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Abstract

This paper is concerned with the optimal number of redundant allocation to n-component
coherent systems consist of heterogeneous dependent components. We assume that the system
is built of L groups of different components, L ≥ 1, where there are ni components in group
i, and

∑L

i=1 ni = n. The problem of interest is to allocate vi active redundant components
to each component of type i, i = 1, . . . , L. To get the optimal values of vi, we propose two
cost-based criteria. One of them is introduced based on the costs of renewing the failed compo-
nents and the costs of refreshing the alive ones at the system failure time. The other criterion
is proposed based on the costs of replacing the system at its failure time or at a predetermined
time τ , whichever occurs first. The expressions for the proposed functions are derived using
the mixture representation of the system reliability function based on the notion of survival
signature. We assume that a given copula function models the dependency structure between
the components. In the particular case that the system is a series-parallel structure, we provide
the formulas for the proposed cost-based functions. The results are discussed numerically for
some specific coherent systems.

Keywords: Reliability; cost optimality; system maintenance; survival signature; active re-
dundancy; exchangeability
AMS 2000 Subject Classification: 90B25, 60K10, 62N05

1 Introduction

1.1 Motivation and related literature

In reliability engineering and system security, one of the most useful methods for enhancing the
reliability characteristics of a system is to allocate redundant components to the system. The re-
dundancy can be performed at the component level or the system level. In the former case, some
redundant components are connected to each component, while in the latter one, the original co-
herent system fastens to some copies of itself. In a commonly used type of redundancy, called active
redundancy, the original component and the redundant ones work simultaneously as parallel. In
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this case, the lifetime of the resulted parallel subsystem equals the maximum lifetime between the
connected components. This strategy is mostly applied when the replacement of the components
during the operation time of the system is impossible. As redundancy allocation is a widely used
method for improving the performance of the products, numerous researchers have paid attention to
develop the theories and applications of this subject. For example, Li and Ding [2010] investigated
the allocation of active redundancies to a k-out-of-n system in which the lifetimes of independent
components are stochastically ordered. You et al. [2016] studied k-out-of-n redundant systems
with dependent components. Eryilmaz and Ucum [2021] determined the optimal number of spare
components for a weighted k-out-of-n. Bayramoglu Kavlak [2017] investigated the reliability and
the mean residual life functions of coherent systems with active redundancies at the component
and system levels. Zhang [2018] investigated the optimal allocation of active redundancies for
weighted k-out-of-n systems. Zhang et al. [2017] compared the component redundancy versus
system redundancy for coherent systems with dependent and identically distributed components.
Fang and Li [2016] studied the allocation of one active redundancy to coherent systems consisting
of heterogeneous and statistically dependent components. Utilizing the minimal path decompo-
sition, they proposed a necessary and sufficient condition identifying a better allocating strategy
from two candidates. Fang and Li [2017] investigated allocating multiple matched active redundant
components to coherent systems. Fang and Li [2018] studied the coherent systems with one active
redundancy, using the minimal cut decomposition of the system. Torrado et al. [2021] studied the
redundancy allocation for a coherent system formed by modules, under different settings related
to dependency and distribution of components. They stochastically compared the redundancies
at the components level versus redundancies at the modules level. Torrado [2021] considered
a coherent system having possibly dependent subsystems in which the components are connected
in parallel or in series. It is assumed that a number of possibly dependent components in each
subsystem are randomly selected from a heterogeneous population. The cited author stochastically
compared such systems with different numbers of components, based on majorization orders and,
determined the optimal numbers of components in each subsystem such that the system reliability
is maximized. Particularly, she examined the results for series-parallel systems. The redundancy
allocation in a series-parallel system has also been considered by some authors, among which we
refer to Soltani et al. [2014], Karimi et al. [2019], and Fang et al. [2020].

It is worth noting that the redundant components can be added to the system as inactive (cold
and warm standby) components. The systems with cold and warm standby redundancy have also
investigated in reliability literature; see, for example, Eryilmaz [2017], Finkelstein et al. [2018],
Shen et al. [2020], and Behboudi et al. [2021].

1.2 Survival signatures of coherent systems

The first main step to assess the reliability and stochastic characteristics of an n-component
system is to get knowledge about the structure-function of the system as well as the probability
distribution of component lifetimes. In this regard, a useful concept for assessing the reliability
of the system through the reliability of its components is the notion of survival signature. This
concept is particularly significant for describing the structures of coherent systems with multiple
types of components. Consider an n-component coherent system consisting of L different types,
such that there are ni components from ith type, i = 1, . . . , L, and

∑L
i=1 ni = n. The reliability
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function of the system, at any time t, can be represented as follows

F̄T (t) =

n1∑

l1=0

. . .

nL∑

lL=0

Φ(l1, . . . , lL)P (C1(t) = l1, . . . , CL(t) = lL), (1)

where Ci(t) denotes the number of components of type i working at time t, and Φ is called the
survival signature and represents “the probability that the system is working when exactly li com-
ponents of type i is working”, see Coolen and Coolen-Maturi [2013].

Suppose that the lifetimes of the components of the same type are exchangeable dependent, and the
lifetimes of the components of different types are dependent. Commonly, the dependency structure

is modeled using a survival copula. In other words, if T
(i)
j denotes the lifetime of jth component

from type i, j = 1, . . . , ni, i = 1, . . . , L, and F̄i, i = 1, . . . , L denotes the common reliability function
for the components of the ith type, then there is a survival copula Ĉ such that the joint reliability

of T
(i)
j ’s can be written as

P (T
(1)
1 > t

(1)
1 , . . . , T (1)

n1
> t(1)n1

, . . . , T
(L)
1 > t

(L)
L , . . . , T (L)

nL
> t(L)nL

)

= Ĉ
(
F̄1(t

(1)
1 ), . . . , F̄1(t

(1)
n1

), . . . , F̄L(t
(L)
1 ), . . . , F̄L(t

(L)
nL

)
)
, (2)

see, for example, Navarro et al. [2015], Navarro [2018], and Fang and Li [2018]. In this case, it
can be shown that

F̄T (t) =

n1∑

l1=0

. . .

nL∑

lL=0

n1−l1∑

i1=0

. . .

nL−lL∑

iL=0

(−1)i1+...+iL

(
n1

l1

)

. . .

(
nL

lL

)(
n1 − l1

i1

)

. . .

(
nL − lL

iL

)

× Φ(l1, . . . , lL)Ĉ(F̄1(t)
︸ ︷︷ ︸

i1+l1

, 1
︸︷︷︸

n1−(i1+l1)

, . . . , F̄L(t)
︸ ︷︷ ︸

iL+lL

, 1
︸︷︷︸

nL−(iL+lL)

), (3)

where u
︸︷︷︸

m

means the m repetitions of u, see Eryilmaz et al. [2018a,b]. If the components of the

system are independent, then the representation (1) is converted to the following expression

F̄T (t) =

n1∑

l1=0

. . .

nL∑

lL=0

Φ(l1, . . . , lL)
L∏

i=1

(
ni

li

)

[F̄i(t)]
li [Fi(t)]

ni−li . (4)

Many authors have considered the reliability properties of a coherent system with multi-type
components based on the survival signature and for various applications. Among them, we mention
to recent papers, Feng et al. [2016], Samaniego and Navarro [2016], Eryilmaz et al. [2018a,b].
Huang et al. [2019] used the notion of survival signature for the formulation of the reliability-
redundancy allocation problem. They considered the objective function to maximize the system
reliability under some constraints.

Zarezadeh and Asadi [2019] studied the reliability and preventive maintenance of the coher-
ent systems with multi-type components whose components are subject to failure according to
multiple external shocks. Hashemi et al. [2020] proposed two maintenance strategies for optimal
preservation of coherent systems consisting of independent multi-type components.
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1.3 Contributions of this paper

This paper aims to study the optimal number of redundancy allocation to n-component coherent
systems consist of different components. It is assumed that the components of the system are
dependent, where a given copula function models the dependency structure. We are interested
in allocating vi active redundant components to each component of type i, under the constraint
on the number of existing spare components. To get the optimal number of vi’s, we propose two
cost-based functions. More precisely, the contributions of the paper are as follows.

• We propose a mean cost rate function in terms of the costs of renewing the failed components
and the costs of refreshing the alive components at the time of the system failure. Then, we
find the optimal number of redundant components, vi’s, to be added to each component of
type i, such that the proposed cost function is minimized.

• We introduce a mean cost rate function, relevant to an age replacement policy, in terms of the
costs of renewing (refreshing) the failed (alive) components at the failure time of the system
or at a predetermined time τ , whichever occurs first. Then, the optimal values of vi’s are
obtained, such that the suggested cost-based function achieves its minimum value.

• In the particular considerable case that the system is a series-parallel system, we provide the
formulas for the proposed mean cost rate functions. Then we investigate the optimal number
of the components for each parallel subsystem such that the proposed functions are minimized

The derivations of the paper are extensions of the results of Eryilmaz [2018], who investigated the
optimal number of components in the case that structure function is k-out-of-n with independent
components.

1.4 Organizations of the paper

The remaining of the paper is arranged as follows. In Section 2, under the settings of subsection
1.2, we present the formulation of the system reliability function (3) in the case that vi components
are added as active redundant to each component of type i, i = 1, . . . , L. Then, utilizing this
formulation, a mean cost rate function is introduced at the time of the system failure. Next, a
mean cost rate function is established based on the costs of replacing the system at its failure
time or at a predetermined time τ , whichever occurs first. The expressions for the proposed mean
cost rate functions are derived in terms of the reliability function (3). Some examples of coherent
systems are presented to illustrate the applications of the proposed approaches; a 6-component
system consisting of two types of dependent components, and an 8-component system composed of
three types of components that are independent. The optimal number of redundant components,
based on the proposed cost-based functions, are discussed for each system numerically.

Section 3 is devoted to the particular case that the system is a series-parallel system. We
provide the formulas for the proposed mean cost rate functions in Section 2 for such systems.
Then, we investigate the optimal number of the components for each parallel subsystem such that
the proposed cost functions are minimized. The results of this section are numerically illustrated for
a series-parallel system consisting of three parallel subsystems connected in series. Some concluding
remarks in Section 4 finalize the paper. The details of the proofs are given in the Appendix.
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2 Optimal number of redundant components

We consider an n-component coherent system consisting of multiple types of components with
following description. The system is built up of L types of components, L ≥ 1, such that there
are ni components of type i and

∑L
i=1 ni = n. We assume that the common reliability function of

the components of type i is F̄i(.), i = 1, 2, . . . , L. The lifetimes of the components of the same type
are exchangeable dependent, and the lifetimes of the components of different types are dependent.
The assumed dependence structure is modeled by a survival copula given in (2). To increase the
reliability of the system, we desire to add vi active redundancies to each component of type i,
i = 1, . . . , L. Each original component in the system and its redundant components are assumed
to be independent and identically distributed (i.i.d.). Let TR denote the lifetime of the system
incorporated by redundant components. Because an original component and its redundant ones
make a parallel subsystem, one can easily show that the reliability function of TR at time t can be
represented as follows.

F̄TR
(t) =

n1∑

l1=0

. . .

nL∑

lL=0

n1−l1∑

i1=0

. . .

nL−lL∑

iL=0

(−1)i1+...+iL

(
n1

l1

)

. . .

(
nL

lL

)(
n1 − l1

i1

)

. . .

(
nL − lL

iL

)

×Φ(l1, . . . , lL)Ĉ(1− F v1+1
1 (t)

︸ ︷︷ ︸

i1+l1

, 1
︸︷︷︸

n1−(i1+l1)

, . . . , 1− F
vL+1
L (t)

︸ ︷︷ ︸

iL+lL

, 1
︸︷︷︸

nL−(iL+lL)

).

In the case of independence of all components, this representation reduces to

F̄TR
(t) =

n1∑

l1=0

. . .

nL∑

lL=0

Φ(l1, . . . , lL)

L∏

i=1

(
ni

li

)

[1− F
vi+1
i (t)]li [F vi+1

i (t)]ni−li .

The problem of interest in this redundancy strategy is to determine the optimal number of spares
allocated to each component. In this paper, our approach is to find v’s based on the minimization
of a kind of cost criterion. In this regard, we set up two mean cost rate functions to obtain the
optimal number of redundant components. One of them is imposed based on the cost of the system
failure, which depends on the number of failed components when a system failure occurs. The other
one is defined based on an age replacement policy. In the next subsections, we describe these two
functions with details.

Remark 2.1. Although the system considered above is described in the general case that the com-
ponent lifetimes of the same type are exchangeable dependent, and the lifetimes of the components
of different types are dependent, in allocating the redundant components we assumed that in the
constructed parallel subsystem the components are independent and identically distributed. This
assumption seems to be a restriction in some practical cases, but it should be noted that if we
drop the assumption of i.i.d. for the redundant components, the computation of the system reli-
ability, would be a challenging problem and potentially involves complex calculations. We believe
that, considering the problem of optimal redundancy under i.i.d. components in each subsystem,
as considered in this paper, could be a first step toward solving the more general cases (see also
Samaniego [2007], pp. 76-77).
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2.1 Cost function at the system failure

Suppose that the system starts working at t = 0 and fails at a random time after t = 0. Assume
that when the system fails, we have a cost ci for each failed component of type i to replace it by
a new one and a cost c∗i for each unfailed component for refreshing it so that it becomes as good
as new, where we assume that ci ≥ c∗i , i = 1, . . . , L. Furthermore, we assume that c∗∗ denotes the
fixed overall cost for system failure. With TR as the lifetime of the system after redundancy, let the
random variable Xi(TR) denote the number of failed components of type i at the time of system
failure, i = 1, . . . , L. Then, the mean cost rate function for a failed system is defined as

Cost1(v) =

∑L
i=1 ciE(Xi(TR)) +

∑L
i=1 c

∗
iE(ni(vi + 1)−Xi(TR)) + c∗∗

E(TR)
(5)

where v = (v1, . . . , vL). The numerator is the expected cost of the system failure, and the denomi-
nator is the mean time to failure (MTTF ) of the system, hence Cost1 becomes the mean cost per
unit of time. Note that in the system after redundancy, there are altogether ni(vi+1) components
of type i, i = 1, 2, . . . , L. The relation (5) can be rewritten in terms of the lifetime of the original
system without any redundancy, T , as

Cost1(v) =

∑L
i=1 ci(vi + 1)E(Xi(T )) +

∑L
i=1 c

∗
i (vi + 1)E(ni −Xi(T )) + c∗∗

E(TR)

=

∑L
i=1(ci − c∗i )(vi + 1)E(Xi(T )) +

∑L
i=1 c

∗
i (vi + 1)ni + c∗∗

E(TR)
. (6)

Lemma 2.2. The quantity E(Xi(T )) in (6) can be expressed as follows.

E(Xi(T ))

= ni

∫ ∞

0

lim
δ→0

1

δ

n1∑

m1=0

...

ni−1∑

mi=0

...

nL∑

mL=0

Φ(m1, ...,mi−1,mi + 1,mi+1, ...,mL)

(
n1

m1

)

...

(
ni − 1

mi

)

...

(
nL

mL

)

A(i)
m
(t, δ)dt

where

A(i)
m
(t, δ) = P

(

T
(1)
1 > t, . . . , T (1)

m1
> t, T

(1)
m1+1 ≤ t, . . . , T (1)

n1
≤ t,

. . . , t < T
(i)
1 ≤ t+ δ, T

(i)
2 > t, . . . , T

(i)
mi+1 > t, T

(i)
mi+2 ≤ t, . . . , T (i)

ni
≤ t,

. . . , T
(L)
1 > t, . . . , T (L)

mL
> t, T

(L)
mL+1 ≤ t, . . . , T (L)

nL
≤ t

)

. (7)

Proof.

E(Xi(T )) = E(

ni∑

j=1

I(T
(i)
j ≤ T )) =

ni∑

j=1

P (T
(i)
j ≤ T ) = niP (T

(i)
1 ≤ T )

= ni

∫ ∞

0
lim
δ→0

P (T > t, t < T
(i)
1 ≤ t+ δ)

δ
dt,
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where the third equality follows from the exchangeability of the components of type i, i = 1, . . . , L.
By conditioning on the number of live components of each type, we obtain

P (T > t, t < T
(i)
1 ≤ t+ δ)

=

n1∑

m1=0

. . .

ni−1∑

mi=0

. . .

nL∑

mL=0

P (T > t, t < T
(i)
1 ≤ t+ δ, C1(t) = m1, . . . , Ci(t) = mi, . . . , CL(t) = mL)

=

n1∑

m1=0

. . .

ni−1∑

mi=0

. . .

nL∑

mL=0

Φ(m1, . . . ,mi−1,mi + 1,mi+1, . . . ,mL)

(
n1

m1

)

. . .

(
ni − 1

mi

)

. . .

(
nL

mL

)

A(i)
m
(t, δ) (8)

The last equality in (8) holds because the components of the same type have a common failure
time distribution.

In the following theorem, (7) is represented based on the survival copula of the components life-
times.

Theorem 2.3. Using the inclusion-exclusion rule, A
(i)
m (t, δ) can be represented as the following

expression

A(i)
m
(t, δ) =

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

×
[

Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−(m1+j1)

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji+1

, 1
︸︷︷︸

ni−(mi+ji+1)

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−(mL+jL)

)

− Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−(m1+j1)

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji

, F̄i(t+ δ), 1
︸︷︷︸

ni−(mi+ji+1)

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−(mL+jL)

)
]

.

Proof. See the Appendix.

Note that, in the particular case of independence of all components, we get

E(Xi(T ))

= ni

n1∑

m1=0

. . .

ni−1∑

mi=0

. . .

nL∑

mL=0

Φ(m1, . . . ,mi−1,mi + 1,mi+1, . . . ,mL)

(
n1

m1

)

. . .

(
ni − 1

mi

)

. . .

(
nL

mL

)

×

∫ ∞

0

F̄m1

1 (t)Fn1−m1

1 (t) . . . F̄mi

i (t)Fni−mi−1
i (t) . . . F̄mL

L (t)FnL−mL

L (t)dFi(t). (9)

In order to minimize the mean cost rate function Cost1(v), we impose the constraint that there
are at most Mi components of type i as spares, i = 1, . . . , L. This means that the number of the
components that can be connected in parallel at the ith group satisfies in the inequality nivi ≤ Mi,
i = 1, . . . , L. To determine the optimal values of vi’s, we do the following: for given values of
ni, ci, c

∗
i , and Mi, i = 1, . . . , L, and c∗∗, we evaluate Cost1(v) for all possible choices of v1, . . . , vL

such that for all i, nivi ≤ Mi. Then the optimal values of v1, . . . , vL can be determined as the
values for which the corresponding mean cost rate function Cost1(v) is minimum.

Remark 2.4. If the system has a k-out-of-n structure with independent components from multiple
types components, then (9) reduces to the result of Eryilmaz [2018]. This is so because for such
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system the survival signature is obviously given as

Φ(l1, . . . , lL) =

{
1

∑L
j=1 lj ≥ k

0 otherwise,

i.e. the system works if at least k components are alive.

2.2 Cost function based on preventive replacement

In this section, we propose a kind of age replacement preventive maintenance policy for the system
with multiple types of components described in subsection 1.2. The policy of renewing the system
performed by the operator is such that it is replaced at failure time or at a predetermined time
τ , whichever occurs first. There are many papers about age replacement strategy; the interested
reader can see for example, Zhao et al. [2015], Ashrafi and Asadi [2017] and Mizutani et al. [2019].
Mannai and Gasmi [2018] found the optimal configuration of a k-out-of-n system so that the
expected total costs of the system under some generalized age replacement policies are minimized.

Here, suppose that the operator has Mi components of type i as spare available, and he/she
decides to add vi components to each of the components of type i, where nivi ≤ Mi. Under the
implemented policy, here, the aim is to find the optimal number of v’s such that the mean cost rate
we impose below is minimized.

If the replacement occurs after the system failure, i.e., TR ≤ τ , then, considering the costs ci, c
∗
i

and c∗∗ as defined in the previous subsection, the average cost of renewing the system is obtained
as

M1(v) =

L∑

i=1

ciE(Xi(TR)|TR ≤ τ) +

L∑

i=1

c∗iE(ni(vi + 1)−Xi(TR)|TR ≤ τ) + c∗∗

=
L∑

i=1

(vi + 1)ciE(Xi(T )|T ≤ τ) +
L∑

i=1

(vi + 1)c∗iE(ni −Xi(T )|T ≤ τ) + c∗∗

=

L∑

i=1

(ci − c∗i )(vi + 1)E(Xi(T )|T ≤ τ) +

L∑

i=1

(vi + 1)c∗i ni + c∗∗,

where T is the lifetime of the system before redundancy allocation.

If the system is replaced before failure, i.e., TR > τ , then, by the costs ci and c∗i , i = 1, . . . , L
for renewing the failed components and refreshing the alive components of type i, respectively, the
system will be as good as the new condition. Let Ni(τ) be the number of failed components of type
i on [0, τ ]. Then the average cost of renewing the system is defined as

M2(v) =

L∑

i=1

ciE(Ni(τ)|TR > τ) +

L∑

i=1

c∗iE(ni(vi + 1))−Ni(τ)|TR > τ)

=

L∑

i=1

(ci − c∗i )(vi + 1)E(Ni(τ)|T > τ) +

L∑

i=1

(vi + 1)c∗ini.

8



Consequently, the mean cost rate function of the system renewing at time min(τ, TR) is achieved
as

Cost2(v) =
M1(v)P (TR ≤ τ) +M2(v)P (TR > τ)

E(min(τ, TR))
, (10)

where it is attained that

E(min(τ, TR)) =

∫ τ

0
F̄TR

(y)dy.

For computing (10), we need to calculate E(Ni(τ)|T > τ) and E(Xi(T )|T ≤ τ). For the first one,
we have

E(Ni(τ)|T > τ) =
1

F̄T (τ)

ni∑

ji=0

jiP (Ni(τ) = ji, T > τ)

=
1

F̄T (τ)

n1∑

j1=0

. . .

nL∑

jL=0

jiP (T > τ |N1(τ) = j1, . . . , NL(τ) = jL)P (N1(τ) = j1, . . . , NL(τ) = jL)

=
1

F̄T (τ)

n1∑

j1=0

. . .

nL∑

jL=0

jiΦ(n1 − j1, . . . , nL − jL)

(
n1

j1

)

. . .

(
nL

jL

)

B(τ, j1, . . . , jL) (11)

where

B(τ, j1, . . . , jL) = P (T
(1)
1 ≤ τ, . . . , T

(1)
j1

≤ τ, T
(1)
j1+1 > τ, . . . , T (1)

n1
> τ,

. . . , T
(L)
1 ≤ τ, . . . , T

(L)
jL

≤ τ, T
(L)
jL+1 > τ, . . . , T (L)

nL
> τ). (12)

Using a similar method as used in Lemma 2.2, we can calculate E(Xi(T )|T ≤ τ), i = 1, . . . , L, as
follows.

E(Xi(T )|T ≤ τ) = niP (T
(i)
1 ≤ T |T ≤ τ) = ni

P (T
(i)
1 ≤ T, T ≤ τ)

1− P (T > τ)
, j = 1, . . . , L.

Now, we can write

P (T
(i)
1 ≤ T, T ≤ τ) =

∫ τ

0
lim
δ→0

P (s < T ≤ τ, s < T
(i)
1 ≤ s+ δ)

δ
ds, i = 1, . . . , L,

for which we have

P (s < T ≤ τ, s < T
(i)
1 ≤ s+ δ)

=

n1∑

m1=0

. . .

ni−1∑

mi=0

. . .

nL∑

mL=0

m1∑

l1=0

. . .

mL∑

lL=0

P (s < T ≤ τ |s < T
(i)
1 ≤ s+ δ, C1(τ) = l1, . . . , Ci(τ) = li

CL(τ) = lL, C1(s) = m1, . . . , Ci(s) = mi, . . . , CL(s) = mL)P
(
s < T

(i)
1 ≤ s+ δ, C1(τ) = l1,

, . . . , Ci(τ) = li, CL(τ) = lL, C1(s) = m1, . . . , Ci(s) = mi, . . . , CL(s) = mL)
)

=

n1∑

m1=0

. . .

ni−1∑

mi=0

. . .

nL∑

mL=0

m1∑

l1=0

. . .

mL∑

lL=0

[Φ(m1, . . . ,mL)− Φ(l1, . . . , lL)]





L∏

j=1,j 6=i

(
nj

mj

)(
mj

lj

)




×

(
ni − 1

mi

)(
mi

li

)

A
(i)
m,l(s, s+ δ, τ),
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where

A
(i)
m,l(s, s+ δ, τ)

= P (T
(1)
1 > τ, . . . , T

(1)
l1

> τ, s < T
(1)
l1+1 ≤ τ, . . . , s < T (1)

m1
≤ τ, T

(1)
m1+1 ≤ s, . . . , T (1)

n1
≤ s,

. . . , T
(i)
1 > τ, . . . , T

(i)
li

> τ, s < T
(i)
li+1 ≤ τ, . . . , s < T (i)

mi
≤ τ, s < T

(i)
mi+1 ≤ s+ δ, T

(i)
mi+2 ≤ s, . . . , T (i)

ni
≤ s,

. . . , T
(L)
1 > τ, . . . , T

(L)
lL

> τ, s < T
(L)
lL+1 ≤ τ, . . . , s < T (L)

mL
≤ τ, T

(L)
mL+1 ≤ s, . . . , T (L)

nL
≤ s). (13)

In the following theorem, the probabilities in (12) and (13) are represented based on the survival

copula of components lifetimes.

Theorem 2.5. Using the inclusion-exclusion rule, we get the following expressions for B(τ, j1, . . . , jL)

and A
(i)
m,l(s, s+ δ, τ), respectively.

B(τ, j1, . . . , jL) =

j1∑

b1=0

. . .

jL∑

bL=0

(−1)b1+...+bL

(
j1

b1

)

. . .

(
jL

bL

)

Ĉ( F̄1(τ)
︸ ︷︷ ︸

n1−j1+b1

, 1
︸︷︷︸

j1−b1

, . . . , F̄L(τ)
︸ ︷︷ ︸

nL−jL+bL

, 1
︸︷︷︸

jL−bL)

)

and

A
(i)
m,l(s, s+ δ, τ) =

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

×

m1−l1∑

d1=0

. . .

mi−li∑

di=0

. . .

mL−lL∑

dL=0

(−1)d1+...+dL

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

×
[
Ĉ(F̄k(τ)

︸ ︷︷ ︸

lk+dk

, F̄k(s)
︸ ︷︷ ︸

mk−lk+jk−dk

, 1
︸︷︷︸

nk−mk−jk

, for k = 1, . . . , L, k 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ji−di+1

, 1
︸︷︷︸

ni−mi−ji−1

)

− Ĉ(F̄k(τ)
︸ ︷︷ ︸

lk+dk

, F̄k(s)
︸ ︷︷ ︸

mk−lk+jk−dk

, 1
︸︷︷︸

nk−mk−jk

, for k = 1, . . . , L, k 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ji−di

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ji−1

)
]
.

Proof. See the Appendix

Corollary 2.6. For the particular case of independent components, it can be deduced that

E(Ni(τ)|T > τ) =
1

F̄ (τ)

n1∑

j1=0

. . .

nL∑

jL=0

jiΦ(n1 − j1, . . . , nL − jL)

L∏

l=1

(
nl

jl

)

F
jl
l (τ)F̄nl−jl

l (τ). (14)

Also, in this case, we have

A
(i)
m,l(s, s + δ, τ) =

{
L∏

j=1,j 6=i

F
nj−mj

j (s)[F̄j(τ)− F̄j(s)]
mj−lj F̄

lj
j (τ)

}

× [F̄i(s)− F̄i(s+ δ)]Fni−mi−1
i (s)[F̄i(τ)− F̄i(s)]

mi−liF̄ li
i (τ)
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which, in turn, implies that

E(Xi(T )|T ≤ τ) =
ni

1− F̄T (τ)

n1∑

m1=0

. . .

ni−1∑

mi=0

. . .

nL∑

mL=0

m1∑

l1=0

. . .

mL∑

lL=0

[Φ(m1, . . . ,mL)− Φ(l1, . . . , lL)]

×





L∏

j=1,j 6=i

(
nj

mj

)(
mj

lj

)




(
ni − 1

mi

)(
mi

li

)∫ τ

0

{
L∏

j=1,j 6=i

F
nj−mj

j (s)[F̄j(τ) − F̄j(s)]
mj−lj F̄

lj
j (τ)

}

× Fni−mi−1
i (s)[F̄i(τ) − F̄i(s)]

mi−liF̄ li
i (τ)dFi(s). (15)

It is worth noting that if the structure of the system is k-out-of-n whose components are inde-
pendent, then (14) and (15) are reduced to the results appeared in Eryilmaz [2018].

For given values ni, ci, c
∗
i ,Mi, i = 1, . . . , L, c∗∗ and τ , we aim to determine the optimal values

of vi’s under the constraints nivi ≤ Mi, i = 1, . . . , L, such that the mean cost rate function Cost2
is minimized.

In the following, we present two examples to examine the aforementioned theoretical results.

Example 2.7. Consider the system depicted in Figure 1, given in Feng et al. [2016] and Eryilmaz et al.
[2018b]. The system consists of six components in which components 1, 2, and 5 are of type one,
and components 3, 4, and 6 are of type two. The survival signature of the system is presented in
Table 1.

1

2 5

4

3 6

Figure 1: The system in Example 2.7 with two types of components

Table 1: Survival signature of the system in Figure 1

l1 l2 Φ(l1, l2) l1 l2 Φ(l1, l2)
0 0 0 2 0 0
0 1 0 2 1 0
0 2 0 2 2 4

9
0 3 0 2 3 2

3
1 0 0 3 0 1
1 1 0 3 1 1
1 2 1

9 3 2 1
1 3 1

3 3 3 1

Assume that the dependency structure of the component lifetimes is modeled by a parametric
family of copulas known as Gumbel-Hougaard family defined as

Ĉ(u1, . . . , un) = exp
(

− [(− lnu1)
α) + . . .+ (− lnun)

α)]1/α
)

,

11



where α ≥ 1 is the dependency parameter in the family. The value α = 1 corresponds to the
independent condition. Let the component lifetimes of the two types follow exponential distribu-
tions with reliability functions F̄i(t) = e−tθi , where we assume that θ1 = 0.2, and θ2 = 0.3. If
there are M1 = 9 and M2 = 6 components from type 1 and type 2 as spares, respectively, then
v1 ∈ {0, 1, 2, 3} and v2 ∈ {0, 1, 2}. To find the optimal number of redundant components for each
type, we use the following values for the replacement costs: c1 = 3, c2 = 2, c∗1 = 1.5, c∗2 = 1, and
c∗∗ = 10. For computing the numerator of (6), we need to compute E(Xi(T )), i = 1, 2. From
Lemma 2.2 and Theorem 2.3, we have

E(X1(T )) = n1

∫ ∞

0

lim
δ→0

1

δ

n1−1∑

m1=0

n2∑

m2=0

Φ(m1 + 1,m2)

(
n1 − 1

m1

)(
n2

m2

)

A(1)
m

(t, δ)dt,

where

A
(1)
m (t, δ) =

n1−m1−1∑

j1=0

n2−m2∑

j2=0

(−1)j1+j2

(
n1 −m1 − 1

j1

)(
n2 −m2

j2

)

×
[

e−[(m1+j1+1)(tθ1)α+(m2+j2)(tθ2)α]1/α − e−[(m1+j1)(tθ1)α+((t+δ)θ1)α+(m2+j2)(tθ2)α]1/α
]

.

Thus, we get

E(X1(T ))

= n1

n1−1∑

m1=0

n2∑

m2=0

(
n1 − 1

m1

)(
n2

m2

)

Φ(m1 + 1,m2)

n1−m1−1∑

j1=0

n2−m2∑

j2=0

(−1)j1+j2

(
n1 −m1 − 1

j1

)(
n2 −m2

j2

)

× θα1
[
(m1 + j1 + 1)θα1 + (m2 + j2)θ

α
2

]−1
.

Similarly, we have

E(X2(T ))

= n2

n1∑

m1=0

n2−1∑

m2=0

(
n1

m1

)(
n2 − 1

m2

)

Φ(m1,m2 + 1)

n1−m1∑

j1=0

n2−m2−1∑

j2=0

(−1)j1+j2

(
n1 −m1

j1

)(
n2 −m2 − 1

j2

)

× θα2
[
(m1 + j1)θ

α
1 + (m2 + j2 + 1)θα2

]−1
.

Also, the denominator of (6) can be written as follows

E(TR) =

∫ ∞

0
F̄TR

(t)dt =

n1∑

l1=0

n2∑

l2=0

(
n1

l1

)(
n2

l2

)

Φ(l1, l2)

n1−l1∑

i1=0

n2−l2∑

i2=0

(−1)i1+i2

(
n1 − l1

i1

)(
n2 − l2

i2

)

×

∫ ∞

0
e
−
[
(i1+l1)

(
−ln(1−(1−exp[−tθ1])v1+1)

)α
+(i2+l2)

(
−ln(1−(1−exp[−tθ2])v2+1)

)α]1/α

dt,

which should be evaluated numerically by suitable softwares such as Mathematica. The values
of Cost1(v) for different combinations of v1 and v2 are presented in Table 2 for two values α = 2
(dependent components) and α = 1 (independent components). It is seen that v1 = 2 and v2 = 0
are the optimal choices for the number of redundant components of the first and the second types,
respectively, under the criterion Cost1 in the case α = 2, and v1 = 3 and v2 = 0 are the optimal
numbers in the case α = 1.
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Table 2: The values of Cost1(v) and Cost2(v) in Example 2.7 in the case of dependent components
(α = 2) and independent components (α = 1).

v1 v2 Cost1(v1, v2) Cost2(v1, v2) Cost1(v1, v2) Cost2(v1, v2)
α = 2 α = 2 α = 1 α = 1

0 0 6.33927 8.2455 9.36071 9.70214
0 1 6.81922 9.44774 9.38725 10.3790
0 2 7.5289 11.3022 9.87544 11.9363
1 0 5.20719 7.77258 7.09069 8.48716
1 1 5.82298 9.2981 7.51217 9.7885
1 2 6.35331 10.7302 7.98448 11.3693
2 0 4.99041 9.13115 6.56325 9.88167
2 1 5.58924 10.7299 7.06002 11.4307
2 2 6.13251 12.28921 7.53562 13.0756
3 0 5.04518 11.137 6.48197 12.035
3 1 5.59315 12.7178 6.98476 13.6766
3 2 6.11375 14.2941 7.45447 15.3508

Suppose that the described system is maintained under the aforementioned age replacement policy,
where we assume that τ = 2, i.e., the replacement time of the system is min(TR, 2). From equations
(11) and (12) the mean number of failed components of ith type at time τ , before system failure,
is evaluated by the following expression.

E(Ni(τ)|T > τ) =
1

F̄T (τ)

n1∑

j1=0

n2∑

j2=0

jiΦ(n1 − j1, n2 − j2)

(
n1

j1

)(
n2

j2

) j1∑

b1=0

j2∑

b2=0

(−1)b1+b2

(
j1

b1

)(
j2

b2

)

× exp[−τ
(
θα1 (n1 − j1 + b1) + θα2 (n2 − j2 + b2)

)1/α
], i = 1, 2,

where from (3), we get

F̄T (τ) =

n1∑

l1=0

n2∑

l2=0

n1−l1∑

i1=0

n2−l2∑

i2=0

(−1)i1+i1

(
n1

l1

)(
n2

l2

)(
n1 − l1

i1

)(
n2 − l2

i2

)

Φ(l1, l2)

× exp[−τ
(
(i1 + l1)θ

α
1 + (i2 + l2)θ

α
2

)1/α
].

Next, for the mean number of failed components at the time of the system failure given that the
system has failed before τ , we have

E(X1(T )|T ≤ τ)

=
n1

1− F̄T (τ)

n1−1∑

m1=0

n2∑

m2=0

m1∑

l1=0

m2∑

l2=0

[Φ(m1,m2)− Φ(l1, l2)]

(
n1 − 1

m1

)(
m1

l1

)(
n2

m2

)(
m2

l2

)

×

n1−m1−1∑

j1=0

n2−m2∑

j2=0

(−1)j1+j2

(
n1 −m1 − 1

j1

)(
n2 −m2

j2

)m1−l1∑

d1=0

m2−l2∑

d2=0

(−1)d1+d2

(
m1 − l1

d1

)(
m2 − l2

d2

)

×
θα1

[
e−τ

(
(l1+d1)θ

α
1
+(l2+d2)θ

α
2

)
1/α

− e−τ

(
(m1+j1+1)θα

1
+(m2+j2)θ

α
2

)
1/α]

(m1 − l1 + j1 − d1 + 1)θα1 + (m2 − l2 + j2 − d2)θα2
,
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and

E(X2(T )|T ≤ τ)

=
n2

1− F̄T (τ)

n1∑

m1=0

n2−1∑

m2=0

m1∑

l1=0

m2∑

l2=0

[Φ(m1,m2)− Φ(l1, l2)]

(
n1

m1

)(
m1

l1

)(
n2 − 1

m2

)(
m2

l2

)

×

n1−m1∑

j1=0

n2−m2−1∑

j2=0

(−1)j1+j2

(
n1 −m1

j1

)(
n2 −m2 − 1

j2

)m1−l1∑

d1=0

m2−l2∑

d2=0

(−1)d1+d2

(
m1 − l1

d1

)(
m2 − l2

d2

)

×
θα2

[
e−τ

(
(l1+d1)θ

α
1
+(l2+d2)θ

α
2

)
1/α

− e−τ

(
(m1+j1)θ

α
1
+(m2+j2+1)θα

2

)
1/α]

(m1 − l1 + j1 − d1)θα1 + (m2 − l2 + j2 − d2 + 1)θα2
.

By substituting these results in (10), the mean cost rate of replacement strategy can be evaluated.
The values of Cost2(v) are calculated for different combinations of v1 and v2, in Table 2 for both
dependent and independent situations. It follows, from the results of the table, that for v1 = 1 and
v2 = 0, the mean cost rate Cost2(v) is minimized, in both cases α = 1, 2.

In order to investigate the robustness of our strategies concerning the model parameters, we
calculate some numerical results based on these parameters. The results in Table 3 shows the
effect of the dependency parameter α on the optimal values of v1 and v2, for different values
of α. As seen, when α increases (i.e., we get far from independence) the number of redundant
components decreases based on the objective function Cost1(v1, v2), but remain unchanged under
the Cost2(v1, v2). This makes sense since under the more dependency the MTTF is increased, and
the need to spare components reduces. Also it should be noted that the higher the α, the lower
mean cost rates.

Table 3: The optimum values of v by minimizing Costi(v1, v2), i = 1, 2, for different α in Example 2.7

α 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
v1 3 3 2 2 2 2 2 2 2 2 2
v2 0 0 0 0 0 0 0 0 0 0 0

Cost1(v1, v2) 6.48 5.98 5.63 5.36 5.15 4.99 4.86 4.75 4.66 4.58 4.52
v1 1 1 1 1 1 1 1 1 1 1 1
v2 0 0 0 0 0 0 0 0 0 0 0

Cost2(v1, v2) 8.48 8.28 8.11 7.98 7.87 7.77 7.69 7.62 7.57 7.50 7.46

For exploring the sensitivity of the proposed models with respect to components costs, c =
(c1, c2) and c∗ = (c∗1, c

∗
2), we have provided some numerical results in Table 4, for α = 2. In the

top part of the left panel of the table, we observe that for fixed values of c∗1 = 1.5 and c∗2 = 1, the
increase in the costs c1 and c2 results a reduction to the number of optimal values of v1 and v2. In
the bottom part of the left panel of the table, the costs ci and c∗i , i = 1, 2, of the two types are
swapped. In this case, when the costs c∗1 and c∗2 are fixed as c∗1 = 1 and c∗2 = 1.5, then we again
observe that the increase in the costs c1 and c2 results a decline to the number of optimal values of v1
and v2. In the top part of the right panel of Table 4, it can be seen that for fixed values of renewing
failed components as c1 = 6, c2 = 5.5, the decrease in the costs c∗1 and c∗2 results an increase to the
number of optimal values of v1 and v2. As shown in the bottom part of the right panel, the same
result holds by swapping the costs of the components of type 1 and type 2. It is seen that in all
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four parts of Table 4 the value of costs and the numbers of spare components are inversely related
to each other. Table 5 shows the behavior of the number of redundant components from another

Table 4: The optimum values of v by minimizing Cost1 for different costs in Example 2.7

c c∗ v1 v2 Cost1 c c∗ v1 v2 Cost1
(1.6, 1.1) (1.5,1) 3 0 4.0492 (6, 5.5) (5.9, 5.4) 1 0 11.9478
(1.7, 1.2) (1.5,1) 3 0 4.1278 (6, 5.5) (5.7, 5.2) 1 0 11.7509
(1.8, 1.3) (1.5,1) 3 0 4.2065 (6, 5.5) (5.5, 5.0) 1 0 11.5540
(1.9, 1.4) (1.5,1) 2 0 4.2845 (6, 5.5) (5.3, 4.8) 1 0 11.3571
(2, 1.5) (1.5,1) 2 0 4.3599 (6, 5.5) (5.1, 4.6) 2 0 11.1543
(2.5, 2) (1.5,1) 2 0 4.7369 (6, 5.5) (5, 4.5) 2 0 11.0493
(3, 2.5) (1.5,1) 2 0 5.1139 (6, 5.5) (4.5, 4) 2 0 10.5245
(3.5, 3) (1.5,1) 2 0 5.4908 (6, 5.5) (4, 3.5) 2 0 9.9997
(4, 3.5) (1.5,1) 2 0 5.8678 (6, 5.5) (3.5, 3) 2 0 9.4750
(4.5, 4) (1.5,1) 2 0 6.2448 (6, 5.5) (3, 2.5) 2 0 8.9502
(1.5, 2) (1, 1.5) 3 0 3.7874 (5.5, 6) (5, 5.5) 2 0 11.1232
(2, 2.5) (1, 1.5) 3 0 4.1807 (5.5, 6) (4.5, 5) 2 0 10.5984
(2.5, 3) (1, 1.5) 3 0 4.5740 (5.5, 6) (4, 4.5) 2 0 10.0737
(3, 3.5) (1, 1.5) 3 0 4.9673 (5.5, 6) (3.5, 4) 2 0 9.5489
(3.5, 4) (1, 1.5) 3 0 5.3606 (5.5, 6) (3, 3.5) 2 0 9.0241
(4, 4.5) (1, 1.5) 3 0 5.7539 (5.5, 6) (2.5, 3) 2 0 8.4992
(4.5, 5) (1, 1.5) 3 0 6.1472 (5.5, 6) (2, 2.5) 2 0 7.9745
(5, 5.5) (1, 1.5) 3 0 6.5405 (5.5, 6) (1.5, 2) 2 0 7.4497
(5.5, 6) (1, 1.5) 2 0 6.9249 (5.5, 6) (1, 1.5) 2 0 6.9249
(6, 6.5) (1, 1.5) 2 0 7.0550 (5.5, 6) (0.5, 1) 3 0 6.3664
(6.5, 7) (1, 1.5) 2 0 7.4320 (5.5, 6) (0, 0.5) 3 0 5.7991

point of view. In the left panel of the table, we have kept c2(c
∗
2) constant and have increased the

values of c1(c
∗
1). In fact, we have assumed that c1 = ωc2 and c∗1 = ωc∗2 for ω = 1.5, 2, 3, ..., 10. As

seen, when ω increases the optimal value of the redundant component v1 decreases and the optimal
value of v2 increases. In the right panel of Table 5, we exchange the costs of type 1 and 2, i.e. we
assume c2 = ωc1 and c∗2 = ωc∗1. In this case, we observe no changes in the number of redundant
components v1, v2 when ω increases.

In this example, the distributions of the components lifetimes are ordered such that F̄1(t) ≥
F̄2(t), for all t > 0, i.e. the reliability (and subsequently, the MTTF ) of the components of type
one is more than type two. Note that, according to the system structure, it is reveal that the
components of type one are generally in more critical positions than those of type two. Hence, one
should intuitively expect that the optimal solution, according to the cost criterion, would be the
case in which one allocates more components of type one than type two.

To see whether this fact affects the number of vi’s, we let F̄ ∗
2 (t) = e−0.07t2 , t > 0, be the

reliability function of the components of type two. In this case, the two reliability functions cross
each other such that F̄1(t) < F̄ ∗

2 (t) for t < 2.86 and F̄1(t) > F̄ ∗
2 (t) for t > 2.86. Note that the

MTTF for components of type two in this new case is the same as the previous one. By fixing
the other parameters as before, we get the results given in Table 6. We see that although the
distributions cross each other, the optimal numbers of components in Table 6 are mostly the same
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Table 5: The optimum values of v by minimizing Cost1 for different costs in Example 2.7

c c∗ v1 v2 Cost1 c c∗ v1 v2 Cost1
(3,2) (1.5,1) 2 0 4.9904 (2,3) (1,1.5) 3 0 4.2859
(4,2) (2,1) 2 0 5.9203 (2,4) (1,2) 3 0 4.5832
(6,2) (3,1) 1 0 7.5921 (2,6) (1,3) 3 0 5.1778
(8,2) (4,1) 1 0 9.1824 (2,8) (1,4) 3 0 5.7725
(10,2) (5,1) 0 1 10.6840 (2,10) (1,5) 3 0 6.3671
(12,2) (6,1) 0 1 11.7883 (2,12) (1,6) 3 0 6.9617
(14,2) (7,1) 0 1 12.8925 (2,14) (1,7) 3 0 7.5563
(16,2) (8,1) 0 1 13.9967 (2,16) (1,8) 3 0 8.1509
(18,2) (9,1) 0 1 15.1009 (2,18) (1,9) 3 0 8.7456
(20,2) (10,1) 0 1 16.2052 (2,20) (1,10) 3 0 9.3402

as those in Table 3, perhaps since the MTTF s have not been changed in both cases.

Table 6: The optimum values of v by minimizing Cost1(v1, v2), for different values of α in Example 2.7

α 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
v1 3 2 2 2 2 2 2 2 2 2 2
v2 0 0 0 0 0 0 0 0 0 0 0

Cost1(v1, v2) 6.53 6.06 5.71 5.45 5.25 5.08 4.95 4.85 4.76 4.68 4.62

As a final point, to see the effect of survival copula on the optimal numbers of v1 and v2, we
suppose that the dependence structure is followed by the Clayton copula with the following form

Ĉ(u1, . . . , un) =
(

u
−1/α
1 + . . .+ u−1/α

n − n+ 1
)−α

, α > 0.

The parameter α manages the dependency degree of the copula, and the limiting case α = 0, gives
the independence. We obtain the optimal values of redundant components for some values of α in
Table 7. As it can be seen, by increasing α, the values of v1 and v2 and also the mean cost rate
show increment, which is in contradiction with the results in Table 3. Hence, the output of the
optimization problem strongly pertains to the functional structure of dependence, not only to the
dependence parameter.

Table 7: The optimum values of v by minimizing Cost1(v1, v2) for different α under the Clayton copula in
Example 2.7

α 0.001 0.1 1 2 3 4
v1 2 2 2 2 3 3
v2 0 0 0 0 0 0

Cost1(v1, v2) 3.71 3.97 5.26 5.75 5.98 6.09
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In the following example we consider an 8-component system consists of three types of components.
For fixed values of vi’s, we minimize the function Cost1 and also the function Cost2 in the case
that replacement time of unfailed system, τ , is considered as the variable of interest.

Example 2.8. Consider the system depicted in Figure 2, given in Huang et al. [2019]. The system
has eight components from which three components (1, 2, and 3) are of type one, three components
(4, 5, and 7) are of type two, and two components (6 and 8) are of type three. The values of the
system survival signature are computed in Huang et al. [2019], and hence we refer the reader to
the cited paper for the details.

1 4

3

2 5 6 8

7

Figure 2: System in Example 2.8

Suppose here that all the components are independent, where the components of type i have
common Weibull reliability functions F̄i(t) = e−βit

αi , αi, βi > 0 for i = 1, 2, 3. In Table 8 we
presented the mean cost rate Cost1(v1, v2, v3) for given values of β1 = 3, β2 = 4, β3 = 2, α1 = 2,
α2 = 3, α3 = 1 when the cost parameters are c1 = 1.5, c2 = 1, c3 = 2, c∗1 = 0.75, c∗2 = 0.4, c∗3 = 1
and c∗∗ = 10. Assume that we have M1 = 7, M2 = 4, and M3 = 5 components from types 1, 2,
and 3, respectively as spares. Hence, we can choose v1 ∈ {0, 1, 2}, v2 ∈ {0, 1}, and v3 ∈ {0, 1, 2} as
the redundancy for each type, respectively.

In the left panel of Table 8, the values of Cost1 are computed for different combinations of vi’s.
As it is seen, by adding v1 = 0, v2 = 1, and v3 = 0 as the redundant components to groups 1, 2,
and 3, respectively, we get the minimum value for the mean cost rate Cost1(v1, v2, v3).

Under the assumption that τ is the variable of interest, in the right panel of the table, we have
minimized Cost2(v1, v2, v3) in terms of τ and have reported the optimum value of τ , in the case
that the values of vi’s are kept fixed and known. It is observed that among all minimized values
of Cost2, the least value is obtained for the case that the number of redundant components are
v1 = 0, v2 = 1, and v3 = 0 for which we have τ = 0.375.

3 Optimal number of components in series-parallel system

An important subclass of coherent systems is the class of series-parallel systems. A series-parallel
system is a series structure of L parallel subsystems, L ≥ 1; see e.g. Figure 3. The purpose here is
to find the optimal number of the components in the lth parallel subsystem, under the condition
that there are available Ml components of type l, where the components in lth subsystem are
exchangeable dependent having common reliability function F̄l, l = 1, . . . , L. Furthermore, suppose
that the random failure times of the components of different types are dependent. The dependency
structure in the system is built with a copula function Ĉ, as described in Section 2. Under the
mean cost rate criteria defined in Section 2, the problem of optimal allocation is to find the optimal
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Table 8: The values of Cost1(v) and Cost2(v) in Example 2.8

v1 v2 v3 Cost1(v1, v2, v3) τopt Cost2(v1, v2, v3)
0 0 0 39.0424 0.300 29.5929
0 1 0 37.4142 0.375 28.9959
1 0 0 42.1779 0.365 34.7858
1 1 0 39.0422 0.450 31.1106
2 0 0 47.4998 0.405 42.0378
2 1 0 43.0531 0.490 36.3495
0 0 1 42.2553 0.326 38.2377
0 1 1 41.2034 0.367 37.6403
1 0 1 44.1149 0.391 41.3141
1 1 1 41.9973 0.463 37.8883
2 0 1 48.5362 0.445 47.7900
2 1 1 45.5179 0.503 42.4445
0 0 2 45.5246 0.350 46.7613
0 1 2 44.8865 0.410 46.1258
1 0 2 46.1353 0.412 47.6364
1 1 2 44.8022 0.480 44.4306
2 0 2 49.7090 0.455 53.1287
2 1 2 47.7961 0.520 48.2148

values of nl for each subsystem so that (5) or (10) is minimized.

In the following, we provide the corresponding expressions for the cost-based functions in a series-
parallel system. First note that for this system, we have

Φ(l1, . . . , lL) =

{
1 ∀j ∈ {1, . . . , L} : lj ≥ 1
0 o.w.

Hence from (3), we get

F̄T (t) =

n1∑

l1=1

. . .

nL∑

lL=1

n1−l1∑

i1=0

. . .

nL−lL∑

iL=0

(−1)i1+...+iL

(
n1

l1

)

. . .

(
nL

lL

)(
n1 − l1

i1

)

. . .

(
nL − lL

iL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

i1+l1

, 1
︸︷︷︸

n1−(i1+l1)

, . . . , F̄L(t)
︸ ︷︷ ︸

iL+lL

, 1
︸︷︷︸

nL−(iL+lL).

),

and in the especial case of independent components, we derive from (4)

F̄T (t) =

L∏

l=1

(1− [1− F̄l(t)]
nl).
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Figure 3: A series-parallel system with 3 subsystems

Cost function at the system failure

In a similar manner to Subsection 2.1, the mean cost rate function for system failure is defined
as:

Cost3(n) =

∑L
i=1 ciE(Xi(T )) +

∑L
i=1 c

∗
iE(ni −Xi(T )) + c∗∗

E(T )
(16)

where n = (n1, . . . , nL), and

E(Xi(T )) = ni

n1∑

m1=1

. . .

ni−1∑

mi=0

. . .

nL∑

mL=1

(
n1

m1

)

. . .

(
ni − 1

mi

)

. . .

(
nL

mL

)∫ ∞

0
lim
δ→0

A
(i)
m (t, δ)

δ
dt, (17)

in which A
(i)
m (t, δ) is introduced in (7). For the independent components (17) reduces to the following

expression

E(Xi(T )) = ni

∫ ∞

0

L∏

l=1,l 6=i

(1− (1 − F̄l(t))
nl )dFi(t). (18)

If L = 1 then the system becomes a parallel system with n1 components, and hence in this case
E(X1(T )) = n1.

For the considered series-parallel system in which the components of subsystems are independent,
Eryilmaz et al. [2020] gained a similar result for E(Xi(T )) in (18). Subsequently, they found the
optimal numbers of components in each subsystem based on the minimization of cost function (16)
under the constraints on the total allotted cost for replacing failed components and the total allotted
cost for rejuvenation of unfailed ones. Hence, our results in this subsection may be considered as
an extension of their work to the case of dependent components. Also, Dembinska and Eryilmaz
[2021] discussed the similar problem for the case that the lifetime distributions of components are
discrete; especially they obtained some results for discrete phase-type distribution.
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Cost function based on preventive replacement

The mean cost rate function of the system for age replacement at time min(τ, T ) is defined as

Cost4(n) =
M1(n)P (T ≤ τ) +M2(n)P (T > τ)

E(min(τ, T ))

where

M1(n) =

L∑

i=1

ciE(Xi(T )|T ≤ τ) +

L∑

i=1

c∗iE(ni −Xi(T )|T ≤ τ) + c∗∗,

and

M2(n) =
L∑

i=1

ciE(Ni(τ)|T > τ) +
L∑

i=1

c∗iE(ni −Ni(τ)|T > τ).

Using the formula for the survival signature of the series-parallel system, from the results given in
Subsection 2.2, we get the following expressions.

E(Ni(τ)|T > τ) =
1

F̄ (τ)

n1−1∑

j1=0

. . .

nL−1
∑

jL=0

ji

(
n1

j1

)

. . .

(
nL

jL

)

B(τ, j1, . . . , jL)

and for ni ≥ 2

E(Xi(T )|T ≤ τ) =
ni

1− F̄T (τ)

[
n1∑

m1=1

. . .

ni−1∑

mi=1

. . .

nL∑

mL=1

m1∑

l1=0

. . .

mL∑

lL=0

[ L∏

j=1,j 6=i

(
nj

mj

)(
mj

lj

)]

×

(
ni − 1

mi

)(
mi

li

)∫ τ

0
lim
δ→0

1

δ
A

(i)
m,l(s, s+ δ, τ)ds −

n1∑

m1=1

. . .

ni−1∑

mi=1

. . .

nL∑

mL=1

m1∑

l1=1

. . .

mL∑

lL=1

[ L∏

j=1,j 6=i

(
nj

mj

)(
mj

lj

)](
ni − 1

mi

)(
mi

li

)∫ τ

0
lim
δ→0

1

δ
A

(i)
m,l(s, s+ δ, τ)ds

]

. (19)

If ni = 1 then it is easily deduced that E(Xi(T )|T ≤ τ) = Fi(τ)
1−F̄T (τ)

.

Example 3.1. Consider a series-parallel system with L = 3 subsystems and assume that there
are M1 = 2,M2 = 3 and M3 = 3 components from types 1, 2, and 3, respectively, to construct
the system. Suppose that the joint reliability function of the components lifetimes follow the
multivariate Pareto model given by

P
(
T
(1)
1 > t

(1)
1 , . . . , T (1)

n1
> t(1)n1

, . . . , T
(L)
1 > t

(L)
L , . . . , T (L)

nL
> t(L)nL

)

=

[

1 + θ1

n1∑

i=1

t
(1)
i + . . .+ θL

nL∑

i=1

t
(L)
i

]−α

,
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for θi > 0, i = 1, . . . , L, and α > 0. In fact, the corresponding survival copula is

Ĉ(u1, . . . , un) =
(

u
−1/α
1 + . . . + u−1/α

n − n+ 1
)−α

,

and the marginal reliability functions of the components in the subsystems are F̄i(t) = (1+ θit)
−α,

i = 1, 2, . . . , L.

First note that for the described system, we have
∫ ∞

0

lim
δ→0

A
(i)
m (t, δ)

δ
dt =

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

×
θi

θi(mi + ji + 1) +
∑L

l=1,l 6=i θl(ml + jl)

By replacing these expressions in (17), E(Xi(T )), i = 1, 2, 3 are obtained.

Let θ = (0.4, 0.2, 0.3), c = (1.5, 2, 3), c∗ = (0.3, 0.75, 1), c∗∗ = 8, and α = 2. The values of
the mean cost rate function Cost3 are obtained for all combinations of n1, n2, and n3, such that
n1 ∈ {1, 2}, n2 ∈ {1, 2, 3}, and n3 ∈ {1, 2, 3}. Also, under the age replacement strategy in τ = 1,
the values of mean cost rate function Cost4 are calculated for different values n1, n2 and n3.

For computing Cost4(τ), we use the following simplified expressions:

E(Ni(τ)|T > τ) =
1

F̄T (τ)

n1−1∑

j1=0

n2−1∑

j2=0

n3−1∑

j3=0

ji

(
n1

j1

)(
n2

j2

)(
n3

j3

) j1∑

b1=0

j2∑

b2=0

j3∑

b3=0

(−1)b1+b2+bL

(
j1

b1

)(
j2

b2

)(
j3

b3

)

[1 + θ1τ(n1 − j1 + b1) + θ2τ(n2 − j2 + b2) + θ3τ(n3 − j3 + b3)]
−α, i = 1, 2, 3,

where

F̄T (τ) =

n1∑

l1=1

n2∑

l2=1

n3∑

l3=1

n1−l1∑

i1=0

n2−l2∑

i2=0

n3−l3∑

i3=0

(−1)i1+i2+i3

(
n1

l1

)(
n2

l2

)(
n3

l3

)(
n1 − l1

i1

)(
n2 − l2

i2

)(
n3 − l3

i3

)

(
1 + θ1τ(i1 + l1) + θ2τ(i2 + l2) + θ3τ(i3 + l3)

)−α
.

Also, we obtain E(Xi(T )|T ≤ τ), i = 1, 2, 3 by placing the following quantity in (19),

∫ τ

0

lim
δ→0

1

δ
A

(i)
m,l(s, s+ δ, τ)ds =

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

×

m1−l1∑

d1=0

. . .

mi−li∑

di=0

. . .

mL−lL∑

dL=0

(−1)d1+...+dL

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

×
θi[

(
1 + τ(

∑L
k=1 θk(lk + dk))

)−α
−
(
1 + τ(θi(mi + ji + 1) +

∑L
k=1, 6=i θk(mk + jk))

)−α
]

θi(mi − li + ji − di + 1) +
∑L

k=1, 6=i θk(mk − lk + jk − dk)
.

The results are given in Table 9. It is seen from the results that based on objective function Cost3(.)
the optimal series-parallel system has n1 = 2, n2 = 3, n3 = 2 components. Since the reliability of the
second type is greater than the other two types, it is expected that more components for the second
subsystem lead to a reduction in the mean cost rate of system failure. Also, n1 = 2, n2 = 2, n3 = 2
are the optimal number of components in the subsystems so as to minimize the average cost rate
of the age replacement policy.

21



Table 9: The values of Cost3(n) and Cost4(n) in Example 3.1

n1 n2 n3 Cost3(n1, n2, n3) Cost4(n1, n2, n3)
1 1 1 10.3750 18.2784
1 1 2 9.6460 18.6515
1 1 3 10.0967 21.2331
1 2 1 9.7277 18.1732
1 2 2 8.8857 18.1463
1 2 3 9.1886 20.4388
1 3 1 10.0842 19.8532
1 3 2 9.0989 19.5615
1 3 3 9.3157 21.7702
2 1 1 8.7073 16.2100
2 1 2 7.9885 16.1742
2 1 3 8.2879 18.3280
2 2 1 8.0593 15.8127
2 2 2 7.4747 12.2278
2 2 3 7.4835 13.5080
2 3 1 8.2888 17.1959
2 3 2 7.4068 13.0874
2 3 3 7.5279 14.2977

4 Conclusions

In this paper, we studied the optimal number of redundancy allocation in an n-component
coherent system consists of heterogeneous components. We assumed that the system has been
built up of L different types of components, L ≥ 1, where there are ni components of type i and
∑L

i=1 ni = n. We assumed that the components of the different types in the system are statistically
dependent. The system reliability function was modeled by the notion of survival signature in
terms of a given survival copula function. We further assumed Mi components available as spares
for the components of type i. We investigated the number of active redundant components vi,
nivi ≤ Mi, that can be added to each component of type i such that the imposed cost functions
are minimized, i = 1, . . . , L. We first proposed a cost function in terms of the costs of renewing
the failed components and the costs of refreshing the alive components at the time of the system
failure. In the sequel, we proposed an cost-based function in terms of the costs of the renewing
(refreshing) the failed (alive) components at the system failure time or at a predetermined time
τ , whichever occurs first. In the last part of the paper, we studied under the settings of the first
part, the particular case that the system is a series-parallel system. We derived the formulas for
the proposed cost functions and using them investigated the optimal number of the components in
each parallel subsystem. The expressions for the proposed cost functions were derived using the
mixture representation of the system reliability function based on the notion of survival signature.
The results were examined numerically for some particular coherent systems. The proposed mean
cost rate functions simultaneously consider the cost of the system and its MTTF (which is directly
related to its reliability). Hence this optimization problem can be viewed as a bi-objective reliability-
redundancy allocation problem but with a more comfortable setup.
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In this study, we considered the general case that the components of the same group are exchange-
able and the components of different groups and dependent. Although these assumptions are more
realistic and hence increase the range of applications of our results, however, obviously lead to the
complexity of the formulas. Even a more realistic case is the situation that the components in
each group are dependent in a more general sense than that of exchangeability. Developing results
in this direction may be considered as a future study. Here, we presumed the active redundancy
for components. Allocating the other variants of spares, i.e., cold and warm standby, for coherent
systems may be investigated as some interesting problems for future studies.
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Appendix

Proof of Theorem 2.3

Define the events M , N c and LC as follows

M ≡ {T
(1)
1 > t, . . . , T (1)

m1
> t, T

(i)
2 > t, . . . , T

(i)
mi+1 > t, T

(L)
1 > t, . . . , T (L)

mL
> t}

N c ≡ {T
(1)
m1+1 < t, . . . , T (1)

n1
< t, T

(i)
mi+2 < t, . . . , T (i)

ni
< t, T

(L)
mL+1 < t, . . . , T (L)

nL
< t}

Lc ≡ {t < T
(i)
1 < t+ δ}.

Then Am(t, δ) equals to the following

A
(i)
m (t, δ) = P (M ∩N c ∩ Lc) = P (M)− P (M ∩N)− P (M ∩ L) + P (M ∩N ∩ L). (20)

Evidently, we have

P (M) = Ĉ(F̄1(t)
︸ ︷︷ ︸

m1

, 1
︸︷︷︸

n1−m1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+1

, 1
︸︷︷︸

ni−mi−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL

, 1
︸︷︷︸

nL−mL

)

and

P (M ∩ L) = Ĉ(F̄1(t)
︸ ︷︷ ︸

m1

, 1
︸︷︷︸

n1−m1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi

, F̄i(t+ δ), 1
︸︷︷︸

ni−mi−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL

, 1
︸︷︷︸

nL−mL

).

Note that we can write

N = ∪n1

j=m1+1{T
(1)
j > t} ∪ . . . ∪ni

j=mi+2 {T
(i)
j > t} ∪ . . . ∪nL

j=mL+1 {T
(L)
j > t}.
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Therefore, we can easily see that

P (M ∩N)

=

n−
∑L

i=1
mi−1

∑

l=1

(−1)l+1
n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

j1+...+jL=l

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji+1

, 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

).

If we subtract P (M) from both sides of this equation, then we have

P (M ∩N)− P (M)

=

n−
∑L

i=1
mi−1

∑

l=1

(−1)l+1
n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

j1+...+jL=l

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji+1

, 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

)

− [Ĉ(F̄1(t)
︸ ︷︷ ︸

m1

, 1
︸︷︷︸

n1−m1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+1

, 1
︸︷︷︸

ni−mi−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL

, 1
︸︷︷︸

nL−mL

)]

=

n−
∑L

i=1
mi−1

∑

l=0

(−1)l+1
n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

j1+...+jL=l

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji+1

, 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

)

=

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL+1

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji+1

, 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

). (21)

Similarly, we have

P (M ∩N ∩ L)

=

n−
∑L

i=1
mi−1

∑

l=1

(−1)l+1
n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

j1+...+jL=l

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji

, F̄i(t+ δ), 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

).
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P (M ∩N ∩ L)− P (M ∩ L)

=

n−
∑L

i=1
mi−1

∑

l=0

(−1)l+1
n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

j1+...+jL=l

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji

, F̄i(t+ δ), 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

)

=

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL+1

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji

, F̄i(t+ δ), 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

). (22)

Then replacing (21) and (22) in (20) we have

A(i)
m
(t, δ) = −

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL+1

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji+1

, 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

)

+

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL+1

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

× Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji

, F̄i(t+ δ), 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

)

=

n1−m1∑

j1=0

. . .

ni−mi−1∑

ji=0

. . .

nL−mL∑

jL=0

(−1)j1+...+jL

(
n1 −m1

j1

)

. . .

(
ni −mi − 1

ji

)

. . .

(
nL −mL

jL

)

×

[

Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji+1

, 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

)

− Ĉ(F̄1(t)
︸ ︷︷ ︸

m1+j1

, 1
︸︷︷︸

n1−m1−j1

, . . . , F̄i(t)
︸ ︷︷ ︸

mi+ji

, F̄i(t+ δ), 1
︸︷︷︸

ni−mi−ji−1

, . . . , F̄L(t)
︸ ︷︷ ︸

mL+jL

, 1
︸︷︷︸

nL−mL−jL

)

]

Proof of Theorem 2.5:

Let us define the following events

M ≡ {T
(j)
1 > τ, . . . , T

(j)
lj

> τ, T
(j)
lj+1 > s, . . . , T (j)

mj
> s, for j = 1, ..., L, j 6= i

, T
(i)
1 > τ, . . . , T

(i)
li

> τ, T
(i)
li+1 > s, . . . , T

(i)
mi+1 > s}

N c ≡ {T
(j)
mj+1 < s, . . . , T (j)

nj
< s, for j = 1, ..., L, j 6= i, T

(i)
mi+2 < s, . . . , T (i)

ni
< s}

Lc ≡ {T
(j)
lj+1 < τ, . . . , T (j)

mj
< τ, for j = 1, ..., L}

Kc ≡ {T
(i)
mi+1 < s+ δ}.
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Hence,

A
(i)
m,l(s, s+ δ, τ) = P (M ∩N c ∩ Lc ∩Kc)

= P (M)− P (M ∩N)− P (M ∩ L)− P (M ∩K) + P (M ∩N ∩ L) + P (M ∩N ∩K)

+ P (M ∩K ∩ L)− P (M ∩N ∩ L ∩K). (23)

It can be easily shown that

P (M) = Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj

, 1
︸︷︷︸

nj−mj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li+1

, 1
︸︷︷︸

ni−mi−1

),

P (M ∩K) = P (M ∩
{

T
(i)
mi+1 > s+ δ}

}

)

= Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj

, 1
︸︷︷︸

nj−mj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−1

).

Note also that, the event N (the complement of N c) can be represented as

N = ∪L
j=1,j 6=i ∪

nj

kj=mj+1 {T
(j)
kj

> s} ∪ ∪ni
ki=mi+2{T

(i)
ki

> s},

Thus, we get

P (M ∩N)

=

n−
∑L

i=1
mi−1

∑

l=1

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1

, 1
︸︷︷︸

ni−mi−ri−1

)

P (M ∩N)− P (M)

=

n−
∑L

i=1
mi−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1

, 1
︸︷︷︸

ni−mi−ri−1

)

=

n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0

(−1)r1+...+rL+1

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1

, 1
︸︷︷︸

ni−mi−ri−1

)
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and

P (M ∩N ∩K)

=

n−
∑L

i=1
mi−1

∑

l=1

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ri−1

)

=

n−
∑L

i=1
mi−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ri−1

) + P (M ∩K).

Similarly, we have L =
{

∪L
j=1 ∪

mj

kj=lj+1 {T
(j)
kj

> τ}
}

. Therefore, we get

P (M ∩ L) =

∑L
j=1

(mj−lj)
∑

y=1

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj−dj

, 1
︸︷︷︸

nj−mj

for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li−di+1

, 1
︸︷︷︸

ni−mi−1

),

and

P (M ∩ L ∩K)

=

∑L
j=1

(mj−lj)
∑

l=1

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+rj

, F̄j(s)
︸ ︷︷ ︸

mj−lj−rj

, 1
︸︷︷︸

nj−mj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+ri

, F̄i(s)
︸ ︷︷ ︸

mi−li−ri

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−1

)

Also, after some manipulations, one can verify that P (M ∩N ∩L) and P (M ∩N ∩L∩K) can be
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written, respectively, as

P (M ∩N ∩ L)

=

n−
∑L

j=1
mj−1

∑

l=1

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

∑L
j=1

(mj−lj)
∑

y=1

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1−di

, 1
︸︷︷︸

ni−mi−ri−1

)

=

n−
∑L

j=1
mj−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

∑L
j=1

(mj−lj)
∑

y=1

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1−di

, 1
︸︷︷︸

ni−mi−ri−1

) + P (M ∩ L)

=

n−
∑L

j=1
mj−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

∑L
j=1

(mj−lj)
∑

y=0

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1−di

, 1
︸︷︷︸

ni−mi−ri−1

)

+

n−
∑L

i=1
mi−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1

, 1
︸︷︷︸

ni−mi−ri

) + P (M ∩ L).
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and

P (M ∩N ∩ L ∩K)

=

n−
∑L

j=1
mj−1(t)

∑

l=1

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

∑L
i=1

(mi−li)
∑

y=1

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri−di

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ri−1

)

=

n−
∑L

j=1
mj−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

∑L
i=1

(mi−li)
∑

y=1

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ( F̄j
︸︷︷︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri−di

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ri−1

)

+ P (M ∩ L ∩K)

=

n−
∑L

j=1
mj−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

∑L
i=1

(mi−li)
∑

y=0

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri−di

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ri−1

)

+

n−
∑L

j=1
mj−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ri−1

)

+ P (M ∩ L ∩K).

Finally, by replacing the obtained expressions in (23) we have

29



A
(i)
m,l(s, s+ δ, τ) =

n−
∑L

j=1
mj−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

∑L
j=1

(mj−lj)
∑

y=0

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1−di

, 1
︸︷︷︸

ni−mi−ri−1

)

−

n−
∑L

j=1
mj−1

∑

l=0

(−1)l+1
n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0
r1+...+rL=l

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

∑L
i=1

(mi−li)
∑

y=0

(−1)y+1
m1−l1∑

d1=0

. . .

mL−lL∑

dL=0
d1+...+dL=y

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

× Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri−di

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ri−1

)

=

n1−m1∑

r1=0

. . .

ni−mi−1∑

ri=0

. . .

nL−mL∑

rL=0

(−1)r1+...+rL

(
n1 −m1

r1

)

. . .

(
ni −mi − 1

ri

)

. . .

(
nL −mL

rL

)

×

m1−l1∑

d1=0

. . .

mL−lL∑

dL=0

(−1)d1+...+dL

(
m1 − l1

d1

)

. . .

(
mL − lL

dL

)

×




Ĉ(F̄j(τ)

︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri+1−di

, 1
︸︷︷︸

ni−mi−ri−1

)

−Ĉ(F̄j(τ)
︸ ︷︷ ︸

lj+dj

, F̄j(s)
︸ ︷︷ ︸

mj−lj+rj−dj

, 1
︸︷︷︸

nj−mj−rj

, for j = 1, ..., L, j 6= i, F̄i(τ)
︸ ︷︷ ︸

li+di

, F̄i(s)
︸ ︷︷ ︸

mi−li+ri−di

, F̄i(s+ δ), 1
︸︷︷︸

ni−mi−ri−1

)
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