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Abstract

In this note we give a simplified ordinal analysis of first-order reflec-
tion. An ordinal notation system OT' is introduced based on -functions.
Provable Y1-sentences on L""10K are bounded through cut-elimination on
operator controlled derivations.

1 Introduction

Let ORD denote the class of all ordinals, A C ORD and « a limit ordinal. «
is said to be I, -reflecting on A iff for any II,-formula ¢(x) and any b € L,,, if
(Lo, €) = ¢(b), then there exists a § € AN« such that b € Lg and (Lg, €) =
@(b). Let us write o € rM,,(A) 1< « is I,,-reflecting on A. Also « is said to be
IT,,-reflecting iff « is I1,,-reflecting on ORD.

It is not hard for us to show that the assumption that the universe is II,,-
reflecting is proof-theoretically reducible to iterabilities of the lower operation
rM,_1 (and Mostowski collapsings), cf. [3].

In this paper we aim an ordinal analysis of II,-reflection. Such an analysis
was done by Pohlers and Stegert [7] using reflection configurations introduced
in M. Rathjen [9], and an alternative analysis in [I2)[4] with the complicated
combinatorial arguments of ordinal diagrams and finite proof figures. Our ap-
proach is simpler in view of combinatorial arguments. In [I], a II,-reflecting
universe is resolved in ramified hierarchies of lower Mahlo operations, and ulti-
mately in iterations of recursively Mahlo operations. Our ramification process
is akin to a tower, i.e., has an exponential structure. It is natural that an ex-
ponential structure emerges in lowering and eliminating first-order formulas (in
reflections), cf. ordinal analysis for the fragments IX,,_3 of the first-order arith-
metic. Mahlo classes M hy (&) defined in Definition 28] to resolve or approximate
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II,,-reflection are based on similar structure. As in Rathjen’s analysis for IIs-
reflection in [8], thinning operations are applied on the Mahlo classes Mhy (&),
and this yields an exponential structure similar to the one in [I] as follows.

Let us consider the simplest case N = 4. Let A := egy1, the next epsilon
number above the lease Il4-reflecting ordinal K. Roughly 7 € Mhs(€) desig-
nates the fact that an ordinal 7 is ITz-reflecting on Mhs(v) for any v < £ < A.
Suppose a II3-sentence 6 on L, is derived from the assumption © € Mhs(&).
We need to find an ordinal k£ < 7 for which L, |= 6 holds. It turns out that
k € Mhy(ASa) suffices for an ordinal @ < A, where the ordinal x in the class
Mhsy(Afa) is Ta-reflecting on classes Mha(ASh) N Mhs(v) for any b < a and
any v < £. Note that the class Mho(ASa) is not obtained through iterations of
recursively Mahlo operations since it involves I14-definable classes Mhs(v). The
classes Mhs(v) (v < &) for the assumption m € Mhs(§) are thinned out with
the new classes Mha(A%D) (b < A), cf. Lemma 511

Our theorem runs as follows. Let KPIIy denote the set theory for IIy-reflecting
universes, and KPw the Kripke-Platek set theory with the axiom of infinity. OT
is a computable notation system of ordinals defined in section B Q = w{'¥X and
1o is a collapsing function such that ¥ (a) < Q. K is an ordinal term denoting

the least II-reflecting ordinal in the theorems.

Theorem 1.1 Suppose KPIly F 0 for a ¥1(Q)-sentence 0. Then we can find
an n < w such that for o = Ppa(wp(K+ 1)), Ly = 6.

Actually the bound is seen to be tight, cf. [5].

Theorem 1.2 KPIIy proves that each initial segment
{a e 0T : a <Yq(w,(K+1))} (n=1,2,...) is well-founded.

Thus the ordinal ¥q(ex41) is seen to be the proof-theoretic ordinal of KPII .
Theorem 1.3

Yolert1) = [KPIy|se := min{a < Wi : V0 € 5y (KPIIy 0% = L, = 0)}.

A C ORD is II} -indescribable in « iff for any IT}.-formula ¢(X) and any
B C ORD, if (L,,€; BNa) = ¢(BNa), then there exists a § € ANa such that
(Lg,€;BNB) E ¢(BNPB). A regular cardinal 7 is 11} -indescribable ifff ORD is
I1!-indescribable in 7.

Let us mention the contents of this paper. In the next section [2] we dqﬁne
simultaneously iterated Skolem hulls H,, (X) of sets X of ordinals, ordinals 15 (c)
for regular cardinals k, o < ex41 and sequences & = (&2, ...,En—1) of ordinals
& < exy2, and classes M A% (&) under the assumption that a 1%, _,-indescribable
cardinal K exists. It is shown that for 2 <k < N, a < egy1 and each £ < ex 2,
(K is a [T} _,-indescribable cardinal) — K € Mh{(§) in ZF + (V = L).

In section [B] a computable notation system OT of ordinals is extracted. Fol-
lowing W. Buchholz [6], operator controlled derivations for KPIIy is introduced



in section M, and inference rules for IIy-reflection are eliminated from deriva-
tions in section Bl This completes a proof of Theorem [[I] for an upper bound.

IH denotes the Induction Hypothesis, MIH the Main IH and SIH the Sub-
sidiary IH. We are assuming tacitly the axiom of constructibility V' = L.
Throughout of this paper N > 3 is a fixed integer.

2 Ordinals for IIy-reflection

In this section we work in the set theory ZFLK y obtained from ZFL = ZF+(V =
L) by adding the axiom JK(K is I}, _,-indescribable) for a fixed integer N > 3.
For ordinals «, £(«) denotes the least epsilon number above .

Let ORD C V denote the class of ordinals, K the least H}v_2—indescribable
cardinal, and Reg the set of regular ordinals below K. © denotes finite sets of
ordinals< K. u,v,w, z,¥, z, ... range over sets in the universe, a, b, c, a, 8,7, . ..
range over ordinals< A, &, (,v, p,¢,... range over ordinals< e(A) = egjo,
{, 5, U, [i, T, ... range over finite sequences over ordinals< £(A), and 7, k, p, o, T, A, . . .
range over regular ordinals. 6 denotes formulas.

—

Let € = (£, ...,&m—1) be a sequence of ordinals. The length Ih(§) := m.
Sequences consisting of a single element (§) is identified with the ordinal £, and
() denotes the empty sequence. 0 denotes ambiguously a zero-sequence (0, .. .,0)
with its length 0 < IR(0) < N — 1. €% i = (0, Em-1) * (1o, .-, Vn_1) =
(€oy- -y &m—1, 10, - - -, fin—1) denotes the concatenated sequence of € and .

A = &(K) = eg41 denotes the next epsilon number above the least I _o-
indescribable cardinal K, and £(A) = egy2 the next epsilon number above A.

Definition 2.1 For a non-zero ordinal £ < £(A), its Cantor normal form with
base A is uniquely determined as

§:NF ZAglaZ:Aghlam_i__’_AgOaO (1)

i<m
where &, > -+ > &, 0 < a; < A.

1. K(&) = {a; : i <m}UU{K(&) : i < m} is the set of components of &

with K(0) = (. For a sequence ¢ = (&,...,&,—1) of ordinals & < (A),

K(€) == U{K(&):i<n}.

2. For £ > 1, te(§) = & in () is the tail exponent, and he(§) = &, is
the head exponent of &, resp. The head Hd(§) := ASma,,, and the tail
TI(&) := ASoaq of €.

3. he®(€) is the i-th head exponent of £, defined recursively by
he©(€) = €, heCH1(€) = he(he!(€)).

The i-th tail exponent te( (£) is defined similarly.



4. (is a part of &, denoted by ¢ <, & iff
(=nNF EiZn ASia; = ASmap, + -+ ASna, foran n (0 <n <m +1).

C<pt &2 ¢ <p E&CH#E.

5. A sequence fi = (uo,..., M) is an iterated tail parts of &, denoted by
i Cpr EHE po <pr E& VI < nlpip1 <pr te(ps)).

6. 7= (vg,...,vm) x0 < £ iff there exists a sequence I = (i, ..., fin) such
that @ Cp: & and v; < p; for every i <n.

7. Let 7 = (19,...,vy,) and E: (€o,---,&n) be sequences of ordinals in the
same length, and 0 < k < n.

7<p&:oVi<k(y <E)A Wk ... vn) < .

8. ( is a step-down of &, denoted by ( <4 € iff
C=ASmay, + -+ ASa; + A%b + v for some ordinals b < ag and v < A%,

9. V= (vo,...,Vpn) % 0 <sq Eiff v; <gq te(i)(f) for every i < n.

10. € <sp &1 T <pt §(C <sa p), and ¢ <gp €19 I <pt E(C <sa 1)

11. U <gp EME U <gq p for a pp <py &.

Let p(#,€) denote the number p(0 < p < m) such that & =yp p +
ZKP ASiq; for p = Afmapy, + -+ ASra, and 7 <gq .

Note that (1) %0 < € & v < &, and (& te(€),te®(€),...) Cpr £ Also
(<sa§& (< E<A

Proposition 2.2 £ < p < e(A) = te(§) < he(€) < he(p).
Proposition 2.3 V< (< (=1U <.

Proof by induction on the lengths n = [h(¥). Let @ = (po,...,ln—1) be a
sequence for 7 = (vp,...,Vp—1) such that i Cp £ and Vi < n — 1(v; < w;),
cf. Definition

If n=1, then vy < po <pr § <. vy < ¢ <pe ¢ yields 7 = (1) < (.

Let n > 1. We have (v1,...,vn—1) < te(po) with (1, .., tn—1) Cpe te(po).
We show the existence of a A such that uy < A <,, ¢ and te(po) < te(A). Then
IH yields (v1,...,vn—1) < te(A), and 7 < ¢ follows.

If 1o <pe ¢, then X = pp works. Suppose g £p¢ (. On the other hand we
have p19 <p¢ & < ¢. This means that £ < ¢ and there exists a A <,; ¢ such that
po < A and te(pg) < te(A). O



2.1 Ordinals

Definition 2.4 1. For i < w and £ < e(A), A;(€) is defined recursively by
Ao(€) = € and Agyq (&) = AN,

2. For A C ORD, limit ordinals « and i > 0, let a € May;(A) iff AN
« is I1}-indescribable in c.

3. kT denotes the next regular ordinal above k.

4. Qn = wq for a >0, Qo :=0, and Q = Q.

Define simultaneously classes Hq(X), MA{(€), and ordinals 1/),5:(04) as fol-
lows. We see that these are ¥;-definable as a fixed point in ZFL, cf. Proposition

27

Let a < A, and ¢ denote the binary Veblen function. Let us define a Skolem
hull H,(X) of {0,K} U X under the functions +, @ — w?, (o, 8) — @af (a, f <
K), o = Q4 (o < K) and ¢-functions. Reg denotes the set of regular ordinals<
K.

Definition 2.5 H,[Y](X) := H,(Y UX) for sets Y C K.

1. (Inductive definition of Hq(X)).

(a) {0,K}UX C Ho(X).

(b) 2,y € Ho(X) = 2+ 1y € Ho(X), @ € Ho(X) = w? € Ho(X), and
2,y € Ho(X)NK = oy € Ho(X).

(¢) K>aeHqX) = Qy € Ho(X).

(d) If 7 € Ho(X) N Reg and b € Ho(X) Na, then ¢, (b) € Ho(X).

(e) If {b,€} C Ma(X) with £ < b < a, then & = 2 & (b) € Hq(X),
where Ih(0) = N — 3.

(f) Let {m b,c} C Ho(X) with 7 < K, 2 < k < N — 1 an integer,
and € = (&, ..., &, rp1) * 0 a sequence of ordinals & < (A) with
Ih(0) = N — 2 — k such that 441 # 0 and K(€) C Ha(X). Assume
max(K () U {c}) < b < a, and = € Mh(£).

Then k = ¥7(b) € Ha(X) for the sequence 7 = (&, . . ., Eg+AS+1¢)x0
with 1h(0) = N — 1 — k.

(g) Let {m b} C Ho(X) with 7 < K, and 0 # £ < e(A) an ordinal with
K(§) C Ho(X). Let 7 = (va,...,vn—1) be a sequence of ordinals<
g(A) such that K () C Ho(X). Assume max K(7) < b < a, K(V) C
Hy(), m € MRS(E), and 7 < &, cf. Definition 216
Then £ = 7 (b) € Ha(X).

2. (Definitions of Mh{(§) and Mhf €))
First let K € Mh%(0) :& K € My < K is II§_,-indescribable.



The classes Mh{(§) are defined for 2 < k < N, and ordinals a < A,
& <e(A). Let m be a regular ordinal< K. Then for £ > 0

T e MhE(§) = {ma} UK(E) C Ho(m) & (2)
Vi < (K (V) C Ho(m) = m € Mi(MR3(V)))

where 7 = (vg,...,vn) (2 < k
sequences of ordinals< £(A) an

< n < N — 1) varies through non-empty
d

By convention, let for 2 < k < N, # € Mh{(0) :& m € Mh3(0) :&
7 is a limit ordinal. Note that by letting v/ = (0), 7 € Mh}(§) = m € M,
for € > 0. Also 0 < 1, and Mh{(1) = M.

3. (Definition of wé(a))
Let @ < A be an ordinal, 7 < K a regular ordinal and ¢ a sequence of
ordinals< £(A) such that [h(§) = N — 2. Then let

— —

1/)5:(a) =min({r}U{x € Mhy(§) N7 : Hao(rk) N7 C K, K(E) U{m, a} C Ha(k)})

(3)
Let ¢ra := 9%a, where [h(0) = N — 2, Mh4(0) = Lim, and = € My, i.c.,
7 is a regular ordinal.

Note that 7 € Mh{(§) = Vv < {(m € Mi(Mh{(v))), since (v) < ¢ holds
with (§) Cp € for v < &.

Proposition 2.6 b+ ¢ € H,[0](d) = ¢ € Ho[O](d), and w® € H,[O](d) = c €
Ha[O](d).

The following Proposition [2.7] is easy to see.

Proposition 2.7 Each of x = H,(y) (a < A,y < K), z = ¢ga, © € Mh{(E)
and x = % (a), is a ¥1-predicate as fived points in ZFL.

Proof. This is seen from the facts that there exists a universal IT},-formula, and
by using it, @ € My (z) iff (Lo, €) = mp (2N Ly) for some I1;,  ;-formula m, (R)
with a unary predicate R. ]

Let A(a) denote the conjunction of Vu < K3la[z = H,(u)], and
VEVz(max K (€) < a& K(§)U{k,a} C # = Ha(k) — 3b < k(b = ¢S (a))), where

—

Ih(&) =N —2.

Since the cardinality of the set H.,, () is 7 for any infinite cardinal 7 <
K, pick an injection f : Ha(K) — K so that f?Ha(w) C 7 for any weakly
inaccessibles m < K.



Lemma 2.8 1. Va < A A(a).

2. m € MhQ(§) is a IIL_,-class on L uniformly for weakly inaccessible car-
dinals m < K and a,€. This means that for each k there exists a 1T}, -
formula mhi(x) such that 1 € Mh{(§) iff Lr = mhi(§) for any weakly
inaccessible cardinals m < K with f”({a} UK (§)) C L.

3. K € MhS_(A) N My_1(MhS_,(A)).

Proof.
We show that A(a) is progressive, i.e., Va < AlVe < a A(c) — A(a)].
Assume Ve < a A(c) and a < A. Vb < K3lz[r = H(D)] follows from IH in

ZFL. 3b < k(b = ¥éa) follows from this.

Let m be a weakly inaccessible cardinal with f”({a} U K(§)) C L. Let
f be an injection such that f?Ha(w) C Lr. Then for Va € K(§)(f(a) €
[ Ha(m)), me Mh(E) iff for any f(V) = (f(vk),..., f(vn—1)), each of f(v;) €
L., if Va € K(D)(f(a) € f"Ho(m)) and U < &, then m € My(Mh{ (7)), where
J"Ha(mw) C Ly is a class in L.

We show the following B(a) is progressive in a < A:
B(a) = Ke Mh§_1(a) " My_1(Mh%_1(a))

Note that a € H,(K) holds for any a < A.

Suppose Vb < a B(b). We have to show that Mh%_, (a) is IT};_;-indescribable
in K. It is easy to see that if 7 € My_1(Mh$_,(a)), then 7 € MhQ_(a) by
induction on 7. Let §(u) be a I}, _;-formula such that Lg = 0(u).

By IH we have Vb < a[K € My_1(Mh%,_;(D))]. In other words, K €
Mh$;_(a), ie., Lx = mh%_(a), where mh%_;(a) is a II}_,-sentence in
Proposition Z8E Since the universe Lk is II}_,-indescribable, pick a 7 < K
such that L. enjoys the IT},_,-sentence 6(u) A mh%_,(a), and {f(a), f(a)} C
L. Therefore m € Mh%_(a) and L = 0(u). Thus K € My_1(Mh%_(a)).

O

2.2 Normal forms in ordinal notations

In this subsection we introduce an irreducibility of sequences, which is needed
to define a normal form in ordinal notations.

Proposition 2.9 7 € Mh{(¢) &€& < ¢ = 7w € Mhi(E).

Proof. @) for 7 € Mh{(€) in Definition follows from 7 € Mh{({) and
Proposition ]

Lemma 2.10 (Cf. Lemma 3 in [I].) Assume K > 7 € Mhj(§) N Mhg_ (&)
with2 <k < N-1, he(u) <& and {a} UK (1) C Ho(m). Then m € MhL(E+ )
holds. Moreover if m1 € M1, then m € My y1(MhE(E + p)) holds.



Proof. Suppose m € Mhf(§) N Mhi, (&) and K(u) C Ha(m) with he(p) <
&. We show m € Mh$(¢€ + p) by induction on ordinals p. First note that
if b € Hq(m), then f(b) € f"Ha(m) C Lr. We have K(§ + p) C Ha(m).
T € Myy1(Mh{ (€ + p)) follows from 7 € Mh(§ + p) and m € M.

Let (¢)*v < {+p and K(Q)UK (V) C Ho(m) for 7 = (vg, ..., Vn—1). We need
to show that m € My, (Mh§((¢)*7)). By Definition ZTIG, let (o) * (to, - - -, fn—1)
be a sequence such that ¢ < (o <pt & + 1, po <pt te(Co), Vi < n —1(v; < ),
and Vi < n — 1(pig1 <pt te(w)).

If Go <pt &, then (¢)* 7 < &, and m € Mi(MhL((Q) *V)) by m € Mhi(§).

Let (o = &4 (1 with 0 < (1 <p p. If G1 <pt g, then by IH with he(¢i) =
he(p) we have m € Mh{((p). On the other hand we have () * 7 < (o. Hence
7€ My(Mh((C) * 7).

Finally consider the case when 0 < (; = p. Then we obtain 7 < te(§ +
p) = te(u) < he(pn) < &. m € Mhi (&) with Proposition 29 yields 7 €
Mys1 (M (7).

On the other side we see m € Mh{(¢) as follows. We have ¢ < {+p. If ¢ <&,
then this follows from 7 € Mh{ (&) and Proposition[2Z3d] and if { = {4+ X < 4y,
then IH yields m € Mh%(C).

Since m € Mh¢(¢) is a II}_,-sentence holding on L, by Lemma and
{a} UK({) C Hq(m), we obtain 7 € Myp1(Mhi((¢) * ¥)), a fortiori m €
M (MB((Q) * 7). 0

Definition 2.11 For sequences of ordinals 5: (ks yén—1)and UV = (vg,...,UN—1)
and 2 < k,m,n <N —1,

— —

MR%(7) <5 MB2(E) e Vi € MA%(E)({a, YUK (7) C Ha(r) = 7 € My (M2, (7))).

Corollary 2.12 Let U be a sequence defined from a sequence { as follows. Vi <
k(vi = &), Vi > k(v; =0), and vy = & + AS+1b, where 2 <k < N, b < A and

Eer1 # 0. Then Mh3(V) <g+1 Mh§(€) holds. In particular if m € Mh5(&) and
K(#)U{r, a} C Ha(r), then Y2 (a) < 7.

Proof. This is seen from Lemma 2,10 O

—

Proposition 2.13 Let 7V = (vo,...,un-1), £ = (&2,...,&N—1) be sequences of
ordinals< £(A) such that UV <y, € for an integer k with 2 < k < N — 1. Then
MhS(7) < Mh&(€). In particular if 7 € Mh2(€) and K(7) U {m,a} C Ha(r),
then 7 (a) < .
Proof. Assume m € Mhg(€) and K(7) C Hq(r). We have 7 € Mh&(&). By
the definition @) and (v, ...,vN—1) < &, weobtain m € My(,<;<n_1 M (vi)).
On the other hand we have 7 € [, _, Mh{(&;), and hence 7 € [, Mh§(v;)
by Vi < k(v; < &) and Proposition 29 Since 7 € (), Mh{(v;) is a I} _,-
sentence holding in L, we obtain m € My(),cy_y Mh{(vs)) = Mi(Mh$(7)),
a fortiori m € My (Mh§(7)). -
Suppose {m,a} C Hy(m). The set C = {k < 7 : Ho(k) N7 C K, K(¥) U
{m,a} C Hq(k)} is a club subset of the regular cardinal 7. This shows the



existence of a k € Mh$(#) N C N7, and hence ¥”(a) < 7 by the definition ().
O

Proposition 2.14 Let 5: (&2,...,&n—1) be a sequence of ordinals< €(A) such
that {m,a} UK (&) C Hqo(m). Assume TU(E) < Ap(&iyr +1) for somei < N —1
and k > 0. Then m € Mh§(§) & m € Mh§(fi), where i = (p2, ..., uN—1) with

pi =& — TU&) and pj = &5 for j # i.

Proof. When 0 < & = A" ay, + -+ + AMay + A"ag with v, > - >y >
Y0, 0 < a; < A, i = A'"™ay, +- -+ A"ay for TI(E) = Aag. If & =0, then so
is Hi = 0.

Let m € Mhg(ji) and TU(&;) < Ag(&+x+1). We obtain V5 < k(heW)(TI(&;)) <
Ap—j (& + 1)), and he®(TI(&)) < &4k On the other hand we have 7 €
Mh, ;. (&ivrr). From Lemma we see inductively that for any j < k, w €
Mhi; (heW(TI(&;))). In particular 7 € Mh, (he(T1(&;))), and once again by

—

Lemma 2ZI0 and 7 € Mh?(u;) we obtain 7 € Mh$(;). Hence m € Mh§(§). O

Definition 2.15 A sequence of ordinals {: (&2y...,&N—1) is said to be irre-
ducible iff Vi < N —1Vk > 0(§ > 0= TU&) > Ai(&ipr + 1)).

Proposition 2.16 Let UV = (vg,...,un—1) # 0 be an irreducible sequence, and
ko > k be the least number such that vy, # 0. Assume vy, < he(Fo=F)(¢). Then
U < & holds in the sense of Definition [2Z 4.

Proof. Let £ < N — k be the largest number such that vi4, # 0. We show
(Vky - -, Vkas) < & Since 7 is irreducible, we have A;(Vgo4i + 1) < T1(vg,).
From vy, < heo=®)(¢) and te(u) < he(u) we obtain vg, i < Vgori +1 <
he® (vy,) < hetFo=F0 (). Let (ug,...,pun—1) Cpe & such that py = Hd(€)
and piy1 = he(pi) = te(Hd(pi)). Then te(uri) = he(prri) and g =
he(prgti—1) = he®o=F0 (&) for ko — k +14 > 0. Therefore (g, ..., prre) Cpt &
witnesses (Vg, ..., Vo) < &. O

Definition 2.17 Let {: (&ky-yén-1), V= (Vgy...,uN—1) and U # 5 Let
i > k be the minimal number such that v; # &. Suppose (&;,...,En—1) # 0,

and let k; > i be the minimal number such that &, # 0. Then 7 <, j giff one
of the followings holds:

1. (I/i, AN .,I/Nfl) = 6

2. In what follows assume (v;,...,Un_1) # 6, and let ky > ¢ be the minimal
number such that vy, # 0 (i = min{ko, k1}). Then U <j; i £ iff one of the
followings holds:

(a) i = ko < ki and he1=F0) (1, ) < &, .
(b) ko > ki =i and vy, < he(Fo=F (g, ).

Proposition 2.18 Suppose that both of U and { are irreducible. Then U <iq
§= Mhi(V) <k Mhig(§).



—

Proof. Let m € Mh{ (&), K(V) C Hq(m), and i > k be the minimal number such
that v; # §. We have € [\, ,;; Mh§(v;), which is a I1}_,-sentence holding on
L. Inthe case§; # 0, it suffices to show that m € M;((,»; Mh§(v;)), since then
we obtain m € M;(Mh{ (7)) by m € Mh#(&;) C M;, a fortiori m € My (Mh§(7)).

If (vs,...,un_1) = 0, then & # 0 and Nj>i Mh§(vj) denotes the class of
limit ordinals. Obviously m € M;((;~; Mh§(v;)).

In what follows assume (v;,...,Un_1) # 6, and let kg > 7 be the minimal
number such that vy, # 0, and k; > 7 be the minimal number such that &, # 0.
Case 1. ko > k; = i: Then we have vy, < he(®o=F1) (& ). Proposition 216
yvields (Vkg, ..., vn-1) < &, = &, which in turn yields 7 € M;((;»; Mh$(v;))
by the definition @) of 7 € Mh(&;).

Case 2. i = kg < k1: Then we have he(klﬂ')(ui) <&k, - Alsoviy < he(p)(ul-) for
any p > 0 since 7/ is irreducible and v; # 0. Let j > k;. Then v; < hel=9 (1) <
heU=F1)(&.,). In particular vy, < &, . Proposition 218 yields (v, ,...,vn_1) <
k- ™ € Mhi (&) yields m € My, (55, Mh§(v;)). Moreover for any p <
ky — i, het®==P) (1, ) < &, by Proposition Lemma yields = €
Nky>j>i MG (V). Therefore 7 € My, (Mhg(V)), a fortiori m € My(Mhg (7).

O

Proposition 2.19 (Cf. Proposition 4.20 in [§])

—

Let V= (va,...,un—1), £ = (&2,...,&n—1) be irreducible sequences of ordinals<
e(A), and assume that 7 (b) < 7 and S (a) < k.
Then By = P2 (b) < & (a) = a1 iff one of the following cases holds:

m < Yg(a).

b<a, ¥7(b) < K and K(7) U {m,b} C Ha(1S(a)).
b>a and K(€) U {k,a} ¢ Hp(WZ(b)).

b=a, k<7 and k & Hy(VZ(D)).

~

b=a, 7=k, K(¥) C Ho(v(a)), and 7 <ip2 €.
b=a, m =k, K(€) ¢ Hy(wZ(D)).

Proof. If the case () holds, then ¥Z(b) € Ha(d;é( )Nk C w,é(a).

If one of the cases () and (@) holds, then K (£) U {k,a} ¢ Ha (17 (b)). On
the other hand we have K (£) U {x,a} C 'H,a(wg(a)). Hence 7 (b) < 1/15(@).

If the case (B) holds, then Proposition yields Mhg(7) <2 Mhg(E) 3
gbg(a). Hence gbg(a) € My(Mhg(v)). Since K (V) U {k,a} C ’Ha(d}f:(a)), the set
{p< wg(a) :Ha(p) Nk Cp, K(P)U{k,a} C Ha(p)} is club in gbg(a). Therefore
W7 (b) =17 (a) < & (a) by @) in Definition ZHIE

Finally assume that the case (@) holds. Since K (&) C ’H,a(wf:(a)), Y7 (b) <
1/15(&) holds.

S S e
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Conversely assume that 17 (b) < wg(a) and ¢§(a) < .

First consider the case b < a. Then we have K () U {m, b} C Hy()Z(b)) C
’Ha(@bf:(a)). Hence (@) holds.

Next consider the case b > a. K(£)U{r,a} C Hy(¥7(b)) would yield gbg(a) €
Hp (7 (b)) N C Z(b), a contradiction wé(a) < ¥Z(b). Hence (@) holds.

Finally assume b = a. Consider the case k < m. & € Hyp(¥Z(b)) N would
yield wé(a) < K < Z(b), a contradiction. Hence x & Hy(1)Z(b)), and (@) holds.
If T < &, then ™ € Hp(YZ (b)) Nk C H, (wg(a)) Nk, and 7 < w,é(a), a contradic-
tion, or we should say that () holds. Finally let 7 = k. We can assume that
K (&) € Hy(1hZ (b)), otherwise [@) holds. If £ <ip.5 7, then by (B) 1/1§(a) < 7 (b)
would follow. If K(7) ¢ Ha(¥€(a)), then by (@) again 1 (a) < ¥7(b) would
follow. Hence K (V) C Ha(wg(a)) and 7 <, £ If 7 = £, then gbg(a) = 7 (b).
Therefore (@) must be the case. a

Definition 2.201is utilized to define a computable notation system in the next
section

Definition 2.20 A set SD of sequences £ = (&2,...,&n—1) of ordinals & < e(A)
is defined recursively as follows.

1. 0% (a) € SD for each a < A.

2. (Cf. Definition ZIMA) Let £ = (&,...,én-1) € SD, 1<k <N —1,( <
£(A) be an ordinal such that (€x41,...,Ev-1) <sa ¢, and (&2, ..., Ek—1, &k, C)*
0 € SD. Then for (; = & + Aa with an ordinal a < /E, (€oy .. &) *
(Ck) * (§k+1; R ;ngl) € SD and (52, . ,gkfl) * (Ck) x*0e SD.

Proposition 2.21 Let £ = (&,...,6n_1) € SD.
1. (&,...,&)x0€ SD for each i with 1 <i < N.
2. For2<i<j<k<N,if&#0 and & #0, then & # 0.
3. Let & #0. Then (41, .. ,En-1) <sd te(&;).
4. gis irreducible.

Proof. Let1 <k < N—1,¢ < &(A) be an ordinal such that ({41, ..,En—1) <sd
¢, and (&, .., &k—1,&, C) * 0 € SD. Also let ¢; = &, + ASa with an ordinal
a < A.

P20 is seen by induction on the recursive definition of £ € SD.

is seen by induction on the recursive definition of 56 SD. Suppose & # 0
for an i < k. From (&,..., &1, C) %0 € SD and ¢ # 0, IH yields & # 0.
22713 and 22T We show these by simultaneous induction on the recursive
definition of 5 € SD.

We show Proposition for the sequence (&o,...,&k—1) * (Cx) *
(€kt1,---,En—1) € SD. The proposition holds for the sequence 5, and we can

11



assume a # 0. We obtain (&y1,...,én-1) <sa te(&;) for ¢ > k if & # 0, and
(Ekt1y--5EN-1) <sd te(Cr) = ¢ by the assumption. Let 2 < i < k and & # 0.
We show (€41, &1) * (Ck) * (Ept1y -y EN—1) <sa te(&;). Tt suffices to show
that ¢ <sq te®=9(&). By IH we have & <gq te*~9(&;). On the other hand
we have & # 0 by (&, ..., &—1,&,C) x0 € SD, ¢ # 0, and Proposition 2212
Moreover (&2, .., k-1, &k, C) * 0 is irreducible by Proposition Z22IH, and hence
TI(&,) > ASHL. Therefore te(&y) > ¢. This means that (4 =yr & + ASa, and
& <sq teFD(&) yields ¢ <oq te® =9 (&) by Definition ZIIRl

EZIE If (Eig1,...,EN—1) <sq te(&) for & # 0, then & p <gq te® (&) for
k>0, and & p + 1 < te®(&;). Hence Ag(&ipn + 1) < A6 < TI(&), and € is
irreducible. ]

3 Computable notation system OT

In this section (except Propositions B3)) we work in a weak fragment of arith-
metic, e.g., in the fragment 131 or even in the bounded arithmetic Si. Referring
Proposition 2.9 the sets of ordinal terms OT C A = ex11 and E C €(A) = exyo
over symbols {0, K, A, +,w, p, Q,9} are defined recursively. OT is isomorphic
to a subset of Hx(0). Simultaneously we define finite sets Ks(a) C OT for
§,a € OT, and sequences (m(a))2<k<n_1 for & € OTNK, where in a = ¢?(a),
mg(a) = vg, ie, V= (vo,...,uvn_1) = (m2(a),...,my_1(a)) = (mp(a))r =

m(a). For {ag,...,am, 8} C OT, Ks(ag, ..., am) == U<, Ks(ai), Ks(ao, ..., am) <
B e Vy e Ks(ag,...,am)(y < B),and 8 < Ks(ag,...,am) = Iy € Ks(ag,...,am)(8 <

7)-

An ordinal term in OT is said to be a regular term if it is one of the form
K, Q41 or 17(a) with the non-zero sequences ¥/ # 0. K and the latter terms
Y7 (a) are Mahlo terms.

o =NF Qup + -+ ap means that « = o, + -+ + g and «,,, > -+ > «p
and each «; is a non-zero additive principal number. o =xp @f7 means that
a=ppyand B,y < a. @ =y W’ means that o = w® > B. a =nr Qg means
that o = Qg > 3.

Let pd(¢7(a)) = 7 (even if # = (). Moreover for n, pd™ () is defined
recursively by pd® (a) = o and pd™ Y (a) ~ pd(pd™ ().

For terms 7,k EﬂOT7 7 < Kk denotes the transitive closure of the relation
{(m, k) : IETb[r = Y& (b)]}, and its reflexive closure 7 < Kk & T < KV T = Kk <
In(k = pd™ (7).

For each ordinal term o = 97 (a), a series (;);< 1, of ordinal terms is uniquely
determined as follows: 7, = o, m; = pd(m; 1) and o = K. Let us call the series
(mi)i<r the collapsing series of a = 7.

Then we see that an ordinal term a = 7 (a) with 7 # 0 is constructed by
Definition BII2g below iff L = 1. « is constructed by Definition BII21 iff L = 1
(mod (N —2)). Otherwise « is constructed by Definition B2l

Definition 3.1 fa denotes the number of occurrences of symbols
{0, K, A, +,w,»,Q,9} in terms o« € OT U E.

12



1.

(a) 0 € E.

(b) f 0 <a € OT, thena € E. K(a) = {a}.

() If{& i <m} CE &, >->¢& >0and 0 < b € OT, then
S i ASib; = ASmby, + -+ AS0by € E. K(Y ., ASib;) = {b; 1 i <
m}UULK(&) i < m}.

(d) For sequences v/ = (va,...,vn-1), let K(V) =Uyc;cn_y K1)

(a) 0,K e OT. my(0) =0 for any k, and K;5(0) = K5(K) = 0.

(b) If &« =np am + -+ + g (m > 0) with {a; : ¢ < m} C OT, then
a € OT, and my(a) =0 for any k. Ks(a) = Ks(ao, ..., Q).

(¢) f a =np ppy with {$,7} C OT NK, then a € OT, and my(a) =0
for any k. Ks(a) = Ks5(8,7).

(d) If a =xF w? with K < 8 € OT, then a € OT, and my(a) = 0 for
any k. Ks(a) = Ks5(8).

(e) If a =nF Qp with f € OTNK, then a € OT. ma(a) = 1,myp(a) =0
for any k£ > 2 if 5 is a successor ordinal. Otherwise my(a) = 0 for
any k. In each case Ks(a) = Ks5(3).

(f) Let v =1pr(a) := wﬁ(a) where 7 is a regular term , i.e., either 7 = K
or m(m) # 0, and K, (m,a) < a.

Then o = ¢ (a) € OT. Let my(a) = 0 for any k. Ks(¢r(a)) =0 if
a < 6. Ks(¥r(a)) = {a} U Ks(a, ) otherwise.

(g) Let a = ¢Z(a) with 7 = 0% (b) (Ih(#) = N —2) and b,a € OT such
that 0 < b < a and K,(b,a) < a
Then a = ¢%(a) € OT. Let my_1(a) = b, my(a) =0 for k < N — 1.
Ks(@i(a) = 0if a < 6. Ks(w(a) = {a} UU{Ks(7) 5 v € K@)}
otherwise.

(h) Let m € OTNK be such that my11(w) # 0 and Vi > k+1(m;(w) = 0)
fora k(2 <k < N-—2),and b,a € OT such that 0 < b < a. Let
UV = (va,...,un—_1) be a sequence defined by Vi < k(v; = m;(m)),
ve = my(m) + A+ (Db and Vi > k(v; = 0).

Then a = ¢Z(a) € OT if Ku(m, a,b) U Kqo(K(7(r))) < a. Let
m;(a) = v; for eachi. Ks(¢7(a)) = (Z)lfa < 4. Otherwise K5(1)7(a)) =
{a} U Ks(a,m) UU{Ks(D) : be K(U)}.

(i) Let m € OT NK be such that m; (m) # 0 and Vi > 2(m;(7) = 0), and
a € OT. Let 0 # U = (vo,...,un—1) € SD be a sequence of ordinal
terms v; € E such that 7 <, ma (7).

Then a = 7 (a) if K4 (7, a) < a, and

™

V(Ko (vk) < max K (vy)) (4)

Let ml(a) v; for each i.
Ks(¢Z(a)) = @ if @ < . Otherwise Ks(vZ(a)) = {a} U Ks(a, ) U
U{K(b) - b € K(7)}.
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Let {m, a,§} C Hq(m). Then & = my(w) is intended to be equivalent to
7 € Mh{(¢). For Definition BRI see Corollary 212 and for Definition BT
see Proposition

Proposition 3.2 For each Mahlo term o = Z(a) € OT, m(a) = 7 € SD for
the class SD in Definition [2.20.

Proposition 3.3 For any o € OT and any § such that § = 0,K or § = 47 (b)
for some m,b,U, o € H,(0) & Ks(ao) < 7.

Proof. By induction on fa. o

Lemma 3.4 (OT, <) is a computable notation system of ordinals. In particular
the order type of the initial segment {o € OT : o < Q1 } is less than w{E.

Specifically each of a < B and o = S is decidable for o, f € OT, and o € OT
is decidable for terms o over symbols {0, K, A, +,w, p, Q,}.

Proof. These are shown simultaneously referring Propositions and
Let us give recursive definitions only for terms Q,,v7(a) € OT.

First Qyo(q) = Yl(a), ie., Qo < Y2 (a) & a < PZ(a), ¥(a) < Qy
YZ(a) < a. Next Qq < 9q.,,(a) < Qat1.

Finally for 1% (b), g[}fz(a) € OT, ¥Z(b) < wg(a) iff one of the following cases
holds:

1. © < ¥é(a).

2. b<a, P7(b) < K, and K

wg(a)({w’ b} U K(lj)) < a.

—

3. b>a,and b < Ky ({K,a} U K(E)).

4. b=a, =k, ng(a)(K(ﬁ)) <a,and 7 <jz £

Proposition 3.5 1. Let B =7 (b) with 7 = wg(a). Then a < b.
2. For a =¢”(a) € OT, max K () < a holds.

Proof. Let 8 = ¢7(b) with 7 = wg(a) Then Kg({m,b} UK (¥)) <b. On
the other hand we have § < 7. Hence a € Kg(m) < b.

This is seen by induction on fa. Ww have ¢ < a by Proposition
when 7 = ¥ (c)

When « is constructed by Definition BI2Rl v = my(7) + A™+1(p holds
for b < a. By IH we have max K (m(7)) < ¢ < a when m = ¢#(c).

Suppose « is constructed by Definition BII21 We obtain 77 <), ms(7), and
hence max K (7) < max K (ma(m)) < ¢ < a by IH. O
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4 Operator controlled derivations

In this section, operator controlled derivations are defined, which are introduced
by W. Buchholz [6].

In this and the next sections except otherwise stated o, 5,7, ...,a,b,¢,d, . ..
range over ordinal terms in OT C Ha(0), & ¢, v, i, ¢, ... range over ordinal
terms in F, {, 5, U, [, ;... range over finite sequences over ordinal terms in F,
and ,K,p,0,7T, A, ... range over regular ordinal terms K, Qgi1, ¥7(a) with
7 # 0. Reg denotes the set of regular ordinal terms. We write o € Haq(B) for
Ka(a) < a.

4.1 Classes of sentences

Following Buchholz [6] let us introduce a language for ramified set theory RS.

Definition 4.1 RS-terms and their levels are inductively defined.
1. For each o € OT NK, L, is an RS-term of level a.

2. If ¢(x,y1,...,Yn) is a set-theoretic formula in the language {€}, and
ai,...,a, are RS-terms of levels< a, then [x € L, : ¢¥=(x,a1,...,a,)] is
an RS-term of level .

Each ordinal term « is denoted by the ordinal term [z € L, : « is an ordinall,
whose level is a.

Definition 4.2 1. |a| denotes the level of RS-terms a, and T'm(«) the set of
RS-terms of level< . T'm = T'm(K) is then the set of RS-terms, which
are denoted by a,b,c,d, ...

2. RS-formulas are constructed from literals a € b,a ¢ b by propositional
connectives V, A, bounded quantifiers 3x € a,Vx € a and unbounded
quantifiers Jz,Vz. Unbounded quantifiers dz,Vx are denoted by Jx €
Lx,Vx € Lg, resp.

3. For RS-terms and RS-formulas ¢, k() denotes the set of ordinal terms «
such that the constant L, occurs in ¢.

4. For a set-theoretic %, -formula ¢ (z1,...,2,) in {€} and ay,...,a, €
Tm(k), ¥ (a1,...,am) is a B, (k)-formula, where n = 0,1,2,... and
k < K. II,,(k)-formulas are defined dually.

5. For 0 = ¢l (ay,...,am) € Bp(k) and X < k, 0% = pIr(ay, ... ap).

Note that the level [¢| = max({0} U k(¢)) for RS-terms ¢. In what follows we
need to consider sentences. Sentences are denoted A, C' possibly with indices.
The assignment of disjunctions and conjunctions to sentences is defined as

in [6].

15



Definition 4.3 1. For b,a € Tm(K) with |b| < |al,

_ [ A(b) fa=[xeL,: Alx)
(bea) ':{ b Lo ifa=La

and (a =b) := (Vz € a(z € b) AVz € b(x € a)).
2. For b,a € Tm(K) and J := Tm(|a|)

(bea):~ \/(caa/\c= b)ces and (b & a) i~ /\(c £a NV c#b)ees

3. (Ag VvV A1) = V(A,),es and (Ao A A1) i A(A,),eg for J = 2.
4. For a € Tm(K) U {Lk} and J := Tm(|a|)
dz € a A(z) i~ \/(bga/\A(b))beJ and Vz € a A(z) :~ /\(b £aN A(b))pe.
The rank rk(z) of sentences or terms ¢ is defined as in [6].
Definition 4.4 1. tk(=A) := rk(A).
2. 1k(Ly) = wa.
. tk([z € Lo : A(z)]) = max{wa + 1,tk(A(Lo)) + 2}.
. tk(a € b) = max{rk(a) + 6,rk(b) + 1}.
. tk(Ag V Ay) := max{rk(Ag),rk(A1)} + 1.
6. 1k(3z € a A(x)) := max{wrk(a),rk(A(Lg)) + 2} for a € Tm(K) U {Lk}.
Proposition 4.5 Let A be a sentence with A ~\/(A,).,eq or A~ \(A,).e-
1. tk(4) < K+ w.
2. |A| <tk(A) € {w|A| +1i:i € w}.
3. Vv € J(rk(A,) < rk(A4)).
4. tk(A) < A= A€ Zp(N)

4.2 Operator controlled derivations

By an operator we mean a map H, H : P(OT) — P(OT), such that
1. VX C OT[X C H(X)].
2.VX,)Y COTY CH(X)=H(Y) C H(X)].
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For an operator H and ©,0, C OT', H[O](X) := H(XUO), and H[O][O] :=
(H[O])[O1], ie., H[O][O1](X) = H(X UOUO).

Obviously H, is an operator for any «, and if H is an operator, then so is
H[O].

Sequents are finite sets of sentences, and inference rules are formulated in
one-sided sequent calculus. Let H = H., (v € OT') be an operator, © a finite set
of K, I" a sequent, a € OT and b € OT N (K + w).

We define a relation (#H.,©) F§ I', which is read ‘there exists an infinitary
derivation of I' which is ©-controlled by H., and whose height is at most a and
its cut rank is less than b’.

K, A\, 0, T, T ranges over regular ordinal terms.

Definition 4.6 (#,,0) ¢ I holds if

k(T) U {a} C #,[0] (5)

and one of the following cases holds:
(V) A~V{A,: 1€ J}, AeT and there exist ¢ € J and a(t) < a such that
| <a (6)
and (H,,0) FeU T, A,

(N) A= NA\{A, € J}, AeT and for every ¢ € J there exists an a(t) < a such
that (H,,0 U {k(1)}) FA T, A,.

(cut) There exist ag < a and C such that rk(C') < b and (H,,©) F;° T', ~C and
(*y,0) F° C,T.

(Q € M) There exist ordinals as, a,(a) and a sentence C' € TI3(£2) such that
sup{ar+ 1,ar(0) +1: a0 < Q} <a,b>Q, (Hy,0)F* T',C and (H,,0U
{wal) FZT(O‘) ~C(@D T for any o < Q.

(vfi(rr, k, €, 7)) There exist a Mahlo ordinal K > 7 € #,[0] N (b+ 1), an integer
2 < k < N and sequences 7V = (u2,...,yN,1),§: (&2,...,&n-1) € SD
of ordinals v;,&; € E, ordinals ag, a.(p),ap, and a finite set A of Xg(7)-
sentences enjoying the following conditions: When 7 = K, £k = N and
7 = 0 with [h(7) = N — 1 hold. Also let £ = 0 in this case. When 7 < K,
& # 0 with k < N, 0 # &, and Vi(& < my(m)).

1. When 7 < K, cf. Definitions 21101

—

Vi < IC(I/Z = gz)&(l/k, .. .,VNfl) <sd fk&K(ﬁ)UK(g) C 'ny[@] (7)

and
V€ 7UEUm(m) (K (1) C Humax 1 () [O)) (8)

cf. [@).



2. For each § € A, (H,,0) Fp* T, =4.

3. H(V,m,~,0) denotes the resolvent class for 7, w, v and O defined as
follows:

C(r,v,0) = {p<m:Hy(p)N7mCp&ONTCp} (9)
pE€H(W,m7,0) & Vi(vi <op mi(p) AK(mi(p)) C Humax k(mi () ()

for p € RegN C(7,7,O).
Then for each p € H(V, 7,7, 0), (H,,0U{p}) FZT(P) L, Al

sup{ae,a-(p) : p€ H(V,m,7,0)} < ap € Hy[O] Na (10)

In the inference rule (rfi(m, k, &, 7)) for 7 = ¢&(c) < K, we have 7 €
Mh5(€). In particular, T € MNicr MRG(&) N Mhj (). Also we are assuming
(Vky -y UN—1) <sa &k, a fortiori (vg,...,un—1) < &. Since m € (), Mh(v;)
is a IIi-sentence holding on L., we obtain © € My (Mh§(7)). Thus the reflec-
tion rule (rfl(m, k, 7)) says that 7 is IIy-reflecting on the class H (¥, m,~, 0, 0)
for the club subset C(m,~,®) of 7, cf. Proposition On the other side we
see p € Mh§ (V) from Proposition X9 if Vi(v; < m;(p)) for p € Mhg(ni(p)).

We will state some lemmas for the operator controlled derivations. These
can be shown as in [6]. In what follows by an operator H we mean an H., for
an ordinal ~.

Lemma 4.7 Let (H,,0) ¢ T

1. (Hy,0 UBy) l—l‘f/l A for any v > v, any ©g, and any a’ > a, b/ > b
such that k(A) U{a’'} C H/[©UBy).

2. Assume ©1U{c} = O, c € H,[01]. Then (H,,01) ¢ T.
Lemma 4.8 (Tautology) (H,k(I' U{A})) l—grk(A) I, A, A.

Lemma 4.9 (Inversion) Let A ~ A\(A,).cs, and (H,0) by T with A€ T'. Then
forany ve J, (H,0Uk(e)) F¢ T, A, holds.

Lemma 4.10 (Boundedness) Suppose (H,0) F¢ T',C for a C € £1()\), and
a<beHNA\ Then (H,0) 2 T,C®N,

Lemma 4.11 (Persistency) Suppose (H,0) ¢ T,C®N for o C € $1(\) and
ab< A€ H[O]. Then (H,0) 2T, C.

Lemma 4.12 (Predicative Cut-elimination) Suppose (H,0) 2, . T, a € H[O)]
and |e,c+w? N Reg = 0. Then (H,0) 2 T.

Lemma 4.13 (Embedding of Axioms)
For each axiom A in KPIly, there is an m < w such that for any operator

H="Hy, (H,0) 52, A holds.
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Proof. The axiom —A, 3z A®) for IIy-reflection follows from A, ~A and
32 A®) =AW for regular ordinals p < K by an inference (rfi(K, N, 0,0)). O

Lemma 4.14 (Embedding) If KPIIxy = T for sets T' of sentences, there are

m, k < w such that for any operator H = H, (H,0) i—ﬁf;k I holds

5 Lowering and eliminating higher Mahlo oper-
ations

In the section inferences (rfl(K, N, 0,0)) for IIy-reflecting ordinals K are elimi-
nated from operator controlled derivations of ¥1-sentences ¢ over Q.
a# 0 denotes the natural (commutative) sum of ordinal terms «, 3.

Lemma 5.1 For a Mahlo term m € orT, 5 € SD denotes a sequence with
h(¢§) = N—=2, and 2 < k < N — 1 an integer for which the following hold:
When © = K, let 5: 0 and k = N — 1. Otherwise 5: (&ayeevy Eog1) * 0 with
&1 # 0 such that Vi < k + 1(& <sp my(m)).

For ordinal terms v, a € OT let us define a sequence C(a) := (Ca(a), .. ., Ce(a))*
0 with Ih(C(a)) = N — 2 as follows. ((a) = 0% (y+a) when m = K. Otherwise
Ce(a) = & + AS+1(y +a) and ((a) = & fori < k.

-

Let k € H(¢(a),m,v,0) for a finite set © C OT.

Now suppose (H~,0) F& T where {, TIUK(E) C H4[©], © C 7, Vi(K (&) C
Hmax K(fi)[g])’ and I' C Ij4q (7).

Let v(a,b) = ~v#a#b, B(a,b) = ¥(y(a,b)), and ¢ > ~(a,k). Then the
following holds:

(He, © U {k}) FB@m) plem) (11)

Proof by induction on a. Let x € H(((a),,7,0). We see ((a) € SD, and
from (Bl and © C & that

kM)NmT CHy(k)NT C K (12)
For any a € H,[O], we obtain {, 7, a,k} C H(m) by ©U{x} C 7. Hence for
7(017 'ka) = ’7#0/#'%7 {’7(@, Ii),ﬂ'} - H’Y(ﬂ—)7 and {’7(@, ’i)aﬂ-} C H’y(a,l-@) (B(au [i)) by
the definition (B]). Therefore x € H.(q,+)(8(a,x)) N7 C B(a, ) by Proposition
24 and © C f(a, k) < w. Thus we obtain
{ap,a1} CHL[OUBOg| &ag < a1 &O¢ C k= f(ao, k) < Blai, k).

Case 1. First consider the case when the last inference is a (rfl(7, k + 1, &, 7)).
We have a; € Hy[O] Na, a,(p) € Hy[O U {p}] Na, and a finite set A of
Yk+1(m)-sentences. We have for each 6 € A

(H,0) 3¢ T, =0 (13)
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and for each p € H(V,m,,0)
(7,0 U {p}) Hor@ T, Al0T (14)

When 7 < K, 7 = (vo,...,vn-1) € SD is a sequence such that Vi <

k—l—l(l/i = fl), (I/k-‘rlu ey VN—l) <sd Ek+1, K(ﬁ)UK(ﬁ) C 'Hy[@], and Vi(K(Vi) C
HmaxK(w)[e])v ct. (IZ) and (E)

Let To = TN Xg(n) and {Vz € L 0;(z) : i =1,...,n}(n > 0) =T\Ty
for Xy (m)-formulas 6;(z). Let us fix d = {dy,...,dn} C Tm(r) arbitrarily. Put
k(d) = U{k(dy) :i=1,...,n} and T(d) = Do U {0s(d;) : i = 1,...,n}.

By Inversion lemma from (I3) we obtain for each § € A

— —

(H+,OUk(d)) Fa T'(d), -6 (15)

Let p € C(k, ¢, OU{x}Uk(d)). We see p < k, and k(d) < p from k(d) < k. By
ONm C Hy(k)N7w C kand v < ¢ we obtain C(k, ¢, ©U{r}Uk(d)) C C(m,~,O).
Namely, cf. (@)

—

pe HV k,c,0U{k}Uk(d)) = pe H(V,x,v,0) (16)

—

For each p € H(V,k,¢,© U{x} Uk(d)), IH with (Id) and (I8 yields for ¢ >
V(ar(p), k) and r € H(((ar(p)), 7, © U{p})

(He, ©® U {p, k}) FAar(p)r) plem) A lpm) (17)

Let p € My := {p € Reg : Vi(Gi(ar) <sp mi(p))} N H(7,5,¢,0 U {r} U k(d)).

Then M, C H(((as), 7, 7,0 Uk(d)) and © Uk(d) C p. For each § € A, IH with
([I3) yields for ¢ > v(ag, p)

(He, O U k(cf) U{p}) '_g(aeqp) p(d*)(pm)j —s(pm) (18)

From ([7) and (I8) by several (cut)’s of 6™ with rk(6("™)) < k we obtain for
a(p) = max{ag, a-(p)} and some p < w

{(He, © UK() U {1, p}) L@ T(@) 0™ T 2 o M) (19)

= =

On the other hand we have by Tautology lemmaBS for each 6(d)*™) € T'(d)*™)

= =

(Hey, © UK(d) U {}) F2XKOD™) p(gjmm —g(gyem) (20)

where 2rk(6(d)(*™)) < k + p for some p < w.
Moreover we have sup{2rk(0(d)"™), B(a(p), k) +p : p € My} < B(ao, k) +
p € Hy[OU ()], where supla,ar(p) : p € H(7,7,7,0)} < ao < a by ().

Now let i = (pa,...,pun—1) = max{C(ac), 7} with p; = max{(;(ar),vi}.
Q—(ag) 1<k

i . We see
v; i>k

Since v; = & <pt Gi(ar) for i < k+1, we obtain p; =
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that My = H(fi, s, c,© U{x}Uk(d)). Moreover we have Vi < k(u; = & = Ci(a))
and (pt, -, puv—1) = (Ce (@) * (Why1, - vN—1) <sd Cr(a). Also Vi(K((i(a)) C
Hmax K(Q(a))[g]) and Vl(K(l},l) C HmaxK(,ui)[@])' For j1—‘(60(“)7‘—) C Hk(’ﬂ? by
an inference rule (rfl(s, k, {(a), /7)) with its resolvent class My, we conclude from
@0) and (@) that (He,© U {k} U k(d)) F2@0m T pg)sm) 7™ Since
d C Tm(k) is arbitrary, several (A\)’s yield (D).

Case 2. Second consider the case when the last inference is a (rfl(r, j, €, 7))
for a j < k+1. We have (H,,0) F% T',=6 for each § € A C X;(m) w1th
a¢ € Hy[O] Na, and (H.Y,@U{p}) Far(P) 0 A for each p € H(V,m,~,0)
with a,(p) € Hy[©OU{p}|Na. V€ S’D is a sequence such that Vi < j(v; = &)
and (I/j, ey VN—l) <sd gj.
We see that the resolvent class H (7, k, ¢1, ©U{k}) is a subclass of H(V, m,~, ©).

By IH we have (H,© U {s}) F2®") T(vm) —s(=m) for each § € A, and
(He, © U {k, p}) F2@rP)®) plem) Alpm) for each p € H(7,k,c,© U {x}) with
Al = (AT PR We claim that Vi < j(&; <g mi(k)). Consider the
case when i = j = k. Then we have & <,, mi(m) and (x(a) <sp mi(k)
with & <pt (x(a). We obtain §k <sp mi(x). Hence by an inference rule
(rfi(k, 5, (), 7)) for the sequence £(j) = (&, ... ,&;) %0 € SD, cf. Proposition
2210 we obtain ([TI).

Case 3. Third consider the case when the last inference is a (rfl(o, §, i1, 7)) for
a o < m. We have (H,,0) 2% I',=¢6 for each § € A C ¥j(0), and (H,,O U

{r}H R P AP for each p € H(V,0,7,0). We obtain ¢ < x by (I2)
for 0 € H,[0]. Hence A C B}(0) C Zo(k) and 6™ = § for any § € A.
Let H(V,0,¢,0 U {k}) be the resolvent class for o, 7, ¢ and © U {x}. Then
H{W,0,c,0U{k}) C H(V,0,7v,0).

From TH we have (H,,© U {k}) F2(***) T 5 for each § € A, and
(He, ©U{k, p}) @ ()R D) A(p0) for each p € H(7,0,¢,0U{k}). We ob-
tain (II) by an inference rule (rfl(o, 4, /i, 7)) with the resolvent class H (¢, o, ¢, OU

{x})-

Case 4. Fourth consider the case when the last inference (/) introduces a
I).41 (7)-sentence (Va € Ly 0(z)) € T. We have (H,,0 Uk(d)) 2 T, 6(d) for
each d € Tm(w). For each d € T'm(k), IH with k(d) < k yields (H., O U {xk} U
k(d)) DR plem) g(gy(mm  (A) yields [ for Yz € L, 0(z)"™ = (Vz €
Ly 0(x))m) ¢ T(sm),

Case 5. Fifth consider the case when the last inference (/) introduces a X (m)-

sentence (Vo € cf(x)) € I for a ¢ € Tm(mw). We have (H.,, OUk(d)) Rl 1, 6(d)
for each d € Tm(|c|]). Then we have |d| < |¢] < k by ([2). IH yields

(He, OU{K}UK(d) FED%) 1= 9(d), and we obtain () by an inference (A).
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Case 6. Sixth consider the case when the last inference (\/) introduces a 3 ()-
sentence (3z € L, 0(z)) € I'. We have (H,,0©) F% T',0(d) for a d € Tm(m).
Without loss of generality we can assume that k(d) C k(6(d)). Then we see that
|d| < K from [I2), and d € Tm(x). Also |d| < k < B(a,k) for [@). IH yields
with (32 € L, 0(2))*™ = (3z € L, 0(z)™) € T&D | (H,, O U {k}) Hal@0")
'™ 9(d)*™), and we obtain () by an inference (\/).

Case 7. Seventh consider the case when the last inference is a (cut). We have
(Hy,0) F T, =C and (H,0) F2 C,T for ap < a with rk(C') < m. Then
C € Yg(m) by Proposition L3Hl On the other side k(C') C 7 holds by Propo-
sition @AEL Then k(C) C & by [@@). Hence C**™ = C and rk(C*™) < &
again by Proposition A2l TH yields (H., © U {x}) -Blao,m) e —C(m™) and
(He, ® U{K}) A@om) oem) (™) Hence by a (cut) we obtain (II]).

Case 8. Eighth consider the case when the last inference is an (2 € My). We
have (#,,0) % T',C and (H,,O U {wa}) & ~C@D T for ecach o < 0
with sup{a; + 1,a,(a) + 1 : a < Q} < a and C € TI5(92).

We obtain wa < & for o < Q. TH with C»™) = ( yields for each a < ,
(He, OU{k,wa}) FE@ (@) (@) pm and (H,, OU{k}) F2@") T=m O
An (Q € Ms) yields ()

All other cases are seen easily from IH. ]

Lemma 5.2 Let A < 7 be a regular ordinal term such that Vi(K(m;(mw)) C
HmaxK(mi(ﬂ'))[@]); and I' C E1(>‘)
Suppose for an ordinal term a € OT

(Hy,©) 2 T
where {y, \, 7} C H,[O].

Assume

Vp € [N\, mVd[© C ¢, (v#d)] (21)
Let a = y#w™ L and B =x(a). Then the following holds

(Hay1,0) 5T (22)

Proof by main induction on 7 with subsidiary induction on a. We can assume
a > 0.
We see that © C 8 = ¢y (a) from (2I). Hence

ag € Hy[0] Na = ¥a(a) < ¥a(a)

Let { € SD bea sequgnce_}of ordinals and k a number for which the following
hold: If r =K, then let { =0 with (h(§) = N—1land k = N—1. Let 7 < K. If
(7)) # 0, then K(§) € H,[0], £ < 1i(r) and k = max{k < N —2: &.41 > 0}.
Otherwise let € = 0 and k = 1. By the assumption (ZI), and (§) we obtain

—

Vp € [N @b € K(EVdk(I) U {y, A, a,m,b} C My (4, (v#d))] (23)
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Case 1. First consider the case when k > 2.

Let € = m(x), and C(a) := (C2(a), . .., Cx(a)) * 0 be the sequence defined as
in Lemma B from v,a: C(a) = 0% (v + a) when m = K, otherwise (x(a) =
& + A%+ (y +a) and ((a) = & for i < k. Also let y(a,b) = y#a#b and
ﬂ(aa b) = 1/)777(97 b)

Let # = 5 (7v(a,0)). By the assumption (2I) we have © C ¢ (y#a). On
the other hand we have ¥ (v#a) = ¥ (7(a,0)) < Kk, and © C k. m™ € H,[O]
with © C 7 yields K(§) = K(m(r)) C H,[0] C Hya,0)(k). Hence K(€) U
{m,7(a,0)} C Hya,0)(k), and k € OT by v(a,0) = y#a > 0 and Definition
BIRLI such that k£ < 7 and H+(k) N7 C k. Moreover we have Vi(K((;(a)) C
Homax k(i (a)) [©]) by Vi(EK (my(7 )) C Humax i (m; (=) [©]) and {v,a} C H,[O] with
© C k. In other words, k € H(((a),,,O).

By Lemma .1 we obtain (H(q,x)+1,© U {x}) A(@m) p ') and Lemma
with £ € Hy(a,0)41(0)]

(Hoy(am) 41, ©) FE@F) Do) (24)

If A\ = 7, then T"™) C (k) C Xo(\). We have © C 9,(a) = 3, and x €
Ha(B). Hence {v,m a,k} C Ha(B), and y(a, k) = y#a#r < y#w™ T = 4.
Therefore k < f(a, k) < r(a) = 5. We obtain (22) by Persistency lemma [11]

Next consider the case when A < w. Then A\ < x and T(*™) = I'. We have
for @I0), Yavp € [\, &](© C ¥,(v(a,k) + 14#d)). By MIH on (24) we obtain
(Hbo+1,0) kgg T for By = ¥a(bo) with by = (y(a,r) + 1)#wrHP@r+1 - We
have by = Y#a#r#1#wP (@R <yt — G by B(a, k) < m. This yields
Pa(bo) = Bo < B = ¥a(a) by © C B and {v,k,m,a} C Ha(B). Hence [22)
follows.

In what follows suppose k = 1.

Case 2. Consider the case when the last inference rule is a (rfl(rr, 2, £, 7)).

We have an ordinal term a, € H~[0]Na, and a finite set A of Xo(7)-sentences
for which (H,,©) F% T', =6 holds for each § € A. On the other hand we have
sequences 7, (&) * 0 € SD such that 7 <4 & and K(7) U K(£) C M+ [©] by
(@), and an ordinal term a,(p) € H,[O© U {p}| Na for which (H,,0©U{p}) p-ar ()
I, A(»™) holds for each p € H(i, 7,7, ©), where & <, ma(r).

Let p := ¢Z(ay#m) for ay = y#w™ 2%+ By the assumption (ZI) we have
© C Yr(ay) C p. K(W)U{m, v,a} C H,[O] yields K(V) U{m, ar} C Haux(p)-
Next consider the condition (#). We have Vi(K (v;) C Hmax K (1,)[©]) by @), and
hence Vi(K (Vi) C Hmax x(v)(p)) by © C p. Therefore p € OT by Definition
BIR1 Moreover p € C(m,~,0), ie., Hy(p) N7 C p&O N7 C p. Hence
p € HU,m~,0).

By Inversion lemma we obtain for each § = (3z € L;d1(x)) € A and
each d € Tm(p) with |d| = max({0} Uk(d)), (H,x|q, © Uk(d)) F4* T', =61 (d).

We have {m,v,|d|} C H,gq(m) by |d| < p < 7, and this yields |d| €
Hey (Ve (1)) (V7 C (Y1), Hence [d] < (v#1d]), and Ve(® Uk(d) C
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U (y#|d|#e)), ie., @I) holds for A = 7 and y#|d|. Let B4 = ¥ (ag) for ag =
Y#ld|#wm et = @ygtld]. STH yields (Hazi1,© Uk(d)) Ho? T, =d1(d), which
in turn Boundedness lemma 10 yields (Hz= 11,0 Uk(d)) ng T, -6%™(d) for
Uy = y#TH#w T = G4, By persistency we obtain (Hq 1,0 Uk(d)) I—gd

F,ﬂégp’ﬂ)(d) for Bq < Yr(ay) = p € H,[O]. Since d € T'm(p) is arbitrary, (/)
yields
(Haz41,0) FH T, =60 (25)

Now pick the p-th branch from the right upper sequents
(Haz 41,0 U {p} F3r?) T, Al>™)
By p € Hgz41(0] and Lemma [L.72] we obtain
(Haz 41, 0) F2 () T, AP (26)

Case 2.1. First consider the case A = . Then A»™) C So(\). Let 8, = ¢ (b,)
with b, = @y #1gw™rerP)+l = ygprractigyrtar(p)Hfadi] Then 8, > p
and Vd[© U {p} C r(ay + 14#td)]. SIH yields for (26])

(Hb,11,0) Fa T, A (27)

Several (cut)’s with [@1), (@) yield (Ha1,0) Fy ™" T for 8, > p, ar < b, < a
and some p < w, where 8, < 8 =.(a) by b, < a. 22) follows.

Case 2.2. Next consider the case when A < 7. Then A < pand A7) € ¥ (pT)
with o = Q1. SIH with @8) yields (M, 41,0 U {p}) Fy" [,AC™ for
Bpt = Yyt (by) > p, and by Lemma 72 we obtain

(Hy,e1,0) Fa" T, A0 (28)

Several (cut)’s with 23), @28) yield (Hpy+1,0) l—g”iﬂ) I' for B,+ > p and

bo = y#(wmraetl.2) g rar ()T > max{by, b, }. Predicative cut-elimination
lemma .12 yields for 81 = @(B,+)(B,+ +p) < p*

(Hpo+1,0) o1 T (29)

We obtain A < p € Hp,+1[0] by v < ar < bp. MIH with (29) yields (He41,©) Fﬁiz
[ for ¢ = bo#1#wrTP1Hl. We obtain ¢ = bo#wrTArH141 = y(wmraet! .
2)Fwmtar ()l ypthitlg < ™ol — § since ag, a,(p) < @ and p, B <
pT < 7. Hence ¥yc < ¥r(a) = B, and ([22)) follows.

Case 3. Third consider the case when the last inference introduces a 31 (\)-
sentence (Vo € cf(z)) € T for ¢ € Tm(X). We have (H,,0 Uk(d)) R p, 0(d)
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for each d € Tm(|c|). Then we see from (23] that |d| < |c| € H~ (¢, (v#e))Np C
y(y#e) for any p € [A, 7] and any e. Hence |d| € 9, (y#e). 1)) is enjoyed for
© Uk(d). STH yields (Ha+1,0 Uk(d)) F5 T,6(d) for B4 = ta(a(d)). (A) yields
(IZZD for 5 = Q/JX(CAL) > (4.

Case 4. Fourth consider the case when the last inference introduces a X1 (\)-
sentence (3z € Ly6(z)) € I'. We have (H,,0) % T',0(d) for a d € Tm(N).
SIH yields (Hat1,0) F3° T,0(d) for 8 = x(a) > 9a(d0) = Bo. Without loss
of generality we can assume that k(d) C k(6(d)). Then we see from (23] that
|d| € Hy(Wa(y+ 1)) N A C Ya(y+ 1) < B. Thus is enjoyed in the following
inference rule (\/). We obtain (Hs+1,0©) Fg T by a (V), which enjoys (@)).

Case 5. Fifth consider the case when the last inference is a (rfl(r, j, i, 7)) for
aT € Hy[O]N 7. We have an ay < a and a finite set A of X;(7)-sentences
such that (H,,©) F% T',=6 for each 6 € A. On the other hand we have a
sequence ¥ and an ordinal term a,(p) < a for each p € H(V, 7,7, 0) such that

(H~,0U{p}) R p AleT) By @3), for any p € H(7, 7,7, ©) we obtain
VeWnfmax{r + LA} < 5 < 1= p < 7 € Hy(u (1)) N C lrie)]  (30)

Case 5.1. First consider the case when 7 < A. Then p < v, (v#e) for any
k € [\, ] and e. From SIH with B0) we obtain (Hs+1,0) Fgﬁ T, =6 for each
§ € A with 8, = ¥yx(ar), and (Har1,0 U {p}) Fg:gﬁg I, A7) for each p €
H(V,7,7,0) with B,(p) = ¥a(ar(p)). We see max{fe, B-(p), 7} < B = ¥x(a),
and an inference rule (rvfl(7, j, i, 7)) yields (Hat1,0) Fg T.

Case 5.2. Second consider the case when A < 7. Then A UA®™) € ¥y (r1),
and p < ¢ (y#e) for 7 < k <7 and e by B0). SIH yields (Hg+1,0) l—'gz | )
for each § € A, where 33 = ¥, + (az). On the other side STH yields (Ha/-(p\)_H, ou

{r}) l—gi I, A7) for each p € H(¥,7,7,0), where Bp =1+ (‘;\(P)) Predica-

tive cut-elimination lemma ET2 yields (Hgy41,©) F22 T', -0 and (Ha/(7)+1’ ouU

{p}) F2 T, A7) for 6, = p(82)(B2) and 6, = ©(B,)(8,). From these with the
inference rule (rfl(7, j, f{, V)) we obtain

(Haz41,0) FP*' T (31)

where sup{d2,0, : p € H(W,7,a0 +1,0)} < 6o := ¢(Bo)(Bo) € Haz4+1[0] with
sup{fa, By < p € H(B.m7.0)} < fo =ty (@), and supar,an(p) : p €
HW,71,7,0)} <ag € H,[O] Na, ct. [10).

MIH with @) yields (Ha11,0) FS T for § = ¥n((ao + 1)#w™%+2) and
(@ + 1)FHw™ %2 < G, We have 6 = 9y (Go# 14w H9+2) < 9\ (@) = B by
ap < a and 7,80 < 7t <7 and 7 € H,[6]. ([22) follows.
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Case 6. Sixth consider the case when the last inference is a (cut). For an ag < a
and a C' with rk(C) < 7, we have (H,,0) F2 I', =C and (H,,0) F% C,T.

Case 6.1. First consider the case when rk(C') < A. Then C € Xy(\). SIH
yields the lemma.

Case 6.2. Second consider the case when A < 1k(C') < 7. Let p* = (rk(C))* =
min{x € Reg : tk(C) < }. Then C' € Ey(p*) and A < p € H,[O]N7. SIH yields
(Hag11,0) Fie T, ~C and (Ha41,0) 2 C.T for o = pr (@) € Haz11[O)-
By a (cut) we obtain (Hg;41,0) ng T for 1 = max{f,rk(C)} + 1 with p <
f1 < pT. Predicative cut-elimination lemma ET2 yields (Hgz11,0) o' T for
01 = (B1)(B1), where ap € Hg;41(0], and VeV € [, p][© C ¥-(ap#e)] hold.
Hence MIH with p € Ha;41[0)] yields (Hy1,0) 20 T for b= dofl w01+,
We see b < @ and 95 (b) < ¥a(a) = 3, and [22)) follows.

Case 7. Seventh consider the case when the last inference is an (Q € Ms). We
have (H,©) F% T',C for an ay < a, and (H,,©U{a}) Far(@) (@) T for an
ar(a) < a for each a < Q, where C € II5(9).

The case A > 2 is seen as in Case 5.1. The case A = {2 is seen as in Case
5.2. O

Let us conclude Theorem [[L1l Let © = Q.

Proof of Theorem [Tl Let KPIIy + 6. By Embedding lemma [£T4] pick an
m so that (Ho,0) F%f:@m 6. Predicative cut-elimination lemma yields
(Ho,0) I—E{j’"“(KH) 0 for w,(K-2+4+m) < wp41(K+1). Lemma yields
(Hat1,0) l—g 0 for a = wWKtem1K+HD+ and B = 9g(a). Predicative cut-
elimination lemma 12 yields (Hq41,0) Fg('@)(ﬁ) 0. We obtain ¢(8)(8) < a:=
Yao(wn(K 4 1)) for n = m + 3, and hence (H,,, k+1),?) F§ 6. Boundedness
lemma ET0Q yields (H,,, &+1),0) F§ 0(@)  Since each inference rule other than
reflection rules (rfi(m, k, &, 7)) and (Q € My) is sound, we see by induction up
to o = 1/)gl(wn(K =+ 1)) that L, ': 0.
This completes a proof of Theorem [L.1}
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