
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Remark 47. We will talk about ‘a structure’ (V )+, to be understood as the
‘universe’ of all quotient coding pairs, under a ‘relation’ ∈̂ that we will show
satisfies certain first-order axioms. We will therefore use locutions like “x∈̂y”,
“x∈̂(V )+”, and more generally “φ(x)” for some first-orderφ. Really, however,
since the objects of (V )+ are ideal, this should all be paraphrased in terms of
quotient coding pairs. Though we deny that we are referring to sets as nor-
mally understood, there is no obstruction to using a first-order language to
represent the theory of quotient coding pairs (just as there is no contradiction
in using a two-sorted first-order language in our class-theory). We therefore
make the following definitions:

Definition 48. (MK) Suppose there is a classX coding a quotient pair 〈M̃0, R̃〉,
which in turn codes some x∈̂(V )+. Since it will often be useful to talk about
X coding 〈M̃0, R̃〉 under their presentation as a tree coding x, we say that:

Tx is a quotient pair tree for x iff there is a class X representing 〈M̃0, R̃〉 coding
x, and Tx is the tree structure that X exemplifies.

Definition 49. (MK) Say there is a class X coding a quotient pair tree Tx.
Then Ty (coded by a class Y ) is a direct subtree of Tx iff Ty a proper subtree of
Tx and the top node ay of Ty is in the level immediately below the top node
ax of Tx.

Definition 50. (MK) Let X and Y code quotient pair trees Tx and Ty re-
spectively. Then X bears the ET relation to Y iff Ty is isomorphic to a direct
subtree of Tx. We shall also write TyETTx to represent this relation between
two classes X and Y , and will then speak of y∈̂x∈̂(V )+.

Definition 51. (MK) Let X and Y code quotient pair trees Tx and Ty respec-
tively. Then we say X and Y are quotient pair equivalent (or Tx =T Ty) iff Tx

and Ty are isomorphic.

Definition 52. (MK) (V )+ is the structure obtained by taking as our domain
of quantification all quotient coding pairs over V , our equality relation to be
=T , and our membership relation to beET . We will talk about (V )+ using the
following first-order language: A first-order variable x ranges over quotient
coding pairs, each variable can be interpreted as a coding pair 〈M̃x, R̃x〉, that
in turn codes a tree Tx. Membership (denoted by ‘∈̂’) and equality (denoted
by ‘=̂’) are interpreted as ET and =T respectively.

We are now in a position to establish a theorem that will prove to be very
useful in relating class theory and V -logic. Much of the work is putting to-
gether results in [Antos, 2015] and [Antos and Friedman, 2017]. However,
the following (somewhat lengthy) remark is required to situate the current
discussion:

Remark 53. In [Antos, 2015] and [Antos and Friedman, 2017], the first and
third author used an axiomatisation MK

∗ that also includes the following
Class Bounding Axiom:
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Definition 54. (MK) Class Bounding.

∀x∃Aφ(x,A) → ∃B∀x∃yφ(x, (B)y)

where (B)y is defined as follows:

(B)y = {z|〈y, z〉 ∈ B}

They also show that, when working over a countable transitive model
M = (M ,∈, C) such that M |= MK

∗, the model (M+,∈), where M+ is de-
fined as follows:

M+ = {x|“There is a coding pair 〈Mx,Rx〉 for x in C”}

satisfies SetMK
∗; a version of ZFC−Power Set with a Set Bounding Axiom

and some constraints on the cardinal structure of M+. We indicate how the
proofs we require are (a) amenable to the current context, (b) realisable using
an impredicative class theory, and (c) can be accomplished avoiding the use
of Bounding (but with an assumption on the existence of isomorphisms). For
the purposes of the proof, it will be much easier to speak of the tree struc-
tures Tx, Ty, and Tz, rather than constantly paraphrasing in terms of classes
representing the quotient coding structures.

The proofs in [Antos, 2015] and [Antos and Friedman, 2017] rely on the
following two lemmas:

Lemma 55. (MK
∗) [Antos, 2015], [Antos and Friedman, 2017] First Coding

Lemma. Let M = (M , C) be a transitive β-model (i.e. it computes well-founded
relations correctly) of MK

∗. Let 〈N1,R1〉 and 〈N2,R2〉 be coding pairs in C. Then
if there is an isomorphism between 〈N1,R1〉 and 〈N2,R2〉 then there is such an iso-
morphism in C.

Lemma 56. (MK
∗) [Antos, 2015], [Antos and Friedman, 2017] Second Coding

Lemma. For all x ∈ M+ there is a one-to-one function f ∈ M+ such that
f : x −→Mx, where 〈Mx,Rx〉 is a coding pair for x.

[Antos, 2015] and [Antos and Friedman, 2017] are concerned with higher-
order forcing (i.e. using forcing posets that have some proper classes of a model
as conditions) over models of MK

∗. In order to deal with the obvious meta-
mathematical difficulties, they explicitly define the construction over models
satisfying MK

∗ that are countable, transitive, and are β-models. Their strat-
egy is to code a model (M)+ of SetMK

∗ in the original model of MK
∗, and

perform a definable class forcing over (M)+. This then corresponds to a hy-
perclass forcing over M. The current work shows that the coding outlined is
not dependent upon the countability of the models, nor the extra assumption
of Class Bounding (though we will motivate the acceptance of the First Cod-
ing Lemma). Instead, we can take the coding over V using the interpretation
of MK through class theory, and show how to code the theory of (V )+ using
these resources. For the above lemmas then, a few remarks are in order.
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(I) The assumption that the model over which we code is a β-model is
philosophically trivial in the present setting; we are working over the Univer-
sist’s V , with some conception of its classes CV . For the Universist, (V , CV )
sets the standard for what a β-model is, and so is trivially a β-model.

(II) Similar remarks apply to the First Coding Lemma, which is a non-
trivial result when we are concerned with a countable transitive model
M |= MK

∗. Since M has an impoverished view of what classes there are,
in that setting one needed to establish that MK

∗ satisfaction alone ensures
that there is a class of the relevant kind in C. For the purposes at hand, how-
ever, the result is again philosophically trivial; the relevant classes CV over V
set the standard for when two trees representing classes are isomorphic, and so
we cannot have isomorphic trees Tx and Ty for which there is not a class cod-
ing an isomorphism. If there are no things coding an isomorphism between
Tx and Ty then they are simply not isomorphic. To be absolutely technically
explicit about this fact, we will add the First Coding Lemma as an extra axiom,
and denote the theory we work in by MK

+.
(III) Use of the Second Coding Lemma is circumnavigated by the proofs

below, and so we will say nothing more about it.

Theorem 57. (MK
+) (V )+ satisfies Infinity, Extensionality, Foundation, Pairing,

Union, and ∆n-Separation for every n. Rendered in the class theory, this states:

(1.) Infinity+: There is a class representing a tree Tω for ω.

(2.) Transitivity+: For any class X representing a quotient coding pair tree Tx, and
for any class Y representing a quotient coding pair tree TyETTx, if az is a node
directly below ay in Ty, then there is a class Z coding a direct subtree Tz of Ty.

(3.) Pairing+: For any class X coding a tree Tx and any class Y coding a tree Ty,
there is a class Z coding a tree Tz such that TxETTz and TyETTz .

(4.) Union+: Suppose that there is a class X coding a quotient pair tree Tx. Then
there is a class U∪x coding a quotient pair tree T∪x, such that for every class
Y coding a quotient pair tree Ty with TyETTx, if we have classes coding trees
TziETTy, then for each Tzi we have TziETT∪x.

(5.) ∆n-Separation+: Suppose that there is a class X coding a quotient pair tree
Tx, in turn coding some x∈̂(V )+. Let φ(y) be a ∆n formula in the language of
(V )+. Then there is a class Z coding a tree Tz such that for any class Y coding
a tree Ty (with y∈̂(V )+) such that TyETTx, φ(y) holds in the theory of (V )+

iff TyETTz.

Proof. The proofs of (1.)–(4.) do not require the use of Class Bounding, and
so we refer the reader to [Antos, 2015] and [Antos and Friedman, 2017]. We
thus begin with:

(5.) ∆n-Separation+. This is slightly more difficult in that it is not clear how
to code a first-order formula within (V )+. This is dealt with by the following:
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Lemma 58. (MK
+) [Antos, 2015], [Antos and Friedman, 2017] Let φ be a formula

in the language of (V )+. Then there is a formula ψ in the language of classes
(and the trees they code) such that the theory of (V )+ contains φ(x1, ...,xk) iff
ψ(Tx1 , ...,Txk).

Proof. By induction on the complexity of φ. Suppose φ is of the form y∈̂x, and
let Ty and Tx be the associated trees. As y∈̂x, there is a tree Ty′ with top node
ay′ in the level below the top node of Tx, such that Ty is isomorphic to Ty′ . By
the First Coding Lemma (trivial in the current setting), ψ is then “Y is a class
coding a tree Ty, and X is a class coding a tree Tx such that Ty is isomorphic
to a class Y ′ coding a direct subtree Ty′ of Tx”. Suppose then that φ is of the
form y=̂x. Then ψ is simply “The class that codes Ty is isomorphic to the
class that codes Tx”, which is again dealt with by the First Coding Lemma.

For the inductive steps where φ is of the form ¬χ0 or54 χ1 ∧ χ2, the result
is immediate, we just either negate or conjoin the class-theoretic correlate of
the χm provided by the induction step.

Suppose then that φ is of the form ∀xχ, where χ is translatable in our class
theory by χ′. Then ψ is “For any class X coding some tree Tx, χ′(X)”.

We now can proceed with the proof of ∆n-Separation+. Let a,x1, ..,xn
be first-order names in the theory of (V )+ and φ(x,x1, ...,xn, a) be any ∆n-
formula in the language of (V )+. We need to show that:

b = {x∈̂a|φ(x,x1, ..,xn, a)}∈̂(V )+

and hence that there is a class B representing a coding pair for b with a corre-
sponding tree Tb.

Let Tx1 ,...,Txn and Ta be codes, that we will refer to using x1, ...,xn and
a in the language of (V )+. Further let ψ be the class-theoretic correlate of φ.
If b is empty the result is immediate as there is a coding pair for the empty
set. Assume then that b is non-empty and (V )+ thinks that b contains some
c0 with coding pair tree Tc0 . Let Ta(c) be a class variable over trees, with the
condition that each Ta(c) corresponds to a direct subtree of Ta (i.e. a(c) is a
member of a in (V )+). By Class Comprehension, there is a class Z such that
if ψ(Ta(c),Tx1 , ...,Txn ,Ta) holds then {z|〈c, z〉 ∈ Z} is the direct subtree Ta(c)

of Ta, and if ψ(Ta(c),Tx1 , ...,Txn ,Ta) does not hold then {z|〈c, z〉 ∈ Z} = Tc0 .
We then let Tb be a tree with top node b0 that has as all its direct sub-

trees the various {z|〈c, z〉 ∈ Z}. The tree Tb then codes the existence of the
necessary b = {x∈̂a|φ(x,x1, ...,xn, a)}∈̂(V )+.

Remark 59. Since we are coding in class theory the theory of (V )+, we have
‘ordinals’ that are ‘longer’ than On. We will refer to ideal ordinals ‘past’ V
(i.e. well-orders in the class theory longer than On) using variants of the
Greek letters (such as ‘κ’, ‘ϑ’, ‘ς’, ‘̟’ etc.). In discussion of second-order set
theory, these are also sometimes referred to as ‘meta-ordinals’.

54The choice of ∧ here was somewhat arbitrary, any suitable connective will do.
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With these properties in place, we proceed to find a code of Hyp(V ) in
(V )+:

Theorem 60. (MK
+) (V )+ contains a code for Hyp(V ).

Proof. We begin with the following definition concerning coding pairs:

Definition 61. Σn-Collection+. Suppose that there is a class X coding a quo-
tient pair tree Tx, in turn coding some x∈̂(V )+. Let φ(p, q) be a Σn formula in
the language of (V )+. Suppose further that for every Ty coding some y∈̂(V )+

such that TyETTx, there is a z∈̂(V )+ (represented by a class Z coding a tree
Tz), such that φ(y, z). Then there is a class A coding a tree Ta and a∈̂(V )+

such that for every class B coding a tree TbETTx and b∈̂x∈̂(V )+, there is a
class C coding a tree Tc and c∈̂(V )+ such that TcETTa, c∈̂a, and φ(b, c).

By Theorem 57 we can build versions of the L-hierarchy in (V )+. More-
over, since Global Choice holds in the class theory, (V )+ contains a class well-

order <V of V . Let L(V )+(V ,<V ) then be the substructure of (V )+ obtained
by constructing (V )+’s version of the L-hierarchy over (V ,<R) through ev-

ery meta-ordinal ϑ. Then L(V )+(V ,<V ) validates ∆n-Separation+, since any

instance of Separation for L(V )+(V ,<V ) translates into an instance of Sep-
aration for (V )+ (this is a more specific instance of the fact that LM satisfies
Separation whenever M is a transitive model of Separation). So, pick the least
ς such that Lς(V ,<V ) satisfies ∆n-Separation+. We claim that Lς(V ,<V ) also
satisfies Σn-Collection+.

Assume for contradiction that Σn-Collection fails in Lς(V ,<V ). Work-
ing from the perspective of Lς(V ,<V ), we then have a Σn-definable func-
tion φ(x, y) from Ord(V ) unbounded in Lς(V ,<V ). We then note that V can
be well-ordered in Lς(V ,<V ) and therefore every element of Lς(V ,<V ) can
be mapped into Ord(V ) (i.e. Ord(V ) is the largest cardinal of Lς(V )) since
ς was chosen to be least. We can then extend φ(x, y) to a Σn-definable bi-
jection between Ord(V ) and Lς(V ,<V ), to obtain a Σn-definable well-order
<R on the subsets of Ord(V ) in Lς(V ,<V ). For i∈̂I indexing <R on sub-
sets x0,x1, ...,xi, ... of Ord(V ) we then diagonalise to produce the following
X ⊆ Ord(V ):

X = {α ∈ On|¬α∈̂xα}

This X is Σn-definable over Ord(V ) by the properties of <R and
the fact that Ord(V )∈̂Lς(V ,<V ) but cannot be in Lς(V ,<V ). Since
Ord(V )∈̂Lς(V ,<V ), this violates ∆n-Separation+, ⊥.

Thus Lς(V ,<V ) satisfies Σn-Collection+. We then know that since any
instance of Σn-Collection+ in Lς(V ) is expressible in Lς(V ,<V ), Lς(V ) also
satisfies Σn-Collection+. Thus, there is some L̟(V ) satisfying ∆0-Separation
and Σ1-Collection, with ̟ the least such.

We can now note the following:
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Lemma 62. [Barwise, 1975]55 For any transitive M,Hyp(M) is of the form Lα(M)
for α the least admissible above M.

and thus observe that L̟(V )=̂Hyp(V ). Moving back to the coding, this im-
plies the existence of a class H coding a tree THyp(V ) for Hyp(V ).

The above machinery then provides the resources to code Hyp(V ) by re-
ferring to classes. One natural question concerns how much comprehension
is required to code proofs in V -logic. This is approximately answered by the
following:

Theorem 63. Σ1
1-Comprehension is sufficient to produce a code for Hyp(V ) and

∆1
1-Comprehension is not sufficient to produce such a code.

Proof. To see thatΣ1
1-Comprehension is sufficient to produce a code forHyp(V ),

consider H = {x : x∈̂Hyp(V ,<V ) ∧ “x is Σ1-definable in Hyp(V ,<V ) using
parameters from V ∪ {V } ∪ {<V } ”}. This is an extensional, Σ1-elementary
submodel ofHyp(V ,<V ), since we can choose least witnesses to ∆0-formulas
to getΣ1-elementarity. But the transitive collapse ofH must be all ofHyp(V ,<V )
as it is admissible and contains V and<V as elements (and sinceHyp(V ,<V )
is the smallest such structure). We then obtain a code for Hyp(V ) as before.

To see that ∆1
1-Comprehension is not sufficient, note that V together with

the subclasses of V which belong toHyp(V ) forms a model of∆1
1-Comprehension.

This is a model of ∆1
1-Comprehension with no code for Hyp(V ), since there

is no code for Hyp(V ) inside Hyp(V ).

In sum, we have seen thus far that Hyp(V ) can be coded within the class
theory licensed by an interpretation of proper classes that admits a small
amount of impredicativity (namely: NBG + Σ1

1-Comprehension + The First
Coding Lemma). We now turn to the issue of coding V -logic within Hyp(V )
(as rendered in class theory).

5.4 Coding V -logic in Hyp(V )

We will show that if φ is a consequence of a V -logic theoryT, then a proof of φ
appears inHyp(V ) (i.e. the (code of the) least admissible structure containing
V ), completing the rendering of V -logic for the Universist. Much of this goes
through as in [Barwise, 1975], but we have used a slightly different definition
of proof code, and so this remains to be checked.

We wish to show that if there is a proof of φ in V -logic, then there is a
proof code of φ in Hyp(V ). First, however, we must be precise about how we
interpret the extended syntax of V -logic. Since we have shown already how
to code Hyp(V ), we work directly in the language of Hyp(V ) and drop the
class-theoretic locutions:

Definition 64. (MK
+) The language and proofs of V -logic are interpreted as

follows (working in (V )+):

55See [Barwise, 1975], p. 60, Theorem 5.9.
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(i) Every set x is named by 〈x, 3〉 (so, for example, if x = ω, then ω̄ = 〈ω, 3〉
(to avoid the double use of names for natural numbers and the Gödel
coding of the connectives).

(ii) ∈V and V name ∈ and V̄ respectively (remembering that we are cur-
rently working within (V )+, and these appear as sets from this perspec-
tive).

(iii) The relevant W̄ (and possibly P̄C , ḠC , or any other required predicates)
can be represented by any object not otherwise required for the syntax
of V -logic, so we may use {V }, {{V }}, {{{V }}}, ... and so on (for any
Zermelo-style construction of singletons derived from V ).56

(iv) After a suitable Gödel coding for the connectives and quantifiers has
been chosen, we represent well-formed formulas of V -logic with se-
quences of symbol codes.

(v) Proofs are represented by the appropriate trees comprising codes of the
relevant sentences as nodes.

We can now state the following:

Theorem 65. (MK
+) [Barwise, 1975] Suppose that there is a proof of φ in V -logic.

Then there is a proof code of φ in Hyp(V ).

Proof. We credit this to Barwise, since the proof is not very difficult, but since
we have a different notion of proof-code we need to make sure that V -logic
is still representable in Hyp(V ).

We proceed by induction on the complexity of our proof P . Suppose that
there is a proof P of φ in V -logic. Then either:

(a) P is one line.

(b) P is more than one line.

We deal with (a) first. Suppose that P is one line. Then either (i) φ is of the
form x̄ ∈ V̄ , (ii) φ is an atomic or negated atomic sentence of L∈ ∪ {x̄|x ∈ V },
(iii) φ is an axiom of first-order logic in L V

∈ , or (iv) φ is an additional axiom
containing some extra predicate (such as W̄ , P̄C , or ḠC ).

For (i), suppose φ is of the form x̄ ∈ V̄ for x ∈ V . Then, the result is
immediate: the required sentence is inHyp(V ) by Pairing, and hence so is the
tree coding its proof (i.e. {{φ}, ∅}). In the case of (ii), φ appears in V , and so
it is immediate that φ is in Hyp(V ), with the relevant proof tree. For (iii), we
note that all constructions of first-order axioms from simpler formulas ψ and
χ (that are assumed, for induction, to be in Hyp(V )) can be chained together

56For most axioms we only need one (and at most three) extra predicates, but we make room
for the use of several different outer models in case others wish to talk about relationships
between incompatible extensions using the same axiom.
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through Pairing. For (iv), since we represent the various extra predicates
by objects that are not pieces of syntax in other parts of V -logic but are in
Hyp(V ), any axiom of the form “W̄ is such that Φ” is simply a finite sequence
of sets already present in Hyp(V ) (and similarly when P̄C or ḠC are present).
Again, repeated application of Pairing ensures that φ is in Hyp(V ), as well as
the relevant proof tree.

(b) Suppose then that P is more than one line. Assume for induction that
all prior steps to the final inference to φ have proofs in Hyp(V ). Then either
(i) φ is an axiom, or (ii) φ follows from ψ, (ψ → φ) via modus ponens, or (iii)
φ is of the form ∀x ∈ āψ(x) and follows from ψ(b̄) for all b ∈ a by the Set-rule,
or (iv) φ is of the form ∀x ∈ V̄ ψ(x) and follows from ψ(x̄) for all x ∈ V by the
V -rule.

For each of the steps we need to construct, from the given proof trees, a
new proof tree coding a proof of φ. We already know that the relevant pieces
of syntax exist (by part (a)) and so the challenge is simply in the construction
of the trees in Hyp(V ).

(i) has already been dealt with in part (a). (ii) Suppose for induction
that ψ and (ψ → φ) have proofs coded in Hyp(V ) by Tψ = 〈Tψ,<ψ〉 and
T(ψ→φ) = 〈T(ψ→φ),<(ψ→φ)〉. Since we know that Hyp(V ) satisfies finite itera-
tions of Pairing, we only need to construct Tφ and<φ. We can easily construct
Tφ = Tψ ∪ T(ψ→φ) ∪ {φ}. Next, we define <φ as follows:

x <φ y iff:

(i) x <ψ y, or

(ii) x <(ψ→φ) y, or

(iii) y = φ.

Since we have<ψ and<(ψ→φ) already (Hyp(V ) is transitive), we just need
to construct {〈x,φ〉|x ∈ Tψ ∨x ∈ T(ψ→φ)}. We have that φ ∈ Hyp(V ), and also
for any object y ∈ Hyp(V ), 〈y,φ〉 ∈ Hyp(V ). We then (working withHyp(V ))
define the following formula:

χ(x, y) =df x ∈ Tψ ∪ T(ψ→φ) ∧ y = 〈x,φ〉

χ(x, y) is clearly a ∆0 formula defining a function that maps any particu-
lar x ∈ Tψ ∪ T(ψ→φ) to 〈x,φ〉. We also have the following lemma:

Lemma 66. (MK
+) [Barwise, 1975]57 Σ1-Replacement. Hyp(V ) satisfies Replace-

ment for Σ1 formulas.

We thus have {〈x,φ〉|x ∈ Tψ ∧ x ∈ T(ψ→φ)} ∈ Hyp(V ) as desired. 〈Tφ,<φ〉
clearly codes a proof of φ from ψ and (ψ → φ), the proof steps are inherited
from the previous trees, and each proof step prior to φ is <φ-related to φ.

57See [Barwise, 1975], p. 17, Theorem 4.6.
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We deal with (iii) and (iv) in tandem. As the strategy is the same for both,
we give only the proof of (iv). Suppose then that φ is of the form ∀x ∈ V̄ ψ(x)
and follows from ψ(b̄) for all b ∈ V by the V -rule. Assume for induction
that every ψ(b̄) has a proof code Tψ(b̄) = 〈Tψ(b̄),<ψ(b̄)〉 ∈ Hyp(V ). We then
identify:

Lemma 67. (MK
+) [Barwise, 1975]58 Σ1-Collection. Hyp(V ) satisfies Collection

for Σ1 formulas.

Using Σ1-Collection, we have a non-empty set X which contains proofs
of ψ(b̄) for each b, and a non-empty set Y containing the relations of each of
the Tψ(b̄). Separating out from X and Y , yields a set X ′ containing just the
domains of proof trees of V -logic proofs in X, and a set Y ′ containing just the
relations of V -logic proof trees in Y . The argument for the full tree of Tφ is
then exactly the same as in (ii).

We now are in a position where:

(1) Extensions of V can be coded syntactically using V -logic.

(2) Hyp(V ) can be coded in MK
+ (in fact, NBG + Σ1

1-Comprehension + The
First Coding Lemma suffices).

(3) If φ is provable in V -logic, then φ has a proof code in Hyp(V ).

Thus consistency and the axioms we have discussed can be coded using
MK

+ class theory. We could stop here, having shown how the Hilbertian
Challenge can be met for higher-order properties of V , so long as some im-
predicative class theory is accepted.59 However, we still need to satisfy the
Methodological Constraint, and it is to this issue that we now turn.

6 Satisfying the Methodological Constraint

We are still left with the question of why we should regard V -logic as captur-
ing the notion of ‘extension of V ’, rather than merely a gerrymandered syn-
tactic coding. Resolution of this issue is linked to responding to the Method-
ological Constraint; if we can show that truth in V -logic corresponds to truth
about actual extensions of models very similar to V , we would go some way
towards establishing that V -logic stands to arbitrary extensions as the use of

58See [Barwise, 1975], p. 17, Theorem 4.4.
59A slight wrinkle is that though the IMH can be formulated in NBG+Σ1

1-Comprehension
with the First Coding Lemma, it is always false in models of this form, since the truth predi-
cate obtained through Σ1

1-Comprehension implies that there is a transitive model containing
every real, which contradicts the IMH (see [Friedman, 2006], p. 597, Theorem 15 here). How-
ever, restricting the IMH to only take into account outer models satisfying Σ1

1-Comprehension
alleviates this worry (since the proof depends on considering least outer models that violate
Σ1

1-Comprehension), and this version of the IMH can also be formalised in V -logic (since V -
logic captures any syntactic theory consistent with the initial structure of V ).
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forcing relations stands to set forcing extensions. In this section, we’ll discuss
strategies for satisfying the Methodological Constraint. As we will argue,
we can augment our interpretation with methods for reducing the theory
of V -logic to the countable, thereby yielding an interpretation satisfying the
Methodological Constraint.

Recall the main challenge that we wanted to satisfy:

The Hilbertian Challenge. Provide philosophical reasons to legitimise the
use of extra-V resources for formulating axioms and analysing intra-V con-
sequences.

The coding performs well with respect to The Hilbertian Challenge in this
raw form. We have provided philosophical reasons to accept the use of MK

+

over V using the mechanisms of class theory. We then showed how to code
extensions of V using V -logic and that Hyp(V ) can formalise the notion of
consistency in V -logic. Since Hyp(V ) can be coded using MK

+ over V , we
have classes over V that code consistency in V -logic, and hence discourse
about extensions of V . Given the cogency of the resources of MK

+ (argued
for earlier) we can thus see why talk of extensions will not lead us astray.

The Hilbertian Challenge was, however, tempered by an additional desider-
atum on any interpretation of extension talk:

The Methodological Constraint. In responding to the Hilbertian Challenge,
do so in a way that accounts for as much as possible of our naive thinking
about extensions and links them to structural features of V . In particular, if
we wish to apply an extending construction to V , there should be an actual
set-theoretic model, resembling V as much as possible, that has an extension
similar to the one we would like V to have.

As it stands, we do not have a naive interpretation of extensions of V : We
are interpreting model-theoretic claims about extensions of V as the syntac-
tic consistency of theories in V -logic. We would like to find a place for our
naive thinking concerning extensions and relate this discourse to our analy-
sis of truth in V . The key fact here is that Hyp(V ) (and hence claims about
consistency in V -logic) is coded by a single class. As we shall argue, by reduc-
ing the theory of Hyp(V ) to a countable model, we yield an interpretation of
extension talk satisfying the Methodological Constraint.

Recall that for parameter-free first-order truth, the countable transitive
model strategy fared reasonably well, barring its failure to account for greater
than first-order axioms. In responding to the Hilbertian Challenge and trying
to satisfy the Methodological Constraint, we shall thus pursue the strategy
of finding a countable transitive model that mirrors V with respect to the
theory of V -logic. As we shall see, this then facilitates the formulation of
axioms about V that make use of extension talk, whilst finding an arena for
our naive thinking.
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One might try to argue for the existence of such a countable transitive
model informally.60 Fortunately, we can do better in the current context by
availing ourselves of the following result:61

Lemma 68. (Folklore)62 ETR (in fact ETR for recursions of length ω) implies the
existence of truth predicates relative to any class.

Lemma 69. (Folklore) ETR is provable in NBG+Σ1
1-Comprehension.

In particular since Hyp(V ) (coded in the class theory) is a well-founded
class relation, using Σ1

1-Comprehension we can prove the existence of a truth
predicate relative to this class using ETR. Letting H(x) be a predicate ap-
plying exactly when x ∈ Hyp(V ), and TH be a truth predicate for the lan-
guage of LNBG ∪ {H(x)}, we can then prove (using reflection) that there is
a Vα that is elementary in V for truth in LNBG ∪ {H(x)} (in fact, ETR im-
plies that V is a tower of such universes63). Using the Löwenheim-Skolem
and Mostowski Collapse Theorems over this model (i.e. (Vα,∈,Hyp(Vα)))
yields a countable transitive model V∗ = (V ∗,∈,Hyp(V ∗)) elementary to V
for truth in LNBG ∪ {H(x)}, and hence the corresponding V

∗-logic (formal-
isable in Hyp(V∗)) agrees with V -logic. The difference being here, of course,
that since V

∗ is countable, the Barwise completeness theorem64 holds, and
hence there is a model very similar to V that is really extended when we con-
sider different kinds of construction. Put in concrete terms, we have:

Fact 70. (MK
+) Let φ be a sentence of V -logic with no constant symbols apart from

V̄ . Then the following are equivalent:

(1.) φ is consistent in V -logic.

(2.) φ is consistent in V
∗-logic.

(3.) V
∗ has an outer model with φ true.

60Say by postulating Skolem functions of the required kind. This is a strategy advocated at
one stage by Cohen, for example when he writes:

The Löwenheim-Skolem theorem allows us to pass to countable submodels of
a given model. Now, the “universe” does not form a set and so we cannot, in
ZF, prove the existence of a countable sub-model. However, informally we can
repeat the proof of the theorem. We recall that the proof merely consisted of
choosing successively sets which satisfied certain properties, if such a set ex-
isted. In ZF we can do this process finitely often. There is no reason to believe
that in the real world this process cannot be done countably many times and
thus yield a countable standard model for ZF. ([Cohen, 1966], p79)

One might adapt this idea to the current context by running a similar argument, but intro-
ducing a predicate H for (the class-theoretic code of) Hyp(V ) into the language of ZFC.

61We are very grateful to Kameryn Williams for discussion here.
62Presentations of both these lemmas are available in [Fujimoto, 2012] (esp. p. 1514) and

[Gitman and Hamkins, 2017] (esp §4).
63See here [Gitman and Hamkins, 2017], p. 129.
64See [Barwise, 1975], p. 99, Theorem 5.5.
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Thus when we want to know if it is consistent to have an ‘outer model’
of V satisfying some first-order property mentioning V as a predicate with
parameters definable in V , we can look to V∗ (where extensions are readily
available). Of course one does not consider “extensions of V ” as having any-
thing other than syntactic meaning, but one can find an exceptionally close
simulacrum of this reasoning in the countable and explain how its truth and
structure is related to V (via the correspondence between V and V

∗ with re-
spect to first-order and admissible truth). Thus, by linking V -logic to the
countable, we augment our answer to the Hilbertian Challenge with a re-
sponse to the Methodological Constraint, explaining the existence of particu-
lar models that closely resemble the naive reasoning with extensions and use
of the term ‘V ’ in set-theoretic discourse.

Omniscience

In the previous subsection, we examined the possibility of reducing the the-
ory of Hyp(V ) to a countable transitive model V∗. In this subsection, we
examine one further development, namely that if V satisfies certain greater
than first-order properties then the theory of V ’s outer models becomes first-
order definable in V .

Are there conditions that V might satisfy allowing first-order access to the
theory of its outer models? [Friedman and Honzik, 2016a], building on work
of [Stanley, 2008] examine exactly this. First, however, we note a limitation to
any attempt of this kind:

Theorem 71. (ZFC) [Stanley, 2008]65 No first-order hypotheses on V suffice to
give it access to the theory of its outer models. More precisely, assume that:

(i) ZFC
∗ is a recursive first-order theory extending ZFC, and that ZFC

∗ has
countable standard transitive models.

(ii) good(x) is a parameter-free formula such that if M is a countable standard
transitive model of ZFC∗, T ∈ M is a set of axioms and M |= good[T], then
M has an outer model that satisfies T.

(iii) bad(x) is a parameter-free formula such that if M is a countable standard tran-
sitive model of ZFC∗, T ∈ M is a set of axioms and M |= bad[T], then M

does not have an outer model that satisfies T.

Then there exists a recursive T ⊇ ZFC
∗ such that neither good[T ] nor bad[T ]

holds in any countable standard transitive model of ZFC∗.

The theorem shows that we will never be able to give purely first-order
conditions that give V access to its outer models. However, there is still the
possibility that second-order hypotheses might confer first-order definability on
the theory of V ’s outer models. Indeed this is so (given large cardinals):

65This theorem is a quick consequence of the Fixed Point Lemma. See
[Friedman and Honzik, 2016a] for details.
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Theorem 72. (NBG) [Stanley, 2008] (restated and proved in [Friedman and Honzik, 2016a])
Suppose that M is a transitive model of ZFC (of which V is one). Suppose that in M

there is a proper class of measurable cardinals, and this class is Hyp(M)-stationary,
i.e. Ord(M) is regular with respect to Hyp(M)-definable functions and the class of
all measurable cardinals in M intersects every club in Ord(M) which is Hyp(M)-
definable. Then satisfaction in outer models of M is first-order definable over M.

What does this theorem show? Namely that if there are classes with cer-
tain slightly greater than first-order properties (the Hyp(V )-stationarity of
the measurables is not first-order definable), then there is a first-order for-
mula that captures satisfaction in outer models of V . Indeed, the consis-
tency strength of outer-model satisfaction being first-order definable within a
model has currently been found consistent relative to the existence of a single
inaccessible cardinal.66 This provides a different perspective on outer model
satisfaction, and again shows the relevance of Hyp(V ): As long as V satis-
fies the existence of the relevant measurables and their Hyp(V )-stationarity,
then if there is a countable transitive model elementarily equivalent to V for
ZFC augmented with a predicate for Hyp(V ), then we can behave exactly
as if outer models of V actually existed. In this case, our original V, equiv-
alent to V for first-order truth, would suffice for interpreting extension talk
concerning V .

In sum, as long as we have a countable transitive model that sufficiently
mirrors V , we then have the Methodological Constraint satisfied. Whenever
we reason naively about extensions, we can interpret this as concerned with
the relevant countable transitive model (i.e. V, or V∗). Here, extensions are
uncontroversially available, and so we may perfectly well reason naively and
combinatorially about them, safe in the knowledge that any facts so discov-
ered will be mirrored by V .

7 Open Questions

Before we conclude, we make a few final remarks concerning salient open
questions. The first concerns what is possible using the mechanisms of V -
logic. In this paper, we have only examined width extensions, and made some
remarks about height or non-well-founded extensions. However, there is
some extension talk which seems to require that V appear non-standard from
a different perspective. [Hamkins, 2012] and [Gitman and Hamkins, 2010]
for example consider the following as part of their Multiverse Axioms:

Axiom 73. Well-foundedness Mirage. Every universe (including V situated in-
side a multiverse) is non-well-founded from the perspective of another uni-
verse.

One issue here is that V -logic explicitly keeps V standard. While we can
interpret non-well-founded universes using V -logic, as it stands V will al-

66See [Friedman and Honzik, 2016a] for discussion.
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ways appear in them as a standard, well-founded part. We then have the
following question:

Question 74. How much talk concerning other kinds of extensions of V can
be interpreted using V -logic (or similar constructions)?

A further question concerns the role of class theory. Throughout this pa-
per we have assumed the use of some impredicative class theory. As we
indicated, there are many options for a Universist to interpret impredicative
class theory in a philosophically motivated fashion. Despite this, there will
no doubt be some who find the use of impredicative class theory uncomfort-
able. We might then, in this spirit, ask the following question:

Question 75. How much V -logic can we capture without the use of any class
theory?

This in turn raises the following problem:

Question 76. How much talk concerning arbitrary extensions can be captured
without the use of impredicative classes?

Finally, we recall a previously mentioned open :

Question 13. Could there be a countable transitive model M = (M ,∈,CM)
of NBG, such that M has a countable (from the perspective of M) transitive
submodel M′ = (M ′,∈,CM′

), also a model of NBG, with M and M
′ agreeing

on parameter-free first-order truth in ZFC but disagreeing on the IMH?

Conclusions

We have seen that the Universist has some reason to want to use extension
talk in formulating axioms about V . An expansion of logical resources, com-
bined with a degree of impredicative comprehension, facilitates an interpre-
tation of extension talk that finds a place for our naive reasoning concerning
extensions.

We make some final remarks concerning the state of the dialectic. We
wish to be conservative about the philosophical implications of our results.
What we have established is that those Universists who accept that extension
talk concerning V is worth scrutiny and who think that the Methodological
Constraint is important in answering the Hilbertian Challenge can encode
a substantial amount of talk concerning extensions of V using sets from V

and/or classes over V , so long as they regard some impredicative class theory
as legitimate and think that we can extend our logical resources using V -
logic. There are an awful lot of moving parts involved in setting up this
dialectic and we should be mindful that there are different upshots one might
take. Obviously, one might think that the paper shows that extension talk can
be used freely by the Universist. However, one might instead take our results
to show that there is a problem with talking about extended languages or the
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use of MK
+. Or one might think that the Methodological Constraint is too

strict, or not strict enough. Further still, one might take the sheer amount of
talk of extensions of V that can be coded within the Universist’s framework
to be evidence of the falsity of their position. We have not taken a stand on
any of these issues here, but have shown what can be accomplished given the
acceptance of certain positions and resources. Nonetheless, the fact remains
that with a smidgeon of extra expressive resources, the Universist can utilise
far more mathematics than previously thought. The doors are thus open to
new and intriguing philosophical and mathematical discussions.
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