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Abstract

The initial condition problem for fractional linear system initialisation is studied in this paper. It is based on the generalised
initial value theorem. The new approach involves functions belonging to the space of Laplace transformable distributions
verifying the Watson–Doetsch lemma. The fractional derivatives of these functions are independent of the derivative de,nition.
This class includes the most important functions appearing in computing the Impulse Response of continuous-time fractional
linear systems.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The increase in the number of physical and engi-
neering processes that are found to be best described
by fractional di3erential equations has been motiva-
tion for the study and application of fractional calcu-
lus. The e3ective application of the fractional calculus
to science and engineering problems needs a coherent
fractional systems theory. In previous papers [11,12]
we tried to do some contribution to that goal. However,
a problem that seemed to be already solved originated
an interesting discussion [1,5–7,13]: the initialisation
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problem. The reason is in two facts:

(a) Two di3erent solutions are known.
(b) They both seem to be unsatisfactory.

Lorenzo and Hartley showed that the proper initial-
isations of fractional di3erintegrals are non-constant
functions, generalising the integer order case. They
have treated the issue of initialisation in several papers
where they formulated the problem correctly, anal-
ysed the e3ect of a wrong initialisation and proposed
solutions [5–7].
In this paper, we will approach the problem from a

di3erent point of view having in mind:

(a) the class of distributions having Laplace Trans-
form (LT),

(b) the initial value theorem,
(c) the Watson–Doetsch lemma and
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(d) the way how the initial values appear in the dif-
ferentiation process.

The paper proceeds as follows. The initial value prob-
lem is treated in several steps (Section 2) by

(a) enunciating the initial value theorem;
(b) doing a simple reasoning;
(c) presenting the initial value theorem.

In Section 3, we present our approach to the solution,
beginning by the Watson–Doetsch lemma [3] that al-
lows us to introduce a class of functions where we
will look for our solutions. These are obtained through
a step by step di3erentiation. Within this framework,
we show that the common approaches based on the
Riemann–Liouville or Caputo de,nitions are partic-
ular cases. At last, we exemplify and present some
conclusions.

2. On the initialisation problem

2.1. Statement of the problem

Let us assume that we have a fractional linear sys-
tem described by a fractional di3erential equation like:
N∑
n=0

anDvny(t) =
M∑

m=0

bmDvmx(t);

vn ¡ vn+1; (1)

where D means derivative and vn n = 0; 1; 2; : : : are
derivative orders that we will assume to be positive
real numbers. The initialisation problem appears when
we try to compute the output of the system to a given
input applied at a time instant: we must specify the
initial state of the system.
In problems with non-zero initial conditions it is a

common practice to introduce the one-sided Laplace
transform. However, there is no particular justi,ca-
tion for such introduction. The initial conditions must
appear independently of using or not a transform. In
fact, we intend to solve a given di3erential equation
(1) for values of t greater than a given initial instant,
that, without loosing generality, we can assume to be
the origin. To treat the question, it is enough to mul-
tiply both members of the equation by the unit step
Heaviside function, u(t), and rearrange the equation

terms as shown next with a simpler example. Consider
the ordinary constant coeIcient di3erential equation:

y(N )(t) + ay(t) = x(t) N ∈Z+
0 : (2)

Assume that the products y(N )(t)u(t) and x(t)u(t) can
be considered as distributions [2] and that we want
to solve Eq. (2) for t ¿ 0. The multiplication by u(t)
leads to

y(N )(t)u(t) + ay(t)u(t) = x(t)u(t): (3)

Thus, we have to relate y(N )(t)u(t) with [y(t)u(t)](N ).
This can be done recursively provided that we ac-
count for the properties of the distribution �(t) and its
derivatives. We obtain the well known result:

y(N )(t)u(t) = [y(t)u(t)](N )

−
N∑
i=0

y(N−1−i)(0)�(i)(t) (4)

that states that y(N )(t)u(t) = [y(t)u(t)](N ) for t ¿ 0.
They are di3erent at t = 0. This is the reason why we
speak in initial values as being equivalent to initial
conditions. In the above equation we have

[y(t)u(t)](N ) + a[y(t)u(t)]

=x(t) +
N−1∑
i=0

y(N−1−i)(0)�(i)(t): (5)

The initial conditions appear naturally, without using
any transform. It is interesting to remark that the sec-
ond term on the right in (4) is constituted by the deriva-
tives of the Heaviside functions that we are needing
for making continuous the left hand function before
computing the derivative. For example, y(t)u(t) is not
continuous at t = 0, but y(t)u(t) − y(0)u(t) is; so,
its derivative is given by [y(t)u(t)]′ − y(0)�(t). The
process is repeated.
In fractional case, the problem is similar, but it is

not so clear the introduction of the initial conditions,
because the involved functions can be in,nite at t=0.

2.2. Some facts

When computing a � order derivative, it is well
known, that [13]
(1) Di3erent derivative de,nitions imply di3erent

steps in going form 0 to � (see appendix).
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(2) Di3erent steps lead to di3erent initial values.
(3) In the di3erentiation steps some orders and cor-

responding initial values are ,xed and de,ned by the
equation: in the left-hand side in (1) when “going”
from 0 to vN , we have to “pass” by all the vi (i =
1; : : : ; N − 1)—with the corresponding initial condi-
tions. However we can compute other derivatives of
orders �i (vi ¡ �i ¡vi+1) that introduce initial condi-
tions too.
(4) If in (1) all the vn are rational numbers, the

di3erential equation can always be written as [9,11]

N∑
n=0

anDnvy(t) =
M∑

m=0

bmDmvx(t) (6)

leading as to conclude that the “natural” initial
values will be Dnvy(t)|t=0+ for n = 0; : : : ; N − 1 and
Dnvx(t)|t=0+ for n= 0; : : : ; M − 1.
(5) Independently of the way followed to compute a

given derivative, the Laplace Transform of the deriva-
tive satisfy: LT[D�f(t)] = s�LT[f(t)]. So, the di3er-
ent steps in the derivative computation correspond to
di3erent decompositions of the number �:

�=
∑
i

�i: (7)

These considerations lead us to conclude that the
initial condition problem in the fractional case has
in,nite solutions.

2.3. An example

In practical applications we can ,nd several exam-
ples of systems with Transfer Functions given by

H (s) =
Q
s�
;

where Q is a constant and −1¡�¡ 1. They are
known as “constant phase elements” [4,8]. In partic-
ular, the supercapacitors [8] are very important. The
capacitor case is well studied by Westerlund [15],
where he shows that the “natural” initial value is the
voltage at t=0 that inMuences the output of the system
through an initial function proportional to t−�u(t).
With this example we had in mind to remark that the

structure of the problem may lead us to decide what
initial condition we should use—it is an engineering
problem, not mathematical.

2.4. The initial-value theorem

The Abelian initial value theorem [16] is a very im-
portant result in dealing with the Laplace Transform.
This theorem relates the asymptotic behaviour of a
causal signal, ’(t), as t → 0+ to the asymptotic be-
haviour of �(�) = LT[’(t)], as � = Re(s) → +∞.
The initial-value theorem: Assume that ’(t) is a

causal signal such that in some neighbourhood of the
origin is a regular distribution corresponding to an
integrable function. Also, assume that there is a real
number �¿− 1 such that limt→0+ ’(t)=t� exists and
is a ,nite complex value. Then

lim
t→0+

’(t)
t�

= lim
�→∞

��+1�(�)
�(� + 1)

: (8)

For proof see [16].
Let −1¡�¡�. Then

lim
t→0+

’(t)
t�

= lim
t→0+

’(t)
t�

t�

t�
= 0 (9)

because the ,rst factor has a ,nite limit given in (8)
and the second zero as limit. Similarly, if �¡�,

lim
t→0+

’(t)
t�

=∞: (10)

This suggests us that, near t = 0, ’(t) must have the
format: ’(t)=s(t)t�u(t), where s(t) is regular at t=0.

3. The proposed solution

3.1. The Watson–Doetsch class

Let us consider the class of functions with Laplace
Transform analytic for Re(s)¿�. To the subclass of
functions such that

’(t) ≈ t�
∞∑
n=0

an
tnvu(t)

�(� + 1 + nv)
(11)

as t → 0+ where �¿−1 and v¿ 0. The powers have
their principal values. For our applications to di3er-
ential equations, we will assume that v is greater than
the maximum derivative order. The Watson–Doetsch
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lemma [3], states that the LT �(s) of ’(t) satis,es

�(s) ≈ 1
s�+1

∞∑
n=0

an
1
snv

(12)

as s → ∞ and Re(s)¿ 0.
As it is clear, these functions verify the initial value

theorem. On the other hand, ’(t) in (11) has a for-
mat very common in solving the fractional di3eren-
tial equations. In fact, the impulse response of the
equation

D�y(t) + ay(t) = x(t) (13)

is given by

h(t) =
∞∑
n=1

(−a)n−1 t
n�−1u(t)
�(n�)

(14)

as it can be veri,ed. For this reason, we will use “=”
instead of “≈” in (11) and (12). On the other hand,
as ���(�) = LT[D�’(t)],

lim
�→∞ �[���(�)] = D�’(t)|t=0+ (15)

by the usual initial value theorem. So,

D�’(t)|t=0+ = lim
�→∞ ��+1�(�) (16)

that is a generalisation of the usual initial value
theorem, obtained when � = 0. Here, we intro-
duce the impulse response of the di3erintegrator,
�(�)(t) = LT−1[s�], given by

�(�)(t) =




t−�−1

�(−�)
u(t); v �= 0;

�(n)(t); v= 0;

(17)

where �= n− v, with 06 v¡ 1 {see the appendix}.
Because u(t)=D�[t�u(t)]=�(�+1) and using (8), we
obtain

lim
t→0+

’(t)
t�

= lim
t→0+

D�’(t)
D�[t�u(t)]

=
’(�)(0+)
�(� + 1)

; (18)

that is very similar to the usual l’Hôpital rule used to
solve the 0/0 problems.
Now, let us assume that ’(t) is written as

’(t) = t�f(t)u(t); (19)

where f(t) is given by

f(t) =
∞∑
n=0

an
tnvu(t)

�(� + 1 + nv)
: (20)

Attending to Eqs. (7)–(9), it is not hard to conclude
that, when t → 0+, we have

D�’(t)|t=0+ =




0 if �¡�;

f(0+)�(� + 1) if �= �;

∞ if �¿�:

(21)

All the derivatives of order �¡� have a zero initial
value, while all the derivatives of order greater than �
are in,nite at t=0. To obtain a continuous function we
have to remove a term proportional to t�−�u(t). This
is important in dealing with di3erential equations and
will be done in the following solution.Wemust remark
that the previous results are valid independently of
the fractional derivative de,nition we use. Eq. (21)
shows also that the integration introduces zero initial
condition.
Return back to Eq. (1). The previous considerations

lead us to state for y(t)—and similarly for x(t)—the
following format:

y(t) =
N∑

k=0

fn(t)t�nu(t); (22)

where 0¡�n ¡�n+1—according to the initial value
theorem, we could use −1¡�n, but in our present ap-
plication it does not interest.N is a positive integer that
may be in,nite, and the functions fn(t) (n=0; : : : ; N )
and their derivatives of orders less than or equal to �N
are assumed to be regular at t = 0. We may assume
them to be given by (20).

3.2. Step by step di;erentiation

It is interesting to see how the initial values appear
and their meaning. Let y(t) be a signal given by (22).
Let us introduce a sequence �n by

�n = �n −
n−1∑
k=0

�k ; �0 = �0: (23)

Let us see what happens proceeding step by step.
(a) According to our assumptions �0 is the least

real for which limt→0+ y(t)=t�0 is ,nite and nonzero.
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Let it be y(�0)(0+)=�(�0 + 1). All the derivatives
D�y(t) (�¡�0) are continuous at t=0 and assume a
zero value. The �0 order derivative assumes the value
y(�0)(0+) and we can construct the function

’(�0)(t) = [y(t)u(t)](�0) − y(�0)(0+)u(t); (24)

that is continuous and assumes a zero value at t = 0.
(b) Now, �1 is the least real for which

limt→0+’(�0)(t)=t�1 is ,nite and non-zero. Let it be
y(�0+�1)(0+)=�(�1+1). Thus �1 derivative of ’(�0)(t)
is given by

’(�0+�1)(t) = [y(t)u(t)](�0+�1)

−y(�0)(0+)�(�1−1)(t)

−y(�0+�1)(0+)u(t) (25)

is again continuous at t = 0.
(c) Again �2 is the least real for which

limt→0+’(�0+�1)(t)=t�2 is ,nite and non-zero. Let it be
y(�0+�1+�2)(0+)=�(�2 + 1). Thus

f(�0+�1+�2)(t) = [y(t)u(t)](�0+�1+�2)

−y(�0)(0+)�(�1+�2−1)(t)

−y(�0+�1)(0+)�(�2−1)(t)

−y(�0+�1+�2)(0+)u(t) (26)

is again continuous at t = 0.
(d) Continuing with this procedure, we obtain a

function:

’(�N )(t) = [y(t)u(t)](�N )

−
N−1∑
0

y(�m)(0+)�(�N−�i−1)(t); (27)

that is not continuous at t = 0, but it can be made
continuous if we subtract it y(�N )(0+)u(t). Eq. (27)
states the general formulation of the initial value prob-
lem solution. As we can see, the initial values prolong
their action for every t ¿ 0. This means that we have
a memory about the initial conditions that decreases
very slowly. Using the LT, we obtain

LT[’(�N )(t)]=s�N Y (s)−s�N
N−1∑
0

y(�m)(0+)s−�i−1;

(28)

that is a generalization of the usual formula for intro-
ducing the initial condition.

3.3. Coherence test

To verify the coherence of the result, we are going
to study some special cases:
(1) �i = i, for i = 0; 1; : : : ; N .
We have: �0 = 0, �i = 1, for i = 1; : : : ; N and

’(N )(t) = [y(t)u(t)](N )

−
N−1∑
0

y(m)(0+)�(N−m−1)(t): (29)

Applying the LT to both members we obtain

LT[’(N )(t)] = sNY (s)−
N−1∑
0

y(m)(0+)sN−m−1; (30)

that is the usual formula for the initial value problem.
It is clear that ’(N )(t) = [y(t)u(t)](N ) for t ¿ 0.
(2) �i = �+ i, for i = 0; 1; : : : ; N .
We obtain: �0=�, �i=1, for i=1; : : : ; N −1. Then,

’(N+�)(t) = [y(t)u(t)](N+�)

−
N−1∑
0

y(m+�)(0+)�(N−1−m)(t) (31)

and

LT[’(N+�)(t)] = sN+�Y (s)

−
N−1∑
0

y(m+�)(0+)sN−m−1 (32)

with � = 0, we obtain (30) again. With � = N + �,
Eq. (32) can be rewritten as

LT[’(�)(t)] = s�Y (s)−
N−1∑
0

y(�−1−i)(0+)si; (33)

that is the Riemann–Liouville solution.
(3) Putting �i = i, i = 0; : : : ; N − 1, �N = N − #,

0¡#¡ 1, and �= N − #, we obtain

’(�)(t) = [y(t)u(t)](�) −
N−1∑
0

y(m)(0+)�(�−m)(t);

(34)

that is similar to the Caputo solution. We will return
to this later.
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(4) �i = i�, for i = 0; 1; : : : ; N .
We have: �0 = 0, �i = �, for i=1; : : : ; N − 1. Then,

’(N�)(t) = [y(t)u(t)](N�)

−
N−1∑
0

y(m�)(0+)�((N−1−m)�)(t) (35)

giving

LT[’(N�)(t)]=sN�Y (s)−
N−1∑
0

y(m�)(0+)s(N−m)�−1

(36)

di3erent from the results obtained with the one-sided
LT and both Riemann–Liouville or Caputo di3erin-
tegrations. This case is suitable for easy solution of
equations of type (6).

3.4. The Caputo case

The Caputo case is not in the framework considered
in Section 3.2. In fact, we considered there that the
�n (n=0; : : : ; N ) is an increasing sequence. In Caputo
di3erentiation, we have �n = n for (n= 0; : : : ; N ) and
�N+1 = N − # with 0¡#¡ 1. So, it is a sequence of
order one derivatives followed by a fractional integra-
tion. As the integration does not introduce non-zero
initial conditions, we have:

’(�N )(t) = [y(t)u(t)](�N )

−
N∑
0

y(i)(0+)�(N−i−1−#)(t) (37)

or, putting �= N − #;

’(�)(t)=[y(t)u(t)](�)−
N∑
0

y(i)(0+)�(�−i−1)(t): (38)

This can be generalized by introducing other integra-
tions.

3.5. Examples

Consider the system described by Eq. (13) with
� = 3=2. As in the equation we only have two terms
we are not constrained and can choose any “way” to

go from 0 to �. We are going to consider four cases:
(1) �i=3=2i (i=0; 1) or �0 =0 and �1 =3=2. From

(41), we have

LT[’(3=2)(t)] = s3=2Y (s)− y(0+)s1=2: (39)

The free term is then

�f(s) = y(0+)
s1=2

s3=2 + a
: (40)

(2) �i = 1=2i (i = 0; 1; 2; 3) or �0 = 0 and �i = 1=2
(i = 1; 2; 3). We have now:

LT[’(3=2)(t)] = s3=2Y (s)

−
2∑
0

y(m=2)(0+)s(3−m)=2−1 (41)

with

�f(s) =
∑2

0 y(m=2)(0+)s(3−m)=2−1

s3=2 + a
(42)

as the corresponding free term.
(3) �i =1=2+ i (i=0; 1) or �0 = 1=2 and �1 = 3=2,

giving the Riemann–Liouville solution:

LT[’(3=2)(t)] = s3=2Y (s)− y(1=2)(0+): (43)

The same solution can be obtained with �I =−1=2 +
i (i = 0; 1; 2). Now, the free term is given by

�f(s) = y(1=2)(0+)
1

s3=2 + a
: (44)

(4) �i = i (i = 0; 1) and �2 = 2− 1=2. It comes

LT[’(3=2)(t)]=s3=2Y (s)−
1∑
0

y(m)(0+)s3=2−m−1 (45)

giving the free term

�f(s) =
∑1

0 y(m)(0+)s(3=2−m−1)

s3=2 + a
: (46)

The situation is somehow di3erent if we have an in-
termediary term as it is the case of the equation:

y(�)(t) + ay(1)(t) + by(t) = x(t): (47)

Now, when going from �=0 to 3=2, we have to “pass”
by �= 1. Obviously, we can force the corresponding
initial value to be zero.
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It is interesting to see what happens when we con-
sider an ordinary integer order di3erential equation
as a special case of a fractional di3erential equation.
Consider the simple case:

y′(t) + ay(t) = x(t): (48)

Putting �i = 1=2i (i = 0; 1; 2), we have

f′(t)=[y(t)u(t)]′−
1∑

i=0

y(1=2:ii;)(0+)�(−1=2:ii)(t) (49)

leading to a free term with LT given by

Ff(s) =
y(0+) + y(1=2)(0+)s−1=2

s+ a
: (50)

Obviously di3erent from the usual that we obtain by
putting y(1=2)(0+) = 0.

4. Conclusions

We approached the initial conditions problem from
a sequential point of view and working in the space of
the functions verifying the Watson–Doetsch lemma.
The solution we obtained showed that, in general, we
must speak in initial functions instead of initial val-
ues, in the sense that the initial values originates the
presence of initial functions that inMuence the solu-
tion, not only at t=0, but for all t¿ 0. With this point
of view, we obtained a broad set of initial conditions
that we can choose according to our interests or facil-
ity in solving a speci,c problem. The context of the
Watson–Doetsch lemma cover most of the functions
we are interested in applications.

Appendix A. On the di�erintegration

A.1. One-step di;erintegration

We begin by considering the formulations of the
di3erintegration based on the general double convo-
lution:

D�x(t) = x(t) ∗ �(n)(t) ∗ �(−v)(t); (A.1)

where D means derivative (�¿ 0) or integral
(�¡ 0); n∈Z; 06 v¡ 1; �= n− v,

�(n)± (t) =




D(n)�(t); n¿ 0;

± t(−n−1)

(−n− 1)!
u(±t); n¡ 0

(A.2)

with �(t) as the impulse Dirac distribution, and

�(−v)
± (t) =




± tv−1

�(v)
u(±t); 0¡v¡ 1;

�(t); v= 0;

(A.3)

where + stand for forward and − for backward di3er-
integrations. As it is clear, we have three possibilities
in the computation of the di3erintegration according
to the way how we use the associative property of the
convolution. The following association:

x(�)(t) = x(t) ∗ {�(n)(t) ∗ �(−v)(t)} (A.4)

the Generalised Functions di3erintegration—also
called Cauchy di3erintegration, mainly in complex
variable formulation [10]. It is not hard to see that, if
we retain the ,nite part, we can write

�(�)(t) = {�(n)(t) ∗ �(−v)(t)}

=




t−�−1

�(−�)
u(t); v �= 0;

�(n)(t); v= 0:

(A.5)

For reasons that will be clear in section in the follow-
ing, we will consider the derivative case.
Alternatively to convolutional de,nition of deriva-

tive, we can use the GrSunwald–Letnikov, that is a
generalisation of the integer order derivative de,ni-
tion. Let x(t) a limited function and �¿ 0. We de,ne
derivative of order � by

x(�)+ (t) = lim
h→0+

∑∞
k=0 (−1)k

( �
k

)
x(t − kh)

h�
: (A.6)

For well behaved functions these de,nitions may also
be valid for �¡ 0 (integration). For right-hand signals
the summation is carried only over a ,nite number of
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terms. In particular, for causal signals, we have

x(�)+ (t) = lim
h→0+

∑N
k=0 (−1)k

( �
k

)
x(t − kh)

h�
(A.7)

withN equal to the integer part of t=h. For the left-hand
signals, we have

x(�)− (t) = lim
h→0+

ej&�
∑∞

k=0 (−1)k
( �
k

)
x(t + kh)

h�
(A.8)

and if the signal is anti-causal

x(�)− (t) = lim
h→0+

ej&�
∑N

k=0 (−1)k
( �
k

)
x(t + kh)

h�
: (A.9)

A.2. Multi-step di;erintegration

Returning to the convolution in (1) wemay consider
other associations. With

x(�)(t) = �(n)(t) ∗ {x(t) ∗ �(−v)(t)} (A.10)

we obtain the Riemann–Liouville di3erintegration. As
seen, we proceed sequentially by the computation of
a v order integration, followed by n derivative com-
putations. With the association:

x(�)(t) = {x(t) ∗ �(n)(t)} ∗ �(−v)(t) (A.11)

we obtain the Caputo di3erintegration. Here and rel-
atively to the previous case, we inverted the process,
beginning by n derivative computations followed by
a v order integration. Of course, other possibilities do
exist as it is the Miller–Ross sequential di3erintegra-
tion [9]:

x(�)(t) = D�x(t) =

[
N∏
i=1

D�

]
x(t) (A.12)

with � = N�. This is a special case of multi-step
case proposed by Samko et al. [14] and based on the
Riemann–Liouville de,nition:

x(�)(t) =

[
N∏
i=1

D�i

]
x(t) (A.13)

with

�=

[
N∑
i=1

�i

]
− 1 and 0¡�i6 1: (A.14)

It is a simple task to obtain other decompositions of
�, leading to valid de,nitions. For the GrSunwald–
Letnikov de,nitions we can obtain similar de,nitions.
We de,ne the v-order derivative by (A.6) with �= v.
We can write, for example:

x(�)(t) = Dnx(v)(t) (A.15)

or, similarly

x(�)(t) = Dvx(n)(t): (A.16)

These de,nitions suggest us that, to compute a �
derivative, we have in,nite ways, depending on the
steps that we follow to go from 0 (or −v) to �;
that is we express � as a summation of N reals
�i (i = 0; : : : ; N − 1), with the �i not necessarily less
or equal to one.
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