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Abstract

In this note we give a simplified ordinal analysis of first-order reflec-
tion. An ordinal notation system OT is introduced based on ψ-functions.
Provable Σ1-sentences on LωCK

1
are bounded through cut-elimination on

operator controlled derivations.

1 Introduction

Let ORD denote the class of all ordinals, A ⊂ ORD and α a limit ordinal. α
is said to be Πn-reflecting on A iff for any Πn-formula φ(x) and any b ∈ Lα, if
〈Lα,∈〉 |= φ(b), then there exists a β ∈ A ∩ α such that b ∈ Lβ and 〈Lβ,∈〉 |=
φ(b). Let us write α ∈ rMn(A) :⇔ α is Πn-reflecting on A. Also α is said to be
Πn-reflecting iff α is Πn-reflecting on ORD.

It is not hard for us to show that the assumption that the universe is Πn-
reflecting is proof-theoretically reducible to iterabilities of the lower operation
rMn−1 (and Mostowski collapsings), cf. [3].

In this paper we aim an ordinal analysis of Πn-reflection. Such an analysis
was done by Pohlers and Stegert [7] using reflection configurations introduced
in M. Rathjen [9], and an alternative analysis in [1, 2, 4] with the complicated
combinatorial arguments of ordinal diagrams and finite proof figures. Our ap-
proach is simpler in view of combinatorial arguments. In [1], a Πn-reflecting
universe is resolved in ramified hierarchies of lower Mahlo operations, and ulti-
mately in iterations of recursively Mahlo operations. Our ramification process
is akin to a tower, i.e., has an exponential structure. It is natural that an ex-
ponential structure emerges in lowering and eliminating first-order formulas (in
reflections), cf. ordinal analysis for the fragments IΣn−3 of the first-order arith-
metic. Mahlo classesMhk(ξ) defined in Definition 2.5 to resolve or approximate
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Πn-reflection are based on similar structure. As in Rathjen’s analysis for Π3-
reflection in [8], thinning operations are applied on the Mahlo classes Mhk(ξ),
and this yields an exponential structure similar to the one in [1] as follows.

Let us consider the simplest case N = 4. Let Λ := εK+1, the next epsilon
number above the lease Π4-reflecting ordinal K. Roughly π ∈ Mh3(ξ) desig-
nates the fact that an ordinal π is Π3-reflecting on Mh3(ν) for any ν < ξ < Λ.
Suppose a Π3-sentence θ on Lπ is derived from the assumption π ∈ Mh3(ξ).
We need to find an ordinal κ < π for which Lκ |= θ holds. It turns out that
κ ∈ Mh2(Λ

ξa) suffices for an ordinal a < Λ, where the ordinal κ in the class
Mh2(Λ

ξa) is Π2-reflecting on classes Mh2(Λ
ξb) ∩Mh3(ν) for any b < a and

any ν < ξ. Note that the class Mh2(Λ
ξa) is not obtained through iterations of

recursively Mahlo operations since it involves Π4-definable classesMh3(ν). The
classes Mh3(ν) (ν < ξ) for the assumption π ∈ Mh3(ξ) are thinned out with
the new classes Mh2(Λ

ξb) (b < Λ), cf. Lemma 5.1.

Our theorem runs as follows. Let KPΠN denote the set theory for ΠN -reflecting
universes, and KPω the Kripke-Platek set theory with the axiom of infinity. OT
is a computable notation system of ordinals defined in section 3, Ω = ωCK1 and
ψΩ is a collapsing function such that ψΩ(α) < Ω. K is an ordinal term denoting
the least ΠN -reflecting ordinal in the theorems.

Theorem 1.1 Suppose KPΠN ⊢ θ for a Σ1(Ω)-sentence θ. Then we can find
an n < ω such that for α = ψΩ(ωn(K + 1)), Lα |= θ.

Actually the bound is seen to be tight, cf. [5].

Theorem 1.2 KPΠN proves that each initial segment
{α ∈ OT : α < ψΩ(ωn(K+ 1))} (n = 1, 2, . . .) is well-founded.

Thus the ordinal ψΩ(εK+1) is seen to be the proof-theoretic ordinal of KPΠN .

Theorem 1.3

ψΩ(εK+1) = |KPΠN |ΣΩ
1
:= min{α ≤ ωCK1 : ∀θ ∈ Σ1(KPΠN ⊢ θLΩ ⇒ Lα |= θ)}.

A ⊂ ORD is Π1
n-indescribable in α iff for any Π1

n-formula φ(X) and any
B ⊂ ORD, if 〈Lα,∈;B∩α〉 |= φ(B∩α), then there exists a β ∈ A∩α such that
〈Lβ,∈;B ∩β〉 |= φ(B ∩ β). A regular cardinal π is Π1

n-indescribable ifff ORD is
Π1
n-indescribable in π.
Let us mention the contents of this paper. In the next section 2 we define

simultaneously iterated Skolem hullsHα(X) of setsX of ordinals, ordinals ψ
~ξ
κ(α)

for regular cardinals κ, α < εK+1 and sequences ~ξ = (ξ2, . . . , ξN−1) of ordinals
ξi < εK+2, and classesMhαk (ξ) under the assumption that a Π1

N−2-indescribable
cardinal K exists. It is shown that for 2 ≤ k < N , α < εK+1 and each ξ < εK+2,
(K is a Π1

N−2-indescribable cardinal) → K ∈Mhαk (ξ) in ZF+ (V = L).
In section 3 a computable notation system OT of ordinals is extracted. Fol-

lowing W. Buchholz [6], operator controlled derivations for KPΠN is introduced
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in section 4, and inference rules for ΠN -reflection are eliminated from deriva-
tions in section 5. This completes a proof of Theorem 1.1 for an upper bound.

IH denotes the Induction Hypothesis, MIH the Main IH and SIH the Sub-
sidiary IH. We are assuming tacitly the axiom of constructibility V = L.
Throughout of this paper N ≥ 3 is a fixed integer.

2 Ordinals for ΠN-reflection

In this section we work in the set theory ZFLKN obtained from ZFL = ZF+(V =
L) by adding the axiom ∃K(K is Π1

N−2-indescribable) for a fixed integer N ≥ 3.
For ordinals α, ε(α) denotes the least epsilon number above α.

Let ORD ⊂ V denote the class of ordinals, K the least Π1
N−2-indescribable

cardinal, and Reg the set of regular ordinals below K. Θ denotes finite sets of
ordinals≤ K. u, v, w, x, y, z, . . . range over sets in the universe, a, b, c, α, β, γ, . . .
range over ordinals< Λ, ξ, ζ, ν, µ, ι, . . . range over ordinals< ε(Λ) = εK+2,
~ξ, ~ζ, ~ν, ~µ,~ι, . . . range over finite sequences over ordinals< ε(Λ), and π, κ, ρ, σ, τ, λ, . . .
range over regular ordinals. θ denotes formulas.

Let ~ξ = (ξ0, . . . , ξm−1) be a sequence of ordinals. The length lh(~ξ) := m.
Sequences consisting of a single element (ξ) is identified with the ordinal ξ, and
∅ denotes the empty sequence. ~0 denotes ambiguously a zero-sequence (0, . . . , 0)

with its length 0 ≤ lh(~0) ≤ N − 1. ~ξ ∗ ~µ = (ξ0, . . . , ξm−1) ∗ (µ0, . . . , νn−1) =

(ξ0, . . . , ξm−1, µ0, . . . , µn−1) denotes the concatenated sequence of ~ξ and ~µ.
Λ = ε(K) = εK+1 denotes the next epsilon number above the least ΠN−2-

indescribable cardinal K, and ε(Λ) = εK+2 the next epsilon number above Λ.

Definition 2.1 For a non-zero ordinal ξ < ε(Λ), its Cantor normal form with
base Λ is uniquely determined as

ξ =NF
∑

i≤m

Λξiai = Λξmam + · · ·+ Λξ0a0 (1)

where ξm > · · · > ξ0, 0 < ai < Λ.

1. K(ξ) = {ai : i ≤ m} ∪
⋃
{K(ξi) : i ≤ m} is the set of components of ξ

with K(0) = ∅. For a sequence ~ξ = (ξ0, . . . , ξn−1) of ordinals ξi < ε(Λ),

K(~ξ) :=
⋃
{K(ξi) : i < n}.

2. For ξ > 1, te(ξ) = ξ0 in (1) is the tail exponent, and he(ξ) = ξm is
the head exponent of ξ, resp. The head Hd(ξ) := Λξmam, and the tail
T l(ξ) := Λξ0a0 of ξ.

3. he(i)(ξ) is the i-th head exponent of ξ, defined recursively by
he(0)(ξ) = ξ, he(i+1)(ξ) = he(he(i)(ξ)).

The i-th tail exponent te(i)(ξ) is defined similarly.
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4. ζ is a part of ξ, denoted by ζ ≤pt ξ iff
ζ =NF

∑
i≥n Λ

ξiai = Λξmam + · · ·+ Λξnan for an n (0 ≤ n ≤ m+ 1).

ζ <pt ξ :⇔ ζ ≤pt ξ& ζ 6= ξ.

5. A sequence ~µ = (µ0, . . . , µn) is an iterated tail parts of ξ, denoted by
~µ ⊂pt ξ iff µ0 ≤pt ξ& ∀i < n(µi+1 ≤pt te(µi)).

6. ~ν = (ν0, . . . , νn) ∗ ~0 < ξ iff there exists a sequence ~µ = (µ0, . . . , µn) such
that ~µ ⊂pt ξ and νi < µi for every i ≤ n.

7. Let ~ν = (ν0, . . . , νn) and ~ξ = (ξ0, . . . , ξn) be sequences of ordinals in the
same length, and 0 ≤ k ≤ n.

~ν <k ~ξ :⇔ ∀i < k(νi ≤ ξi) ∧ (νk, . . . , νn) < ξk.

8. ζ is a step-down of ξ, denoted by ζ <sd ξ iff
ζ = Λξmam+ · · ·+Λξ1a1+Λξ0b+ ν for some ordinals b < a0 and ν < Λξ0 .

9. ~ν = (ν0, . . . , νn) ∗ ~0 <sd ξ iff νi <sd te
(i)(ξ) for every i ≤ n.

10. ζ ≤sp ξ :⇔ ∃µ ≤pt ξ(ζ ≤sd µ), and ζ <sp ξ :⇔ ∃µ ≤pt ξ(ζ <sd µ).

11. ~ν <sp ξ iff ~ν <sd µ for a µ ≤pt ξ.

Let p(~ν, ξ) denote the number p (0 ≤ p < m) such that ξ =NF µ +∑
i<p Λ

ξiai for µ = Λξmam + · · ·+ Λξpap and ~ν <sd µ.

Note that (ν) ∗ ~0 < ξ ⇔ ν < ξ, and (ξ, te(ξ), te(2)(ξ), . . .) ⊂pt ξ. Also
ζ <sd ξ ⇔ ζ < ξ if ξ < Λ.

Proposition 2.2 ξ < µ < ε(Λ) ⇒ te(ξ) ≤ he(ξ) ≤ he(µ).

Proposition 2.3 ~ν < ξ ≤ ζ ⇒ ~ν < ζ.

Proof by induction on the lengths n = lh(~ν). Let ~µ = (µ0, . . . , µn−1) be a
sequence for ~ν = (ν0, . . . , νn−1) such that ~µ ⊂pt ξ and ∀i ≤ n − 1(νi < µi),
cf. Definition 2.1.6.

If n = 1, then ν0 < µ0 ≤pt ξ ≤ ζ. ν0 < ζ ≤pt ζ yields ~ν = (ν0) < ζ.
Let n > 1. We have (ν1, . . . , νn−1) < te(µ0) with (µ1, . . . , µn−1) ⊂pt te(µ0).

We show the existence of a λ such that µ0 ≤ λ ≤pt ζ and te(µ0) ≤ te(λ). Then
IH yields (ν1, . . . , νn−1) < te(λ), and ~ν < ζ follows.

If µ0 ≤pt ζ, then λ = µ0 works. Suppose µ0 6≤pt ζ. On the other hand we
have µ0 ≤pt ξ ≤ ζ. This means that ξ < ζ and there exists a λ ≤pt ζ such that
µ0 < λ and te(µ0) ≤ te(λ). ✷
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2.1 Ordinals

Definition 2.4 1. For i < ω and ξ < ε(Λ), Λi(ξ) is defined recursively by
Λ0(ξ) = ξ and Λi+1(ξ) = ΛΛi(ξ).

2. For A ⊂ ORD, limit ordinals α and i ≥ 0, let α ∈ M2+i(A) iff A ∩
α is Π1

i -indescribable in α.

3. κ+ denotes the next regular ordinal above κ.

4. Ωα := ωα for α > 0, Ω0 := 0, and Ω = Ω1.

Define simultaneously classes Hα(X), Mhαk (ξ), and ordinals ψ
~ξ
κ(α) as fol-

lows. We see that these are Σ1-definable as a fixed point in ZFL, cf. Proposition
2.7.

Let a < Λ, and ϕ denote the binary Veblen function. Let us define a Skolem
hull Ha(X) of {0,K}∪X under the functions +, α 7→ ωα, (α, β) 7→ ϕαβ (α, β <
K), α 7→ Ωα (α < K) and ψ-functions. Reg denotes the set of regular ordinals≤
K.

Definition 2.5 Ha[Y ](X) := Ha(Y ∪X) for sets Y ⊂ K.

1. (Inductive definition of Ha(X)).

(a) {0,K} ∪X ⊂ Ha(X).

(b) x, y ∈ Ha(X) ⇒ x + y ∈ Ha(X), x ∈ Ha(X) ⇒ ωx ∈ Ha(X), and
x, y ∈ Ha(X) ∩K ⇒ ϕxy ∈ Ha(X).

(c) K > α ∈ Ha(X) ⇒ Ωα ∈ Ha(X).

(d) If π ∈ Ha(X) ∩Reg and b ∈ Ha(X) ∩ a, then ψπ(b) ∈ Ha(X).

(e) If {b, ξ} ⊂ Ha(X) with ξ ≤ b < a, then κ = ψ
~0∗(ξ)
K

(b) ∈ Ha(X),

where lh(~0) = N − 3.

(f) Let {π, b, c} ⊂ Ha(X) with π < K, 2 ≤ k < N − 1 an integer,

and ~ξ = (ξ2, . . . , ξk, ξk+1) ∗ ~0 a sequence of ordinals ξi < ε(Λ) with

lh(~0) = N − 2 − k such that ξk+1 6= 0 and K(~ξ) ⊂ Ha(X). Assume

max(K(~ξ) ∪ {c}) ≤ b < a, and π ∈Mhb2(
~ξ).

Then κ = ψ~νπ(b) ∈ Ha(X) for the sequence ~ν = (ξ2, . . . , ξk+Λξk+1c)∗~0
with lh(~0) = N − 1− k.

(g) Let {π, b} ⊂ Ha(X) with π < K, and 0 6= ξ < ε(Λ) an ordinal with
K(ξ) ⊂ Ha(X). Let ~ν = (ν2, . . . , νN−1) be a sequence of ordinals<
ε(Λ) such that K(~ν) ⊂ Ha(X). Assume maxK(~ν) ≤ b < a, K(~ν) ⊂
Hb(π), π ∈Mhb2(ξ), and ~ν < ξ, cf. Definition 2.1.6.

Then κ = ψ~νπ(b) ∈ Ha(X).

2. (Definitions of Mhak(ξ) and Mhak(
~ξ))

First let K ∈MhaN(0) :⇔ K ∈MN ⇔ K is Π1
N−2-indescribable.
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The classes Mhak(ξ) are defined for 2 ≤ k < N , and ordinals a < Λ,
ξ < ε(Λ). Let π be a regular ordinal≤ K. Then for ξ > 0

π ∈Mhak(ξ) :⇔ {π, a} ∪K(ξ) ⊂ Ha(π)& (2)

∀~ν < ξ (K(~ν) ⊂ Ha(π) ⇒ π ∈Mk(Mhak(~ν)))

where ~ν = (νk, . . . , νn) (2 ≤ k ≤ n ≤ N − 1) varies through non-empty
sequences of ordinals< ε(Λ) and

π ∈Mhak(~ν) :⇔ π ∈
⋂

k≤i≤n

Mhai (νi).

By convention, let for 2 ≤ k < N , π ∈ Mhak(0) :⇔ π ∈ Mha2(∅) :⇔
π is a limit ordinal. Note that by letting ~ν = (0), π ∈Mhak(ξ) ⇒ π ∈Mk

for ξ > 0. Also ~0 < 1, and Mhak(1) =Mk.

3. (Definition of ψ
~ξ
π(a))

Let a < Λ be an ordinal, π ≤ K a regular ordinal and ~ξ a sequence of

ordinals< ε(Λ) such that lh(~ξ) = N − 2. Then let

ψ
~ξ
π(a) := min({π} ∪ {κ ∈Mh

a
2(~ξ) ∩ π : Ha(κ) ∩ π ⊂ κ,K(~ξ) ∪ {π, a} ⊂ Ha(κ)})

(3)

Let ψπa := ψ
~0
πa, where lh(~0) = N − 2, Mha2(~0) = Lim, and π ∈M2, i.e.,

π is a regular ordinal.

Note that π ∈ Mhak(ξ) ⇒ ∀ν < ξ (π ∈Mk(Mhak(ν))), since (ν) < ξ holds
with (ξ) ⊂pt ξ for ν < ξ.

Proposition 2.6 b + c ∈ Ha[Θ](d) ⇒ c ∈ Ha[Θ](d), and ωc ∈ Ha[Θ](d) ⇒ c ∈
Ha[Θ](d).

The following Proposition 2.7 is easy to see.

Proposition 2.7 Each of x = Ha(y) (a < Λ, y < K), x = ψκa, x ∈ Mhak(ξ)

and x = ψ
~ξ
κ(a), is a Σ1-predicate as fixed points in ZFL.

Proof. This is seen from the facts that there exists a universal Π1
n-formula, and

by using it, α ∈Mn(x) iff 〈Lα,∈〉 |= mn(x∩Lα) for some Π1
n+1-formula mn(R)

with a unary predicate R. ✷

Let A(a) denote the conjunction of ∀u < K∃!x[x = Ha(u)], and

∀~ξ∀x(maxK(~ξ) ≤ a&K(~ξ)∪{κ, a} ⊂ x = Ha(κ) → ∃!b ≤ κ(b = ψ
~ξ
κ(a))), where

lh(~ξ) = N − 2.

Since the cardinality of the set HεK+1
(π) is π for any infinite cardinal π ≤

K, pick an injection f : HΛ(K) → K so that f”HΛ(π) ⊂ π for any weakly
inaccessibles π ≤ K.

6



Lemma 2.8 1. ∀a < ΛA(a).

2. π ∈Mhak(ξ) is a Π1
k−1-class on Lπ uniformly for weakly inaccessible car-

dinals π ≤ K and a, ξ. This means that for each k there exists a Π1
k−1-

formula mhak(x) such that π ∈ Mhak(ξ) iff Lπ |= mhak(ξ) for any weakly
inaccessible cardinals π ≤ K with f”({a} ∪K(ξ)) ⊂ Lπ.

3. K ∈MhαN−1(Λ) ∩MN−1(MhαN−1(Λ)).

Proof.
2.8.1. We show that A(a) is progressive, i.e., ∀a < Λ[∀c < aA(c) → A(a)].

Assume ∀c < aA(c) and a < Λ. ∀b < K∃!x[x = Ha(b)] follows from IH in

ZFL. ∃!b ≤ κ(b = ψ
~ξ
κa) follows from this.

2.8.2. Let π be a weakly inaccessible cardinal with f”({a} ∪K(ξ)) ⊂ Lπ. Let
f be an injection such that f”HΛ(π) ⊂ Lπ. Then for ∀α ∈ K(ξ)(f(α) ∈
f”Hα(π)), π ∈Mhak(ξ) iff for any f(~ν) = (f(νk), . . . , f(νN−1)), each of f(νi) ∈
Lπ, if ∀α ∈ K(~ν)(f(α) ∈ f”Ha(π)) and ~ν < ξ, then π ∈ Mk(Mhak(~ν)), where
f”Ha(π) ⊂ Lπ is a class in Lπ.

2.8.3. We show the following B(a) is progressive in a < Λ:

B(a) :⇔ K ∈MhαN−1(a) ∩MN−1(MhαN−1(a))

Note that a ∈ Ha(K) holds for any a < Λ.
Suppose ∀b < aB(b). We have to show thatMhαN−1(a) is Π

1
N−3-indescribable

in K. It is easy to see that if π ∈ MN−1(MhαN−1(a)), then π ∈ MhαN−1(a) by
induction on π. Let θ(u) be a Π1

N−3-formula such that LK |= θ(u).
By IH we have ∀b < a[K ∈ MN−1(MhαN−1(b))]. In other words, K ∈

MhαN−1(a), i.e., LK |= mhαN−1(a), where mhαN−1(a) is a Π1
N−2-sentence in

Proposition 2.8.2. Since the universe LK is Π1
N−2-indescribable, pick a π < K

such that Lπ enjoys the Π1
N−2-sentence θ(u) ∧mh

α
N−1(a), and {f(α), f(a)} ⊂

Lπ. Therefore π ∈ MhαN−1(a) and Lπ |= θ(u). Thus K ∈ MN−1(MhαN−1(a)).
✷

2.2 Normal forms in ordinal notations

In this subsection we introduce an irreducibility of sequences, which is needed
to define a normal form in ordinal notations.

Proposition 2.9 π ∈Mhak(ζ)& ξ ≤ ζ ⇒ π ∈Mhak(ξ).

Proof. (2) for π ∈ Mhak(ξ) in Definition 2.5.2 follows from π ∈ Mhak(ζ) and
Proposition 2.3. ✷

Lemma 2.10 (Cf. Lemma 3 in [1].) Assume K ≥ π ∈ Mhak(ξ) ∩Mhak+1(ξ0)
with 2 ≤ k ≤ N−1, he(µ) ≤ ξ0 and {a}∪K(µ) ⊂ Ha(π). Then π ∈Mhak(ξ+µ)
holds. Moreover if π ∈Mk+1, then π ∈Mk+1(Mhak(ξ + µ)) holds.

7



Proof. Suppose π ∈ Mhak(ξ) ∩Mhak+1(ξ0) and K(µ) ⊂ Ha(π) with he(µ) ≤
ξ0. We show π ∈ Mhak(ξ + µ) by induction on ordinals µ. First note that
if b ∈ Ha(π), then f(b) ∈ f”HΛ(π) ⊂ Lπ. We have K(ξ + µ) ⊂ Ha(π).
π ∈Mk+1(Mhak(ξ + µ)) follows from π ∈Mhak(ξ + µ) and π ∈Mk+1.

Let (ζ)∗~ν < ξ+µ andK(ζ)∪K(~ν) ⊂ Ha(π) for ~ν = (ν0, . . . , νn−1). We need
to show that π ∈Mk(Mhak((ζ)∗~ν)). By Definition 2.1.6, let (ζ0)∗(µ0, . . . , µn−1)
be a sequence such that ζ < ζ0 ≤pt ξ + µ, µ0 ≤pt te(ζ0), ∀i ≤ n − 1(νi < µi),
and ∀i < n− 1(µi+1 ≤pt te(µi)).

If ζ0 ≤pt ξ, then (ζ) ∗ ~ν < ξ, and π ∈Mk(Mhak((ζ) ∗ ~ν)) by π ∈Mhak(ξ).
Let ζ0 = ξ + ζ1 with 0 < ζ1 ≤pt µ. If ζ1 <pt µ, then by IH with he(ζ1) =

he(µ) we have π ∈ Mhak(ζ0). On the other hand we have (ζ) ∗ ~ν < ζ0. Hence
π ∈Mk(Mhak((ζ) ∗ ~ν)).

Finally consider the case when 0 < ζ1 = µ. Then we obtain ~ν < te(ξ +
µ) = te(µ) ≤ he(µ) ≤ ξ0. π ∈ Mhak+1(ξ0) with Proposition 2.9 yields π ∈
Mk+1(Mhak+1(~ν)).

On the other side we see π ∈Mhak(ζ) as follows. We have ζ < ξ+µ. If ζ ≤ ξ,
then this follows from π ∈Mhak(ξ) and Proposition 2.9, and if ζ = ξ+λ < ξ+µ,
then IH yields π ∈Mhak(ζ).

Since π ∈ Mhak(ζ) is a Π1
k−1-sentence holding on Lπ by Lemma 2.8.2 and

{a} ∪ K(ζ) ⊂ Ha(π), we obtain π ∈ Mk+1(Mhak((ζ) ∗ ~ν)), a fortiori π ∈
Mk(Mhak((ζ) ∗ ~ν)). ✷

Definition 2.11 For sequences of ordinals ~ξ = (ξk, . . . , ξN−1) and ~ν = (νk, . . . , νN−1)
and 2 ≤ k,m, n ≤ N − 1,

Mham(~ν) ≺k Mhan(
~ξ) :⇔ ∀π ∈Mhan(

~ξ)({a, π}∪K(~ν) ⊂ Ha(π) ⇒ π ∈Mk(Mham(~ν))).

Corollary 2.12 Let ~ν be a sequence defined from a sequence ~ξ as follows. ∀i <
k(νi = ξi), ∀i > k(νi = 0), and νk = ξk + Λξk+1b, where 2 ≤ k < N , b < Λ and

ξk+1 6= 0. Then Mha2(~ν) ≺k+1 Mha2(
~ξ) holds. In particular if π ∈ Mha2(

~ξ) and
K(~ν) ∪ {π, a} ⊂ Ha(π), then ψ

~ν
π(a) < π.

Proof. This is seen from Lemma 2.10. ✷

Proposition 2.13 Let ~ν = (ν2, . . . , νN−1), ~ξ = (ξ2, . . . , ξN−1) be sequences of

ordinals< ε(Λ) such that ~ν <k ~ξ for an integer k with 2 ≤ k ≤ N − 1. Then

Mha2(~ν) ≺k Mha2(
~ξ). In particular if π ∈ Mha2(

~ξ) and K(~ν) ∪ {π, a} ⊂ Ha(π),
then ψ~νπ(a) < π.

Proof. Assume π ∈ Mha2(
~ξ) and K(~ν) ⊂ Ha(π). We have π ∈ Mhak(ξk). By

the definition (2) and (νk, . . . , νN−1) < ξk, we obtain π ∈Mk(
⋂
k≤i≤N−1Mhai (νi)).

On the other hand we have π ∈
⋂
i<kMhai (ξi), and hence π ∈

⋂
i<kMhai (νi)

by ∀i < k(νi ≤ ξi) and Proposition 2.9. Since π ∈
⋂
i<kMhai (νi) is a Π1

k−2-
sentence holding in Lπ, we obtain π ∈ Mk(

⋂
i≤N−1Mhai (νi)) = Mk(Mha2(~ν)),

a fortiori π ∈M2(Mha2(~ν)).
Suppose {π, a} ⊂ Ha(π). The set C = {κ < π : Ha(κ) ∩ π ⊂ κ,K(~ν) ∪

{π, a} ⊂ Ha(κ)} is a club subset of the regular cardinal π. This shows the
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existence of a κ ∈ Mha2(~ν) ∩ C ∩ π, and hence ψ~νπ(a) < π by the definition (3).
✷

Proposition 2.14 Let ~ξ = (ξ2, . . . , ξN−1) be a sequence of ordinals< ε(Λ) such

that {π, a} ∪K(~ξ) ⊂ Ha(π). Assume T l(ξi) < Λk(ξi+k + 1) for some i < N − 1

and k > 0. Then π ∈ Mha2(
~ξ) ⇔ π ∈ Mha2(~µ), where ~µ = (µ2, . . . , µN−1) with

µi = ξi − T l(ξi) and µj = ξj for j 6= i.

Proof. When 0 < ξi = Λγmam + · · · + Λγ1a1 + Λγ0a0 with γm > · · · > γ1 >

γ0, 0 < ai < Λ, µi = Λγmam+ · · ·+Λγ1a1 for T l(ξi) = Λγ0a0. If ξi = 0, then so
is µi = 0.

Let π ∈Mha2(~µ) and T l(ξi) < Λk(ξi+k+1). We obtain ∀j ≤ k(he(j)(T l(ξi)) <
Λk−j(ξi+k + 1)), and he(k)(T l(ξi)) ≤ ξi+k. On the other hand we have π ∈
Mhai+k(ξi+k). From Lemma 2.10 we see inductively that for any j < k, π ∈

Mhai+j(he
(j)(T l(ξi))). In particular π ∈ Mhai+1(he(T l(ξi))), and once again by

Lemma 2.10 and π ∈Mhai (µi) we obtain π ∈Mhai (ξi). Hence π ∈Mha2(
~ξ). ✷

Definition 2.15 A sequence of ordinals ~ξ = (ξ2, . . . , ξN−1) is said to be irre-
ducible iff ∀i < N − 1∀k > 0(ξi > 0 ⇒ T l(ξi) ≥ Λk(ξi+k + 1)).

Proposition 2.16 Let ~ν = (νk, . . . , νN−1) 6= ~0 be an irreducible sequence, and
k0 ≥ k be the least number such that νk0 6= 0. Assume νk0 < he(k0−k)(ξ). Then
~ν < ξ holds in the sense of Definition 2.1.6.

Proof. Let ℓ < N − k be the largest number such that νk+ℓ 6= 0. We show
(νk, . . . , νk+ℓ) < ξ. Since ~ν is irreducible, we have Λi(νk0+i + 1) ≤ T l(νk0).
From νk0 < he(k0−k)(ξ) and te(µ) ≤ he(µ) we obtain νk0+i < νk0+i + 1 ≤
he(i)(νk0) ≤ he(k0−k+i)(ξ). Let (µk, . . . , µN−1) ⊂pt ξ such that µk = Hd(ξ)
and µi+1 = he(µi) = te(Hd(µi)). Then te(µk+i) = he(µk+i) and µk0+i =
he(µk0+i−1) = he(k0−k+i)(ξ) for k0 − k + i > 0. Therefore (µk, . . . , µk+ℓ) ⊂pt ξ
witnesses (νk, . . . , νk+ℓ) < ξ. ✷

Definition 2.17 Let ~ξ = (ξk, . . . , ξN−1), ~ν = (νk, . . . , νN−1) and ~ν 6= ~ξ. Let
i ≥ k be the minimal number such that νi 6= ξi. Suppose (ξi, . . . , ξN−1) 6= ~0,

and let k1 ≥ i be the minimal number such that ξk1 6= 0. Then ~ν <lx,k ~ξ iff one
of the followings holds:

1. (νi, . . . , νN−1) = ~0.

2. In what follows assume (νi, . . . , νN−1) 6= ~0, and let k0 ≥ i be the minimal

number such that νk0 6= 0 (i = min{k0, k1}). Then ~ν <lx,k ~ξ iff one of the
followings holds:

(a) i = k0 < k1 and he(k1−k0)(νk0) ≤ ξk1 .

(b) k0 ≥ k1 = i and νk0 < he(k0−k1)(ξk1 ).

Proposition 2.18 Suppose that both of ~ν and ~ξ are irreducible. Then ~ν <lx,k
~ξ ⇒Mhak(~ν) ≺k Mhak(

~ξ).
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Proof. Let π ∈Mhak(
~ξ), K(~ν) ⊂ Ha(π), and i ≥ k be the minimal number such

that νi 6= ξi. We have π ∈
⋂
k≤j<iMhaj (νj), which is a Π1

i−2-sentence holding on
Lπ. In the case ξi 6= 0, it suffices to show that π ∈Mi(

⋂
j≥iMhaj (νj)), since then

we obtain π ∈Mi(Mhak(~ν)) by π ∈Mhai (ξi) ⊂Mi, a fortiori π ∈Mk(Mhak(~ν)).

If (νi, . . . , νN−1) = ~0, then ξi 6= 0 and
⋂
j≥iMhaj (νj) denotes the class of

limit ordinals. Obviously π ∈Mi(
⋂
j≥iMhaj (νj)).

In what follows assume (νi, . . . , νN−1) 6= ~0, and let k0 ≥ i be the minimal
number such that νk0 6= 0, and k1 ≥ i be the minimal number such that ξk1 6= 0.
Case 1. k0 ≥ k1 = i: Then we have νk0 < he(k0−k1)(ξk1). Proposition 2.16
yields (νk0 , . . . , νN−1) < ξk1 = ξi, which in turn yields π ∈ Mi(

⋂
j≥iMhaj (νj))

by the definition (2) of π ∈Mhai (ξi).

Case 2. i = k0 < k1: Then we have he(k1−i)(νi) ≤ ξk1 . Also νi+p < he(p)(νi) for
any p > 0 since ~ν is irreducible and νi 6= 0. Let j ≥ k1. Then νj < he(j−i)(νi) ≤
he(j−k1)(ξk1). In particular νk1 < ξk1 . Proposition 2.16 yields (νk1 , . . . , νN−1) <
ξk1 . π ∈ Mhak1(ξk1 ) yields π ∈ Mk1(

⋂
j≥k1

Mhaj (νj)). Moreover for any p <

k1 − i, he(k1−i−p)(νi+p) ≤ ξk1 by Proposition 2.2. Lemma 2.10 yields π ∈⋂
k1>j≥i

Mhaj (νj). Therefore π ∈ Mk1(Mhak(~ν)), a fortiori π ∈ Mk(Mhak(~ν)).
✷

Proposition 2.19 (Cf. Proposition 4.20 in [8])

Let ~ν = (ν2, . . . , νN−1), ~ξ = (ξ2, . . . , ξN−1) be irreducible sequences of ordinals<

ε(Λ), and assume that ψ~νπ(b) < π and ψ
~ξ
κ(a) < κ.

Then β1 = ψ~νπ(b) < ψ
~ξ
κ(a) = α1 iff one of the following cases holds:

1. π ≤ ψ
~ξ
κ(a).

2. b < a, ψ~νπ(b) < κ and K(~ν) ∪ {π, b} ⊂ Ha(ψ
~ξ
κ(a)).

3. b > a and K(~ξ) ∪ {κ, a} 6⊂ Hb(ψ
~ν
π(b)).

4. b = a, κ < π and κ 6∈ Hb(ψ
~ν
π(b)).

5. b = a, π = κ, K(~ν) ⊂ Ha(ψ
~ξ
κ(a)), and ~ν <lx,2

~ξ.

6. b = a, π = κ, K(~ξ) 6⊂ Hb(ψ
~ν
π(b)).

Proof. If the case (2) holds, then ψ~νπ(b) ∈ Ha(ψ
~ξ
κ(a)) ∩ κ ⊂ ψ

~ξ
κ(a).

If one of the cases (3) and (4) holds, then K(~ξ) ∪ {κ, a} 6⊂ Ha(ψ
~ν
π(b)). On

the other hand we have K(~ξ) ∪ {κ, a} ⊂ Ha(ψ
~ξ
κ(a)). Hence ψ

~ν
π(b) < ψ

~ξ
κ(a).

If the case (5) holds, then Proposition 2.18 yields Mha2(~ν) ≺2 Mha2(
~ξ) ∋

ψ
~ξ
κ(a). Hence ψ

~ξ
κ(a) ∈ M2(Mha2(~ν)). Since K(~ν) ∪ {κ, a} ⊂ Ha(ψ

~ξ
κ(a)), the set

{ρ < ψ
~ξ
κ(a) : Ha(ρ)∩ κ ⊂ ρ,K(~ν)∪ {κ, a} ⊂ Ha(ρ)} is club in ψ

~ξ
κ(a). Therefore

ψ~νπ(b) = ψ~νκ(a) < ψ
~ξ
κ(a) by (3) in Definition 2.5.3.

Finally assume that the case (6) holds. Since K(~ξ) ⊂ Ha(ψ
~ξ
κ(a)), ψ

~ν
π(b) <

ψ
~ξ
κ(a) holds.
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Conversely assume that ψ~νπ(b) < ψ
~ξ
κ(a) and ψ

~ξ
κ(a) < π.

First consider the case b < a. Then we have K(~ν) ∪ {π, b} ⊂ Hb(ψ
~ν
π(b)) ⊂

Ha(ψ
~ξ
κ(a)). Hence (2) holds.

Next consider the case b > a. K(~ξ)∪{κ, a} ⊂ Hb(ψ
~ν
π(b)) would yield ψ

~ξ
κ(a) ∈

Hb(ψ
~ν
π(b)) ∩ π ⊂ ψ~νπ(b), a contradiction ψ

~ξ
κ(a) < ψ~νπ(b). Hence (3) holds.

Finally assume b = a. Consider the case κ < π. κ ∈ Hb(ψ
~ν
π(b)) ∩ π would

yield ψ
~ξ
κ(a) < κ < ψ~νπ(b), a contradiction. Hence κ 6∈ Hb(ψ

~ν
π(b)), and (4) holds.

If π < κ, then π ∈ Hb(ψ
~ν
π(b)) ∩ κ ⊂ Ha(ψ

~ξ
κ(a)) ∩ κ, and π < ψ

~ξ
κ(a), a contradic-

tion, or we should say that (1) holds. Finally let π = κ. We can assume that

K(~ξ) ⊂ Hb(ψ
~ν
π(b)), otherwise (6) holds. If ~ξ <lx,2 ~ν, then by (5) ψ

~ξ
κ(a) < ψ~νπ(b)

would follow. If K(~ν) 6⊂ Ha(ψ
~ξ
κ(a)), then by (6) again ψ

~ξ
κ(a) < ψ~νπ(b) would

follow. Hence K(~ν) ⊂ Ha(ψ
~ξ
κ(a)) and ~ν ≤lx ~ξ. If ~ν = ~ξ, then ψ

~ξ
κ(a) = ψ~νπ(b).

Therefore (5) must be the case. ✷

Definition 2.20 is utilized to define a computable notation system in the next
section 3.

Definition 2.20 A set SD of sequences ~ξ = (ξ2, . . . , ξN−1) of ordinals ξi < ε(Λ)
is defined recursively as follows.

1. ~0 ∗ (a) ∈ SD for each a < Λ.

2. (Cf. Definition 2.1.9.) Let ~ξ = (ξ2, . . . , ξN−1) ∈ SD, 1 ≤ k < N − 1, ζ <
ε(Λ) be an ordinal such that (ξk+1, . . . , ξN−1) <sd ζ, and (ξ2, . . . , ξk−1, ξk, ζ)∗
~0 ∈ SD. Then for ζk = ξk + Λζa with an ordinal a < Λ, (ξ2, . . . , ξk−1) ∗
(ζk) ∗ (ξk+1, . . . , ξN−1) ∈ SD and (ξ2, . . . , ξk−1) ∗ (ζk) ∗ ~0 ∈ SD.

Proposition 2.21 Let ~ξ = (ξ2, . . . , ξN−1) ∈ SD.

1. (ξ2, . . . , ξi) ∗ ~0 ∈ SD for each i with 1 ≤ i < N .

2. For 2 ≤ i < j < k < N , if ξi 6= 0 and ξk 6= 0, then ξj 6= 0.

3. Let ξi 6= 0. Then (ξi+1, . . . , ξN−1) <sd te(ξi).

4. ~ξ is irreducible.

Proof. Let 1 ≤ k < N−1, ζ < ε(Λ) be an ordinal such that (ξk+1, . . . , ξN−1) <sd
ζ, and (ξ2, . . . , ξk−1, ξk, ζ) ∗ ~0 ∈ SD. Also let ζk = ξk + Λζa with an ordinal
a < Λ.
2.21.1 is seen by induction on the recursive definition of ~ξ ∈ SD.
2.21.2 is seen by induction on the recursive definition of ~ξ ∈ SD. Suppose ξi 6= 0
for an i < k. From (ξ2, . . . , ξk−1, ξk, ζ) ∗ ~0 ∈ SD and ζ 6= 0, IH yields ξk 6= 0.
2.21.3 and 2.21.4. We show these by simultaneous induction on the recursive
definition of ~ξ ∈ SD.
2.21.3. We show Proposition 2.21.3 for the sequence (ξ2, . . . , ξk−1) ∗ (ζk) ∗

(ξk+1, . . . , ξN−1) ∈ SD. The proposition holds for the sequence ~ξ, and we can
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assume a 6= 0. We obtain (ξi+1, . . . , ξN−1) <sd te(ξi) for i > k if ξi 6= 0, and
(ξk+1, . . . , ξN−1) <sd te(ζk) = ζ by the assumption. Let 2 ≤ i < k and ξi 6= 0.
We show (ξi+1, . . . , ξk−1) ∗ (ζk) ∗ (ξk+1, . . . , ξN−1) <sd te(ξi). It suffices to show
that ζk <sd te

(k−i)(ξi). By IH we have ξk <sd te
(k−i)(ξi). On the other hand

we have ξk 6= 0 by (ξ2, . . . , ξk−1, ξk, ζ) ∗ ~0 ∈ SD, ζ 6= 0, and Proposition 2.21.2.
Moreover (ξ2, . . . , ξk−1, ξk, ζ) ∗~0 is irreducible by Proposition 2.21.4, and hence
T l(ξk) ≥ Λζ+1. Therefore te(ξk) > ζ. This means that ζk =NF ξk + Λζa, and
ξk <sd te

(k−i)(ξi) yields ζk <sd te
(k−i)(ξi) by Definition 2.1.8.

2.21.4. If (ξi+1, . . . , ξN−1) <sd te(ξi) for ξi 6= 0, then ξi+k <sd te
(k)(ξi) for

k > 0, and ξi+k + 1 ≤ te(k)(ξi). Hence Λk(ξi+k + 1) ≤ Λte(ξi) ≤ T l(ξi), and ~ξ is
irreducible. ✷

3 Computable notation system OT

In this section (except Propositions 3.3) we work in a weak fragment of arith-
metic, e.g., in the fragment IΣ1 or even in the bounded arithmetic S1

2 . Referring
Proposition 2.19 the sets of ordinal terms OT ⊂ Λ = εK+1 and E ⊂ ε(Λ) = εK+2

over symbols {0,K,Λ,+, ω, ϕ,Ω, ψ} are defined recursively. OT is isomorphic
to a subset of HΛ(0). Simultaneously we define finite sets Kδ(α) ⊂ OT for
δ, α ∈ OT , and sequences (mk(α))2≤k≤N−1 for α ∈ OT ∩K, where in α = ψ~νπ(a),
mk(α) = νk, i.e., ~ν = (ν2, . . . , νN−1) = (m2(α), . . . ,mN−1(α)) = (mk(α))k =
~m(α). For {α0, . . . , αm, β} ⊂ OT ,Kδ(α0, . . . , αm) :=

⋃
i≤mKδ(αi),Kδ(α0, . . . , αm) <

β :⇔ ∀γ ∈ Kδ(α0, . . . , αm)(γ < β), and β ≤ Kδ(α0, . . . , αm) :⇔ ∃γ ∈ Kδ(α0, . . . , αm)(β ≤
γ).

An ordinal term in OT is said to be a regular term if it is one of the form
K, Ωβ+1 or ψ~νπ(a) with the non-zero sequences ~ν 6= ~0. K and the latter terms
ψ~νπ(a) are Mahlo terms.

α =NF αm + · · · + α0 means that α = αm + · · · + α0 and αm ≥ · · · ≥ α0

and each αi is a non-zero additive principal number. α =NF ϕβγ means that
α = ϕβγ and β, γ < α. α =NF ωβ means that α = ωβ > β. α =NF Ωβ means
that α = Ωβ > β.

Let pd(ψ~νπ(a)) = π (even if ~ν = ~0). Moreover for n, pd(n)(α) is defined
recursively by pd(0)(α) = α and pd(n+1)(α) ≃ pd(pd(n)(α)).

For terms π, κ ∈ OT , π ≺ κ denotes the transitive closure of the relation

{(π, κ) : ∃~ξ∃b[π = ψ
~ξ
κ(b)]}, and its reflexive closure π � κ :⇔ π ≺ κ ∨ π = κ ⇔

∃n(κ = pd(n)(π)).
For each ordinal term α = ψ~νπ(a), a series (πi)i≤L of ordinal terms is uniquely

determined as follows: πL = α, πi = pd(πi+1) and π0 = K. Let us call the series
(πi)i≤L the collapsing series of α = πL.

Then we see that an ordinal term α = ψ~νπ(a) with ~ν 6= ~0 is constructed by
Definition 3.1.2g below iff L = 1. α is constructed by Definition 3.1.2i iff L ≡ 1
(mod (N − 2)). Otherwise α is constructed by Definition 3.1.2h.

Definition 3.1 ℓα denotes the number of occurrences of symbols
{0,K,Λ,+, ω, ϕ,Ω, ψ} in terms α ∈ OT ∪ E.
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1. (a) 0 ∈ E.

(b) If 0 < a ∈ OT , then a ∈ E. K(a) = {a}.

(c) If {ξi : i ≤ m} ⊂ E, ξm > · · · > ξ0 > 0 and 0 < bi ∈ OT , then∑
i≤m Λξibi = Λξmbm + · · ·+ Λξ0b0 ∈ E. K(

∑
i≤m Λξibi) = {bi : i ≤

m} ∪
⋃
{K(ξi) : i ≤ m}.

(d) For sequences ~ν = (ν2, . . . , νN−1), let K(~ν) =
⋃

2≤i≤N−1K(νi).

2. (a) 0,K ∈ OT . mk(0) = 0 for any k, and Kδ(0) = Kδ(K) = ∅.

(b) If α =NF αm + · · · + α0 (m > 0) with {αi : i ≤ m} ⊂ OT , then
α ∈ OT , and mk(α) = 0 for any k. Kδ(α) = Kδ(α0, . . . , αm).

(c) If α =NF ϕβγ with {β, γ} ⊂ OT ∩ K, then α ∈ OT , and mk(α) = 0
for any k. Kδ(α) = Kδ(β, γ).

(d) If α =NF ωβ with K < β ∈ OT , then α ∈ OT , and mk(α) = 0 for
any k. Kδ(α) = Kδ(β).

(e) If α =NF Ωβ with β ∈ OT ∩K, then α ∈ OT . m2(α) = 1,mk(α) = 0
for any k > 2 if β is a successor ordinal. Otherwise mk(α) = 0 for
any k. In each case Kδ(α) = Kδ(β).

(f) Let α = ψπ(a) := ψ
~0
π(a) where π is a regular term , i.e., either π = K

or ~m(π) 6= ~0, and Kα(π, a) < a.

Then α = ψπ(a) ∈ OT . Let mk(α) = 0 for any k. Kδ(ψπ(a)) = ∅ if
α < δ. Kδ(ψπ(a)) = {a} ∪Kδ(a, π) otherwise.

(g) Let α = ψ~ν
K
(a) with ~ν = ~0 ∗ (b) (lh(~ν) = N − 2) and b, a ∈ OT such

that 0 < b ≤ a and Kα(b, a) < a.

Then α = ψ~ν
K
(a) ∈ OT . Let mN−1(α) = b, mk(α) = 0 for k < N − 1.

Kδ(ψ
~ν
K
(a)) = ∅ if α < δ. Kδ(ψ

~ν
K
(a)) = {a} ∪

⋃
{Kδ(γ) : γ ∈ K(ν)}

otherwise.

(h) Let π ∈ OT ∩K be such thatmk+1(π) 6= 0 and ∀i > k+1(mi(π) = 0)
for a k (2 ≤ k ≤ N − 2), and b, a ∈ OT such that 0 < b ≤ a. Let
~ν = (ν2, . . . , νN−1) be a sequence defined by ∀i < k(νi = mi(π)),
νk = mk(π) + Λmk+1(π)b, and ∀i > k(νi = 0).

Then α = ψ~νπ(a) ∈ OT if Kα(π, a, b) ∪ Kα(K(~m(π))) < a. Let
mi(α) = νi for each i. Kδ(ψ

~ν
π(a)) = ∅ if α < δ. OtherwiseKδ(ψ

~ν
π(a)) =

{a} ∪Kδ(a, π) ∪
⋃
{Kδ(b) : b ∈ K(~ν)}.

(i) Let π ∈ OT ∩K be such that m2(π) 6= 0 and ∀i > 2(mi(π) = 0), and
a ∈ OT . Let ~0 6= ~ν = (ν2, . . . , νN−1) ∈ SD be a sequence of ordinal
terms νi ∈ E such that ~ν <sp m2(π).

Then α = ψ~νπ(a) if Kα(π, a) < a, and

∀k(Kα(νk) < maxK(νk)) (4)

Let mi(α) = νi for each i.

Kδ(ψ
~ν
π(a)) = ∅ if α < δ. Otherwise Kδ(ψ

~ν
π(a)) = {a} ∪ Kδ(a, π) ∪⋃

{Kδ(b) : b ∈ K(~ν)}.
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Let {π, a, ξ} ⊂ Ha(π). Then ξ = mk(π) is intended to be equivalent to
π ∈Mhak(ξ). For Definition 3.1.2h, see Corollary 2.12, and for Definition 3.1.2i,
see Proposition 2.13.

Proposition 3.2 For each Mahlo term α = ψ~νπ(a) ∈ OT , ~m(α) = ~ν ∈ SD for
the class SD in Definition 2.20.

Proposition 3.3 For any α ∈ OT and any δ such that δ = 0,K or δ = ψ~νπ(b)
for some π, b, ~ν, α ∈ Hγ(δ) ⇔ Kδ(α) < γ.

Proof. By induction on ℓα. ✷

Lemma 3.4 (OT,<) is a computable notation system of ordinals. In particular
the order type of the initial segment {α ∈ OT : α < Ω1} is less than ωCK1 .

Specifically each of α < β and α = β is decidable for α, β ∈ OT , and α ∈ OT

is decidable for terms α over symbols {0,K,Λ,+, ω, ϕ,Ω, ψ}.

Proof. These are shown simultaneously referring Propositions 2.19 and 3.3.
Let us give recursive definitions only for terms Ωα, ψ

~ν
κ(a) ∈ OT .

First Ωψ~ν
κ(a)

= ψ~νκ(a), i.e., Ωα < ψ~νκ(a) ⇔ α < ψ~νκ(a), ψ
~ν
κ(a) < Ωα ⇔

ψ~νκ(a) < α. Next Ωα < ψΩα+1(a) < Ωα+1.

Finally for ψ~νπ(b), ψ
~ξ
κ(a) ∈ OT , ψ~νπ(b) < ψ

~ξ
κ(a) iff one of the following cases

holds:

1. π ≤ ψ
~ξ
κ(a).

2. b < a, ψ~νπ(b) < κ, and K
ψ

~ξ
κ(a)

({π, b} ∪K(~ν)) < a.

3. b ≥ a, and b ≤ Kψ~ν
π(b)

({κ, a} ∪K(~ξ)).

4. b = a, π = κ, K
ψ

~ξ
κ(a)

(K(~ν)) < a, and ~ν <lx,2 ~ξ.

✷

Proposition 3.5 1. Let β = ψ~νπ(b) with π = ψ
~ξ
κ(a). Then a < b.

2. For α = ψ~νπ(a) ∈ OT , maxK(~ν) ≤ a holds.

Proof. 3.5.1. Let β = ψ~νπ(b) with π = ψ
~ξ
κ(a). Then Kβ({π, b}∪K(~ν)) < b. On

the other hand we have β < π. Hence a ∈ Kβ(π) < b.

3.5.2. This is seen by induction on ℓα. Ww have c < a by Proposition 3.5.1
when π = ψ~µσ(c)

When α is constructed by Definition 3.1.2h, νk = mk(π) + Λmk+1(π)b holds
for b ≤ a. By IH we have maxK(~m(π)) ≤ c < a when π = ψ~µσ(c).

Suppose α is constructed by Definition 3.1.2i. We obtain ~ν <sp m2(π), and
hence maxK(~ν) ≤ maxK(m2(π)) ≤ c < a by IH. ✷
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4 Operator controlled derivations

In this section, operator controlled derivations are defined, which are introduced
by W. Buchholz [6].

In this and the next sections except otherwise stated α, β, γ, . . . , a, b, c, d, . . .
range over ordinal terms in OT ⊂ HΛ(0), ξ, ζ, ν, µ, ι, . . . range over ordinal

terms in E, ~ξ, ~ζ, ~ν, ~µ,~ι, . . . range over finite sequences over ordinal terms in E,
and π, κ, ρ, σ, τ, λ, . . . range over regular ordinal terms K, Ωβ+1, ψ

~ν
π(a) with

~ν 6= ~0. Reg denotes the set of regular ordinal terms. We write α ∈ Ha(β) for
Kβ(α) < a.

4.1 Classes of sentences

Following Buchholz [6] let us introduce a language for ramified set theory RS.

Definition 4.1 RS-terms and their levels are inductively defined.

1. For each α ∈ OT ∩K, Lα is an RS-term of level α.

2. If φ(x, y1, . . . , yn) is a set-theoretic formula in the language {∈}, and
a1, . . . , an are RS-terms of levels< α, then [x ∈ Lα : φLα(x, a1, . . . , an)] is
an RS-term of level α.

Each ordinal term α is denoted by the ordinal term [x ∈ Lα : x is an ordinal],
whose level is α.

Definition 4.2 1. |a| denotes the level of RS-terms a, and Tm(α) the set of
RS-terms of level< α. Tm = Tm(K) is then the set of RS-terms, which
are denoted by a, b, c, d, . . .

2. RS-formulas are constructed from literals a ∈ b, a 6∈ b by propositional
connectives ∨,∧, bounded quantifiers ∃x ∈ a, ∀x ∈ a and unbounded
quantifiers ∃x, ∀x. Unbounded quantifiers ∃x, ∀x are denoted by ∃x ∈
LK, ∀x ∈ LK, resp.

3. For RS-terms and RS-formulas ι, k(ι) denotes the set of ordinal terms α
such that the constant Lα occurs in ι.

4. For a set-theoretic Σn-formula ψ(x1, . . . , xm) in {∈} and a1, . . . , am ∈
Tm(κ), ψLκ(a1, . . . , am) is a Σn(κ)-formula, where n = 0, 1, 2, . . . and
κ ≤ K. Πn(κ)-formulas are defined dually.

5. For θ ≡ ψLκ(a1, . . . , am) ∈ Σn(κ) and λ < κ, θ(λ,κ) :≡ ψLλ(a1, . . . , am).

Note that the level |t| = max({0} ∪ k(t)) for RS-terms t. In what follows we
need to consider sentences. Sentences are denoted A,C possibly with indices.

The assignment of disjunctions and conjunctions to sentences is defined as
in [6].
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Definition 4.3 1. For b, a ∈ Tm(K) with |b| < |a|,

(bεa) :≡

{
A(b) if a ≡ [x ∈ Lα : A(x)]
b 6∈ L0 if a ≡ Lα

and (a = b) :≡ (∀x ∈ a(x ∈ b) ∧ ∀x ∈ b(x ∈ a)).

2. For b, a ∈ Tm(K) and J := Tm(|a|)

(b ∈ a) :≃
∨

(cεa ∧ c = b)c∈J and (b 6∈ a) :≃
∧

(c 6 εa ∨ c 6= b)c∈J

3. (A0 ∨A1) :≃
∨
(Aι)ι∈J and (A0 ∧ A1) :≃

∧
(Aι)ι∈J for J := 2.

4. For a ∈ Tm(K) ∪ {LK} and J := Tm(|a|)

∃x ∈ aA(x) :≃
∨

(bεa∧A(b))b∈J and ∀x ∈ aA(x) :≃
∧

(b 6 εa∨A(b))b∈J .

The rank rk(ι) of sentences or terms ι is defined as in [6].

Definition 4.4 1. rk(¬A) := rk(A).

2. rk(Lα) = ωα.

3. rk([x ∈ Lα : A(x)]) = max{ωα+ 1, rk(A(L0)) + 2}.

4. rk(a ∈ b) = max{rk(a) + 6, rk(b) + 1}.

5. rk(A0 ∨ A1) := max{rk(A0), rk(A1)}+ 1.

6. rk(∃x ∈ aA(x)) := max{ωrk(a), rk(A(L0)) + 2} for a ∈ Tm(K) ∪ {LK}.

Proposition 4.5 Let A be a sentence with A ≃
∨
(Aι)ι∈J or A ≃

∧
(Aι)ι∈J .

1. rk(A) < K+ ω.

2. |A| ≤ rk(A) ∈ {ω|A|+ i : i ∈ ω}.

3. ∀ι ∈ J(rk(Aι) < rk(A)).

4. rk(A) < λ⇒ A ∈ Σ0(λ)

4.2 Operator controlled derivations

By an operator we mean a map H, H : P(OT ) → P(OT ), such that

1. ∀X ⊂ OT [X ⊂ H(X)].

2. ∀X,Y ⊂ OT [Y ⊂ H(X) ⇒ H(Y ) ⊂ H(X)].
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For an operatorH and Θ,Θ1 ⊂ OT , H[Θ](X) := H(X∪Θ), andH[Θ][Θ1] :=
(H[Θ])[Θ1], i.e., H[Θ][Θ1](X) = H(X ∪Θ ∪Θ1).

Obviously Hα is an operator for any α, and if H is an operator, then so is
H[Θ].

Sequents are finite sets of sentences, and inference rules are formulated in
one-sided sequent calculus. Let H = Hγ (γ ∈ OT ) be an operator, Θ a finite set
of K, Γ a sequent, a ∈ OT and b ∈ OT ∩ (K+ ω).

We define a relation (Hγ ,Θ) ⊢ab Γ, which is read ‘there exists an infinitary
derivation of Γ which is Θ-controlled by Hγ , and whose height is at most a and
its cut rank is less than b’.

κ, λ, σ, τ, π ranges over regular ordinal terms.

Definition 4.6 (Hγ ,Θ) ⊢ab Γ holds if

k(Γ) ∪ {a} ⊂ Hγ [Θ] (5)

and one of the following cases holds:

(
∨
) A ≃

∨
{Aι : ι ∈ J}, A ∈ Γ and there exist ι ∈ J and a(ι) < a such that

|ι| < a (6)

and (Hγ ,Θ) ⊢
a(ι)
b Γ, Aι.

(
∧
) A ≃

∧
{Aι : ι ∈ J}, A ∈ Γ and for every ι ∈ J there exists an a(ι) < a such

that (Hγ ,Θ ∪ {k(ι)}) ⊢
a(ι)
b Γ, Aι.

(cut) There exist a0 < a and C such that rk(C) < b and (Hγ ,Θ) ⊢a0b Γ,¬C and
(Hγ ,Θ) ⊢a0b C,Γ.

(Ω ∈M2) There exist ordinals aℓ, ar(α) and a sentence C ∈ Π2(Ω) such that
sup{aℓ + 1, ar(α) + 1 : α < Ω} ≤ a, b ≥ Ω, (Hγ ,Θ) ⊢aℓb Γ, C and (Hγ ,Θ∪

{ωα}) ⊢
ar(α)
b ¬C(α,Ω),Γ for any α < Ω.

(rfl(π, k, ~ξ, ~ν)) There exist a Mahlo ordinal K ≥ π ∈ Hγ [Θ]∩ (b+ 1), an integer

2 ≤ k ≤ N and sequences ~ν = (ν2, . . . , νN−1), ~ξ = (ξ2, . . . , ξN−1) ∈ SD

of ordinals νi, ξi ∈ E, ordinals aℓ, ar(ρ), a0, and a finite set ∆ of Σk(π)-
sentences enjoying the following conditions: When π = K, k = N and
~ν = ~0 with lh(~ν) = N − 1 hold. Also let ~ξ = ~0 in this case. When π < K,

ξk 6= 0 with k < N , ~0 6= ~ξ, and ∀i(ξi ≤sp mi(π)).

1. When π < K, cf. Definitions 2.1.9,

∀i < k(νi = ξi)& (νk, . . . , νN−1) <sd ξk &K(~ν)∪K(~ξ) ⊂ Hγ [Θ] (7)

and
∀µ ∈ ~ν ∪ ~ξ ∪ ~m(π)(K(µ) ⊂ HmaxK(µ)[Θ]) (8)

cf. (4).
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2. For each δ ∈ ∆, (Hγ ,Θ) ⊢aℓb Γ,¬δ.

3. H(~ν, π, γ,Θ) denotes the resolvent class for ~ν, π, γ and Θ defined as
follows:

C(π, γ,Θ) := {ρ < π : Hγ(ρ) ∩ π ⊂ ρ&Θ ∩ π ⊂ ρ} (9)

ρ ∈ H(~ν, π, γ,Θ) :⇔ ∀i(νi ≤sp mi(ρ) ∧K(mi(ρ)) ⊂ HmaxK(mi(ρ))(ρ))

for ρ ∈ Reg ∩ C(π, γ,Θ).

Then for each ρ ∈ H(~ν, π, γ,Θ), (Hγ ,Θ ∪ {ρ}) ⊢
ar(ρ)
b Γ,∆(ρ,π).

4.
sup{aℓ, ar(ρ) : ρ ∈ H(~ν, π, γ,Θ)} ≤ a0 ∈ Hγ [Θ] ∩ a (10)

In the inference rule (rfl(π, k, ~ξ, ~ν)) for π = ψ
~ξ
σ(c) < K, we have π ∈

Mhc2(
~ξ). In particular, π ∈

⋂
i<kMhci(ξi) ∩Mhck(ξk). Also we are assuming

(νk, . . . , νN−1) <sd ξk, a fortiori (νk, . . . , νN−1) < ξk. Since π ∈
⋂
i<kMhci(νi)

is a Πk-sentence holding on Lπ, we obtain π ∈ Mk(Mhc2(~ν)). Thus the reflec-
tion rule (rfl(π, k, ~ν)) says that π is Πk-reflecting on the class H(~ν, π, γ, γ0,Θ)
for the club subset C(π, γ,Θ) of π, cf. Proposition 2.13. On the other side we
see ρ ∈Mha2(~ν) from Proposition 2.9 if ∀i(νi ≤ mi(ρ)) for ρ ∈Mha2(~m(ρ)).

We will state some lemmas for the operator controlled derivations. These
can be shown as in [6]. In what follows by an operator H we mean an Hγ for
an ordinal γ.

Lemma 4.7 Let (Hγ ,Θ) ⊢ab Γ.

1. (Hγ′ ,Θ ∪ Θ0) ⊢a
′

b′ Γ,∆ for any γ′ ≥ γ, any Θ0, and any a′ ≥ a, b′ ≥ b

such that k(∆) ∪ {a′} ⊂ Hγ′ [Θ ∪Θ0].

2. Assume Θ1 ∪ {c} = Θ, c ∈ Hγ [Θ1]. Then (Hγ ,Θ1) ⊢ab Γ.

Lemma 4.8 (Tautology) (H, k(Γ ∪ {A})) ⊢
2rk(A)
0 Γ,¬A,A.

Lemma 4.9 (Inversion) Let A ≃
∧
(Aι)ι∈J , and (H,Θ) ⊢ab Γ with A ∈ Γ. Then

for any ι ∈ J , (H,Θ ∪ k(ι)) ⊢ab Γ, Aι holds.

Lemma 4.10 (Boundedness) Suppose (H,Θ) ⊢ac Γ, C for a C ∈ Σ1(λ), and
a ≤ b ∈ H ∩ λ. Then (H,Θ) ⊢ac Γ, C(b,λ).

Lemma 4.11 (Persistency) Suppose (H,Θ) ⊢ac Γ, C(b,λ) for a C ∈ Σ1(λ) and
a b < λ ∈ H[Θ]. Then (H,Θ) ⊢ac Γ, C.

Lemma 4.12 (Predicative Cut-elimination) Suppose (H,Θ) ⊢bc+ωa Γ, a ∈ H[Θ]
and ]c, c+ ωa] ∩Reg = ∅. Then (H,Θ) ⊢ϕabc Γ.

Lemma 4.13 (Embedding of Axioms)
For each axiom A in KPΠN , there is an m < ω such that for any operator
H = Hγ , (H, ∅) ⊢K·2

K+m A holds.

18



Proof. The axiom ¬A, ∃z A(z) for ΠN -reflection follows from A,¬A and
∃z A(z),¬A(ρ) for regular ordinals ρ < K by an inference (rfl(K, N,~0,~0)). ✷

Lemma 4.14 (Embedding) If KPΠN ⊢ Γ for sets Γ of sentences, there are
m, k < ω such that for any operator H = Hγ , (H, ∅) ⊢

K·2+k
K+m Γ holds

5 Lowering and eliminating higher Mahlo oper-

ations

In the section inferences (rfl(K, N,~0,~0)) for ΠN -reflecting ordinals K are elimi-
nated from operator controlled derivations of Σ1-sentences ϕ

LΩ over Ω.
α#β denotes the natural (commutative) sum of ordinal terms α, β.

Lemma 5.1 For a Mahlo term π ∈ OT , ~ξ ∈ SD denotes a sequence with
lh(~ξ) = N − 2, and 2 ≤ k ≤ N − 1 an integer for which the following hold:

When π = K, let ~ξ = ~0 and k = N − 1. Otherwise ~ξ = (ξ2, . . . , ξk+1) ∗ ~0 with
ξk+1 6= 0 such that ∀i ≤ k + 1(ξi ≤sp mi(π)).

For ordinal terms γ, a ∈ OT let us define a sequence ~ζ(a) := (ζ2(a), . . . , ζk(a))∗
~0 with lh(~ζ(a)) = N − 2 as follows. ~ζ(a) = ~0 ∗ (γ + a) when π = K. Otherwise
ζk(a) = ξk + Λξk+1(γ + a) and ζi(a) = ξi for i < k.

Let κ ∈ H(~ζ(a), π, γ,Θ) for a finite set Θ ⊂ OT .

Now suppose (Hγ ,Θ) ⊢aπ Γ where {γ, π}∪K(~ξ) ⊂ Hγ [Θ], Θ ⊂ π, ∀i(K(ξi) ⊂
HmaxK(ξi)[Θ]), and Γ ⊂ Πk+1(π).

Let γ(a, b) = γ#a#b, β(a, b) = ψπ(γ(a, b)), and c > γ(a, κ). Then the
following holds:

(Hc,Θ ∪ {κ}) ⊢β(a,κ)κ Γ(κ,π) (11)

Proof by induction on a. Let κ ∈ H(~ζ(a), π, γ,Θ). We see ~ζ(a) ∈ SD, and
from (5) and Θ ⊂ κ that

k(Γ) ∩ π ⊂ Hγ(κ) ∩ π ⊂ κ (12)

For any a ∈ Hγ [Θ], we obtain {γ, π, a, κ} ⊂ Hγ(π) by Θ∪{κ} ⊂ π. Hence for
γ(a, κ) = γ#a#κ, {γ(a, κ), π} ⊂ Hγ(π), and {γ(a, κ), π} ⊂ Hγ(a,κ)(β(a, κ)) by
the definition (3). Therefore κ ∈ Hγ(a,κ)(β(a, κ)) ∩ π ⊂ β(a, κ) by Proposition
2.6, and Θ ⊂ β(a, κ) < π. Thus we obtain

{a0, a1} ⊂ Hγ [Θ ∪Θ0] & a0 < a1 &Θ0 ⊂ κ⇒ β(a0, κ) < β(a1, κ).

Case 1. First consider the case when the last inference is a (rfl(π, k + 1, ~ξ, ~ν)).
We have aℓ ∈ Hγ [Θ] ∩ a, ar(ρ) ∈ Hγ [Θ ∪ {ρ}] ∩ a, and a finite set ∆ of

Σk+1(π)-sentences. We have for each δ ∈ ∆

(Hγ ,Θ) ⊢aℓπ Γ,¬δ (13)
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and for each ρ ∈ H(~ν, π, γ,Θ)

(Hγ ,Θ ∪ {ρ}) ⊢ar(ρ)π Γ,∆(ρ,π) (14)

When π < K, ~ν = (ν2, . . . , νN−1) ∈ SD is a sequence such that ∀i <

k+1(νi = ξi), (νk+1, . . . , νN−1) <sd ξk+1,K(~ν)∪K(~ξ) ⊂ Hγ [Θ], and ∀i(K(νi) ⊂
HmaxK(νi)[Θ]), cf. (7) and (8).

Let Γ0 = Γ ∩ Σk(π) and {∀x ∈ Lπ θi(x) : i = 1, . . . , n} (n ≥ 0) = Γ \ Γ0

for Σk(π)-formulas θi(x). Let us fix ~d = {d1, . . . , dn} ⊂ Tm(κ) arbitrarily. Put

k(~d) =
⋃
{k(di) : i = 1, . . . , n} and Γ(~d) = Γ0 ∪ {θi(di) : i = 1, . . . , n}.

By Inversion lemma 4.9 from (13) we obtain for each δ ∈ ∆

(Hγ ,Θ ∪ k(~d)) ⊢aℓπ Γ(~d),¬δ (15)

Let ρ ∈ C(κ, c,Θ∪{κ}∪k(~d)). We see ρ < κ, and k(~d) < ρ from k(~d) < κ. By

Θ∩π ⊂ Hγ(κ)∩π ⊂ κ and γ ≤ c we obtain C(κ, c,Θ∪{κ}∪k(~d)) ⊂ C(π, γ,Θ).
Namely, cf. (9)

ρ ∈ H(~ν, κ, c,Θ ∪ {κ} ∪ k(~d)) ⇒ ρ ∈ H(~ν, π, γ,Θ) (16)

For each ρ ∈ H(~ν, κ, c,Θ ∪ {κ} ∪ k(~d)), IH with (14) and (16) yields for c >

γ(ar(ρ), κ) and κ ∈ H(~ζ(ar(ρ)), π, γ,Θ ∪ {ρ})

(Hc,Θ ∪ {ρ, κ}) ⊢β(ar(ρ),κ)κ Γ(κ,π),∆(ρ,π) (17)

Let ρ ∈ Mℓ := {ρ ∈ Reg : ∀i(ζi(aℓ) ≤sp mi(ρ))} ∩ H(~ν, κ, c,Θ ∪ {κ} ∪ k(~d)).

Then Mℓ ⊂ H(~ζ(aℓ), π, γ,Θ ∪ k(~d)) and Θ ∪ k(~d) ⊂ ρ. For each δ ∈ ∆, IH with
(15) yields for c > γ(aℓ, ρ)

(Hc,Θ ∪ k(~d) ∪ {ρ}) ⊢β(aℓ,ρ)ρ Γ(~d)(ρ,π),¬δ(ρ,π) (18)

From (17) and (18) by several (cut)’s of δ(ρ,π) with rk(δ(ρ,π)) < κ we obtain for
a(ρ) = max{aℓ, ar(ρ)} and some p < ω

{(Hc,Θ ∪ k(~d) ∪ {κ, ρ}) ⊢β(a(ρ),κ)+pκ Γ(~d)(ρ,π),Γ(κ,π) : ρ ∈Mℓ} (19)

On the other hand we have by Tautology lemma 4.8 for each θ(~d)(κ,π) ∈ Γ(~d)(κ,π)

(Hγ ,Θ ∪ k(~d) ∪ {κ}) ⊢
2rk(θ(~d)(κ,π))
0 Γ(~d)(κ,π),¬θ(~d)(κ,π) (20)

where 2rk(θ(~d)(κ,π)) ≤ κ+ p for some p < ω.

Moreover we have sup{2rk(θ(~d)(κ,π)), β(a(ρ), κ) + p : ρ ∈ Mℓ} ≤ β(a0, κ) +
p ∈ Hγ [Θ ∪ {κ}], where sup{aℓ, ar(ρ) : ρ ∈ H(~ν, π, γ,Θ)} ≤ a0 < a by (10).

Now let ~µ = (µ2, . . . , µN−1) = max{~ζ(aℓ), ~ν} with µi = max{ζi(aℓ), νi}.

Since νi = ξi ≤pt ζi(aℓ) for i < k+ 1, we obtain µi =

{
ζi(aℓ) i ≤ k

νi i > k
. We see
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that Mℓ = H(~µ, κ, c,Θ∪ {κ}∪ k(~d)). Moreover we have ∀i < k(µi = ξi = ζi(a))
and (µk, . . . , µN−1) = (ζk(aℓ))∗(νk+1, . . . , νN−1) <sd ζk(a). Also ∀i(K(ζi(a)) ⊂

HmaxK(ζi(a))[Θ]) and ∀i(K(µi) ⊂ HmaxK(µi)[Θ]). For ¬Γ(~d)(κ,π) ⊂ Πk(κ), by

an inference rule (rfl(κ, k, ~ζ(a), ~µ)) with its resolvent classMℓ, we conclude from

(20) and (19) that (Hc,Θ ∪ {κ} ∪ k(~d)) ⊢
β(a0,κ)+p+1
κ Γ(~d)(κ,π),Γ(κ,π). Since

~d ⊂ Tm(κ) is arbitrary, several (
∧
)’s yield (11).

Case 2. Second consider the case when the last inference is a (rfl(π, j, ~ξ, ~ν))
for a j < k + 1. We have (Hγ ,Θ) ⊢aℓπ Γ,¬δ for each δ ∈ ∆ ⊂ Σj(π) with

aℓ ∈ Hγ [Θ] ∩ a, and (Hγ ,Θ ∪ {ρ}) ⊢
ar(ρ)
π Γ,∆(ρ,π) for each ρ ∈ H(~ν, π, γ,Θ)

with ar(ρ) ∈ Hγ [Θ ∪ {ρ}] ∩ a. ~ν ∈ SD is a sequence such that ∀i < j(νi = ξi)
and (νj , . . . , νN−1) <sd ξj .

We see that the resolvent classH(~ν, κ, c1,Θ∪{κ}) is a subclass ofH(~ν, π, γ,Θ).

By IH we have (Hc,Θ ∪ {κ}) ⊢
β(aℓ,κ)
κ Γ(κ,π),¬δ(κ,π) for each δ ∈ ∆, and

(Hc,Θ ∪ {κ, ρ}) ⊢
β(ar(ρ),κ)
κ Γ(κ,π),∆(ρ,π) for each ρ ∈ H(~ν, κ, c,Θ ∪ {κ}) with

∆(ρ,π) = (∆(κ,π))(ρ,κ). We claim that ∀i ≤ j(ξj ≤sp mi(κ)). Consider the
case when i = j = k. Then we have ξk ≤sp mk(π) and ζk(a) ≤sp mk(κ)
with ξk <pt ζk(a). We obtain ξk ≤sp mk(κ). Hence by an inference rule

(rfl(κ, j, ~ξ(j), ~ν)) for the sequence ~ξ(j) = (ξ2, . . . , ξj) ∗ ~0 ∈ SD, cf. Proposition
2.21.1, we obtain (11).

Case 3. Third consider the case when the last inference is a (rfl(σ, j, ~µ, ~ν)) for
a σ < π. We have (Hγ ,Θ) ⊢aℓπ Γ,¬δ for each δ ∈ ∆ ⊂ Σj(σ), and (Hγ ,Θ ∪

{ρ}) ⊢
ar(ρ)
π Γ,∆(ρ,σ) for each ρ ∈ H(~ν, σ, γ,Θ). We obtain σ < κ by (12)

for σ ∈ Hγ [Θ]. Hence ∆ ⊂ Σ1
0(σ) ⊂ Σ0(κ) and δ(κ,π) ≡ δ for any δ ∈ ∆.

Let H(~ν, σ, c,Θ ∪ {κ}) be the resolvent class for σ, ~ν, c and Θ ∪ {κ}. Then
H(~ν, σ, c,Θ ∪ {κ}) ⊂ H(~ν, σ, γ,Θ).

From IH we have (Hc,Θ ∪ {κ}) ⊢
β(aℓ,κ)
κ Γ(κ,π),¬δ for each δ ∈ ∆, and

(Hc,Θ∪{κ, ρ}) ⊢
β(ar(ρ),κ)
κ Γ(κ,π),∆(ρ,σ) for each ρ ∈ H(~ν, σ, c,Θ∪{κ}). We ob-

tain (11) by an inference rule (rfl(σ, j, ~µ, ~ν)) with the resolvent classH(~ν, σ, c,Θ∪
{κ}).

Case 4. Fourth consider the case when the last inference (
∧
) introduces a

Πk+1(π)-sentence (∀x ∈ Lπ θ(x)) ∈ Γ. We have (Hγ ,Θ ∪ k(d)) ⊢
a(d)
π Γ, θ(d) for

each d ∈ Tm(π). For each d ∈ Tm(κ), IH with k(d) < κ yields (Hc,Θ ∪ {κ} ∪

k(d)) ⊢
β(a(d),κ)
κ Γ(κ,π), θ(d)(κ,π). (

∧
) yields (11) for ∀x ∈ Lκ θ(x)

(κ,π) ≡ (∀x ∈
Lπ θ(x))

(κ,π) ∈ Γ(κ,π).

Case 5. Fifth consider the case when the last inference (
∧
) introduces a Σ0(π)-

sentence (∀x ∈ c θ(x)) ∈ Γ for a c ∈ Tm(π). We have (Hγ ,Θ∪k(d)) ⊢
a(d)
π Γ, θ(d)

for each d ∈ Tm(|c|). Then we have |d| < |c| < κ by (12). IH yields

(Hc,Θ∪{κ}∪k(d) ⊢
β(a(d),κ)
κ Γ(κ,π), θ(d), and we obtain (11) by an inference (

∧
).
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Case 6. Sixth consider the case when the last inference (
∨
) introduces a Σk(π)-

sentence (∃x ∈ Lπ θ(x)) ∈ Γ. We have (Hγ ,Θ) ⊢a0π Γ, θ(d) for a d ∈ Tm(π).
Without loss of generality we can assume that k(d) ⊂ k(θ(d)). Then we see that
|d| < κ from (12), and d ∈ Tm(κ). Also |d| < κ < β(a, κ) for (6). IH yields

with (∃x ∈ Lπ θ(x))
(κ,π) ≡ (∃x ∈ Lκ θ(x)

(κ,π)) ∈ Γ(κ,π), (Hc,Θ ∪ {κ}) ⊢
β(a0,κ)
κ

Γ(κ,π), θ(d)(κ,π), and we obtain (11) by an inference (
∨
).

Case 7. Seventh consider the case when the last inference is a (cut). We have
(Hγ ,Θ) ⊢a0π Γ,¬C and (Hγ ,Θ) ⊢a0π C,Γ for a0 < a with rk(C) < π. Then
C ∈ Σ0(π) by Proposition 4.5.4. On the other side k(C) ⊂ π holds by Propo-
sition 4.5.2. Then k(C) ⊂ κ by (12). Hence C(κ,π) ≡ C and rk(C(κ,π)) < κ

again by Proposition 4.5.2. IH yields (Hc,Θ ∪ {κ}) ⊢
β(a0,κ)
κ Γ(κ,π),¬C(κ,π) and

(Hc,Θ ∪ {κ}) ⊢
β(a0,κ)
κ C(κ,π),Γ(κ,π). Hence by a (cut) we obtain (11).

Case 8. Eighth consider the case when the last inference is an (Ω ∈ M2). We

have (Hγ ,Θ) ⊢aℓπ Γ, C and (Hγ ,Θ ∪ {ωα}) ⊢
ar(α)
π ¬C(α,Ω),Γ for each α < Ω

with sup{aℓ + 1, ar(α) + 1 : α < Ω} ≤ a and C ∈ Π2(Ω).
We obtain ωα < κ for α < Ω. IH with C(κ,π) ≡ C yields for each α < Ω,

(Hc,Θ∪{κ, ωα}) ⊢
β(ar(α),κ)
κ ¬C(α,Ω),Γ(κ,π), and (Hc,Θ∪{κ}) ⊢

β(aℓ,κ)
κ Γ(κ,π), C.

An (Ω ∈M2) yields (11)
All other cases are seen easily from IH. ✷

Lemma 5.2 Let λ ≤ π be a regular ordinal term such that ∀i(K(mi(π)) ⊂
HmaxK(mi(π))[Θ]), and Γ ⊂ Σ1(λ).

Suppose for an ordinal term a ∈ OT

(Hγ ,Θ) ⊢aπ Γ

where {γ, λ, π} ⊂ Hγ [Θ].
Assume

∀ρ ∈ [λ, π]∀d[Θ ⊂ ψρ(γ#d)] (21)

Let â = γ#ωπ+a+1 and β = ψλ(â). Then the following holds

(Hâ+1,Θ) ⊢ββ Γ (22)

Proof by main induction on π with subsidiary induction on a. We can assume
a > 0.

We see that Θ ⊂ β = ψλ(â) from (21). Hence

a0 ∈ Hγ [Θ] ∩ a⇒ ψλ(â0) < ψλ(â)

Let ~ξ ∈ SD be a sequence of ordinals and k a number for which the following
hold: If π = K, then let ~ξ = ~0 with lh(~ξ) = N − 1 and k = N − 1. Let π < K. If

~m(π) 6= ~0, then K(~ξ) ⊂ Hγ [Θ], ~ξ ≤ ~m(π) and k = max{k ≤ N − 2 : ξk+1 > 0}.

Otherwise let ~ξ = ~0 and k = 1. By the assumption (21), and (5) we obtain

∀ρ ∈ [λ, π]∀b ∈ K(~ξ)∀d[k(Γ) ∪ {γ, λ, a, π, b} ⊂ Hγ(ψρ(γ#d))] (23)
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Case 1. First consider the case when k ≥ 2.
Let ~ξ = ~m(π), and ~ζ(a) := (ζ2(a), . . . , ζk(a)) ∗ ~0 be the sequence defined as

in Lemma 5.1 from γ, a: ~ζ(a) = ~0 ∗ (γ + a) when π = K, otherwise ζk(a) =
ξk + Λξk+1(γ + a) and ζi(a) = ξi for i < k. Also let γ(a, b) = γ#a#b and
β(a, b) = ψπγ(a, b).

Let κ := ψ
~ζ(a)
π (γ(a, 0)). By the assumption (21) we have Θ ⊂ ψπ(γ#a). On

the other hand we have ψπ(γ#a) = ψπ(γ(a, 0)) ≤ κ, and Θ ⊂ κ. π ∈ Hγ [Θ]

with Θ ⊂ π yields K(~ξ) = K(~m(π)) ⊂ Hγ [Θ] ⊂ Hγ(a,0)(κ). Hence K(~ξ) ∪
{π, γ(a, 0)} ⊂ Hγ(a,0)(κ), and κ ∈ OT by γ(a, 0) = γ#a > 0 and Definition
3.1.2h such that κ < π and Hγ(κ) ∩ π ⊂ κ. Moreover we have ∀i(K(ζi(a)) ⊂
HmaxK(ζi(a))[Θ]) by ∀i(K(mi(π)) ⊂ HmaxK(mi(π))[Θ]) and {γ, a} ⊂ Hγ [Θ] with

Θ ⊂ κ. In other words, κ ∈ H(~ζ(a), π, γ,Θ).

By Lemma 5.1 we obtain (Hγ(a,κ)+1,Θ ∪ {κ}) ⊢
β(a,κ)
κ Γ(κ,π), and Lemma

4.7.2 with κ ∈ Hγ(a,0)+1[Θ]

(Hγ(a,κ)+1,Θ) ⊢β(a,κ)κ Γ(κ,π) (24)

If λ = π, then Γ(κ,π) ⊂ Σ1(κ) ⊂ Σ0(λ). We have Θ ⊂ ψπ(â) = β, and κ ∈
Hâ(β). Hence {γ, π, a, κ} ⊂ Hâ(β), and γ(a, κ) = γ#a#κ < γ#ωπ+a+1 = â.
Therefore κ < β(a, κ) ≤ ψπ(â) = β. We obtain (22) by Persistency lemma 4.11.

Next consider the case when λ < π. Then λ < κ and Γ(κ,π) = Γ. We have
for (21), ∀d∀ρ ∈ [λ, κ](Θ ⊂ ψρ(γ(a, κ) + 1#d)). By MIH on (24) we obtain

(Hb0+1,Θ) ⊢β0

β0
Γ for β0 = ψλ(b0) with b0 = (γ(a, κ) + 1)#ωκ+β(a,κ)+1. We

have b0 = γ#a#κ#1#ωβ(a,κ)+1 < γ#ωπ+a+1 = â by β(a, κ) < π. This yields
ψλ(b0) = β0 < β = ψλ(â) by Θ ⊂ β and {γ, κ, π, a} ⊂ Hâ(β). Hence (22)
follows.

In what follows suppose k = 1.

Case 2. Consider the case when the last inference rule is a (rfl(π, 2, ~ξ, ~ν)).
We have an ordinal term aℓ ∈ Hγ [Θ]∩a, and a finite set ∆ of Σ2(π)-sentences

for which (Hγ ,Θ) ⊢aℓπ Γ,¬δ holds for each δ ∈ ∆. On the other hand we have

sequences ~ν, (ξ2) ∗ ~0 ∈ SD such that ~ν <sd ξ2 and K(~ν) ∪ K(~ξ) ⊂ Hγ [Θ] by

(7), and an ordinal term ar(ρ) ∈ Hγ [Θ∪ {ρ}]∩ a for which (Hγ ,Θ∪ {ρ}) ⊢
ar(ρ)
π

Γ,∆(ρ,π) holds for each ρ ∈ H(~ν, π, γ,Θ), where ξ2 ≤sp m2(π).
Let ρ := ψ~νπ(âℓ#π) for âℓ = γ#ωπ+aℓ+1. By the assumption (21) we have

Θ ⊂ ψπ(âℓ) ⊂ ρ. K(~ν) ∪ {π, γ, a} ⊂ Hγ [Θ] yields K(~ν) ∪ {π, âℓ} ⊂ Hâℓ#π(ρ).
Next consider the condition (4). We have ∀i(K(νi) ⊂ HmaxK(νi)[Θ]) by (8), and
hence ∀i(K(νi) ⊂ HmaxK(νi)(ρ)) by Θ ⊂ ρ. Therefore ρ ∈ OT by Definition
3.1.2i. Moreover ρ ∈ C(π, γ,Θ), i.e., Hγ(ρ) ∩ π ⊂ ρ&Θ ∩ π ⊂ ρ. Hence
ρ ∈ H(~ν, π, γ,Θ).

By Inversion lemma 4.9 we obtain for each δ ≡ (∃x ∈ Lπδ1(x)) ∈ ∆ and
each d ∈ Tm(ρ) with |d| = max({0} ∪ k(d)), (Hγ#|d|,Θ ∪ k(d)) ⊢aℓπ Γ,¬δ1(d).

We have {π, γ, |d|} ⊂ Hγ#|d|(π) by |d| < ρ < π, and this yields |d| ∈
Hγ#|d|(ψπ(γ#|d|))∩π ⊂ ψπ(γ#|d|). Hence |d| < ψπ(γ#|d|), and ∀e(Θ∪ k(d) ⊂
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ψπ(γ#|d|#e)), i.e., (21) holds for λ = π and γ#|d|. Let βd = ψπ(âd) for âd =

γ#|d|#ωπ+aℓ+1 = âℓ#|d|. SIH yields (Hâd+1,Θ ∪ k(d)) ⊢βd

βd
Γ,¬δ1(d), which

in turn Boundedness lemma 4.10 yields (Hâπ+1,Θ∪ k(d)) ⊢βd

βd
Γ,¬δ

(βd,π)
1 (d) for

âπ = γ#π#ωπ+aℓ+1 = âℓ#π. By persistency we obtain (Hâπ+1,Θ ∪ k(d)) ⊢βd
ρ

Γ,¬δ
(ρ,π)
1 (d) for βd < ψπ(âπ) = ρ ∈ Hγ [Θ]. Since d ∈ Tm(ρ) is arbitrary, (

∧
)

yields
(Hâπ+1,Θ) ⊢ρρ Γ,¬δ

(ρ,π) (25)

Now pick the ρ-th branch from the right upper sequents

(Hâπ+1,Θ ∪ {ρ} ⊢ar(ρ)π Γ,∆(ρ,π)

By ρ ∈ Hâπ+1[Θ] and Lemma 4.7.2 we obtain

(Hâπ+1,Θ) ⊢ar(ρ)π Γ,∆(ρ,π) (26)

Case 2.1. First consider the case λ = π. Then ∆(ρ,π) ⊂ Σ0(λ). Let βρ = ψπ(bρ)
with bρ = âπ#1#ωπ+ar(ρ)+1 = γ#ωπ+aℓ+1#ωπ+ar(ρ)+1#π#1. Then βρ > ρ

and ∀d[Θ ∪ {ρ} ⊂ ψπ(âπ + 1#d)]. SIH yields for (26)

(Hbρ+1,Θ) ⊢
βρ

βρ
Γ,∆(ρ,π) (27)

Several (cut)’s with (27), (25) yield (Hâ+1,Θ) ⊢
βρ+p
βρ

Γ for βρ ≥ ρ, âπ < bρ < â

and some p < ω, where βρ < β = ψπ(â) by bρ < â. (22) follows.

Case 2.2. Next consider the case when λ < π. Then λ < ρ and ∆(ρ,π) ⊂ Σ1(ρ
+)

with ρ+ = Ωρ+1. SIH with (26) yields (Hbρ+1,Θ ∪ {ρ}) ⊢
β
ρ+

β
ρ+

Γ,∆(ρ,π) for

βρ+ = ψρ+(bρ) > ρ, and by Lemma 4.7.2 we obtain

(Hbρ+1,Θ) ⊢
β
ρ+

βρ+
Γ,∆(ρ,π) (28)

Several (cut)’s with (25), (28) yield (Hb0+1,Θ) ⊢
β
ρ++p

β
ρ+

Γ for βρ+ > ρ and

b0 = γ#(ωπ+aℓ+1·2)#ωπ+ar(ρ)+1#1 ≥ max{bℓ, bρ}. Predicative cut-elimination
lemma 4.12 yields for β1 = ϕ(βρ+)(βρ+ + p) < ρ+

(Hb0+1,Θ) ⊢β1
ρ Γ (29)

We obtain λ < ρ ∈ Hb0+1[Θ] by γ < âℓ < b0. MIH with (29) yields (Hc+1,Θ) ⊢ψλc
ψλc

Γ for c = b0#1#ωρ+β1+1. We obtain c = b0#ω
ρ+β1+1#1 = γ#(ωπ+aℓ+1 ·

2)#ωπ+ar(ρ)+1#ωρ+β1+1#2 < γ#ωπ+a+1 = â since aℓ, ar(ρ) < a and ρ, β1 <

ρ+ < π. Hence ψλc < ψλ(â) = β, and (22) follows.

Case 3. Third consider the case when the last inference introduces a Σ1(λ)-

sentence (∀x ∈ c θ(x)) ∈ Γ for c ∈ Tm(λ). We have (Hγ ,Θ ∪ k(d)) ⊢
a(d)
π Γ, θ(d)
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for each d ∈ Tm(|c|). Then we see from (23) that |d| < |c| ∈ Hγ(ψρ(γ#e))∩ρ ⊂
ψρ(γ#e) for any ρ ∈ [λ, π] and any e. Hence |d| ∈ ψρ(γ#e). (21) is enjoyed for

Θ ∪ k(d). SIH yields (Hâ+1,Θ ∪ k(d)) ⊢βd

βd
Γ, θ(d) for βd = ψλ(â(d)). (

∧
) yields

(22) for β = ψλ(â) > βd.

Case 4. Fourth consider the case when the last inference introduces a Σ1(λ)-
sentence (∃x ∈ Lλ θ(x)) ∈ Γ. We have (Hγ ,Θ) ⊢a0π Γ, θ(d) for a d ∈ Tm(λ).

SIH yields (Hâ+1,Θ) ⊢β0

β0
Γ, θ(d) for β = ψλ(â) > ψλ(â0) = β0. Without loss

of generality we can assume that k(d) ⊂ k(θ(d)). Then we see from (23) that
|d| ∈ Hγ(ψλ(γ + 1)) ∩ λ ⊂ ψλ(γ + 1) < β. Thus is enjoyed in the following

inference rule (
∨
). We obtain (Hâ+1,Θ) ⊢ββ Γ by a (

∨
), which enjoys (6).

Case 5. Fifth consider the case when the last inference is a (rfl(τ, j, ~µ, ~ν)) for
a τ ∈ Hγ [Θ] ∩ π. We have an aℓ < a and a finite set ∆ of Σj(τ)-sentences
such that (Hγ ,Θ) ⊢aℓπ Γ,¬δ for each δ ∈ ∆. On the other hand we have a
sequence ~ν and an ordinal term ar(ρ) < a for each ρ ∈ H(~ν, τ, γ,Θ) such that

(Hγ ,Θ ∪ {ρ}) ⊢
ar(ρ)
π Γ,∆(ρ,τ). By (23), for any ρ ∈ H(~ν, τ, γ,Θ) we obtain

∀e∀κ[max{τ + 1, λ} ≤ κ ≤ π ⇒ ρ < τ ∈ Hγ(ψκ(γ#e)) ∩ κ ⊂ ψκ(γ#e)] (30)

Case 5.1. First consider the case when τ < λ. Then ρ < ψκ(γ#e) for any

κ ∈ [λ, π] and e. From SIH with (30) we obtain (Hâ+1,Θ) ⊢βℓ

βℓ
Γ,¬δ for each

δ ∈ ∆ with βℓ = ψλ(âℓ), and (Hâ+1,Θ ∪ {ρ}) ⊢
βr(ρ)
βr(ρ)

Γ,∆(ρ,τ) for each ρ ∈

H(~ν, τ, γ,Θ) with βr(ρ) = ψλ(âr(ρ)). We see max{βℓ, βr(ρ), τ} < β = ψλ(â),

and an inference rule (rfl(τ, j, ~µ, ~ν)) yields (Hâ+1,Θ) ⊢ββ Γ.

Case 5.2. Second consider the case when λ ≤ τ . Then ∆ ∪∆(ρ,τ) ⊂ Σ1(τ
+),

and ρ < ψκ(γ#e) for τ < κ ≤ π and e by (30). SIH yields (Hâℓ+1,Θ) ⊢β2

β2
Γ,¬δ

for each δ ∈ ∆, where β2 = ψτ+ (âℓ). On the other side SIH yields (H
âr(ρ)+1

,Θ∪

{ρ}) ⊢
βρ

βρ
Γ,∆(ρ,τ) for each ρ ∈ H(~ν, τ, γ,Θ), where βρ = ψτ+

(
âr(ρ)

)
. Predica-

tive cut-elimination lemma 4.12 yields (Hâℓ+1,Θ) ⊢δ2τ Γ,¬δ and (H
âr(ρ)+1

,Θ ∪

{ρ}) ⊢
δρ
τ Γ,∆(ρ,τ) for δ2 = ϕ(β2)(β2) and δρ = ϕ(βρ)(βρ). From these with the

inference rule (rfl(τ, j, ~µ, ~ν)) we obtain

(Hâ0+1,Θ) ⊢δ0+1
τ Γ (31)

where sup{δ2, δρ : ρ ∈ H(~ν, τ, â0 + 1,Θ)} ≤ δ0 := ϕ(β0)(β0) ∈ Hâ0+1[Θ] with
sup{β2, βρ : ρ ∈ H(~ν, τ, γ,Θ)} ≤ β0 := ψτ+ (â0), and sup{aℓ, ar(ρ) : ρ ∈
H(~ν, τ, γ,Θ)} ≤ a0 ∈ Hγ [Θ] ∩ a, cf. (10).

MIH with (31) yields (Hâ+1,Θ) ⊢δδ Γ for δ = ψλ((â0 + 1)#ωτ+δ0+2) and
(â0 + 1)#ωτ+δ0+2 < â. We have δ = ψλ(â0#1#ωτ+δ0+2) < ψλ(â) = β by
â0 < â and τ, δ0 < τ+ < π and τ ∈ Hγ [Θ]. (22) follows.
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Case 6. Sixth consider the case when the last inference is a (cut). For an a0 < a

and a C with rk(C) < π, we have (Hγ ,Θ) ⊢a0π Γ,¬C and (Hγ ,Θ) ⊢a0π C,Γ.

Case 6.1. First consider the case when rk(C) < λ. Then C ∈ Σ0(λ). SIH
yields the lemma.

Case 6.2. Second consider the case when λ ≤ rk(C) < π. Let ρ+ = (rk(C))+ =
min{κ ∈ Reg : rk(C) < κ}. Then C ∈ Σ0(ρ

+) and λ ≤ ρ ∈ Hγ [Θ]∩π. SIH yields

(Hâ0+1,Θ) ⊢β0

β0
Γ,¬C and (Hâ0+1,Θ) ⊢β0

β0
C,Γ for β0 = ψρ+ (â0) ∈ Hâ0+1[Θ].

By a (cut) we obtain (Hâ0+1,Θ) ⊢β1

β1
Γ for β1 = max{β0, rk(C)} + 1 with ρ <

β1 < ρ+. Predicative cut-elimination lemma 4.12 yields (Hâ0+1,Θ) ⊢δ1ρ Γ for
δ1 = ϕ(β1)(β1), where â0 ∈ Hâ0+1[Θ], and ∀e∀τ ∈ [λ, ρ][Θ ⊂ ψτ (â0#e)] hold.

Hence MIH with ρ ∈ Hâ0+1[Θ] yields (Hb+1,Θ) ⊢
ψλ(b)
ψλ(b)

Γ for b = â0#1#ωρ+δ1+1.

We see b < â and ψλ(b) < ψλ(â) = β, and (22) follows.

Case 7. Seventh consider the case when the last inference is an (Ω ∈M2). We

have (Hγ ,Θ) ⊢aℓπ Γ, C for an aℓ < a, and (Hγ ,Θ∪{α}) ⊢
ar(α)
π ¬C(α,Ω),Γ for an

ar(α) < a for each α < Ω, where C ∈ Π2(Ω).
The case λ > Ω is seen as in Case 5.1. The case λ = Ω is seen as in Case

5.2. ✷

Let us conclude Theorem 1.1. Let Ω = Ω1.

Proof of Theorem 1.1. Let KPΠN ⊢ θ. By Embedding lemma 4.14 pick an
m so that (H0, ∅) ⊢K·2+m

K+m θ. Predicative cut-elimination lemma 4.12 yields

(H0, ∅) ⊢
ωm+1(K+1)
K

θ for ωm(K · 2 + m) < ωm+1(K + 1). Lemma 5.2 yields

(Ha+1, ∅) ⊢ββ θ for a = ωK+ωm+1(K+1)+1 and β = ψΩ(a). Predicative cut-

elimination lemma 4.12 yields (Ha+1, ∅) ⊢
ϕ(β)(β)
0 θ. We obtain ϕ(β)(β) < α :=

ψΩ(ωn(K + 1)) for n = m + 3, and hence (Hωn(K+1), ∅) ⊢α0 θ. Boundedness

lemma 4.10 yields (Hωn(K+1), ∅) ⊢
α
0 θ

(α,Ω). Since each inference rule other than

reflection rules (rfl(π, k, ~ξ, ~ν)) and (Ω ∈ M2) is sound, we see by induction up
to α = ψΩ(ωn(K+ 1)) that Lα |= θ.

This completes a proof of Theorem 1.1.
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