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Abstract

A new systematic approach to the construction of approximate solutions to
a class of nonlinear singularly perturbed feedback control systems using the
boundary layer functions especially with regard to the possible occurrence of
the boundary layers is proposed. For example, problems with feedback control,
such as the steady-states of the thermostats, where the controllers add or re-
move heat, depending upon the temperature registered in another place of the
heated bar, can be interpreted with a second-order ordinary differential equa-
tion subject to a nonlocal three–point boundary condition. The O(ǫ) accurate
approximation of behavior of these nonlinear systems in terms of the exponen-
tially small boundary layer functions is given. At the end of this paper, we
formulate the unsolved controllability problem for nonlinear systems.

Keywords: Feedback control, singularly perturbed nonlinear system,
boundary layer.
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1. Motivation and introduction

In various fields of science and engineering, systems with two-time-scale dy-
namics are often investigated. In state space, such systems are commonly mod-
eled using the mathematical framework of singular perturbations, with a small
parameter, say ǫ, determining the degree of separation between the ”slow” and
”fast” channels of the system. Singularly perturbed systems (SPS) can also
occur due to the presence of small ”parasitic” parameters, armature inductance
in a common model for most DC motors, small time constants, etc.

Singular perturbation problems arise also in heat transfer problem with large
Peclet numbers (we often assume ǫ to be small in order to diminish the effect
of diffusion ([23]), Navier-Stokes flows with large Reynolds numbers, chemical
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2 PROBLEM FORMULATION 2

reactor theory, aerodynamics, control of reaction-diffusion processes ([8], [20]),
quantum mechanics ([1]), optimal control ([24]), for example.

The literature on control of nonlinear SPS is extensive, at least starting
with the pioneering work of P. Kokotovic et al. nearly 30 years ago ([18])
and continuing to the present including authors such as Z. Artstein ([2, 3]), V.
Gaitsgory ([4, 12, 13]), etc (see, e.g. [6, 7, 10, 15, 22] and the references therein).

2. Problem formulation

In this paper, we will consider the nonlinear singularly perturbed feedback
control system without an outer disturbance of the form

y′(t) =w(t) (1)

ǫw′(t) =−ky(t) + f (u(t), y(t)) (2)

v(t) = g(y(t)) (3)

with the required nonlocal boundary conditions

v(ti) = v(tm) = v(tf ), ti < tm < tf , (4)

where ǫ > 0 is a small perturbation parameter, [y, w]T is the state vector, v(t)
is the measured output, u(t) is the input control, k < 0 is a constant and g
is a monotone increasing (decreasing) function on R. The state and control
variables are not constrained by any boundaries, initial time ti and final time
tf are fixed and y(ti), y(tf ) are free.

Such boundary value problems can arise in the study of the steady–states of
a heated bar with the thermostats, where the controllers at t = ti and t = tf
maintain a temperature according to the temperature detected by a sensor at
t = tm. In this case, we consider a uniform bar of length tf−ti with non-uniform
temperature lying on the t-axis from t = ti to t = tf . The parameter ǫ represents
the thermal diffusivity.

Different from [5], in this paper we will not assume that y(ti) and y(tf ) are
fixed and moreover we investigate three-point boundary value problem. There
have been some papers considered the multi-point boundary value problems in
the literature (see, e.g. [14], [16], [17], [28]) by applying the well known co-
incidence degree theory and Schauder fixed point theorem or the method of
lower and upper solutions. However, there have been fewer papers considered
the three–point boundary value problems for SPS without the derivative in the
boundary conditions. Recently, in the paper [19], it has been studied the non-
linear system of the form ǫ2y′′ = f(t, y, y′), 0 < t < 1 subject to the boundary
conditions y(0) = 0, y(1) = py(τ), 0 < τ < 1 and p < 1, where the assumption
p < 1 was crucial for proving the main result.

One of the typical behaviors of SPS is the boundary layer phenomenon:
the solutions vary rapidly within very thin layer regions near the boundary.
The novelty of our approach lies in the introduction of the exponentially small
boundary layer functions into the analysis of nonlocal boundary value problems
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and approximation of their solutions. The situation in the case of nonlocal
boundary value problem is complicated by the fact that there is an inner point
in the boundary conditions, in contrast to the ”standard” boundary conditions
as the Dirichlet problem, Neumann problem, Robin problem, periodic boundary
value problem ([9], [11]), for example. In the problem considered, there does
not exist a positive solution ζ̃ǫ of differential equation ǫy′′ −my = 0, m > 0,
ǫ > 0 (that is, ζ̃ǫ is convex) such that ζ̃ǫ(tm) − ζ̃ǫ(ti) = η(tm) − η(ti) > 0 and
ζ̃ǫ(t) → 0+ for t ∈ (ti, tf ] and ǫ→ 0+, which could be used to solve this problem
by the method of lower and upper solutions and consequently, to approximate
the solutions. The application of convex functions is essential for composing the
appropriate barrier functions for two-endpoint boundary conditions, see, e.g.
[9].

The following assumptions will be made throughout the paper.

A1. For limiting problem (in (2) letting ǫ → 0+) ky = f (u(t), y) there exists
C2 function η = η(t) (that is, η is continuous up to second derivative)
such that kη(t) = f (u(t), η(t)) on [ti, tf ].

Denote H(η) = {(t, y); ti ≤ t ≤ tf , |y − η(t)| < d(t)} , where d(t) is the
positive continuous function on [ti, tf ] such that

d(t) =







|η(tm)− η(ti)|+ δ for ti ≤ t ≤ ti +
δ
2

δ for ti + δ ≤ t ≤ tf − δ,
|η(tf )− η(tm)|+ δ for tf − δ

2 ≤ t ≤ tf

δ is a small positive constant.

A2. The function f ∈ C1(H(η)) satisfies the condition

∣

∣

∣

∣

∂f(u(t), y)

∂y

∣

∣

∣

∣

≤ λ < −k for every (t, y) ∈ H(η).

The assumption (A2) means that the linearization of SPS (1), (2) in a neigh-
bourhood of the set [η(t), 0], t ∈ [ti, tf ], as a set of critical points, has no eigen-
values on the imaginary axis.

In this paper, we characterize the dynamics for slow variable y in a neighbor-
hood of η(t) for sufficiently small values of the singular perturbation parameter ǫ
and t ∈ [ti, tf ]. Especially, we focus our attention on the appearance of boundary
layers. Moreover, we give the O(ǫ) accurate approximation of y on [ti, tf ].

Obviously, y is a solution of boundary value problem

ǫy′′(t) + ky(t) = f (u(t), y(t)) (5)

y(ti) = y(tm) = y(tf ), ti < tm < tf . (6)

Recently in [27] we have shown that the solutions of (5), (6), in general,
start with fast transient (|wǫ(ti)| → ∞) of yǫ(t) from yǫ(ti) to η(t), which is the
so–called boundary layer phenomenon, and after decay of this transient they
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remain close to η(t) with an arising new fast transient of yǫ(t) from η(t) to yǫ(tf )
(|wǫ(tf )| → ∞). Boundary layers are formed due to the nonuniform convergence
of the exact solution yǫ to the degenerate solution η in the neighborhood of the
ends ti and tf of the considered interval.

3. Behavior of SPS for ǫ → 0+

Theorem 1 (compare with [27], Theorem 2.1). Under the assumptions
(A1) and (A2) there exists ǫ0 such that for every ǫ ∈ (0, ǫ0] and for every input
control u the SPS (5), (6) has in H(η) an unique realization, yǫ, satisfying the
inequality

−ζ(corr)ǫ (t)− ζ̂ǫ(t)− Cǫ ≤ yǫ(t)− (η(t) + ζǫ(t)) ≤ ζ̂ǫ(t) + Cǫ

for η(tm)− η(ti) ≥ 0 and

−ζ̂ǫ(t)− Cǫ ≤ yǫ(t)− (η(t) + ζǫ(t)) ≤ ζ(corr)ǫ (t) + ζ̂ǫ(t) + Cǫ

for η(tm)− η(ti) ≤ 0 on [ti, tf ] where

ζǫ(t) =
η(tm)− η(ti)

D
·
(

e
√

m
ǫ
(tf−t) − e

√
m
ǫ
(t−tf )

+ e
√

m
ǫ
(t−tm) − e

√
m
ǫ
(tm−t)

)

,

ζ̂ǫ(t) =
|η(tf )− η(tm)|

D
·
(

e
√

m
ǫ
(t−ti) − e

√
m
ǫ
(ti−t)

+ e
√

m
ǫ
(tm−t) − e

√
m
ǫ
(t−tm)

)

,

D=
(

e
√

m
ǫ
(tf−ti) + e

√
m
ǫ
(tm−tf ) + e

√
m
ǫ
(ti−tm)

)

−
(

e
√

m
ǫ
(ti−tf ) + e

√
m
ǫ
(tf−tm) + e

√
m
ǫ
(tm−ti)

)

,

m = −k − λ, C = 1
m
max {|η′′(t)| ; t ∈ [ti, tf ]} and the positive function

ζ(corr)ǫ (t) =
λ|η(tm)− η(ti)|√

mǫ
·
[

−O(1) ζǫ(t)

(η(tm)− η(ti))

+ O
(

e
√

m
ǫ
(ti−tm)

) ζ̂ǫ(t)

|η(tf )− η(tm)| + tO
(

e
√

m
ǫ
χ(t)
)

]

,

χ(t) < 0 for t ∈ (ti, tf ] and ζ
(corr)
ǫ (ti) = ζ

(corr)
ǫ (tm).

We write s(ǫ) = O(r(ǫ)) when 0 < lim
ǫ→0+

∣

∣

∣

s(ǫ)
r(ǫ)

∣

∣

∣
<∞.

The function ζǫ(t) satisfies

1. ǫζ′′ǫ −mζǫ = 0,
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2. ζǫ(tm)− ζǫ(ti) = −(η(tm)− η(ti)), ζǫ(tf )− ζǫ(tm) = 0,

3. ζǫ(t) ≥ 0 (≤ 0) is decreasing (increasing) for ti ≤ t ≤ tf+tm
2 and increasing

(decreasing) for
tf+tm

2 ≤ t ≤ tf if η(tm)− η(ti) ≥ 0 (≤ 0),

4. ζǫ(t) converges uniformly to 0 for ǫ → 0+ on every compact subset of
(ti, tf ],

5. ζǫ(t) = (η(tm)− η(ti))O
(

e
√

m
ǫ
χ(t)
)

where χ(t) = ti − t for ti ≤ t ≤ tf+tm
2

and χ(t) = t− tf + ti − tm for
tf+tm

2 < t ≤ tf .

The function ζ̂ǫ(t) satisfies

1. ǫζ̂′′ǫ −mζ̂ǫ = 0,

2. ζ̂ǫ(tm)− ζ̂ǫ(ti) = 0, ζ̂ǫ(tf )− ζ̂ǫ(tm) = |η(tf )− η(tm)|,

3. ζ̂ǫ(t) ≥ 0 is decreasing for ti ≤ t ≤ ti+tm
2 and increasing for ti+tm

2 ≤ t ≤ tf ,

4. ζ̂ǫ(t) converges uniformly to 0 for ǫ → 0+ on every compact subset of
[ti, tf ),

5. ζ̂ǫ(t) = |η(tf )− η(tm)|O
(

e
√

m
ǫ
χ̂(t)
)

where χ̂(t) = t− tf for ti+tm
2 ≤ t ≤ tf

and χ̂(t) = tm − tf + ti − t for ti ≤ t < ti+tm
2 .

The correction function

ζ(corr)ǫ (t) = − (ψǫ(ti)− ψǫ(tm))

(η(tm)− η(ti))
ζǫ(t) +

(ψǫ(tm)− ψǫ(tf ))

|η(tf )− η(tm)| ζ̂ǫ(t) + ψǫ(t)

where

ψǫ(t) =
λ|η(tm)− η(ti)|

D
√
mǫ

t
(

e
√

m
ǫ
(tf−t) + e

√
m
ǫ
(t−tf )

− e
√

m
ǫ
(tm−t) − e

√
m
ǫ
(t−tm)

)

converges uniformly to 0+ on [ti, tf ] for ǫ→ 0+.

Theorem 1 implies that yǫ(t) = η(t)+O(ǫ) on every compact subset of (ti, tf )
and

lim
ǫ→0+

yǫ(ti) = lim
ǫ→0+

yǫ(tf ) = lim
ǫ→0+

yǫ(tm) = η(tm).

Consequently,

lim
ǫ→0+

g (yǫ(ti)) = lim
ǫ→0+

g (yǫ(tf )) = lim
ǫ→0+

g (yǫ(tm)) = g (η(tm)) .

Due to the assumption that g is strictly monotone, the boundary layer effect
occurs at the point ti or/and tf in the case when η(ti) 6= η(tm) or/and η(tf ) 6=
η(tm).
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4. Approximation of realization of SPS

The application of numerical methods may give rise to difficulties when the
singular perturbation parameter ǫ tends to zero, especially in the nonlinear case.
Then the mesh needs to be refined substantially to grasp the solution within the
boundary layers (piecewise uniform mesh of Shishkin-type; see, e.g. [21], [25]
and the references therein). The advantage of our approach is that we have to
solve only on the parameter ǫ independent limiting problem ky = f (u(t), y) , see
the assumption (A1). Then a singular perturbation method is applied to obtain
an approximate solution of SPS (5), (6) composed of a solution η of reduced
problem, small constant and two boundary layer functions to recover the lost
nonlocal boundary conditions in the degeneration process.

We use the linear combination of the functions η(t), ζǫ(t) and ζ̂ǫ(t) to approxi-
mate the exact solution of SPS (5), (6) by the following way. For η (tf )−η (tm) ≤
0 we define the approximate realization ỹǫ(t) of SPS (5), (6) by

ỹǫ(t) = η(t) + ζǫ(t) + ζ̂ǫ(t) + Cǫ (7)

and analogously, for η (tf )− η (tm) ≥ 0 we define

ỹǫ(t) = η(t) + ζǫ(t)− ζ̂ǫ(t)− Cǫ (8)

where the ǫ−independent constant C is defined in Theorem 1.
It is not difficult to verify that ỹǫ(t) satisfies the boundary conditions (6)

and
lim
ǫ→0+

ỹǫ(ti) = η(tm) = lim
ǫ→0+

ỹǫ(tf ).

Further,

1. for η (tf )− η (tm) ≤ 0 and η (tm)− η (ti) ≤ 0 we obtain the inequality

−ζ(corr)ǫ (t) ≤ ỹǫ(t)− yǫ(t) ≤ 2ζ̂ǫ(t) + 2Cǫ, (9)

2. for η (tf )− η (tm) ≥ 0 and η (tm)− η (ti) ≥ 0

−ζ(corr)ǫ (t) ≤ yǫ(t)− ỹǫ(t) ≤ 2ζ̂ǫ(t) + 2Cǫ, (10)

3. for η (tf )− η (tm) ≤ 0 and η (tm)− η (ti) ≥ 0

0 ≤ ỹǫ(t)− yǫ(t) ≤ ζ(corr)ǫ (t) + 2ζ̂ǫ(t) + 2Cǫ, (11)

4. for η (tf )− η (tm) ≥ 0 and η (tm)− η (ti) ≤ 0

0 ≤ yǫ(t)− ỹǫ(t) ≤ ζ(corr)ǫ (t) + 2ζ̂ǫ(t) + 2Cǫ. (12)
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The right sides of the inequalities (9)–(12) are O(ǫ) on every compact subset
of [ti, tf ). On the other hand, taking into consideration the facts that ỹǫ(ti) =

ỹǫ(tf ), yǫ(ti) = yǫ(tf ) and monotonicity of the functions ζ
(corr)
ǫ (t)+2ζ̂ǫ(t)+2Cǫ

and 2ζ̂ǫ(t) + 2Cǫ with respect to the variable t in a left neighbourhood of tf for
small ǫ, we have

|yǫ(t)− ỹǫ(t)| ≤ O(ǫ)

on [ti, tf ], that is, ỹǫ(t) is O(ǫ) accurate approximation of exact solution yǫ(t)
of (5), (6) on the whole interval [ti, tf ]. We also see that |w̃ǫ(ti)| → ∞ and
|w̃ǫ(tf )| → ∞ for ǫ → 0+, where w̃ǫ ≡ ỹ′ǫ. Thus, ỹǫ(t) is a good approximation
of the boundary layers arising in the endpoints of the considered interval [ti, tf ].

We remark that in the special case when C = 0, that is, if η is a first-degree
polynomial function or a piecewise linear function (in the second case a small
generalization of Theorem 1 is needed) we obtain the exponential convergence
rate of ỹǫ to yǫ on [ti, tf ] for ǫ→ 0+.

We remind, that ỹǫ(t) = η(t) is not an appropriate approximation of yǫ(t)
because do not respect the possible appearance of boundary layers.

Consider SPS with quadratic nonlinearity of the form

ǫy′′ + ky = y2 + u(t), k < 0, u ∈ C2 ([ti, tf ]) (13)

with the boundary conditions (4). The assumptions of Theorem 1 are satisfied
if and only if there exists λ > 0 such that

1

4

(

k2 − (λ − k)2
)

<u(t) <
1

4

(

k2 − (λ + k)2
)

on [ti, tf ] (14)

|u(tm)− u(ti)|<
1

8
(λ− k − ι(ti)) (ι(ti) + ι(tm)) (15)

|u(tf )− u(tm)|< 1

8
(λ− k − ι(tf )) (ι(tf ) + ι(tm)) (16)

|u(tm)− u(ti)|<
1

8
(λ+ k + ι(ti)) (ι(ti) + ι(tm)) (17)

|u(tf )− u(tm)|< 1

8
(λ+ k + ι(tf )) (ι(tf ) + ι(tm)) , (18)

where ι(t) =
√

k2 − 4u(t).
For an illustrative example let we consider the problem (13), (4) with k = −2,

u(t) = t, ti = 0, tf = 1/2, tm = 1/4 and g = id. It is not difficult to verify that
the solution η(t) = −1+

√
1− t of reduced problem satisfies the conditions (14)–

(18) for every λ ∈
(

2√
2+

√
3
+ 2−

√
2, 2
)

. Thus, on the basis of Theorem 1, there

exists ǫ0 = ǫ0(λ) such that for every ǫ ∈ (0, ǫ0] the problem ǫy′′−2y = y2+t, (4)
has in H(η) the unique solution which is O(ǫ) close to the approximate solution
(7) on [ti, tf ] (Fig. 1), that is, to the function

ỹǫ(t) = −1 +
√
1− t+ ζǫ(t) + ζ̂ǫ(t) + ǫ

[

(2− λ)
√
2
]−1

.
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Figure 1: Boundary layer phenomenon for solution of singularly perturbed problem ǫy′′−2y =
y2 + t, y(0) = y(1/4) = y(1/2) (the solid line) with ǫ = 0.0001. The dotted and dashed lines
represent the approximate solution ỹǫ(t) (with λ = 1.6) and solution of reduced problem, the
function η(t) = −1 +

√

1− t, respectively

In the context of previous analysis of the steady–state solutions of 1-D heat
transfer equation, it would be interesting to investigate the occurrence of bound-
ary layers for ǫ → 0+ of perturbed, non-stationary 1-D heat transfer equation,
written in the usual form as

∂y

∂t
= ǫ

∂2y

∂x2
+ ky − f (u(x), y)

subject to the nonlocal boundary conditions

v(xi, t) = v(xm, t) = v(xf , t), xi < xm < xf , t ∈ [0,∞),

where v(x, t) = g(y(x, t)). The solution yǫ(x, t) represents the temperature at
point x of the heated bar in the time t, x ∈ [xi, xf ], t ∈ [0,∞). For the ini-
tial value problems, the numerical analysis of non-stationary reaction-diffusion
systems shows on the presence of boundary layer phenomenon (see, e.g. [26]).

5. Feedback control of semilinear SPS

In this section we consider SPS (1), (19), (3) with

ǫw′(t) = −ky(t) + f(y(t)) + u(t). (19)

Let
|f ′(y)| ≤ λ < −k
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for y ∈ R. Moreover, assume that g ∈ C1 and g−1 ∈ C2 on R where g−1 denotes
an inverse function for g.

Now, if v0 ∈ C2 ([ti, tf ]) is desired output of SPS (1), (19), (3) satisfying (4)
then it is easy to verify that an adequate feedback control input u0 to obtain
close v0 output is

u0(t) = kg−1

(

v0(t)
)

− f
(

g−1

(

v0(t)
))

.

Hence η0(t) = g−1

(

v0(t)
)

and an observable realization g
(

y0ǫ
)

of system (1),

(19), (3) with the boundary condition (4) is O(ǫ) close to the g
(

ỹ0ǫ (t)
)

.
Indeed, as follows from the Lagrange Theorem and (9)–(12),

∣

∣g
(

y0ǫ (t)
)

− g
(

ỹ0ǫ (t)
)∣

∣≤ µ
∣

∣y0ǫ (t)− η0(t)
∣

∣

≤ µ
ǫ

m
max

{∣

∣

∣
η0

′′

(t)
∣

∣

∣
; t ∈ [ti, tf ]

}

where µ = max
{

|g′(y)| ; (t, y) ∈ H
(

η0
)}

.

6. Unsolved controllability problem

Consider the dynamical model described by singularly perturbed differential
equation

ǫy′′(t) +
1

2
f̃ (u(t), y(t)) = 0, (20)

where f̃ = 2(ky − f) ∈ C
(

R
2
)

(see (5)), u ∈ C ([0, tf ]) is a continuous control

input and 0 < ǫ << 1 is a singular perturbation parameter. Let f̃ 6= 0, and
without loss of generality we will assume that f̃ > 0 and ti = 0. In this case,
the reduced problem f̃ (u(t), y(t)) = 0 does not have a solution η (Assumption
(A1)), which was the crucial assumption to prove Theorem 1.

Denote by {t∗i,ǫ} the set of turning points in (0, tm) of exact solutions yǫ for
problem (20) satisfying yǫ(0) = yǫ(tm), that is, y′ǫ(t

∗
i,ǫ) = 0 and y′′ǫ (t

∗
i,ǫ) 6= 0.

For the problems considered in the previous sections, the turning points are
determined for small ǫ with sufficient precision by the turning points of the
solution η of reduced problem. Obviously, for (20) there is only one turning
point t∗ǫ of the solution yǫ on [0, tf ], and in t∗ǫ acquires its local and global
maximum on [0, tm] and it is possible to steer the control system (20) from the
state yǫ(0) to the state yǫ(tm), 0 < tm < tf , satisfying yǫ(0) = yǫ(tm) with an
arbitrary second boundary condition and for every small ǫ.

Now we will analyze the location of this turning point.
Let consider a special case of (20) when f̃ (u(t), y(t)) ≡ f̃ (u0, y(t)) , that is,

the nonlinear mathematical model

ǫy′′(t) +
1

2
f̃ (u0, y(t)) = 0, (21)

with the initial conditions yǫ(0) = y0,ǫ, y
′
ǫ(0) = y1,ǫ, where y0,ǫ, y1,ǫ are the

arbitrary real numbers. Obviously, y1,ǫ > 0, because in the case y1,ǫ ≤ 0 the
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solution yǫ of (21) satisfying yǫ(0) = yǫ(tm) has a local minimum at some
t0 ∈ (0, tm) with y′′ǫ (t0) ≥ 0 which contradicts to the assumption on positivity
of the function f̃ . Denote by F̃u0 the antiderivative of f̃(u0, y), that is, F̃u0 =
∫

f̃(u0, y)dy. The function F̃u0 is strictly increasing and by F̃−1
u0

we denote an

inverse function to F̃u0 . Integrating the differential equation (21) we have

ǫ(y′ǫ(t))
2 + F̃u0(y(t)) = ǫy21,ǫ + F̃u0 (y0,ǫ). (22)

Now applying the standard methods we obtain that for every t ∈ [0, tf ], yǫ(t)
is an unique root of the equation

±2ǫ

√
ǫy2

1,ǫ
∫

√

√

√

√ǫy2
1,ǫ−

yǫ(t)
∫

y0,ǫ

f̃(u0,s)ds

[

f̃
(

F̃−1
u0

(

F̃u0(y0,ǫ) + ǫy21,ǫ − z2
))]−1

dz = t, (23)

where the sign +(−) on the subintervals of [0, tf ] with y
′
ǫ ≥ 0 (y′ǫ < 0), that is,

for t ∈ (0, t∗ǫ ] (t ∈ (t∗ǫ , tf ]) is considered, respectively.
Taking into consideration that y′ǫ(t

∗
ǫ ) = 0 we have

F̃u0(y(t
∗
ǫ )) = ǫy21,ǫ + F̃u0 (y0,ǫ). (24)

Thus for computation of the turning point we obtain from (23) the equation

2ǫ

√
ǫy2

1,ǫ
∫

0

[

f̃
(

F̃−1
u0

(

F̃u0(y0,ǫ) + ǫy21,ǫ − z2
))]−1

dz = t∗ǫ .

To illustrate this theory, let us consider (21) with f̃ (u0, y(t)) = ey. The
solution of initial problem is

yǫ(t) = ln



c1 − c1

(

e∓
√

c1
ǫ

(t+c2) − 1

e∓
√

c1
ǫ

(t+c2) + 1

)2


 , (25)

where the sign −(+) on the subintervals of [0, tf ] with y′ǫ ≥ 0 (y′ǫ < 0) holds,
respectively. The constants c1, c2 are

c1 = ǫy21,ǫ + F̃u0(y0,ǫ), c2 = − ǫ√
c1

ln

√
c1 +

√
ǫy1,ǫ√

c1 −
√
ǫy1,ǫ

.

From (24) we have yǫ(t
∗
ǫ ) = ln c1. Thus, as follows from (25), t∗ǫ + c2 = 0 and

we obtain

t∗ǫ =
ǫ√
c1

ln

√
c1 +

√
ǫy1,ǫ√

c1 −
√
ǫy1,ǫ

. (26)
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On the other hand, from (25), equating yǫ(0) and yǫ(tm) we get 2c2+tm = 0.
Comparing this with (26) we obtain

t∗ǫ =
tm
2
.

The following questions arise in this context:

(i) Where is located the turning point t∗ǫ for nonlinear singularly perturbed
system (20) with f̃ > 0 subject to required boundary condition yǫ(0) =
yǫ(tm), 0 < tm < tf in general? Does have the position independent of
singular perturbation parameter ǫ?

(ii) Can be controlled a location of turning point by using an appropriate
control signal u?
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