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Abstract

This article describes a method for evolving adaptive procedures for the contour-based segmentation of anatomical structures in 3D
medical data sets. With this method, the user first manually traces one or more 2D contours of an anatomical structure of interest on parallel
planes arbitrarily cutting the data set. Such contours are then used as training examples for a genetic algorithm to evolve a contour detector.
By applying the detector to the rest of the image sequence it is possible to obtain a full segmentation of the structure. The same detector can
then be used to segment other image sequences of the same sort. Segmentation is driven by a contour-tracking strategy that relies on an
elastic-contour model whose parameters are also optimized by the genetic algorithm. We report results obtained on a software-generated
phantom and on real tomographic images of different sorts.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Segmentation, a central issue of computer vision, is a
fundamental pre-processing step in most systems that
support medical diagnosis or planning of surgical operations
and radiation treatments [1–3].

Despite the amount of research that has been done in the
field (see for example [4–7]), medical image segmentation
is still tackled on an ad hoc basis, using manually-tunable
algorithms with some degree of adaptivity to obtain accep-
table results. However, often these algorithms are complex
and hard to tune manually, while robust self-adaption
schemes are hard to find.

Contour-based segmentation methods are generally
computationally efficient, but, when applied to real images,
often lack robustness, being quite sensitive to noise and data
variability. The reliability of such methods can be improved
using techniques for segmentation and data representation
based on data-driven elastic models, such assnakes[8] and
deformable surface models [9], which have been applied
successfully also in the field of medical imaging [10–12].

Medical imaging techniques, e.g. computed tomography
(CT) and magnetic resonance (MR), often produce
sequences of images representing 2D sections of a 3D
anatomical structure of interest, which needs to be analyzed
as a whole. Temporal image sequences are also acquired, in
which the variations in time of a moving anatomical struc-
ture (e.g. the heart) can be studied. Segmentation can be
used to identify the structure in each section (frame) and
produce its full 3D reconstruction or model its deformations
(motion) in time. Contour-tracking procedures have been
used with some success [13] by constraining the segmenta-
tion process with some regularizing assumptions. This
allows a contour, detected (or manually traced) on one
section (frame), to be used to seed the segmentation of the
same structure in a neighboring slice of the sequence.

The most accurate method to produce segmentations of
3D structures is still tracing contours manually. However,
owing to its heavy time requirements, manual segmentation
is highly impractical. A reasonable compromise is to
design segmentation systems based on tools which can
self-adapt to new problem classes, or can generate new
solutions when none of the available ones produce accurate
segmentations. Such systems should also allow clinicians to
refine the results manually, when minor inaccuracies are
detected. In any case, it is desirable that user’s intervention,
in terms of time and (manual) workload, be as limited as
possible.
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Among learning-from-examplestechniques, in which the
problem of image segmentation can be reformulated as an
optimization problem, genetic algorithms (GAs) [14,15]
have been used for segmentation by Bhandarkar et al.
[16], who defined a multi-term cost function which is mini-
mized using a GA-evolved edge configuration. An adaptive
approach in which GAs are used to optimize the perfor-
mances of the Phoenix segmentation algorithm [17] is
described in [18]. In [19] Chun and Young mapped a
region-based segmentation onto the binary string represent-
ing an individual, and evolved a population of segmenta-
tions using a fuzzy fitness function. GAs have also been
used to find optimal descriptors to represent 3D structures
[20]. Poli and Valli [21] use a GA to optimise the parameters
of recurrent neural networks to segment echocardiographic
images. An approach based on genetic programming [22] is
described in [23]. A fairly comprehensive review of other
approaches is available in [24].

In the field of signal processing, GAs have been used, for
example, to design general-purpose digital filters [25,26], or
QRS detectors based on polynomial filters [27], providing
solutions characterized by a good trade-off between perfor-
mance and computation load.

The segmentation method proposed in this article,
derived from the one introduced in [28] and further devel-
oped in [29] and [30], is aimed at exploiting GA optimiza-
tion to design contour-based segmenters for specific
anatomical structures in 3D medical data sets. The “genetic
design” is based on a small set of manually-traced contours
of the structure of interest. The method combines the good
trade-off between simplicity and versatility offered by

polynomial filters with the regularization properties that
characterize elastic-contour models.

In the following sections the method is described, along
with the results obtained on a software-generated image
sequence of a phantom and on sets of real CT and MR
images.

2. GA-based design

In the proposed contour-tracking method two cascaded
modules are used: a non-linear edge detector and an inter-
polator based on an elastic-contour model. As the quality of
the results depends both on the coefficients of the edge
detector and on the parameters of the interpolator, and there-
fore on the effectiveness of their coupling, we use a GA to
optimize all such parameters at the same time.

The GA-based design procedure can be split in two steps:

1. Interactive specification of a set of contours of a structure
of interest.

2. GA optimization of the parameters of the edge detector
and of the elastic-contour model, based on such contours.

During genetic design, the GA is required to yield opti-
mum performance on the set of sections in which the
contour of the structure of interest is manually traced: one
seed contour, used to initialize the segmentation and one or
morereference contours, used to evaluate the segmentation
quality. This translates into maximizing a fitness function
that measures the degree of similarity between the refer-
ences and the corresponding contours produced by the
detector being evolved. The exact definition of the fitness
function will be given later, after a more detailed description
of the edge detector and of the interpolator.

After genetic design, the extraction of the contours of the
structure of interest from the whole data set can be done
using the genetically-turned algorithm. The user initializes
the process by tracing one seed contour on one section.
Then, for each of the following sections in the data set,
the edge detector is applied to a neighborhood of the contour
extracted on the previous one. The output of the detector (a
set of sparse edge points) is then interpolated using the
elastic model to recover the complete contour of the struc-
ture of interest. The contour-tracking process can be itera-
tively applied to all sections of the data set in which the
structure of interest is present.

The GA-based design is obviously performed only when
a new class of problems is tackled. When a previously-
obtained contour detector is already available for the
problem under consideration, the only operation required
by the user is tracing a single seed contour manually.

2.1. Specification of contours

The seed contour and the reference contours are drawn
(using special sectioning and visualization tools [31]) on
parallel sections, which can arbitrarily cut the 3D data set.
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Fig. 1. Example of the SegmentVIEW system used to delineate seed
contours. Using a mouse, the user traces contours directly on slicing planes;
such a partially-drawn contour is shown near the cursor. Next to this
contour is a semi-transparent surface that represents the triangulation of
another set of contours (this surface encompasses a low-grade sarcoma
visible in this MRI data of a human brain).



If other “correct” contours, lying on sections which are not
parallel to the references, are available, the contour points
resulting from the intersection between such contours and
the slices that still have to be segmented can be pre-set and
used to further constrain the elastic contour model.

Fig. 1 shows the 3D visualization tool, which is used to
perform this task.

2.2. Edge detector

The edge detector is based on a one-dimensional second-
order polynomial filter. This choice was suggested by the
encouraging results obtained in previous experiments on
ECG signals [27].

As the shape modifications of anatomical structures
between subsequent sectionsQk (k � 0 for the section on
which the seed contourB0 is traced,k # 1 for the following
sections) are roughly smooth scale changes, the filters are
applied to a set of limited-length scan lines on sliceQk The
scan lines are derived from theHk21 pointsPh,k2.1, h � 1,
Hk21 belonging to the contourBk21, extracted or traced on
slice Qk21, as follows (see Fig. 2):

• For each pointPh,k21, calculate the unit vector orthogonal
to Bk21 in the point considered.

• Along the direction of such a vector, resample the input
image on aSw-sample long scan lineLh,K21 centered
aroundPh,k21.

Using this strategy, the filter is applied only to a neigh-
borhood of the contour extracted on the last-processed slice.
This prevents detection of edges, similar to the ones belong-
ing to the anatomical structure to be segmented that are far
from the region of interest and possibly belong to other
structures.

The detector is based on a one-dimensional polynomial
filter cascaded with a thresholding stage. The filter operates
on Np samples of a scan line, possibly non-consecutive and
chosen by the GA, that are located in the neighborhood of
the samplexi for which the filter outputo(xi) is computed. It
has the following structure:

o�xi� � c0 1
XNp

j�1

c0j ·xi2dj
1
XNp

j�1

XNp

l�j

c00j;l ·xi2dj
·xi2dj

;

where c0; c
0
j ; c
00
j;l�j; l � 1;…;Np; l $ j� are the filter coeffi-

cients anddj�j � 1;Np� are the offsets along the scan line,
with respect toxi�i � 1;Sw�; of the Np samples.

The edge points extracted by the filter have the coordi-
nates of those samplesxi for which the value ofo(xi) is
greater than a thresholdT. The output of the detectorO(xi)
is therefore computed as follows:

O�xi� �
1 if o�xi� . T

0 otherwise
:

(
In the tests performed, we have used this edge-detection

strategy (see Section 3). In an alternative implementation,
thresholding can also be performed according to the follow-
ing rule:

O�xi� �
1 if �o�xi�2 Z� �o�xi21�2 Z� , 0

0 otherwise
:

(
which implements a threshold-crossing detector, with
thresholdZ.

2.3. Elastic contour model

To segment a slice, we apply the edge detector to the
image, along the scan lines defined in Section 2.2. For
each of theHk21 scan linesLh,k21 (h � 1, Hk21) considered
in the segmentation of sliceQk, the edge detector extracts a
set {Xi;h;k; i � 1;N�h; k�} of edge points, for which the
output of the detector equals 1. Consistently with the nota-
tion introduced above, the indexh refers to the scan line and
the index k to the section where the edge points were
detected.

Although the output of the detector already provides an
edge-based segmentation of a slice, it is generally relatively
noisy. For some scan regions,N(h,k) may be equal to 0 or
greater than 1, spurious edges may be present while real
ones may be lacking and the estimated position of the
detected edge points may be altered by noise. Therefore,
to enhance the robustness of the method, a contour-recovery
strategy is adopted, which is based on the following hypoth-
eses on the inter-slice and intra-slice variations of the
contour of interest

• Inter-slice deformations of the contour are small and
smooth, i.e. the shape of the contour does not change
abruptly in two consecutive slices, even if the contour
may have some high-curvature tract.
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Fig. 2. Definition of the scan lines for the contour-tracking procedure: for
each pointPh,k21 of the contourBk21, a scan lineLh,k21 centered around
Ph,k21 is defined, with a length ofSw samples, along the direction of the unit
vector orthogonal toBk21 in Ph,k21.



• The intensity profile of the edge does not change drama-
tically along the contour in the same slice.

• The contour points to be detected are close to one
another.

These assumptions are incorporated in an elastic contour
model whose parameters are set according to an uncertainty
function that measures the reliability of each edge point
extracted by the detector.

The contour to be detected is represented as a deformable
curve attached to all the detected edge points by means of
springs of different stiffness. Each spring acts along the
direction of the scan line to which its “anchor” edge point
belongs.

Let pi(h,k) denote the coordinate of the edge pointXi,h,k

extracted by the filter on the scan lineLh,k21 andy(h,k) the
(unknown) coordinate of the contour point to be detected, in
the reference system of such a scan line. The origin of the
reference system is coincident with the contour pointPh,k21

starting from which the scan lineLh,k21 was defined. Let us
consider, for the moment,h a continuous variable, which
represents the distance, travelled when moving alongBk21.
We can define the elastic energy of the model as the
functional

1�y; k� �
Z

Bk21

�y�h; k�j j21
XN�h;k�
i�1

bi�h; k�pi�h; k�
 !

dh;

wherebi�h; k� is the stiffness of the spring attached to the
edge pointXi,h,k.

The contourBk to be recovered is the locus of points
y(h,k) minimizing the energy functionale (y,k). In the actual
implementation, the functional is discretized and minimized
through a relaxation process, resulting in the (discrete) set
{ y�h; k�;h� 1;Hk21} of the coordinates of the pixels, one
for each scan line, that represent the contour of the structure
of interest. The scan line coordinates {y�h; k�; h� 1;Hk21}
are then translated into (x,y) coordinates, where each pair of
coordinates represents a point ofBk. As contourBk21 may
have fewer points thanBk, the resulting set of edge points
may produce a contour that contains gaps, which are filled
through linear interpolation. This choice does not alter the
resulting contour shape, because, as long as the hypotheses
of small contour variations hold, the distance between two
consecutive points in the output set is never greater than few
(generally 1–3) pixels.

Although the elastic model used in this work may look
similar to classical snakes, there is no direct correspondence
between the energy terms used in [8] and those in our energy
functional as, in the proposed model, variations with respect
to the contour extracted in the previous section are used
instead of the actual coordinates of contour points. Thus,
our technique does not impose the constraint that the result-
ing contours be smooth. Smoothness is imposed on the
values y(h,k), i.e. on the distance, along the scan lines,
between the contour in the current slice and the contour in
the previous one. This means that the elasticity of the

contour, while preventing the contourBk from presenting
abrupt shape changes with respect toBk21, does not prevent
it from having high curvature tracts. Smooth shapes varia-
tions such as scale changes are permitted. This is essential to
avoid biases in the shape of the segmented anatomical struc-
tures.

The degree of similarity betweenBk andBk21 depends on
the values of spring stiffness. Large values ofb i (h,k) allow
for any shape changes, smallb i (h,k)’s only permit scale
changes. Such values are set based on an uncertainty
measure attributed to each edge point, so that highly reliable
points are given more allowance to deform the contour to be
recovered than less reliable points.

We have used the following function as an uncertainty
measure for edge pointXi,h,k on slice Qk (k � 0 for the
manually-traced seed contour) in which lower values are
associated with edge points which are more likely to repre-
sent actual contour points:

Ci�h; k� �W1d�Xi;h;k;Ph;k21�

1W2d�Xi;h;k;P̂h21;k�

1W3 I �Xi;h;k�2 �I k21

�� ��;
whereW1, W2, W3 are weighting parameters in the range
[0,1], d(a,b) is the Euclidean distance between two points
a and b,P̂h21;k is the best edge point detected in the scan line
Lh21;k21 (i.e., the one with the lowestCi�h; k��; I �Xi;h;k� is the
directional derivative (slope), along the scan line, of the
edge pointXi;h;k; and �I k21 is the average directional deriva-
tive, along the scan lines used to extractBk21, of the points in
Bk21.

The first term favours edge points inBk that are close to
the corresponding ones inBk21, the second term favours
consecutive edge points inBk that are close to each other,
the third one favours edge points inBk whose slope is close
to the average slope of the edges inBk21.

The termd�Xi;h;k;P̂h21;k� cannot be calculated forL0,k21: to
compensate for this a value proportional to the sum of the
other two terms ofCi(0,k) is added. This prevents edges in
L0,k21 from having values ofCi(0,k) much lower than the
ones inLh,k21, h . 0.

The above-defined functionCi(h,k) is used to assign a
stiffness coefficient bi�h; k� � e2Ci �h;k� to the spring
connected to each edge pointXi,h,k detected along scan line
Lh,k21. Therefore, the optimization of the controllable para-
meters of the elastic contour model (the stiffness coefficients
b i(h,k)), is performed by the GA, indirectly, through the
optimization of the weightsW1, W2 and W3 of Ci(h,k).
This allows for a selective exploitation of the perceptual
and geometrical features which are most relevant for the
segmentation task being performed.

The use of the uncertainty functionCi(h,k) to set the
stiffness parameters has similar effects on the elastic
model as the definition of the external forces in the snake
proposed by Radeva et al. [32]. In such a model the
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computation of the external forces of the snake also implies
a comparison between the directional characteristics of the
edges considered with some reference that is either derived
from domain knowledge or from other similar cases (as can
be, in our method, the corresponding edge points of the
previous contour).

2.4. GA details

Using the notation introduced before, we can finally
express the fitness function used by the GA as:

F � A 2

�������X
k[k

f 2
k

s
;

where

fk�y� � M

�����������������������������PHk21

h�1
�yr �h; k�2 y�h; k��2

Hk21

vuuuut
:

k is the set of reference contours used for the evaluation of
each individual, andHk21 the number of scan lines used in
the extraction ofBk. The termyr(h,k) is the actual scan line
coordinate, along scan lineLh,k21, of the edge point to be
extracted.A is a constant large enough to keepF $ 0; M is a
constant that is used to keep the fitness values within a
desired range.

With the above fitness function, the GA is used to opti-
mize the following parameters, regarding both the edge
detector and the elastic-contour model, that drive the
segmentation process:

• Np 1
11�Np11�·Np

2 filter coefficients, in the range
215; 15� � for c0 and c0i ; �i � 1;Np� and in the range
21:5; 1:5� � for c00i;j�i; j � 1;Np; j $ i�

• Np 2 1 offsets2 of the data processed by the filter, in the
range 26;6� �;

• The thresholdT of the detector, in the range�1;e20:48�
• The weightsW1, W2, W3 of the uncertainty function, in

the range [0,1], that are used to compute the coefficients
b of the elastic contour model.

As, in the tests performed,Np was set to three, 16 para-
meters were encoded in the genome used in the GA. The GA
implementation adopted in the experiments isGAUCSD-1.4
[33].

All values were encoded in 6-bit strings, resulting in a 96-
bit genome. However, asGAUCSD-1.4 provides support for
Dynamic Parameter Encoding the representation precision
can be considered virtually infinite.

Although the scan line lengthSw could also be optimized
by the GA, it was pre-set to about one-third of the image
side (Sw � 23 in the case of 64× 64-pixel images). This
choice was made based on the following considerations:

• As a rule of thumb,Sw < 2 dmaxwheredmax is the expected
maximum reasonable displacement of a point with
respect to the corresponding one in the previous contour
(about 10–12 pixels for a 64× 64-pixel image, consider-
ing that the direction of the displacement is unknown a
priori).

• The computation load of the filter is linearly dependent
on Sw.

After the edge detector is designed, the edge detection/
interpolation process is propagated from the slice where the
seed contour was traced to the end of the data set, using the
last-calculated contour as a starting point for the next one.

As previously described, if some contours traced on
planes that are not parallel to the references are available,
further constraints can be introduced to improve the result-
ing segmentation. This is made by pre-setting the “known”
edge points resulting from the intersection of the contours
traced on the non-parallel planes with the slices that still
have to be segmented. This case is easily accounted for in
the elastic model by assigning a priori a large stiffness coef-
ficient to the springs attached to those points.

3. Experimental results

We tested the proposed method both on synthetic and on
real medical images. These experiments are described in the
following sections.

3.1. Tests on a software-generated image sequence

A software-generated three-dimensional phantom was
created. The 3D structure of the phantom is such that its
slicing results in a pseudo-tomographic sequence of 64 8-bit
greyscale images of size 64× 64 pixels which include
changes of shape, scale and orientation typical of the
contours of anatomical structures, as shown in Fig. 3. The
section of the phantom is given grey level 127 on a black
(grey level 0) background. The method proposed was
applied to the noiseless basic sequence and to two
sequences, obtained from the basic one, where zero-mean
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Fig. 3. Eight equally-spaced (6-image interval) images from the software-
simulated sequence.

2 One offset is always set equal to 0, as the sample whose corresponding
output is being calculated is processed by default.



Gaussian noise with standard deviations of 25 and 50 grey
levels was added (see Fig. 4). We will refer to the filters
evolved by the GA to segment the phantom with different
noise levels as Filt00 (optimized on the noiseless phantom
data setP00), Filt25 (optimized on the data setP25, where
noise withs � 25 was added to the phantom), and Filt50
(optimized on the data setP50, where noise withs � 50
was added).

During the application of the GA (training phase), the
fitness function was evaluated on three sets of two reference

contours extracted from three different levels of the
sequence, to ensure good performance on different kinds
on inter-slice contour modifications. For each level, a seed
contour was traced manually on one image (k � {15, 37,
45}), along with two contours drawn on the two following
images (k � {13, 14, 35, 36, 46, 47}), which were used as
references. Each individual was used to segment the three
sets of two reference images, after which its fitness was
evaluated by comparing the obtained contours with the
references. The total workload for the user was much
lower (less than 15%) than the one required by a full manual
segmentation.

The GA was run with a population of 200 individuals for
200 generations. One-point crossover (with a probability of
0.6) and mutation operators (with a probability of 0.001)
were used. Fitness values (settingA � 1500 andM �
1000) ranging from around 500 (Filt50) to around 570
(Filt00 and Filt25) were obtained in the experiments. Fig.
5 reports the graph of the best-of-run fitness vs. generations
for the experiment in which Filt00 was evolved. In the other
two experiments the evolution was quite similar. It is worth
noting that, despite the large number of parameters that had
to be optimized, and therefore the large number of degrees
of freedom of the design, different runs of the GA repeatedly
converged to almost the same fitness values.

Table 1 reports the values set by the GA for the para-
meters of the edge detector in the 3 cases considered (noise-
less sequence and noise standard deviation values of 25 and
50), along with the values of the weights for the uncertainty
function.

Some observations can be made about the filter coeffi-
cients. The constant term and the sum of the coefficients of
both the linear and non-linear terms are always negative
(except for the linear terms of Filt003). This ensures that,
in the presence of a constant input, the output is negative or,
at most, null, and therefore lower than the thresholdT,
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Fig. 4. Slice 32 of the phantom: noiseless (left), with Gaussian noise withs � 25 (center), with Gaussian noise withs � 50 (right).

Fig. 5. Plot of best-of-run fitness vs. generations in the experiment in which
Filt00 was evolved.A was set to 1500,M was set to 1000.

3 The task to be performed by Filt00 is quite trivial, as it has to detect the
same ‘clean’ edge over and over. Therefore, the huge number of possible
solutions for such a problem makes the coefficients found by the GA for
Filt00 much less significant for this discussion than the coefficients of the
other two filters.



which is always positive. As the filters are required to
produce high outputs in the presence of descending edges
(in particular, in the phantom, the grey level of the
background is zero), and therefore very low grey-level
values are expected to be found after an edge, the coeffi-
cients of the linear terms corresponding to “forward”
samples (i.e. the samples that follow the one for which the
output is computed) are always negative, therefore inhibit-
ing the output as the corresponding input term increases.
The fact also that the coefficients of the quadratic terms
c00i;j generally tend to become more and more inhibitory
(negative), the biggeri and j are, i.e. the more the term refers
to forward samples, can be similarly justified. Finally, the
absolute values ofc002;3 is higher than the other quadratic
terms. This means that high input values in the vicinity of
the actual sample, i.e., where the edge should be detected
(notice thatd2� 0 andd3� 1), also strongly inhibit the filter
output. It should be noticed that the quadratic terms cannot
take into consideration the direction of the edge, as they give
the same contribution both on the ascending and descending
edge. Therefore, the “derivative” behaviour of the filter is
mostly given by the linear terms, while the quadratic terms
ensure that, in the neighborhood of the edge, low grey level
values can be found.

As concerns the weights of the uncertainty function, two
observations can be made: the first one is that, with the
values set by the GA, the third term of the uncertainty func-
tion becomes virtually irrelevant, even if the quantity
weighted byW3 may be two orders of magnitude larger
than the ones weighted byW1 andW2. The second observa-
tion is thatW2 becomes more and more important as noise
increases. This can be explained considering that the second
term of the uncertainty function somehow represents a regu-
larization term for the contour to be recovered.

The outputs of the edge detectors, obtained by processing
an edge of the same slope as the one that is to be detected in
the phantom, with and without adding Gaussian noise, are
reported in Fig. 6. It can be noticed on the noiseless edge
that Filt00 achieves a very precise detection, while Filt25
and Filt50 tend to produce a wider peak. However, in the
presence of noise, Filt00 produces a number of spurious
peaks, especially withs � 50, while Filt25 and Filt50
have virtually the same response, except for a spurious
peak produced by Filt25, justified by the presence of an
edge-like spike whose slope is quite close (about half as
steep) to the one that has to be detected. Such an edge is
not detected by Filt50, which shows that the GA correctly
evolved filters whose noise-rejection properties increase
with noise level in the training images.

A detector having the same structure but based on a stan-
dard “Gradient-of-Gaussian” (GoG) filter was also opti-
mized using our genetic design procedure on theP50
phantom data set. The same parameters used for the evolu-
tion of the polynomial filters were used for the GA. In this
case the detector parameters optimized by the GA were six:
the three weights of the uncertainty function, a negative
thresholdTg (the sign of the GoG was inverted, in order to
produce negative peaks on descending edges), the widthD
of the filter kernel, and the standard deviationsg of the
Gaussian function. The result of the application of the
best GoG filter on the same test signal (s � 50) of Fig. 6
is shown in Fig. 7.

It is worth noting that, despite tuning the GoG filter to get
a very precise detection of the edge is quite simple, even
manually, the filter optimized by the GA tends to select
more than one point in the neighborhood of the peak. This
behavior, which can also be observed using the polynomial
filters, is probably induced by the need of good noise-rejec-
tion properties: selecting more than one point in the vicinity
of the real edge allows the following elastic-contour inter-
polation to compensate the effects of false detections more
effectively. It also stresses the importance of the combined
optimization of the parameters of the filter and of the elastic-
contour model. This is probably why the threshold-crossing
strategy, that allows only for the detection of one point per
crossing, seems to yield worse results (tests not reported).

With the GoG, the optimized values of the weights of the
uncertainty function were very different from the ones of the
detector based on the polynomial filter.W1 (0.0048) was
about five times smaller,W2 (0.299) about two times smal-
ler, while W3 (0.012) was no more negligible. The quantity
weighted byW3 has a much wider range of variability with
respect to the other two terms of the uncertainty function.
With such values forW3, it is interesting to observe that
edges whose slope is close to the one to be detected make
the first two terms of the uncertainty function prevail by an
order of magnitude. On the contrary, when the slope of the
edge detected is very different from the reference, the third
term dominates.

The average fitness values that could be obtained with the
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Table 1
Values of the edge detector coefficients set by the GA for the noiseless
phantom image sequence and for the same sequence with additive zero-
mean Gaussian noise withs � 25 ands � 50

s � 0 s � 25 s � 50

c0 29.929 29.817 25.559
c01 22.374 20.709 0.625
c02 12.187 6.341 24.771
c03 26.454 29.691 23.661
c001:1 0.121 0.427 0.293
c001:2 20.0993 0.682 0.124
c001:3 20.103 20.404 20.344
c002:2 20.190 20.201 20.127
c002:3 20.226 20.928 20.529
c003:3 20.119 20.278 20.229
d1 21 22 22
d2 0 0 0
d3 4 1 1
T 45.986 2469.818 1316.918
W1 0.214 0.164 0.213
W2 0.00187 0.210 0.453
W3 3.128·1026 2.464·1028 5.828·1027



GoG were slightly worse than the ones obtained with the
polynomial filter. Best fitness values of around 490 were
obtained in three runs with respect to values of around
500 consistently obtained in several runs of the GA in
designing Filt50. This may indicate that the non-linear
part of the polynomial filter actually has a significant role
in the detector operation.

This difference was confirmed by the results obtained
after the whole sequence was segmented starting from
section 45 and proceeding on towards the two sequence
ends in two iterations, on which one of the seed contours
used in the training phase was traced, as shown by Fig. 8,
which reports the RMS error made by the two detectors on
each section. It should be observed that the high error values
that characterize the first and last sections derive from the

fact that, in those sections, the contour “collapses” virtually
to one point or one short segment, thus making it difficult, if
not impossible, for the elastic model to be defined.

In Fig. 9 the points selected by the polynomial filter and
the contour resulting by the elastic-model interpolation are
shown for a slice of theP50 data set.

These experiments indicate that the method is robust with
respect to noise on synthetic structures. In other experiments
with synthetic structures (not reported) we noticed that
increasing noise level resulted in accuracy decreasing
significantly only when the standard deviation of noise is
greater than 60–65 grey levels, working with 8-bit greyscale
images.

As a further test, we have calculated the volumeV̂tot �P
v̂k (wherev̂k is the estimated volume of slicek, i.e., the
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Fig. 6. Results of the application of the filters evolved by the GA for the segmentation of the synthetic phantom. Column 1: noiseless signal; column 2: signal
plus noise (s � 25); column 3: signal plus noise (s � 50). For the sake of readability, filter outputs have been down-scaled by a factor of 40.



number of pixels enclosed within the contour extracted on
slicek), and compared it with the actual volumeVtot �

P
vk

of the phantom (vk is the actual volume of each slice). The
following values were also calculated for comparison (Nf is
the number of the non-empty slices of the sequence):

• DVi � v̂i 2 vi

• E � P
DVij j

� E%� 100 ·

P
viP
v̂i

2 1
� �

� �E � E
Nf

The results are reported in Table 2, which shows that the
volume is slightly overestimated. One reason for this is
probably to be found in the assumptions made on contour
characteristics, that cause the method to adapt to sudden
curvature changes slowly. Another reason for the overesti-
mation may be the choice, adopted while tracing the training
contours, of considering the reference contour as the set of
pixels including, for each scan line, the first background
pixel that is encountered moving outwards from the center
of the phantom. Therefore, the GA tended to evolve detec-
tors that produce contours that “wrap” the phantom from
outside.

Nonetheless contour detection is very accurate. This can
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Fig. 8. RMS error vs. section level made by the detectors based on the GoG filter and the polynomial filter in the segmentation of theP50 data set.

Fig. 7. Results of the application of a Gradient-of-Gaussian filter, optimized on the phantom with Gaussian noise withs � 50, to the test signal (s � 50). The
parameters of the filter areD � 13, Tg � 71 andsg � 1.275.



be better evidenced with a slice-by-slice analysis. On aver-
age, each contour is made up of more than 100 points. As,
for each slice, Ē, 27 pixels (which is the worst result,
obtained with noise standard deviation of 50 grey levels),
it can be roughly estimated that, on average, the contour
points are dislocated by about one pixel, as can be observed
also in Fig. 8.

Finally, we made a 3D reconstruction of the phantom
directly from the raw data and compared it to the ones
obtained from the contours extracted with the GA-evolved
detectors. The 3D reconstructions are shown in Fig. 10. The
comparison of the reconstructions obtained from the
contours extracted in the presence of different noise levels
confirms that the sensitivity of the method to noise is rather
small.

3.2. Tests on real images

We have evaluated our method on real images both quan-
titatively and qualitatively. For quantitative evaluation, the
same procedure used for the phantom was applied to a set of
real MR images of the brain in which the contours of the
brain had to be detected.

This test was inspired by the fact that, besides being
essential in radiation treatment-planning to correctly loca-
lize brain structures, the accurate detection of the volume
occupied by the brain is very important also for automated
characterization of brain tissues in MR images, as pointed
out in [34]. In fact, grey matter and subcutaneous fat may

have similar intensity in images acquired with certain MR
imaging techniques.

As the number of images of the real MR sequences was
much smaller than in the phantom experiment, the method
was applied to one sequence in the training phase, to design
the edge detector, and then tested on a similar sequence
from a different subject, acquired with the same modalities.
The results obtained are also reported in Table 2. These
results are even more relevant than the ones obtained on
the phantom, as they also demonstrate that the detectors
designed using one prototypical case can afterwards be
applied to other similar cases, without needing to re-run
the design procedure.

As can be seen in the table, contrary to what happened
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Table 2
Estimated volume, cumulative absolute error, percent absolute error, aver-
age absolute error made in the tests on a noiseless 3D phantom, on the same
phantom to which zero-mean gaussian noise with standard deviation of 25
and 50 was added and on a real MR sequence. The actual volume of the
phantom is 58708 voxels: the volume of the brain, that had to be segmented
in the real MR images, is 9429 voxels

Noise level (s)
P

v̂i E E% Ē

0 59098 464 0.79 8.44
25 59270 916 1.56 16.65
50 59478 1480 2.52 26.90
MR 9381 238 2.52 23.80

Fig. 10. 3D reconstructions of the software phantom used to test the method
from: raw data (a), contours extracted from noiseless sections (b), contours
extracted from sections with Gaussian noise withs � 25 grey levels (c),
contours extracted from sections with Gaussian noise withs � 50 grey
levels (d).

Fig. 9. Segmentation of a slice of theP50 dataset: (a) slice 47 ofP00 (ground truth); (b) slice 47 ofP50; (c) points selected by the polynomial filter (gray) and
extracted contour (white).



with the phantom, in this test the volume was slightly under-
estimated by the GA-evolved detector. However, it can be
observed that the error made in estimating the volume is
significantly smaller thanE, which means that an approxi-
mately zero-mean distribution of misplacements was
obtained for the contour points. This behavior is justified

by the fact that the reference contours for the phantom could
be precisely traced on the outer border of the phantom, as
the boundary between the object and the background could
be trivially detected in the noiseless images. On the
contrary, the brain contours in the MR images are very
fuzzy, and edges much less sharp, caused by both low
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Fig. 11. Four images from an MR sequence of the brain used for our tests (top row). In the mid row, the corresponding segmentations and, in the bottom row,
the reference contours traced by the expert were overlaid. Please notice that the image on the left was the starting image, therefore only the corresponding
contour traced by the expert is available.

Fig. 12. Four images from an MR sequence of the brain used for our tests (top row). In the mid row, the corresponding segmentations and, in the bottom row,
the reference contours traced by the expert were overlaid. Please notice that the image on the right was the starting image, therefore only the corresponding
contour traced by the expert is available.



resolution and noise, along with other acquisition artifacts
such as the so-called “partial-volume effect” [35]. This
effect is such that, in tracing the reference contours manu-
ally, an inevitable sub-pixel error is committed for each
contour point, whose sign can be (almost subliminally) eval-
uated by the eye of an experienced operator. In this case, the
natural tendency of the user is (also almost subliminally) to
try and compensate such errors by alternatively over- and
under-estimating the location of the contour points.

The good results obtained also on this kind of images, in
which the edge profile is much different than in the synthetic

phantom, show that the proposed method is quite versatile
and can produce detectors with very different behaviors.

Our method has then been qualitatively tested on other
sequences of MR images of the brain and on CT images of
the chest.

In Figs. 11 and 12 some of the slices belonging to two MR
sequences are shown in which a healthy structure (the left
brain ventricle) and a pathological one (a brain tumor) were
segmented, along with the contours extracted with the
proposed method. These results are compared with the
contours manually traced by an expert, in order to better
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Fig. 13. One of the sequences used in our tests (see also Fig. 12) with the contours extracted overlaid in white and initializations (the contour extracted on the
previous slice) overlaid in grey.

Fig. 14. Results of the segmentation of the right lung (center) performed on a CT sequence of the chest (above), compared with the contours traced by an expert
(below).



evaluate their quality. To give an idea of the deformation
capabilities of the elastic model, in Fig. 13, we show the
same results of Fig. 12 with the initialization of the elastic
model overlaid on each image. Similarly, in Fig. 14 we
compare the expert’s contours with the results obtained on
the CT sequence where the structure of interest was the right
lung.

Each sequence was derived as a block of consecutive and
corresponding regions of interest of size 64× 64 from a
sequence of larger slices (256× 256) extracted from the
3D data sets with the same tool used to draw the training
contours.

The data sets include some of the typical features that
usually hamper adaptive-segmentation tasks. Among these
are: significant changes of shape across the sequence, the
proximity, in the same slice, of edges similar to the ones that
have to be detected, and the inter- and intra-slice variability
of the characteristics of the boundary. Furthermore, because
of the above-mentioned “partial-volume effect” and of the
physics of the imaging process, in the case of real images we
are no more in the presence of perfect step edges (at most
artificially corrupted by Gaussian noise) as in the case of the
phantom.

The figures show that our method is quite insensitive to
the problems mentioned earlier and perform well also in the
presence of rather “smooth” edges. This is because of the
selectivity of the GA-designed detector and to the regular-
ization of the contours that is produced by the elastic model,
driven by the uncertainty function used to set its parameters.
In fact, while limiting the variations between adjacent
contours, our method is able to track certain sudden changes
of shape between a slice and the following one and to keep
away from similar contours that do not belong to the struc-
ture of interest.

4. Discussion

The best performance on a given data set can be obtained
using the segmenters resulting from the complete filter/
detector/elastic-contour design procedure we have
described. Unfortunately, the genetic design of the detector
may be rather lengthy (a few hours). However, our general
architecture can often be simplified to reduce computation
time, with very little performance decay. In fact, most
computation time is spent to calculate the coefficients of
the elastic-contour model. The duration of such a step is
roughly proportional to the number of edge points detected
by the filter. Such a number can be reduced dramatically if
the threshold-crossing selection criterion is adopted. This
architecture does not match the performance of the basic
one, especially in the presence of noise or of structures
with variable edge features. This probably happens because
selecting only one point in the vicinity of the real edge does
not allow the following elastic-contour interpolation to
compensate the effects of a false detection effectively, as

mentioned earlier. However, threshold-crossing strategies
may reduce computation time by a factor of about four.

As suggested in the introduction, the main goal of the
method is to provide users with a versatile and efficient
method to support them in tracing contours of a structure
of interest interactively, rather than a complex and critical
automated segmentation procedure that allows users only to
accept or reject its final results. For the sake of evaluation of
the intrinsic capabilities of the method, the results reported
were obtained directly through automatic segmentation,
with no corrective intervention on the part of the user.
However, the detectors we use are very simple and demand
little in terms of computation load, once the training phase is
over (less than 0.5 s per slice, including I/O time, on a PC
running Linux and equipped with a 200 Mhz Pentium MMX
processor). Thus, even if the results of automatic segmenta-
tion are usually correct, the user can be allowed to supervise
the process and limit propagation errors by correcting erro-
neous edge points, possibly re-starting the segmentation
from the last-corrected slice, as this operation requires
only a few seconds.

One case in which this is a real advantage is when the
hypothesis of small and smooth inter-slice changes is incor-
rect. A possible example is a contour in which a sudden
change of curvature, from convex to concave, exists. This
situation results in a poor segmentation with the method
proposed, if the edges that attract the contour in the first
slice move out of the area covered by the corresponding
scan line, owing to the convexity change. In that contour
segment the elastic model has no forces applied and there-
fore no local deformation can occur there from one slice to
the next one. The results obtained on the TC images
appear to be worse than the ones obtained on the MR
sequence, for the presence of several of such sudden
convexity changes, that are often smoothed out by the
elastic contour model. No other relevant problems were
encountered in the tests.

5. Conclusions

In this article a method for computer-assisted segmenta-
tion of anatomical structures in 3D medical-image sets is
described along with some results obtained with the
proposed approach.

The method derives segmentation filters and strategies for
their application from features extracted from data available
along a few contours drawn by the end-user. This makes it
suitable for use in computer-aided diagnostic systems that,
besides the choice among a library of previously defined or
designed segmenters, must offer users the opportunity to
design new ones, optimally tuned to specific problems
which are not routinely encountered in the clinical practice.
Once they have been designed, such new detectors can be
added to the library and become of immediate availability in
the future.
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As the optimization of a simple and efficient filter layout
produced by the GA yields computationally-light segmen-
ters, this allows for user supervision of the segementation
process. In fact, allowing the user to introduce minor
manual corrections does not delay the process significantly.
One more feature that makes the proposed method particu-
larly suitable for inclusion in interactive systems is that
contours can be specified in 3D space along arbitrary cutting
planes, allowing for effective exploration and analysis of 3D
data sets.

The rather encouraging results reported may be further
improved, as the method constitutes a framework within
which a number of variants can be devised: besides the
above mentioned modification to reduce computation
time, other extensions could consider the use of more
powerful 1D and 2D filter layouts and, with minor changes,
3D filters. In this case, elastic 3D surface models like the
ones described in [10,36] could be used instead of the 2D
elastic-contour model.

Acknowledgements

This work was partially supported by a grant under the
British Council-MURST/CRUI agreement. Stefano
Cagnoni was supported by Italian National Research Coun-
cil grants while visiting the Whitaker College Biomedical
Imaging and Computation Laboratory at MIT.

References

[1] J.K. Udupa, Display of 3-D information in discrete 3-D scenes
produced by computerized tomography, Proceedings of IEEE 71
(1983) 420–431.

[2] R.A. Robb, C. Bariollot, Interactive display and analysis of 3-D medi-
cal images, IEEE Transactions on Medical Imaging 8 (1989) 217–
226.
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