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Abstract

This paper contributes to the area of inductive logic programming by presenting a new
learning framework that allows the learning of weak constraints in Answer Set Program-
ming (ASP). The framework, called Learning from Ordered Answer Sets, generalises our
previous work on learning ASP programs without weak constraints, by considering a new
notion of examples as ordered pairs of partial answer sets that exemplify which answer
sets of a learned hypothesis (together with a given background knowledge) are preferred to
others. In this new learning task inductive solutions are searched within a hypothesis space
of normal rules, choice rules, and hard and weak constraints. We propose a new algorithm,
ILASP2, which is sound and complete with respect to our new learning framework. We
investigate its applicability to learning preferences in an interview scheduling problem and
also demonstrate that when restricted to the task of learning ASP programs without weak
constraints, ILASP2 can be much more efficient than our previously proposed system.

KEYWORDS: Non-monotonic Inductive Logic Programming, Preference Learning, An-
swer Set Programming

1 Introduction

Preference Learning has received much attention over the last decade from within

the machine learning community. A popular approach to preference learning is

learning to rank (Fürnkranz and Hüllermeier 2003; Geisler et al. 2001), where the

goal is to learn to rank any two objects given some examples of pairwise preferences

(indicating that one object is preferred to another). Many of these approaches use

traditional machine learning tools such as neural networks (Geisler et al. 2001).

On the other hand, the field of Inductive Logic Programming (ILP) (Muggleton 1991)

has seen significant advances in recent years, not only with the development of sys-

tems, such as (Ray et al. 2004; Kimber et al. 2009; Corapi et al. 2010; Muggleton et al. 2012;

Muggleton and Lin 2013), but also the proposals of new frameworks for learn-

ing (Otero 2001; Sakama and Inoue 2009; Law et al. 2014). In most approaches to

ILP, a learning task consists of a background knowledge B and sets of positive

and negative examples. The task is then to find a hypothesis that, together with

∗ This research is partially funded by the 7th Framework EU-FET project 600792 “ALLOW
Ensembles”, and the EPSRC project EP/K033522/1 “Privacy Dynamics”.
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B, covers all the positive examples but none of the negative examples. While

in previous work ILP systems such as TILDE (Blockeel and De Raedt 1998) and

Aleph (Srinivasan 2001) have been applied to preference learning (Dastani et al. 2001;

Horváth 2012), this has addressed learning ratings, such as good , poor and bad ,

rather than rankings over the examples. Ratings are not expressive enough if we

want to find an optimal solution as we may rate many objects as good when some are

better than others. Answer Set Programming (ASP), on the other hand, allows the

expression of preferences through weak constraints. In a usual application of ASP,

one would write a logic program which has many answer sets, each corresponding

to a solution of the problem. The program can also contain weak constraints (or

optimisation statements) which impose an ordering on the answer sets. Modern

ASP solvers, such as clingo (Gebser et al. 2011), can then find the optimal answer

sets, which correspond to the optimal solutions of the problem. For instance, in a

scheduling problem, we could define an ASP program, whose answer sets correspond

to timetables, and weak constraints that represent preferences over these timetables

(see (Banbara et al. 2013) for an example application of ASP in timetabling).

In this paper, we propose a new learning framework, Learning from Ordered

Answer Sets (ILPLOAS ), that allows the learning of ASP programs with weak con-

straints. This framework extends the notion of learning from answer sets proposed

in (Law et al. 2014), where ASP programs without weak constraints were learned

using only positive and negative examples of partial answer sets. In our new learning

task ILPLOAS , additional examples are defined, as ordered pairs of partial answer

sets, and the language bias captures a hypothesis space of ASP programs contain-

ing normal rules, choice rules and hard and weak constraints. A new algorithm is

presented and proved to be sound and complete with respect to ILPLOAS .

To demonstrate the applicability of our framework, we consider, as a running

example, an interview timetabling problem and the task of learning, as weak con-

straints, academics’ preferences for scheduling undergraduate interviews. An aca-

demic might be more comfortable interviewing for one course than another, might

prefer not to have many interviews on the same day, or might hold both of these

preferences but regard the former as more important. Given ordered pairs of partial

timetables, our approach is able to learn these preferences as weak constraints.

The paper is structured as follows. Our new learning framework, ILPLOAS is pre-

sented in Section 3. It extends the notion of Learning from Answer Sets (Law et al. 2014)

to the new task of learning weak constraints. We discuss formal properties of the

framework such as the complexity of deciding the existence of a solution. Our learn-

ing algorithm ILASP2 is described in Section 4, together with experimental results

based on a scheduling example (Section 5). We also show that ILASP2 can have

increased efficiency over our previous system when learning programs without weak

constraints. Discussion on related and future work concludes the paper.

2 Background

In this section we introduce the concepts needed in the paper. Given any atoms

h, h1, . . . , ho , b1, . . . , bn , c1, . . . , cm , h ← b1, . . . , bn , not c1, . . . , not cm is called a

normal rule, with h as the head and b1, . . . , bn , not c1, . . . , not cm (collectively) as
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the body (“not” represents negation as failure); a rule ← b1, . . . , bn , not c1, . . . ,

not cm is a hard constraint; a choice rule is a rule l{h1, . . . , ho}u ← b1, . . . , bn ,

not c1, . . . , not cm (where l and u are integers) and its head is called an aggregate.

A variable in a rule R is safe if it occurs in at least one positive literal in the body

of R. A program P is assumed to be a finite set of normal rules, choice rules, and

hard constraints. The Herbrand Base of P , denoted HBP , is the set of variable

free (ground) atoms that can be formed from predicates and constants in P . The

subsets of HBP are called the (Herbrand) interpretations of P . A ground aggregate

l{h1, . . . , ho}u is satisfied by an interpretation I iff l ≤ |I ∩ {h1, . . . , ho}| ≤ u.

As we restrict our programs to sets of normal rules, (hard) constraints and choice

rules, we can use the simplified definitions of the reduct for choice rules presented in

(Law et al. 2015c). Given a program P and an Herbrand interpretation I ⊆ HBP ,

the reduct P I is constructed from the grounding of P in 4 steps: firstly, remove rules

whose bodies contain the negation of an atom in I ; secondly, remove all negative

literals from the remaining rules; thirdly, replace the head of any hard constraint,

or any choice rule whose head is not satisfied by I with ⊥ (where ⊥ /∈ HBP ); and

finally, replace any remaining choice rule {h1, . . . , hm} ← b1, . . . , bn with the set of

rules {hi ← b1, . . . , bn | hi ∈ I ∩{h1, . . . , hm}}. Any I ⊆ HBP is an answer set of P

if it is the minimal model of the reduct P I . Throughout the paper we denote the

set of answer sets of a program P with AS (P).

Unlike hard constraints in ASP, weak constraints do not affect what is, or is not,

an answer set of a program P . Hence the above definitions also apply to programs

with weak constraints. Weak constraints create an ordering over AS (P) specifying

which answer sets are “better” than others. The set of optimal (best) answer sets of

P is denoted as AS ∗(P). A weak constraint is of the form :∼ b1, . . . , bn , not c1, . . . ,

not cm.[w@l , t1, . . . , to ] where b1, . . . , bn , c1, . . . , cm are atoms, w and l are terms

specifying the weight and the level, and t1, . . . , to are terms. A weak constraint W

is safe if every variable in W occurs in at least one positive literal in the body

of W . At each priority level l , the aim is to discard any answer set which does

not minimise the sum of the weights of the ground weak constraints (with level l)

whose bodies are true. The higher levels are minimised first. Terms specify which

ground weak constraints should be considered unique. For any program P and

A ∈ AS (P), weak(P ,A) is the set of tuples (w , l , t1, . . . , to) for which there is some

:∼ b1, . . . , bn , not c1, . . . , not cm.[w@l , t1, . . . , to ] in the grounding of P such that

A satisfies b1, . . . , bn , not c1, . . . , not cm .

We now give the semantics for weak constraints (Calimeri et al. 2013). For each

level l , P l
A =

∑

(w,l,t1,...,to)∈weak(P ,A) w . For A1,A2 ∈ AS (P), A1 dominates A2

(written A1 ≻P A2) iff ∃l such that P l
A1

< P l
A2

and ∀m > l ,Pm
A1

= Pm
A2

. An answer

set A∈AS (P) is optimal if it is not dominated by any A2∈AS (P).

Example 1

Let P be the program consisting of slot(m, 1); slot(m, 2); slot(t, 1); slot(t, 2); and

0{assign(D, S)}1← slot(D, S), which assigns 0 to 4 slots in a schedule (slot(m, 1)

represents slot 1 on Monday). Let W1, W2 and W3 be the weak constraints

:∼ assign(D, S).[1@1], :∼ assign(D, S).[1@1, D] and :∼ assign(D, S).[1@1, D, S] respec-
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tively. Applying each weak constraint to P gives as its optimal answer set the

one in which no slots are assigned. The remaining answer sets are ordered in the

following way: W1 considers all schedules in which slots have been assigned to be

equally optimal, as there is only one unique set of terms t1, . . . , tn which is the

empty set; W2 minimises the number of days in which slots have been assigned, as

there is one unique set of terms per day; and finally, W3 minimises the number of

assignments made, as each combination of day and slot has a unique set of terms.

In an ILP task, the hypothesis space is often characterised by mode declara-

tions (Muggleton et al. 2012). A mode bias can be defined as a pair of sets of

mode declarations 〈Mh ,Mb〉, where Mh (resp. Mb) are the head (resp. body) dec-

larations. Each mode declaration m ∈ Mh , or m ∈ Mb , is a literal whose abstracted

arguments are either v or c. An atom a is compatible with a mode declaration

m if replacing the instances of v in m by variables, and the instances of c by

constants yields a. The search space is defined to be the set of rules of the form

h ← b1, . . . , bn , not c1, . . . , not cm where (i) h is empty, h is an atom compatible

with some m ∈ Mh , or h is an aggregate l{h1, . . . , hk}u such that 0 ≤ l ≤ u ≤ k

and ∀i ∈ [1, k ] hi is compatible with some m ∈ Mh ; (ii) ∀i ∈ [1, n], ∀j ∈ [1,m] bi
and cj are each compatible with at least one mode declaration in Mb ; and finally

(iii) all variables in the rule are safe. We require the rules to be safe because ASP

solvers such as clingo (Gebser et al. 2011) have this requirement. We denote the

search space defined by a given mode bias (Mh ,Mb) as SLAS (Mh ,Mb).

In (Law et al. 2014), we presented a new learning task, Learning from Answer

Sets (ILPLAS ) which used partial interpretations as examples. A partial interpreta-

tion e is a pair 〈einc , eexc〉 of sets of ground atoms, called inclusions and exclusions.

An answer set A is said to extend e if and only if (einc ⊆ A)∧ (eexc ∩A = ∅). Given

partial interpretations e1 and e2, e1 extends e2 iff einc2 ⊆ einc1 and eexc2 ⊆ eexc1 .

Definition 1

A Learning from Answer Sets task is a tuple T =〈B , SLAS (Mh ,Mb),E
+,E−〉 where

B is the background knowledge, SLAS (Mh ,Mb) is the search space defined by a

bias 〈Mh ,Mb〉, E+ and E− are sets of partial interpretations called the positive

and negative examples. A hypothesis H is in ILPLAS (T ), the set of all inductive

solutions of T , if and only if H ⊆SLAS (Mh ,Mb); ∀e+ ∈E+ ∃A∈AS (B ∪ H ) such

that A extends e+; and finally, ∀e−∈E− ∄A∈AS (B ∪H ) such that A extends e−.

The task of ILP is usually to find optimal hypotheses, where optimality is of-

ten defined by the number of literals in a hypothesis. In ILPLAS , aggregates are

converted to disjunctions before the literals are counted, giving a higher “cost” for

learning an aggregate; for example, 1{p, q}2 is converted to (p ∧ not q) ∨ (q ∧

not p) ∨ (p ∧ q) giving a length of 6. ILPLAS aims at learning ASP programs con-

sisting of normal rules, choice rules and hard constraints. This paper extends this

notion to a new learning task capable of learning weak constraints.

3 Learning from Ordered Answer Sets

To learn weak constraints we extend the notion of mode bias with two new sets of

mode declarations: Mo specifies what is allowed to appear in the body of a weak
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constraint; whereas Mw specifies what is allowed to appear as a weight. A positive

integer lmax is also given to indicate the number of levels that can occur in H .

Definition 2

A mode bias with ordering is a tuple M = 〈Mh ,Mb ,Mo ,Mw , lmax 〉, where Mh and

Mb are respectively head and body declarations, Mo is a set of mode declarations

for body literals in weak constraints, Mw is a set of integers and lmax is a positive

integer. The search space SM is the set of rules R that satisfy one of the conditions:

• R ∈ SLAS (Mh ,Mb).

• R is a safe weak constraint :∼ b1, . . . , bi , not bi+1, . . . , not bj.[w@l , t1, . . . , tn ]

such that ∀k ∈ [1, j ] bk is compatible with Mo ; t1, . . . , tn is the set of terms in

b1, . . . , bj ; w ∈ Mw , l ∈ [0, lmax ).

Note that even if we were to extend the learning task in Definition 1 with this

new notion of mode bias, such a task would never have as its optimal solution

a hypothesis which contains a weak constraint. This is because a Learning from

Answer Sets task has only examples of what is, or is not, an answer set. Any

solution containing a weak constraint W will have the same answer sets without

W , and would be more optimal. We now define the notion of ordering examples.

Definition 3

An ordering example is a tuple o= 〈e1, e2〉 where e1 and e2 are partial interpreta-

tions. An ASP program P bravely respects o iff ∃A1,A2∈AS (P) such that A1 ex-

tends e1, A2 extends e2 and A1 ≻P A2. P cautiously respects o iff ∀A1,A2∈AS (P)

such that A1 extends e1 and A2 extends e2, it is the case that A1 ≻P A2.

Example 2

Consider the partial interpretations e1 = 〈{assign(m, 1), assign(m, 2)}, {assign(t, 1),

assign(t, 2)}〉 and e2 = 〈{assign(m, 1), assign(t, 1)}, ∅〉. Let o = 〈e1, e2〉 be an or-

dering example and recall P and W1, . . . ,W3 from example 1. The only answer

set of P that extends e1 is m1m2 (where m1m2 denotes {assign(m, 1), assign(m, 2)}),

whereas the answer sets that extend e2 are m1t1,m1m2t1,m1m2t1t2 and m1t1t2.

P ∪W1 does not bravely or cautiously respect o as it gives to all these answer sets

the same optimality; P ∪W2 both bravely and cautiously respects o, as each pair

of answer sets extending the partial interpretations is ordered correctly (i.e. answer

sets extending e1 have slots allocated in only one day whereas all the answer sets

extending e2 have slots assigned in two days). Finally, P∪W3 respects o bravely but

not cautiously (the pair of answer sets m1m2 and m1t1 is such that m1m2 6≻P m1t1).

We can now define the notion of Learning from Ordered Answer Sets (ILPLOAS ).

Definition 4

A Learning from Ordered Answer Sets task is a tuple T = 〈B , SM ,E+,E−,Ob,Oc〉

where B is an ASP program, called the background knowledge, SM is the search

space defined by a mode bias with ordering M , E+ and E− are sets of partial

interpretations called, respectively, positive and negative examples, and Ob and

Oc are sets of ordering examples over E+ called brave and cautious orderings. A

hypothesis H ⊆ SM is in ILPLOAS (T ), the inductive solutions of T , if and only if:
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1. Let Mh and Mb be as in M and H ′ be the subset of H with no weak con-

straints. H ′ ∈ ILPLAS (〈B , SLAS (Mh ,Mb),E
+,E−〉)

2. ∀o ∈ Ob B ∪ H bravely respects o

3. ∀o ∈ Oc B ∪H cautiously respects o

The notion of an optimal inductive solution of an ILPLOAS task is the same as

in ILPLAS , with each weak constraint W counted as the number of literals in the

body of W . Note that the orderings are only over E+ rather than orderings over

any arbitrary partial interpretations. We chose to make this restriction as we could

not see a reason why a hypothesis would need to respect orderings which are not

extended by any pair of answer sets of B ∪H . Note also that in the case where Ob

and Oc are both empty, the task reduces to an ILPLAS task.

Example 3

Consider the ILPLOAS task T with the following background knowledge:

B =



































slot(m, 1..3).slot(t, 1..3).slot(w, 1..3).

neq(1, 2).neq(1, 3).neq(2, 1).neq(2, 3).neq(3, 1).neq(3, 2).

neq(m, t).neq(m, w).neq(t, m).neq(t, w).neq(w, m).neq(w, t).

type(m, 1, c1).type(m, 2, c2).type(m, 3, c2).type(t, 1, c2).

type(t, 2, c2).type(t, 3, c2).type(w, 1, c2).type(w, 2, c1).type(w, 3, c2).

0{assign(X, Y)}1:-slot(X, Y).



































Using the notation from example 2, let T have the positive examples e1 =

〈∅,m2m3t1t3w1w2〉, e2 = 〈m1m2, ∅〉, e3 = 〈∅,m1t2w1w2〉, e4 = 〈t1t2t3, ∅〉, e5 =

〈m2m3t1t2t3w1w3, ∅〉; e6 = 〈m1w1w3, m2m3t1t2t3w2〉; two cautious orderings: 〈e1, e2〉

and 〈e3, e4〉; and one brave ordering: 〈e5, e6〉. Consider SM to be defined by the

mode declarations: Mh = Mb = ∅; Mo = {assign(v, v), neq(v, v), type(v, c)}; Mw =

{−1, 1}; and lmax = 2. Note that as each positive example is already covered by

the background knowledge and there are no negative examples, it remains to find

a set of weak constraints which meet conditions 2 and 3 of definition 4. One in-

ductive solution H of T is {:∼ assign(D, S1), assign(D, S2),neq(S1, S2).[1@1, D, S1, S2]

:∼ assign(D, S),type(D, S, c1).[1@2, D, S]}; this respects the first cautious ordering ex-

ample because any timetable extending e1 has at most one c1 course whereas e2 has

at least one, so e1 is better or equal to e2 on the highest priority weak constraint;

even if they are equal, a timetable extending e1 has at most one assignment per day

and is, therefore, always better on the lower priority weak constraint. H also re-

spects the other cautious ordering and the timetables m2m3t1t2t3w1w3 and m1w1w3

correspond to answer sets which demostrate that the brave ordering is respected.

In fact, there is no shorter hypothesis which meets conditions 1 to 3 and so H

is an optimal inductive solution; moreover, the other optimal solutions are equiv-

alent hypotheses such as: {:∼ assign(D, S1),assign(D, S2), neq(S1, S2).[1@1, D, S1, S2];

:∼ assign(D, S),not type(D, S, c2).[1@2, D, S]}. These hypotheses represent the prefer-

ences described in the introduction. They express that the highest priority is to

minimise the interviews for c1, and then to minimise the slots in any one day.

We now discuss some of the formal properties of ILPLOAS . All learning tasks in

the rest of this section are assumed to be propositional (B and SM are both ground).

The proofs for Theorems 1 to 3 can be found in (Law et al. 2015b). Theorems 1
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and 2 state sufficient and necessary conditions for there to exist solutions for an

ILPLOAS task with an unrestricted search space (hypotheses can be any set of

normal rules, choice rules and hard and weak constraints).

Theorem 1

Let T be the ILPLOAS task 〈B ,E+,E−,Ob,Oc〉. The following conditions (in

conjunction) are sufficient for there to exist solutions of T : (i) ∀e ∈ E+, there is

at least one model of B which extends e; (ii) ∀e1 ∈ E+, ∄e2 ∈ (E+ ∪ E−) such

that e1 extends e2; (iii) there is no cyclic chain of ordering examples (in Ob ∪Oc)

〈e1, e2〉, 〈e2, e3〉, . . . , 〈en−1, en〉, 〈en , e1〉.

Theorem 2

Let T be the ILPLOAS task 〈B ,E+,E−,Ob ,Oc〉. The following conditions are

necessary for there to exist solutions of T : (i) ∀e ∈ E+, there is at least one model

of B which extends e; (ii) ∀e1 ∈ E+, ∄e2 ∈ E− such that e1 extends e2; (iii) there

is no cyclic chain of cautious orderings, 〈e1, e2〉, 〈e2, e3〉, . . . , 〈en−1, en〉, 〈en , e1〉.

Note that if we consider the usual setting where hypotheses come from a search

space, the conditions in theorem 2 are still necessary, but the conditions in theorem 1

are no longer sufficient as, even if the conditions hold, the search space may be too

restrictive. Theorem 3 states the complexity of deciding the existence of solutions

for both ILPLAS and ILPLOAS tasks. The interesting property here is that deciding

the existence of solutions for ILPLOAS is in the same complexity class as ILPLAS .

Theorem 3

Let T be any ILPLAS or ILPLOAS task. Deciding whether T has at least one

inductive solution is NPNP -complete.

4 Algorithm

We now describe our new algorithm, ILASP2, capable of computing inductive so-

lutions of any ILPLOAS task, and present its soundness and completeness results

with respect to the notion of Learning from Ordered Answer Sets task given in

Definition 4. We omit the proofs of the theorems in this paper, but they can be

found in full in (Law et al. 2015b). For details of how to download and use our

prototype implementation of the ILASP2 algorithm, see (Law et al. 2015a).

ILASP2 extends the concepts of positive and violating hypotheses, first intro-

duced in our previous algorithm ILASP (Law et al. 2014), to cater for the new

notion of ordering examples. A hypothesis is said to be positive if it covers all

positive examples and bravely respects all the brave ordering examples. A positive

hypothesis is defined to be violating if it covers at least one negative example or

if it does not respect at least one of the cautious ordering examples. These two

notions are formalised by Definitions 5 and 6.

Definition 5

Let T = 〈B , SM , E+, E−,Ob ,Oc〉 be an ILPLOAS task. Any H ⊆ SM is a positive

hypothesis iff ∀e ∈ E+ ∃A ∈ AS (B ∪ H ) such that A extends e, and ∀o ∈ Ob

H ∪ B bravely respects o. The set of positive hypotheses of T is denoted P(T ).
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Definition 6

A positive hypothesis H is a violating hypothesis of T = 〈B , SM , E+, E−,Ob ,Oc〉,

written H ∈V(T ), iff at least one of the following cases is true:

• ∃e−∈E− and ∃A∈AS (B ∪ H ) such that A extends e−. In this case we call

A a violating interpretation of T and write 〈H ,A〉 ∈ VI(T ).
• ∃A1,A2∈AS (B ∪H ) and ∃〈e1, e2〉 ∈ Oc such that A1 extends e1, A2 extends

e2 and A1 6≻P A2 with respect to B ∪ H . In this case, we call 〈A1,A2〉 a

violating pair of T and write 〈H , 〈A1,A2〉〉 ∈ VP(T ).

Example 4

Consider an ILPLOAS task with B equal to P in Example 1 but with one additonal

fact busy(1, 1); positive examples e+1 = 〈{assign(t, 1), assign(t, 2)}, {assign(m, 2)}〉

and e+2 = 〈{assign(m, 2), assign(t, 1)}, ∅〉; one negative example e−1 = 〈{assign(m, 1)},

∅〉; and one cautious ordering 〈e+1 , e+2 〉. SM is unrestricted (hypotheses can be con-

structed from any predicate that appears in B and E ). Three example hypotheses

are given below. Note that when we describe answer sets we omit the facts in B .

H1= ∅∈P(T ) as e+1 and e+2 are covered and Ob is empty; however, H1 ∈ V(T )

for two reasons: firstly it has a violating interpretation ({assign(m, 1)}); secondly it

has a violating pair (〈{assign(t, 1), assign(t, 2)}, {assign(m, 2), assign(t, 1)}〉).

H2 = {←busy(D, S), assign(D, S)} ∈P(T ). H2 has no violating interpretations, but

it has a violating pair (〈{assign(t, 1), assign(t, 2)}, {assign(m, 2), assign(t, 1)}〉).

H3 = H2∪{:∼ assign(D, S).[1@1, D]} ∈ P(T ). H3 /∈ V(T ), as it has no violating

interpretations and its weak constraints minimise the days assigned (so it cautiously

respects the ordering example). It is, therefore, an inductive solution of the task.

One approach to computing the inductive solutions of an ILPLOAS task would be

to extend the original ILASP method with our new notions of positive and violating

hypotheses. Given a positive integer n, ILASP worked by constructing an ASP meta

representation of an ILPLAS task T , called the task program Tn
meta , whose answer

sets could be mapped back to the positive hypotheses of T of length n. Tn
meta could

then be augmented with an extra constraint so that its answer sets corresponded

exactly to the violating hypotheses of length n. ILASP first computed the violating

hypotheses of length n, and then converted each of these to a constraint at the meta-

level (ruling out that hypothesis). When Tn
meta was then augmented with these new

constraints, its answer sets corresponded exactly to the positive hypotheses which

were not computed the first time - the inductive solutions of length n.

The problem is that, in general, there can be many violating hypotheses which

are shorter than the first inductive hypothesis and ILASP will compute all of them

and add them into the task program as individual constraints. This scalability issue

would be worsened if we were considering adding weak constraints to the search

space. To overcome this, ILASP2 adopts a different strategy: it eliminates classes

of hypothesis, i.e. hypotheses that are violating for the same “reason”, namely they

give rise to a particular violating interpretation or a particular violating pair of

interpretations. The idea underlying the ILASP2 algorithm is to make use of two

sets VI and VP which accumulate, respectively, violating interpretations and vi-

olating pairs of interpretations that are constructed during the search. We start
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initially with two empty sets VI and VP and continually compute the set of opti-

mal remaining hypotheses which do not violate any of the reasons in VI or VP . If

a computed hypothesis gives rise to a new violating interpretation then this inter-

pretation is added to VI , if it gives rise to a new violating pair of interpretations

then this pair is added to VP . If no optimal remaining hypotheses are violating,

then these hypotheses are the optimal inductive solutions of the task.

Definition 7

Let T be an ILPLOAS task, VI and VP (resp.) be sets of violating interpretations

and pairs of interpretations, and B be the background knowledge. Any H ∈ P(T )

is a remaining hypothesis of T with respect to VI ∪ VP iff VI ∩ AS (B ∪ H ) = ∅

and ∀〈I1, I2〉 ∈ VP if I1, I2 ∈ AS (B ∪H ) then I1 ≻B∪H I2. A remaining hypothesis

H is a remaining violating hypothesis iff ∃R such that 〈H ,R〉 ∈ VI(T ) ∪ VP(T ).

We use an ASP meta-level representation to solve our search for remaining hypothe-

ses. As we rule out classes of hypothesis at the same time (rather than using one

constraint per violating hypothesis), our meta-level representation is slightly more

complex than that used in the original ILASP. Due to this complexity, we define

this representation in the online appendix and give here the underlying intuition.

The intuition of our meta encoding is that for a given task T , we construct an ASP

program Tmeta whose answer sets can be mapped back to the positive hypotheses

of T . Given an answer set A of Tmeta we writeM−1
hyp(A) to denote the hypothesis

represented by A. Each positive hypothesis may be represented by many answer sets

of Tmeta but if this hypothesis gives rise to a violating interpretation, then at least

one of these answer sets will contain a special atom v i . If the hypothesis gives rise

to a violating pair of interpretations then at least one of the answer sets of Tmeta

representing the hypothesis will contain a special atom v p(t1, t2), where 〈t1, t2〉 is

a pair of identifiers corresponding to the cautious ordering example which is being

violated. There is only one priority level in Tmeta and the optimality of its answer

sets is 2 ∗ |H |+ 1 if the answer set does not contain the atom violating (violating

is defined to be true if and only if v i or at least one v p(t1, t2) is true) and 2 ∗ |H |

if it does. This means that for any hypothesis H , the answer sets corresponding to

H that do contain violating are preferred to those which do not.

We can use Tmeta to find optimal positive hypotheses of T . If these positive solu-

tions are violating, then the optimal answer sets will contain violating. We can then

rule these hypotheses out. We can extract violating interpretations and violating

pairs of interpretations from answer sets of Tmeta , using the functions M−1
vi and

M−1
vp respectively. Violating interpretations and violating pairs of interpretations

are both called violating reasons. For any set of violating reasonsVR = VI ∪VP , we

then have a second meta encoding VRmeta(T ) which, when added to Tmeta , rules

out any hypotheses which are violating for a reason already in VR. This means that

the answer sets of Tmeta∪VRmeta(T ) will represent the set of remaining hypotheses

of T with respect to VR. These properties are guaranteed by Theorem 4.

Theorem 4

Given an ILPLOAS task and a set of violating reasons VR, let AS be the set of

optimal answer sets of Tmeta ∪ VRmeta(T ).
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• If ∃A ∈ AS such that violating ∈A then the set of optimal remaining violating

hypotheses VH is non empty and is equal to the set {M−1
hyp(A) | A ∈ AS}.

• If no A ∈ AS contains violating, then the set of optimal remaining hypotheses

(none of which is violating) is equal to the set {M−1
hyp(A) | A ∈ AS}.

Algorithm 1 ILASP2

procedure ILASP2(T )

VR = []

solution = solve(Tmeta ∪ VRmeta(T ))

while solution 6= nil && solution.optimality%2 == 0 do

A = solution.answer set

if v i ∈ A then

VR += M−1
vi (A)

else if ∃t1, t2 such that v p(t1, t2) ∈ A then

VR += M−1
vp (A)

end if

solution = solve(Tmeta ∪ VRmeta(T ))

end while

return {M−1
hyp(A) | A∈AS

∗(Tmeta ∪ VRmeta(T ))}

end procedure

Algorithm 1 is the pseudo code of our algorithm ILASP2. It makes use of our meta

encodings Tmeta and VRmeta(T ). For any program P , solve(P) is a function which,

in the case that P is satisfiable, returns a pair consisting of an optimal answer

set together with its optimality (as there is only one priority level in our meta

encoding this is treated as an integer); if P is unsatisfiable then solve(P) returns

nil. While there are optimal remaining violating hypotheses, ILASP2 finds them

and records the appropriate violating reasons. When there are no optimal remaining

hypotheses which are violating then either the meta program will be unsatisfiable

or the optimality of the optimal answer sets will be odd (as the optimality of

any A ∈ AS (Tmeta ∪ VRmeta(T )) is 2 ∗ |M−1
hyp(A)| if A contains violating and

2 ∗ |M−1
hyp(A)| + 1 if not), and so ILASP2 stops and returns the set of optimal

remaining hypotheses. Theorem 5 shows that ILASP2 is sound and complete with

respect to the optimal inductive solutions of an ILPLOAS task. This result relies on

the termination of ILASP2(T ), which is guaranteed if B ∪ SM grounds finitely.

Theorem 5

Let T be an ILPLOAS task. If ILASP2(T ) terminates, then ILASP2(T ) returns

the set of optimal inductive solutions of ILPLOAS (T ).

5 Experiments

Although there are benchmarks for ASP solvers (Denecker et al. 2009), there are

no benchmarks for learning ASP programs. In (Law et al. 2014) we discussed the

example of learning an ASP program with no weak constraints, representing the

rules of sudoku. Using the examples from the paper and a small search space with
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only 283 rules, the original ILASP algorithm takes 486.2s to solve the task. This

is due to the scalability issues discussed in section 4 as there are 332437 violating

hypotheses found before the first inductive solution. For the same task with ILASP2,

there are only 9 violating reasons found before the first inductive solution, meaning

that ILASP2 takes only 0.69s to solve the task.

As this is the first work on learning weak constraints, there are no existing bench-

marks suitable for testing our approach of learning from ordered answer sets. We

have, therefore, further investigated the interview scheduling example discussed

throughout the paper. Our experiments, in particular, test whether ILPLOAS can

successfully learn weak constraints from examples of brave and cautious orderings.

For the purpose of presentation, we assume our hypothesis space, SM , to be defined

by the mode declarations: Mh = Mb = ∅; Mo = {assign(v, v), neq(v, v), type(v, c)};

Mw = {−1, 1}; and finally, lmax = 2. We place several restrictions on the search

space in order to remove equivalent rules. The size of SM is 184 (our hypotheses

can be any subset of these 184 rules, so even considering only hypotheses with up

to 3 rules this gives over a million different hypotheses). The learning task uses

background knowledge B from Example 3. As SM only contains weak constraints,

for any H ⊆ SM , AS (B ∪ H ) = AS (B). The learning tasks described in these

experiments therefore correspond to learning to rank the answer sets of B .
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Fig. 1: Accuracy with varying (a) numbers of examples; (b) fullness of examples

For each experiment we randomly selected 100 hypotheses, each with between

1 to 3 weak constraints from SM , omitting hypotheses that ranked all answer sets

equally. The only atoms that vary in B are the assign’s. As there are 9 different

slots, there are 29 answer sets of B (and many more partial interpretations which are

extended by these answer sets). We say an example partial interpretation is full if it

specifies the truth value of all 9 assign atoms, otherwise we describe the fullness as

the percentage of the 9 atoms which are specified. In both experiments (for each of

the 100 target hypotheses HT ), we generated ordered pairs of partial interpretations

o = 〈e1, e2〉 such that o was bravely respected. If o was also cautiously respected,

then it was given as a cautious example (otherwise it was used as a brave example).

In our first experiment we investigated the effect of varying the number of examples,

and in the second we investigated the effects of varying the fullness of the examples.
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Fig. 2: Average running time of ILASP2 with varying numbers of examples

In both experiments, we tested our approach 20 times for each target hypothesis

HT . Each time, we used ILASP2 to learn a hypothesis HL which covered all exam-

ples. We then calculated the accuracy of HL in predicting the pairwise ordering of

answer sets in B (for each pair of answer sets A1,A2 ∈ AS (B) we tested whether

HT and HL agreed on the preference between them).

In our first experiment we investigated the effect of varying the number of exam-

ples from 0 to 20. The examples were of random fullness, each with between 5 to

9 assign atoms specified. Figure 1(a) shows the average predictive accuracy. Each

point on the graph corresponds to 2000 learning tasks (100 target hypotheses with

20 different sets of examples). The error bars on the graph show the standard error.

The results show that our method achieves 90% accuracy for this experiment with

around 10 or more random examples.

For our second experiment we again tested our approach on 100 randomly gener-

ated hypotheses with 20 different sets of randomly generated examples. This time,

however, we have kept the number of examples fixed at 5, 10 and 20 and varied the

fullness of the examples. Results are shown in Figure 1(b). The graph shows that

examples are only useful if they are more than 50% full. One interesting point to

note is that the peak performance is with examples of around 90% fullness. This

is because cautious ordering examples are actually more useful if they are less full

(as there are more pairs which extend them); however, orderings are less likely to

be cautiously respected when they are less full.

In our final experiment, we investigated the scalability of ILASP2 by increasing

both the number of days in our timetable and the number of examples. Figure 2

shows the average running time for ILASP2 with 3, 4 and 5 day timetables (each

with 3 slots) with up to 120 ordering examples. The learning tasks are targeted at

learning the hypothesis from Example 3. We randomly generated ordering examples,

as in the previous experiments with the slight difference that the fullness of the

examples was unrestricted. As the hypothesis in these experiments does not use

negative weights in either of the weak constraints, we also tested the average running

time with a search space containing only positive weights. This means that SM

contained 92 weak constraints rather than the original 184. These experiments

show that the time taken to solve an ILASP2 task is dependent not only on the

number of examples, but also on the size of the domain and the size of SM .
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6 Related Work

In (Law et al. 2014) we showed that any of the learning tasks in (Corapi et al. 2012;

Ray 2009; Sakama and Inoue 2009; Otero 2001) could be expressed by ILPLAS

and computed by ILASP. As any ILPLAS task can be (trivially) mapped into

an ILPLOAS (i.e. Ob = ∅ and Oc = ∅), ILPLOAS inherits this property. None of

the previous learning tasks (including ILPLAS ), however, can construct examples

which incentivise the learning of a hypothesis containing a weak constraint. This is

because they can only give examples of what should (or shouldn’t) be an answer

set of B ∪H . In addition, ILPLOAS inherits the capability of ILPLAS of supporting

predicate invention, allowing new concepts to be invented whilst learning.

The ILASP2 algorithm is an extension of the original ILASP algorithm in (Law et al. 2014).

It extends the concepts of positive and violating hypothesis to cover learning weak

constraints (which was not possible in ILASP). For the simpler ILPLAS tasks,

ILASP2 is more efficient than ILASP. As discussed in section 4, the original ILASP

algorithm has some scalability issues when there is a large number of violating hy-

potheses. We have shown in section 5 that by eliminating violating reasons rather

than single violating hypotheses, ILASP2 can be much more efficient.

Also related to our work are existing approaches for learning to rank. These use

non logic-basedmachine learning techniques (e.g. neural networks (Geisler et al. 2001)).

Our approach shares the same advantages as any ILP approach versus a non logic-

based machine learning technique: learned hypotheses are structured, human read-

able and can express relational concepts such as minimising the instances of par-

ticular combinations of predicates. Existing background knowledge can be taken

into account to capture predefining concepts and the search can be steered to-

wards particular types of hypotheses using a language bias. Furthermore, ILASP2

is also capable of learning preferences with weights and priorities, meaning that

more structured and complex preferences can be learned.

An example of the use of an ILP system for learning constraints has been recently

presented in (Lallouet et al. 2010) where timetabling constraints are learned from

positive and negative examples. In this case the learned rules are hard constraints

(e.g., enforcing that a teacher is not in two places at once). Examples of this kind

are already computable by ILPLAS , and so are also computable by ILPLOAS .

7 Conclusion and Future Work

We have presented a new framework for ILP, Learning from Ordered Answer Sets,

which extends previous ILP systems in that it is able to learn weak constraints and

can be used to perform preference learning. The framework can represent partial

examples under a brave and a cautious semantics. We have also put forward a

new algorithm, ILASP2, that can solve any ILPLOAS task for optimal solutions.

This algorithm extends previous work for solving the simpler task ILPLAS and

resolves some of the scalability issues associated with the previous algorithm. Some

scalability issues remain, especially when there is a particularly large hypothesis

space and future work will focus on overcoming these. Current work also addresses

extending the ILASP algorithm to support noisy examples.
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Appendix A The ILASP2 Meta Encoding

We present here the ILASP2 meta encoding which is omitted from the main paper.

We first summarise some notation used in the encoding.

We will write body+(R) and body−(R) to refer to the positive and negative (re-

spectively) literals in the body of a rule R. Given a program P , weak(P) denotes

the weak constraints in P and non weak(P) denotes the set of rules in P which are

not weak constraints.

Definition 8

For any ASP program P , predicate name pred and term term we will write

reify(P , pred , term) to mean the program constructed by replacing every atom

a ∈ P by pred(a, term). We will use the same notation for sets of literals/partial in-

terpretations, so for a set S : reify(S , pred , term) = {pred(atom, term) : atom ∈ S}.

Definition 9

For any ASP program P and any atom a, append(P , a) is the program constructed

by appending a to every rule in P .

Definition 10

Given any term t and any positive example e, cover(e, t) is the program:

cov(t):-in as(einc1 , t), . . . , in as(eincn , t), not in as(eexc1 , t), . . . , not in as(eexcm , t).

:-not cov(t).

The previous three definitions can be used in combination to test whether a

program has an answer sets which extend given partial interpretations.

Example 5

Consider the program P =

{

p:-not q.

q:-not p.

}

and the partial interpretations I1 =

〈{p}, ∅〉 and I2 = 〈∅, {p}〉.

The program Q = append(reify(P , in as ,X ), as(X )) ∪ {as(as1), as(as2)} ∪

cover(I1, as1) ∪ cover(I2, as2) has the grounding:

in_as(p, as1) :- not in_as(q, as1), as(as1).

in_as(q, as1) :- not in_as(p, as1), as(as1).

in_as(p, as2) :- not in_as(q, as2), as(as2).

in_as(q, as2) :- not in_as(p, as2), as(as2).

as(as1).

as(as2).

cov(as1) :- in_as(p, as1).

:- not cov(as1).

cov(as2) :- not in_as(p, as2).

:- not cov(as2).

Without the two constraints, Q would have 4 answer sets (the combinations of

as1 and as2 corresponding to the two answer sets of P). With the two constraints,
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the answer set represented by as1 must extend I1, and the answer set represented

by as2 must extend I2. Hence, there is only one answer set of Q , {as(as1), as(as2),

in as(p, as1), in as(q, as2), cov(as1), cov(as2)}.

Note that the answer sets of P which extend I1 and I2 ({p} and {q}) can be

extracted from the in as atoms in this answer set of Q . If there were multiple

answer sets of P extending one or more of the partial interpretations, then there

would be multiple answer sets, representing all possible combinations such that the

constraints are met.

Definition 11

Let p1 and p2 be distinct predicate names and t be a term. Given R, a weak

constraint :∼ b1, . . . , bm, not c1, . . . ,not cl.[wt@lev, t1, . . . , tn], metaweak (R, p1, p2, t) is

the rule:

w(wt, lev, args(t1, . . . , tn), t):-p2(X), p1(b1, t), . . . , p1(bm, t),not p1(c1, t), . . . , not p1(cl, t).

For a set of weak constraints W , metaweak (W , p1, p2, t) is the set

{metaweak(R, p1, p2, t) | R ∈W }.

Example 6

Consider the program P containing the two weak constraints:

:~ p(V).[1@2, V]

:~ q(V).[2@1, V]

metaweak(P , in as , as ,X ) is the program:

w(1, 2, args(V), X) :- as(X), in_as(p(V), X).

w(2, 1, args(V), X) :- as(X), in_as(q(V), X).

Note that for any program P , if we reify an interpretation I = {a1, . . . , an} as

{in as(a1, id), . . . , in as(an, id)} (the set reify(I , in as , id)) then the atoms

w(wt, l, args(t1, . . . , tm), id) in the (unique) answer set of

metaweak(weak(P), in as , as ,X ) ∪ reify(I , in as , id) ∪ {as(id)} correspond exactly

to the elements (wt , l , t1, . . . tm) of weak(P , I ).

For example, consider the interpretation I = {p(1), p(2), q(1)}. The unique an-

swer set of metaweak (weak(P), in as , as ,X )∪reify(I , in as , id)∪{as(id)} is {as(id),

in as(p(1), id), in as(p(2), id), in as(q(1), id), w(1, 2, args(1), id), w(1, 2, args(2), id),

w(2, 1, args(1), id)}. In this case, weak(P , I ) = {(1, 2, 1), (1, 2, 2), (2, 1, 1)}.

Now that we have defined the predicate w to represent weak(P ,A) for each answer

set A, we can use some additional rules to determine, given two interpretations,

whether one dominates another.

Definition 12

Given any two terms t1 and t2, dominates(t1, t2) is the program:














dom lv(t1, t2, L):-lv(L), #sum{w(W, L, A, t1) = W, w(W, L, A, t2) = −W} < 0.

non dom lv(t1, t2, L):-lv(L), #sum{w(W, L, A, t2) = W, w(W, L, A, t1) = −W} < 0.

non bef(t1, t2, L):-lv(L), lv(L2), L < L2, non dom lv(t1, t2, L2).

dom(t1, t2):-dom lv(t1, t2, L), not non bef(t1, t2, L).














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The intuition is that dom(id1, id2) (where id1 and id2 represent two answer sets

A1 and A2) should be true if and only if A1 dominates A2. This is dependent on

the atoms dom lv(id1, id2, l), which for each level l , should be true if and only if

P l
A1

< P l
A2

; non dom lv(id1, id2, l), which for each level l , should be true if and only

if P l
A2

< P l
A1

; and finally, non bef(id1, id2, l), which for each level l , should be true

if and only if there is an l2 > l such that P l2
A2

< P l2
A1

.

Example 7

Consider again the program P and interpretation I from example 6. Consider also

an additional interpretation I ′ = {p(1), p(2), p(3)}. weak(P , I ′) = {(1, 2, 1), (1, 2, 2),

(1, 2, 3)}.

The unique answer set of metaweak (weak(P), in as , as ,X )∪ reify(I , in as , id1)∪

reify(I ′, in as , id2) ∪ {as(id1), as(id2), lv(1), lv(2)} ∪ dominates(id1, id2) contains

dom lv(id1, id2, 2), because I dominates I ′ at level 2 (i.e. P2
I < P2

I ′); contains

non dom lv(id1, id2, 1), because I ′ dominates I at level 1; does not contain any

non bef atoms, because the only level at which I ′ dominates I is 1, which is not

evaluated “before” any other level (it is the lowest level in the program); and finally,

does contain dom(id1, id2) because I dominates I ′ at level 2 and there is no level

“before” (higher than) level 2 at which I ′ dominates I . The presence of dom(id1, id2)

in the answer set indicates that I dominates I ′.

Similarly, the unique answer set of metaweak (weak(P), in as , as ,X ) ∪

reify(I , in as , id1) ∪ reify(I ′, in as , id2) ∪ {as(id1), as(id2), lv(1), lv(2)} ∪

dominates(id2, id1) contains dom lv(id2, id1, 1), because I ′ dominates I at level 1;

contains non dom lv(id2, id1, 2), because I dominates I ′ at level 2; contains

non bef(id2, id1, 1) as I dominates I ′ at level 2, which is evaluated “before” level 1;

and finally, does not contain dom(id2, id1) because there is no level l in the program

such that I ′ dominates I at l and I does not dominate I ′ at any higher level.

A.1 Encoding the search for positive hypotheses: Tmeta

We now use the components described in the previous section to define a program

Tmeta whose answer sets correspond to the positive solutions of an ILPLOAS task

T .

Definition 13

Let T be the ILPLOAS task 〈B , SM ,E+,E−,Ob ,Oc〉. Then Tmeta = meta(B) ∪

meta(SM )∪meta(E+)∪meta(E−)∪meta(Ob)∪meta(Oc) where each meta com-

ponent is as follows:

• meta(B) = append(reify(non weak(B), in as ,X ), as(X ))

∪metaweak (weak(B), in as , as ,X ).

• meta(SM ) =

{append(append(reify(R, in as ,X ), as(X )), in h(Rid )) | R ∈ non weak(SM )}

∪ {append(W , in h(Wid )) |W ∈ metaweak (weak(SM ), in as , as ,X )}

∪ {:∼ in h(Rid).[2 ∗ |R|@0, Rid] | R ∈ SM}

∪ { {in h(Rid) : R ∈ SM}. }
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• meta(E+) =

{

cover(e, eid )

as(eid).

∣

∣

∣

∣

〈einc , eexc〉 ∈ E+

}

• meta(E−) =















v i:-in as(einc1 , n), . . . , in as(eincn , n),

not in as(eexc1 , n), . . . ,

not in as(eexcm , n).

as(n).

∣

∣

∣

∣

∣

∣

∣

∣

〈einc , eexc〉 ∈ E−















∪

{

violating:-v i.

:∼ not violating.[1@0]

}

• meta(Ob) =























as(oid1). as(oid2).

cover(e1, oid1)

cover(e2, oid2)

dominates(oid1 , oid2)

:-not dom(oid1 , oid2).

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

o = 〈e1, e2〉 ∈ Ob























∪{lv(l). | l ∈ L}

• meta(Oc) =







dominates(e1, e2)

v p(e1id, e
2
id):-

not dom(e1, e2).

∣

∣

∣

∣

∣

∣

〈e1, e2〉 ∈ Oc







∪

{

v p:-v p(T1, T2).

violating:-v p.

}

The intuition is that the in h atoms correspond to the rules in the hypothesis.

Each rule R ∈ SM has a unique identifier Rid and if in h(Rid) is true then R is

considered to be part of the hypothesis H . These in h atoms have been added to

the bodies of the rules in the meta encoding so that a rule R ∈ SM only has an

effect if it is part of H .

Each of the terms t for which there is a fact as(t) represents an answer set of

B ∪H . As in the previous section the cover program cover(I , t) is used to enforce

that some of these answer sets extend particular partial interpretations.

There is one as(t) atom for each positive example e. The cover program is used to

ensure that the corresponding answer set does extend e. There are two as(t) atoms

for each brave ordering 〈e1, e2〉. Two instances of the cover program are used to

ensure that the first answer set extends e1 and the second answer set extends e2.

We also use the dominates program from the previous section and a constraint to

ensure that the first answer set dominates the second (hence the ordering is bravely

respected).

For the negative examples and the cautious orderings, the aim is to generate

violating in at least one answer set of the meta encoding corresponding to H , if H

is indeed a violating solution (generating v i if H does not cover a negative example

and some instance of v p if it does not respect a cautious ordering).

Firstly, for the negative examples, we have an extra fact as(n). As we have no

constraints on the answer set of B ∪H which this can correspond to, the intuition

is that there is one answer set of the meta encoding for each answer set of B ∪ H .

For each negative example e− there is a rule for v i which will generate v i if the

answer set corresponding to as(n) extends e−.

For the cautious orderings we use a similar approach. For any cautious ordering

〈e1, e2〉, as e1 and e2 are positive examples, there are already two as(t) atoms which

represent answer sets extending each of these interpretations; in fact, there will be

one answer set of the meta encoding for each possible pair of answer sets of B ∪H
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which extend these interpretations. Therefore, by using the dominates program,

and generating a v p atom if the answer set of B ∪ H corresponding to the first

as(t) atom does not dominate the answer set of B ∪H corresponding to the second

as(t) atom in any answer set of the meta encoding, we ensure that violating will

be true in at least one answer set of the meta encoding which corresponds to H .

Example 8

Consider the learning task:

B =























p(V):-r(V), not q(V).

q(V):-r(V), not p(V).

r(1). r(2).

a:-not b.

b:-not a.























SM =







q(1).

:∼ q(V).[1@1, V, r2]

:∼ b.[1@1, b, r3]







E+ =















〈{p(2)}, ∅〉,

〈∅, {p(2)}〉,

〈{a}, {b}〉,

〈∅, {a}〉















E− =
{

〈{p(1)}, ∅〉
}

Ob =
{

〈e+3 , e+4 〉
}

Oc =
{

〈e+1 , e+2 〉
}

Figure A 1 shows Tmeta . There are two optimal positive hypotheses (one contain-

ing each of the two weak constraints).

The positive hypothesis :∼ b · [1@1, b, r3] has a violating interpretation {p(1), q(2),

r(1), r(2), a}. This corresponds to the following answer set of Tmeta :

{ as(1), as(2), as(3), as(4), as(n), as(5), as(6), lv(1), in_as(r(1),1),

in_as(r(1),2), in_as(r(1),3), in_as(r(1),4), in_as(r(1),n), in_as(r(1),5),

in_as(r(1),6), in_as(r(2),1), in_as(r(2),2), in_as(r(2),3), in_as(r(2),4),

in_as(r(2),n), in_as(r(2),5), in_as(r(2),6), in_as(q(1),3), in_as(q(1),4),

in_as(q(1),6), in_as(p(1),1), in_as(p(1),2), in_as(p(1),n), in_as(p(1),5),

in_as(p(2),1), in_as(q(2),2), in_as(q(2),3), in_as(q(2),4), in_as(q(2),n),

in_as(q(2),5), in_as(q(2),6), in_as(a,1), in_as(a,2), in_as(a,3),

in_as(b,4), in_as(a,n), in_as(a,5), in_as(b,6), in_h(r2),

w(1,1,args(2,r2),2), w(1,1,args(1,r2),3), w(1,1,args(2,r2),3),

w(1,1,args(1,r2),4), w(1,1,args(2,r2),4), w(1,1,args(2,r2),n),

w(1,1,args(2,r2),5), w(1,1,args(1,r2),6), w(1,1,args(2,r2),6), cov(1),

cov(2), cov(3), cov(4), v_i, violating, dom_lv(1,2,1), dom(1,2), cov(5),

cov(6), dom_lv(5,6,1), dom(5,6) }

Note that the violating interpretation can be extracted from the in as( , n) atoms

and the hypothesis can be extracted from the in h atoms.

Similarly, the violating pair 〈{p(2), q(1), r(1), r(2), a}, {p(1), q(2), r(1), r(2), a}〉 can

be extracted from the answer set:

{ as(1), as(2), as(3), as(4), as(n), as(5), as(6), lv(1), in_as(r(1),1),

in_as(r(1),2), in_as(r(1),3), in_as(r(1),4), in_as(r(1),n), in_as(r(1),5),

in_as(r(1),6), in_as(r(2),1), in_as(r(2),2), in_as(r(2),3), in_as(r(2),4),

in_as(r(2),n), in_as(r(2),5), in_as(r(2),6), in_as(q(1),1), in_as(q(1),4),

in_as(q(1),6), in_as(p(1),2), in_as(p(1),3), in_as(p(1),n), in_as(p(1),5),

in_as(p(2),1), in_as(q(2),2), in_as(q(2),3), in_as(q(2),4), in_as(q(2),n),

in_as(q(2),5), in_as(q(2),6), in_as(a,1), in_as(a,2), in_as(a,3),

in_as(b,4), in_as(a,n), in_as(a,5), in_as(b,6), w(1,1,args(1,r2),1),
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in_h(r2), w(1,1,args(2,r2),2), w(1,1,args(2,r2),3), w(1,1,args(1,r2),4),

w(1,1,args(2,r2),4), w(1,1,args(2,r2),n), w(1,1,args(2,r2),5),

w(1,1,args(1,r2),6), w(1,1,args(2,r2),6), cov(1), cov(2), cov(3), cov(4),

v_i, violating, v_p(1,2), v_p, cov(5), cov(6), dom_lv(5,6,1), dom(5,6) }

% meta(B)

in_as(p(V),X) :- in_as(r(V),X),

not in_as(q(V),X), as(X).

in_as(q(V),X) :- in_as(r(V),X),

not in_as(p(V),X), as(X).

in_as(r(1),X) :- as(X).

in_as(r(2),X) :- as(X).

in_as(a,X) :- not in_as(b,X), as(X).

in_as(b,X) :- not in_as(a,X), as(X).

% meta(S_M)

in_as(q(1),X) :- as(X), in_h(r1).

w(1,1,args(V,r2),X) :- in_as(q(V),X),

as(X), in_h(r2).

w(1,1,args(b,r3),X) :- in_as(b,X),

as(X), in_h(r3).

0 {in_h(r1), in_h(r2), in_h(r3)} 2.

:~ in_h(r1).[2@0,r1]

:~ in_h(r2).[2@0,r2]

:~ in_h(r3).[2@0,r3]

% meta(E^+)

as(1).

as(2).

as(3).

as(4).

cov(1) :- in_as(p(2),1).

cov(2) :- not in_as(p(2),2).

cov(3) :- in_as(a,3), not in_as(b,3).

cov(4) :- not in_as(a,4).

:- not cov(1).

:- not cov(2).

:- not cov(3).

:- not cov(4).

% meta(E^-)

v_i :- in_as(p(1),n).

as(n).

violating :- v_i.

:~ not violating.[1@0, violating]

% meta(O^b)

as(5).

as(6).

cov(5) :- in_as(a,5), not in_as(b,5).

cov(6) :- not in_as(a,6).

:- not cov(5).

:- not cov(6).

dom_lv(5,6,L) :- lv(L),

#sum{w(W,L,A,5)=W, w(W,L,A,6)=-W} < 0.

wrong_dom_lv(5,6,L) :- lv(L),

#sum{w(W,L,A,6)=W, w(W,L,A,5)=-W} < 0.

wrong_bef(5,6,L) :- lv(L), L < L2,

wrong_dom_lv(5,6,L2).

dom(5,6) :- dom_lv(5,6,L),

not wrong_bef(5,6,L).

:- not dom(5,6).

lv(1).

% meta(O^c)

dom_lv(1,2,L) :- lv(L),

#sum{w(W,L,A,1)=W, w(W,L,A,2)=-W} < 0.

wrong_dom_lv(1,2,L) :- lv(L),

#sum{w(W,L,A,2)=W, w(W,L,A,1)=-W} < 0.

wrong_bef(1,2,L) :- lv(L), L < L2,

wrong_dom_lv(1,2,L2).

dom(1,2) :- dom_lv(1,2,L),

not wrong_bef(1,2,L).

v_p(1,2) :- not dom(1,2).

v_p :- v_p(X,Y).

violating :- v_p.

Fig. A 1: An example of Tmeta .
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A.2 Encoding classes of violating hypotheses: VRmeta

The previous section set out how to construct a meta level ASP program Tmeta

whose answer sets correspond to the positive hypotheses. It is also able to identify

violating hypotheses, but has no way of eliminating them (as only a subset of

the meta level answer sets corresponding to a violating hypothesis will identify it

as violating, so eliminating these answer sets does not necessarily eliminate the

hypothesis).

We therefore present a new meta level program which, combined with Tmeta ,

eliminates any hypothesis which is violating for a given set of violating reasons. As

violating reasons are full answer sets (or pair of full answer sets), we do not have

to generate answer sets. It is enough to check whether the answer sets we have as

part of the violating reasons are still answer sets of B ∪ H . The standard way to

do this is check whether these answer sets are the minimal model of the reduct of

B ∪H with respect to this answer set. The next two definitions define a meta level

program which, given an interpretation, computes the minimal model of the reduct

of a program with respect to that interpretation. This reduct construction is close

to the simplified reduct for choice rules from (Law et al. 2015c).

Definition 14

Given any choice rule R = l{h1, . . . , hn}u:-body, reductify(R) is the program:


























































mmr(h1, X):-reify(body
+
, mmr, X), reify(body−, not in vs, X),

l{in vs(h1, X), . . . , in vs(hn, X)}u, in vs(h1, X)·

. . .

mmr(hn, X):-reify(body
+
, mmr, X), reify(body−, not in vs, X),

l{in vs(h1, X), . . . , in vs(hn, X)}u, in vs(hn, X)·

mmr(⊥, X):-reify(body+ , mmr, X), reify(body−, not in vs, X),

u+ 1{in vs(h1, X), . . . , in vs(hn, X)}·

mmr(⊥, X):-reify(body+ , mmr, X), reify(body−, not in vs, X),

{in vs(h1, X), . . . , in vs(hn, X)}l− 1·



























































Definition 15

Let P be an ASP program such that P1 is the set of normal rules in P , P2 is the

set of constraints in P and P3 is the set of choice rules in P .

reductify(P) =

{

mmr(head(R), X):-reify(body+(R), mmr, X),

reify(body−(R), not in vs, X), vs(X).

∣

∣

∣

∣

R ∈ P1

}

∪

{

mmr(⊥, X):-reify(body+(R), mmr, X),

reify(body−(R), not in vs, X), vs(X).

∣

∣

∣

∣

R ∈ P2

}

∪ {reductify(R) | R ∈ P3}·

Example 9

Consider the program P =

{

p:-not q.

q:-not p.

}

reductify(P) =

{

mmr(p, X):-not in vs(q, X), vs(X).

mmr(q, X):-not in vs(p, X), vs(X).

}

We can check whether {p} is an answer set by combining reductify(P) with
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{vs(vs1), in vs(p, vs1)}. The answer set of this program is {vs(vs1), in vs(p, vs1),

mmr(p, vs1)}, from which the minimal model, {p}, can be extracted. This shows that

{p} is indeed an answer set of P .

Definition 16

Let T be the ILPLOAS task 〈B , SM ,E+,E−,Ob,Oc〉 and VR be the set of violating

reasons VI ∪VP , where VI are violating interpretations and VP are violating pairs.

VRmeta(T ) is the program meta(VI ) ∪meta(VP) ∪meta(Aux ) where the meta

components are defined as follows:

• meta(VI ) =







reify(I , in vs , Iid )

:-not nas(Iid).

vs(Iid).

∣

∣

∣

∣

∣

∣

I ∈ VI







• meta(VP) =











































dominates(vpid1 , vpid2)

reify(I1, in vs , vpid1)

reify(I2, in vs , vpid2)

vs(vpid1).

vs(vpid2).

:-not nas(vpid1), not nas(vpid2),

not dom(vpid1, vpid2).

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

vp = 〈I1, I2〉 ∈ VP











































• meta(Aux ) =










































reductify(B)

∪

{

nas(X):-in vs(ATOM, X), not mmr(ATOM, X).

nas(X):-not in vs(ATOM, X), mmr(ATOM, X).

}

∪ {append(reductify(R), in hyp(Rid )) | R ∈ non weak(SM )}

∪ {append(metaweak (W , in vs , vs ,X ), in hyp(Wid )) |W ∈ weak(SM )}

∪ {metaweak(W , in vs , vs ,X ) |W ∈ weak(B)}

∪ {lv(l). | l ∈ L}











































This meta encoding uses the reductify program to check whether the various

interpretations in each violating reason is still an answer set of B ∪ H . There is a

constraint for each of the violating interpretation, ensuring that it is no longer an

answer set of B∪H . Similarly, there is a constraint for each violating pair that says,

if both interpretations are still answer sets of B ∪H , then the first must dominate

the second. This is checked by using the dominates program as before (the weak

constraints are also translated as before).

Example 10

Recall B , SM , E+, E−, Ob and Oc from example 8 and let VI be the set contain-

ing the violating interpretation {p(1), p(2), r(1), r(2), a}, VP the set containing the

violating pair 〈{p(2), q(1), r(1), r(2), a}, {q(1), q(2), r(1), r(2), a}〉 and let VR be the

set of violating reasons VI ∪ VP . Then figure A 2 shows VRmeta(T ).

Now that we have ruled out any hypothesis with these violating reasons, one

optimal answer set of this program is:

{ as(1), as(2), as(3), as(4), as(n), as(5), as(6), lv(1), in_vs(p(1),v1),

in_vs(p(2),v1), in_vs(r(1),v1), in_vs(r(2),v1), in_vs(a,v1), vs(v1),

in_vs(p(2),v2), in_vs(q(1),v2), in_vs(r(1),v2), in_vs(r(2),v2), in_vs(a,v2),
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vs(v2), in_vs(q(1),v3), in_vs(q(2),v3), in_vs(r(1),v3), in_vs(r(2),v3),

in_vs(a,v3), vs(v3), in_as(r(1),1), in_as(r(1),2), in_as(r(1),3),

in_as(r(1),4), in_as(r(1),n), in_as(r(1),5), in_as(r(1),6), in_as(r(2),1),

in_as(r(2),2), in_as(r(2),3), in_as(r(2),4), in_as(r(2),n), in_as(r(2),5),

in_as(r(2),6), in_as(q(1),1), in_h(r1), in_as(q(1),2), in_as(q(1),3),

in_as(q(1),4), in_as(q(1),n), in_as(q(1),5), in_as(q(1),6), in_as(p(2),1),

in_as(q(2),2), in_as(p(2),3), in_as(q(2),4), in_as(p(2),n), in_as(p(2),5),

in_as(q(2),6), in_as(a,1), in_as(a,2), in_as(a,3), in_as(b,4), in_as(a,n),

in_as(a,5) in_as(b,6), w(1,1,args(1,r2),1), in_h(r2), w(1,1,args(1,r2),2),

w(1,1,args(2,r2),2), w(1,1,args(1,r2),3), w(1,1,args(1,r2),4),

w(1,1,args(2,r2),4), w(1,1,args(1,r2),n), w(1,1,args(1,r2),5),

w(1,1,args(1,r2),6), w(1,1,args(2,r2),6), cov(1), cov(2), cov(3), cov(4),

w(1,1,ts(1),v2), w(1,1,ts(1),v3), w(1,1,ts(2),v3), dom_lv(1,2,1), dom(1,2),

cov(5), cov(6), dom_lv(5,6,1), dom(5,6), mmr(r(1),v1), mmr(r(1),v2),

mmr(r(1),v3), mmr(r(2),v1), mmr(r(2),v2), mmr(r(2),v3), mmr(p(1),v1),

mmr(p(2),v1), mmr(p(2),v2), mmr(q(1),v2), mmr(q(1),v3), mmr(q(2),v3),

mmr(a,v1), mmr(a,v2), mmr(a,v3), mmr(q(1),v1), nas(v1), dom_lv(v2,v3,1),

dom(v2,v3) }

This answer set corresponds to the hypothesis:

q(1).

:~ q(V).[1@1,V,r2]

As the optimality of this answer set is 5, we know that this hypothesis cannot have

any violating reasons, as otherwise, there would be an answer set with optimality

4 corresponding to the hypothesis (which would have been returned as optimal).

Hence, the hypothesis must be an optimal inductive solution of the task.
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% meta(VI)

in_vs(p(1),v1).

in_vs(p(2),v1).

in_vs(r(1),v1).

in_vs(r(2),v1).

in_vs(a,v1).

vs(v1).

:- not nas(v1).

% meta(VP)

in_vs(p(2),v2).

in_vs(q(1),v2).

in_vs(r(1),v2).

in_vs(r(2),v2).

in_vs(a,v2).

vs(v2).

in_vs(q(1),v3).

in_vs(q(2),v3).

in_vs(r(1),v3).

in_vs(r(2),v3).

in_vs(a,v3).

vs(v3).

dom_lv(v2,v3,L) :- lv(L),

#sum{w(W,L,A,v2)=W,

w(W,L,A,v3)=-W} < 0.

wrong_dom_lv(v2,v3,L) :- lv(L),

#sum{w(W,L,A,v3)=W,

w(W,L,A,v2)=-W} < 0.

wrong_bef(v2,v3,L) :- lv(L), L < L2,

wrong_dom_lv(1,2,L2).

dom(v2,v3) :- dom_lv(v2,v3,L),

not wrong_bef(v2,v3,L).

:- not nas(v2), not nas(v3),

not dom(v2,v3).

% meta(Aux)

mmr(p(V),X) :- mmr(r(V),X),

not in_vs(q(V),X), vs(X).

mmr(q(V),X) :- mmr(r(V),X),

not in_vs(p(V),X), vs(X).

mmr(r(1),X) :- vs(X).

mmr(r(2),X) :- vs(X).

mmr(a,X) :- not in_vs(b,X), vs(X).

mmr(b,X) :- not in_vs(a,X), vs(X).

mmr(q(1),X) :- vs(X), in_h(r1).

w(1,1,ts(V),X) :- vs(X),

in_vs(q(V),X), in_h(r2).

w(1,1,args(b,r3),X) :- vs(X),

in_vs(b,X), in_h(r3).

nas(X) :- in_vs(A,X), not mmr(A,X).

nas(X) :- not in_vs(A,X), mmr(A,X).

Fig. A 2: An example of VRmeta(T ).
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