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Abstract

Although hydroelectric generating units are highly reliable, being able to accurately model their degra-

dation level represents a real asset in industrial and financial risk management. This paper presents and

models a common degradation phenomenon observed on hydraulic Francis turbine runners: erosive cavita-

tion. It gives an application of stochastic processes for degradation modeling framework in presence of real

laboratory experimental data. For degradation modeling, a non homogeneous gamma process is proposed.

The model calibration is explained and asymptotic confidence intervals for the model estimate are assessed.

Because of the limited size of available dataset, bootstrap techniques are also used to evaluate statistical

estimation uncertainties on the model parameters. These uncertainties on the degradation model are then

propagated in order to analyze how they impact the distribution of the system lifetime, characterized by

the hitting time for a given degradation threshold.

Keywords: degradation modeling, gamma process, bootstrap, estimation uncertainty, delta method,

erosive cavitation, lifetime estimation

1. Introduction

1.1. Industrial context

Component reliability represents a significant aspect of industrial asset management for energy producers

who operate generating units in highly competitive market. In this context, being able to build robust

reliability models is crucial to the ultimate success of maintenance program [1]. For this purpose, engineers

and analysts may rely on existing probabilistic models developed in literature [2, 3]. For complex systems

such as hydroelectric power stations (which includes: turbine runner, generator, civil, ...), available data can

be limited due to the systems’ high reliability but also because of the effort needed to collect degradation

data. The resulting reliability model may thus suffer from a lack of accuracy and the assessment of statistical
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estimation uncertainties may become a real challenge in order to evaluate model performance and robustness.

Moreover, having a good knowledge of these uncertainties gives the analyst a better representation of possible

future system behavior and allows him, for example, to make risk-informed decisions regarding operation or

maintenance policies.

Nomenclature

R∗+ set of positive real numbers

Dobs set of observed degradation data

xi,j degradation level of component j at instant ti,j

δi,j increment of degradation between two successive instants

u gamma process rate parameter

v gamma process shape parameter

θ set of gamma process parameters

nj path size

m number of paths

N total number of observations

L likelihood function

` log-likelihood function

Φ CDF of the standard Gaussian distribution

P qY quantile of order q of distribution of Y

Tρ first hitting time of degradation at level ρ

HGP homogeneous gamma process

NHGP non-homogeneous gamma process

BS Birnbaum-Saunders

ML maximum likelihood

MLE maximum likelihood estimation

EB Efron bootstrap

PB parametric bootstrap

MBB moving block bootstrap

DM delta method

GSS gamma sequential sampling

MSE mean squared error
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1.2. Degradation phenomenon

Cavitation erosion is the physical degradation process studied in this paper [4]. This phenomenon occurs

when the local static pressure of water is below its vapor pressure at a given temperature. For high velocity

regions on the runner blade, the local low pressure can result in the formation of small vapor bubbles which

then collapse suddenly. If the created bubbles implode on solid surfaces, such as the runner blades, surfaces

eventually end up with pitting erosion [5]. Cavitation results in noise, vibration, and alteration of the surface

geometry of the blade. In the end it may lead to loss in the turbine efficiency [6]. Over time, a Francis runner

exposed to erosive cavitation will loose material which requires costly periodic inspections and repairs. A

relevant technique to quantify this degradation in laboratory consists of measuring the mass of the specimen

and thus deduce the material loss during the experiment. In order to optimize maintenance operations and

to reduce periods of outage, there is a need for accurate degradation prediction. While progress has been

made during the last decade, computational fluid dynamics simulations still face challenges to anticipate

cavitation erosion. Indeed, recent studies on the prediction of cavitation erosion have shown satisfying

qualitative results, but stress that future work is needed to produce convincing quantitative assessments [7].

In particular, numerical models can predict the blade regions affected by erosive cavitation but are still not

able to produce robust results about the cavitation intensity and consequently the resulting material loss

[8]. Although the following methodology focuses on cavitation erosion, a similar approach may be applied

to other cumulative and monotonic degradation mechanism.

1.3. Objectives

To perform accurate degradation prediction, an analyst must rely on a realistic model which ideally

integrates the physics of degradation, the characteristics of the operating environment and the impact of

the usage [9, 10]. Accurate degradation modeling is made possible through the use of degradation data

collected by laboratory experiments, monitoring or during inspections of the system. These models allow

the prediction of the lifetime of the system, characterized by the first hitting time for a given degradation level

threshold. In the case of cavitation erosion, because of the natural variability of the physical phenomenon

and the large number of unknown influencing factors, we consider that the mechanism is random. For these

reasons, we discarded deterministic models in favor of probabilistic ones.

This paper aims to propose a stochastic model describing the erosive cavitation phenomenon encountered

on industrial equipment. The modeling is based on real data obtained under controlled environment in

laboratory. The main issue is that the dataset is very small and the major statistical methods applied for

model calibration and validation are based on large size data. This problem is bypassed by the bootstrap

methods which enrich the dataset by generating a large set of resampled data. The bootstrap behavior for

this specific industrial framework is studied and the advantages and limits of the bootstrap for this particular

industrial case is discussed. Confidence intervals for parameters estimation are proposed. A risk-informed
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metric, evaluating the influence of these confidence intervals on the system lifetime distribution (estimating

the first hitting time for a given degradation level) is proposed. This latter allows to compare the different

statistical techniques based on asymptotic and non-asymptotic results. Although the methods we used in

this paper are standard, this study is conducted on real industrial data and propose to construct not only

confidence intervals on model parameters but to propagate them to a reliability performance criterion of

interest (while most papers limit themselves to the estimation of model uncertainties).

The paper is structured as follows. First, we provide a brief introduction of probabilistic degradation

models and present the particular case of the model we chose to conduct this study. Next, we present

the methodology used to construct confidence intervals on model parameters: (i) theoretical asymptotic

properties of maximum likelihood estimators and (ii) bootstrap methods. Then, we apply the previous

techniques on a real dataset and discuss the results. Finally, some of the challenges faced for degradation

modeling are discussed, along with suggestions for further work.

2. Degradation models

In health indicator prognostic, when only failure times are known, black box models such as lifetime

models are used to analyze the behavior of the system. To take advantage of the available information

provided by deterioration data (collected during system’s monitoring or inspection), stochastic processes

are suitable candidates to describe the evolution over time of the health indicator. Indeed, degradation

data can be seen as a collection of random variables (increments of degradation), and can be modeled in

terms of a stochastic process. Another applicable tool would be the use of regression models also known as

“degradation path models” [10, 11].

2.1. Degradation path models

Let us denote xi,j , i = 1 . . . n, with 0 = x0,j ≤ x1,j ≤ · · · ≤ xn,j , the observed degradation level related

to component j, j = 1 . . .m, at instant ti,j , where 0 = t0,j < t1,j < · · · < tn,j . For regression models,

the successive degradation levels are considered as independent observations which means the dynamics of

degradation and its cumulative property over the time are overlooked, as well as the way degradation values

are collected and organized. Likewise, random effect models can be suitable for degradation exhibiting

unexplained heterogeneity within a similar component population. These models are often used in presence

of uncontrolled environment (which is not the case for the dataset studied in this paper, which was obtained

during laboratory experiments). In contrast, stochastic processes model the degradation path variability

by considering the dynamics and the cumulative property of degradation using its increments between two

successive instants. For these reasons, regression models are discarded in the remaining of this paper.
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2.2. Stochastic processes

As pointed out in the survey by Noortwijk, Markov stochastic processes are well suited for modeling

the temporal variability of degradation [12, 13]. In the context of cumulative degradation, it is relevant to

consider processes belonging to the Markov process family as the future states depend only upon the current

state and not on previous states [14] which is the case for two successive measurements of erosive cavitation.

In the Markov process class, a distinction is made between processes having a finite or countable state

space and infinite state space: cavitation erosion measurements lie in the infinite state case as the degradation

level is measured using the mass loss of the specimen which can take theoretically an infinite number of

values (uncountable). Likewise, we can find discrete-time or continuous-time processes as depicted by Karlin

[15]. In the framework of our study, we consider the physical phenomenon as a time-continuous process even

if degradation observations are carried out at discrete times. Many useful continuous-time processes can

be considered to model degradation such as the Brownian motion with drift (or Wiener process) [16, 17],

the compound Poisson process [18], the inverse Gaussian process [19] and the gamma process [20]. A

characteristic feature of the Wiener process – in the context of degradation – is that the deterioration may

alternately increase and decrease over time (non-monotonic), even with an increasing trend, called Brownian

motion with drift (see review by Guan et al. [21] and application with measurement errors in Whitmore [22]).

As the degradation studied in this paper is cumulative and strictly monotonic, inverse Gaussian process and

gamma process are good candidates because of their independent non-negative increments [23, 24]. With

both these two processes, paths can be thought as the accumulation over time of an infinite number of

tiny increments. These features make these processes relevant to model gradual damage accumulating over

time. IG process was used by Ye and Chen [25] because of its inherent flexibility and the possibility to

incorporate covariates and random effects. Meanwhile, Ye and Chen [25] stress IG process is not well

received by reliability engineers or analysts compared to Wiener or gamma processes due to its unclear

degradation physical meaning. More over, inverse Gaussian process is often considered when Wiener or

gamma process fail to model degradation data. Other Markov processes can be found in a reliability context

such as diffusion processes. In order to better control mean and variance of a given degradation process,

Deng et al. [26] used an Ornstein-Uhlenbeck process which lies in the diffusion process family. This process

shares some similarities with the Wiener process with drift, such as the ability to model degradation having

temporary fluctuations while the overall trend is increasing. Because the studied degradation is monotonic

and cumulative, these processes were discarded to prefer a monotonic process for the remaining of the paper.

Since the aim is to derive a calibration, estimation and prediction methodology in presence of small size

data and highlight the interest of time dependent average and volatility, gamma process as a monotonic

process is used to show the implementation of the whole methodology. Any other Lévy subordinator or non

stationary non decreasing stochastic process could be chosen.
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2.3. Model description

In its homogeneous form, the gamma process has a linear average trend but the non-homogeneous

gamma process can have convex or concave average trends. This is more flexible to fit a given average

trend but it does not satisfy the stationarity property. Castanier et al. [27] used it in the framework of

condition-based maintenance. In de Jonge [28], Deloux et al. [29] and Zhu et al. [30], the gamma process is

enriched with additional random shocks or/and covariates to describe a more complex behavior undergoing

environmental changes. In presence of measurements, the fitting and calibration is one of the major issues

and the parameters estimation is the main challenge. The latter is addressed in Wang [31] and Kahle et al.

[3] under different hypotheses on data or model. Ling et al. [24] used and estimated parameters of a non-

homogeneous gamma process to study the evolution of the remaining useful life of light emitting diodes

under stress conditions. In addition, they evaluated uncertainties of model parameter estimations in the

case of shape function following an inverse power law. When degradation data contain noise or measurement

errors, leading to non-strictly monotonic trend, Le Son et al. [32] used a Gibbs sampling technique to filter

signal and then used a non-homogeneous gamma process to model hidden degradation data for the same

purpose; Lu et al. [33] preferred the use of the Genz transform and quasi-Monte Carlo method.

Abdel-Hameed [20] was the first to use gamma process (GP) to model degradation occurring randomly in

time. Van Noortwijk [12] and Alaswad and Xiang [13], in their respective survey, noted the ability of gamma

process to model gradual damage monotonically accumulating over time. In particular, Cholette et al. [34]

and Nystad et al. [35] used GP to model systems subject to erosion. The definition given by Van Noortwijk

[12] describes gamma process as a stochastic process with independent, non-negative increments having a

gamma distribution with an identical scale parameter.

A positive random quantity X has a gamma distribution, denoted Ga(u, v), where u, v > 0 are the rate

parameter and the shape parameter, respectively, if its probability density function (PDF) is given by:

fX(x|u, v) = Ga(x|u, v) =
uv

Γ(v)
xv−1 exp(−ux)IR∗

+
(x), (1)

where IA(x) = 1 for x ∈ A and IA(x) = 0 for x /∈ A, Γ(a) is the incomplete gamma function for a > 0

[36] and R∗+ the set of positive real numbers. Note that another standard parameterization of the gamma

distribution in the literature is (α, β) with β = 1/u and α = v. In that case, β is called scale parameter and

α the shape parameter.

The gamma process {X(t), t ≥ 0} with rate parameter u > 0 and shape function v(t) > 0 has the

following properties:

� X(0) = 0,

� X(τ)−X(t) ∼ Ga(u, v(τ)− v(t)) for all τ > t > 0,
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� X(t) has independent non-overlapping increments.

Note that v must be a non-decreasing, right-continuous, real-valued function on R+ with v(0) = 0. The

expectation and the variance of gamma process with parameters u and v(t) are the following:

E(X(t)) =
v(t)

u
, V(X(t)) =

v(t)

u2
. (2)

The shape function v(t) expresses how the mean degradation increases over time. A standard choice is

v(t) = ctb with c, b > 0 [3]. Empirical studies and engineering knowledge show the expected degradation

over time is often proportional to a power function [12]. When b = 1, the gamma process is said to be

homogeneous (HGP, or stationary); for b 6= 1, the gamma process is non-homogeneous (NHGP, or non-

stationary). In their study, Park and Padgett [37] identified an appropriate value of b based on the Akaike

Information Criterion, which is a standard statistical indicator for model selection. In the remaining of

the paper, we chose to use a power function for v. Another standard shape function could have been the

exponential one: v(t) = e−ct − 1, with c > 0, but because of the degradation behavior studied in this paper

(see section 4), we decided to discard this shape function.

2.4. Maximum likelihood estimation of model parameters

In order to model degradation phenomenon using gamma process, appropriate statistical methods are

required for the model parameters’ estimation. Two of the most common techniques are the Maximum

Likelihood method (ML) and the Method of Moments (MM). MM is preferred when power b 6= 1 in v(t) is

known and for i.d. time increments: in that case, the NHGP can be transformed into a HGP which leads to

simpler parameters’ estimation using MM [12]. MM being explicit, it can be used as a starting point for ML

method which may require an iterative optimization procedure. Meanwhile, when b needs to be determined,

ML is more convenient than MM. In our case study, preliminary statistical regression showed a good fit for

power function (see degradation path in Figure 3). As we had no information on parameter b, we decided

to use the ML method. Let us introduce this estimation method.

Let us suppose we observe m independent paths following the same stochastic process. Here, m expresses

the number of laboratory experiments performed (it could also express m different and independent systems

on which we observe one degradation path). Let nj denote the number of successive observations taken

during experiment j, 1 ≤ j ≤ m. Then, the jth degradation path is observed nj + 1 times at instants

t0,j < t1,j < . . . < tnj ,j . We adopt the following notations in the remaining of the paper, for all 1 ≤ j ≤ m

(see Fig. 1):

� t0,j = t0 = 0;

� x0,j = 0, which means at t0 there is no degradation;
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� δi,j = xi+1,j − xi,j : the increment of degradation between two successive measurement instants ti,j

and ti+1,j ;

� Dobs = ∪mj=1 ∪
nj
i=0 {(ti,j , xi,j)} = ∪mj=1 ∪

nj−1
i=0 {(ti,j , ti+1,j , δi,j)}: the set of all observed degradation

data, organized in m independent paths with nj observations, 1 ≤ j ≤ m.

Figure 1: Data notation example.

In our case, since the degradation measurements come from experiments performed in laboratory (see

section 4), under controlled conditions, we consider the measurement error is negligible compared to the

natural variability of the degradation phenomenon (see [22] for stochastic process considering measurement

error). Note that for a given experiment j, 1 ≤ j ≤ m, increments δi,j , 0 ≤ i ≤ nj − 1, are independent but

non-identically distributed (i.non-i.d) since they depend on the (possibly non-uniform) width of time intervals

[ti,j , ti+1,j ] between successive measurements. Because of this property, the classical graphical tools and

goodness of fit tests are not applicable. Indeed, in the non-homogeneous case, each degradation increment

follows a different gamma distribution described, in particular, by instants ti,j and ti+1,j (not δti anymore).

Other classes of classification tools could be studied but due to their originality, for their application their

whole background should be recalled and defined which goes further than the main objective of this paper.

The ML method consists of identifying the model parameter θ̂ = (û, ĉ, b̂) values which maximize the

likelihood function L given observed data Dobs. Intuitively, it selects the parameters’ values that make

the data most probable. The gamma process likelihood function L is given in equation (3) (see [12]). For

convenience, we chose to maximize the log-likelihood function ` in equation (4).; because of strictly increasing

behavior of the log function, log-likelihood achieves its maximum value at the same points as the function

itself.
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L(θ|Dobs) = L(u, c, b|Dobs) =

m∏
j=1

nj∏
i=1

Ga (δi,j |u, v(ti,j)− v(ti−1,j))

=

m∏
j=1

nj∏
i=1

uc[t
b
i,j−t

b
i−1,j ]

Γ(c[tbi,j − tbi−1,j ])
δ
c[tbi,j−t

b
i−1,j ]−1

i,j e−uδi,j .

(3)

`(θ|Dobs) = log (L(u, c, b|Dobs))

=

m∑
j=1

nj∑
i=1

c[tbi,j − tbi−1,j ] log(u)− log
[
Γ
(
c[tbi,j − tbi−1,j ]

)]
+
(
c[tbi,j − tbi−1,j ]− 1

)
log(δi,j)− uδi,j .

(4)

By differentiating ` with respect to the three parameters, the Maximum Likelihood Estimator (MLE)

θ̂ML = (ûML, ĉML, b̂ML) of true unknown parameters θ = (u, c, b) consists in the solution of the following set

of three non-linear equations:

ûML = ĉML

∑m
j=1

∑nj
i=1 t

b̂ML
i,j − t

b̂ML
i−1,j∑m

j=1

∑nj
i=1 δi,j

= ĉML

∑m
j=1 t

b̂ML
nj ,j∑m

j=1 xnj ,j
, (5)

m∑
j=1

nj∑
i=1

[
tb̂MLi,j − t

b̂ML
i−1,j

]{
ψ
(
ĉML

[
tb̂MLi,j − t

b̂ML
i−1,j

])
− log(δi,j)

}
=

m∑
j=1

(tb̂MLnj ,j
) log(ûML), (6)

m∑
j=1

nj∑
i=1

ĉML

[
tb̂MLi,j log(ti,j)− tb̂MLi−1,j log(ti−1,j)

] [
ψ
(
ĉML

[
tb̂MLi,j − t

b̂ML
i−1,j

])
− log(δi,j)

]
=

m∑
j=1

(
ĉMLt

b̂ML
nj ,j

log(tnj ,j)
)

log (ûML) ,

(7)

where function ψ(a), the digamma function, is the derivative of the logarithm of the gamma function:

ψ(a) =
Γ′(a)

Γ(a)
=

d

da
log Γ(a). (8)

Hence, ĉML and b̂ML can be either numerically computed by solving equations (6) and (7) (replacing ûML

by its expression given in (5) which is function of ĉML and b̂ML) or by first computing the MLE for c and b

and then computing ûML using equation (5). Both methods are numerical and imply an optimization using

proper computing tools to solve equations (5), (6) and (7). We chose to use the root finding method hybr

which relies on MINPACK’s hybrd and hybrj routines (modified Powell method, see scipy.optimize.root

for more details).
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2.5. Distribution functions of the component time to failure

A system is often considered to be failed as soon as its degradation level is beyond a given threshold

ρ. Let Tρ be the time at which failure occurs which is the first hitting time of degradation level ρ: Tρ =

inf{t ≥ 0, X(t) ≥ ρ}. Since the degradation increments follow gamma distributions (see equation (1)), as it

is mentioned in [12], the cumulative distribution function (CDF) of Tρ can be written as follows:

FTρ(t|u, v(t)) = P(Tρ ≤ t) = P(X(t) ≥ ρ)

=

∫ ∞
x=ρ

fX(t)(x|u, v(t)) dx =
Γ(v(t), ρ)

Γ(v(t))
,

(9)

where Γ(·, ·) is the upper incomplete gamma function. Moreover since the shape function v considered in

our study is differentiable, the PDF of Tρ becomes:

∀t ≥ 0, fTρ(t|u, v(t)) =
v′(t)

Γ(v(t))

∫ ∞
uρ

{log(z)− ψ(v(t))}zv(t)−1e−z dz. (10)

Note that other expressions for the CDF of hitting time Tρ can be found in [38]. Meanwhile, because of

the gamma function behavior, computing equation (10) can be tricky in practice [37] even if the expression

gives the exact distribution of the first passage time to threshold ρ. To solve this issue, Park and Padgett

[37] introduced the Birnbaum-Saunders distribution [39] to approximate the above distribution in the case

of HGP. This approximation of the hitting time CDF, denoted FBS , is simpler than the exact expression of

FTρ . Paroissin and Salami [38] proved the approximation is also valid for non linear gamma shape function

v. Equation (9) can be then approximated by the following formula:

FTρ(t|u, v(t)) = P(Tρ ≤ t) ' FBS(t|u, v(t)),

with FBS(t|u, v(t)) = −Φ

(
uρ− v(t)√

v(t)

)

= Φ

[
√
uρ

(√
v(t)

uρ
−
√

uρ

v(t)

)]
,

(11)

where Φ is the CDF of the standard Gaussian distribution.

3. Model parameters’ estimations uncertainties

Determining confidence intervals for model parameters is crucial to evaluate the confidence put in the

lifetime prediction by the analyst. Even if stochastic processes, such as gamma process, can provide a good

mathematical framework for degradation modeling, MLE (among other statistical estimations) is only based

on limited information. In our case, information comes from the cumulative degradation measurements,
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observed over a specific period of time with a few data points. Thus, different degradation paths may result

in different estimations of model parameters. To reflect statistical uncertainty and phenomenon variability,

confidence interval (CI) including the true (unknown) parameter θ should be then computed. Figure 2

shows the approach used to obtain uncertainties on both estimations of model parameter and hitting time

distribution from methods introduced in the following sections.

Figure 2: Approach to obtain uncertainties on both estimations of model parameter and associated hitting time distribution.

3.1. Asymptotic confidence intervals approximation using the MLE convergence property

As N =
∑m
j=1 nj , the total number of observations, gets larger, the log-likelihood function ` shows

two interesting properties. First, `(θ|Dobs) becomes more sharply peaked around θ̂ML. Second, `(θ|Dobs)

becomes more symmetrical around θ̂ML. This asymptotic behavior shows basically that as the sample size

of observations Dobs grows, we are becoming more confident that θ̂ML lies close to the true parameter

θ. Thus, the curvature of the likelihood (i.e. the second derivative of `(θ|Dobs) with respect to θ) is

an important characteristic of θ. This property is the basis for constructing confidence intervals for the

unknown parameter θ. These assertions are supported by the asymptotic property of first and second

derivative of `(θ|Dobs) given by the central limit theorem (CLT) [40]. Hoadley [41] gives conditions under

which asymptotic convergence of MLE can be demonstrated in the case of independent but not identically

distributed (i.non-i.d.) observations which is the case for our study case (see sections 2.4 and 4). To lighten

the notation, `(θ|Dobs) will be simply noted `(θ). In the context of MLE, the asymptotic normality derived

by Rao [42] gives:

(θ̂ML − θ)
d−→ N

(
0, I−1(θ)

)
, (12)

with I(θ) the expected Fisher information matrix. Also,
d−→ denotes convergence in law when N goes to

infinity. Because computing the expected Fisher information is not possible when its analytic expression is

11



unavailable, we used the observed Fisher information J(θ), introduced by Efron and Hinkley [43], which is

given by the following expression:

J(θ) = −∇2`(θ). (13)

The gradient vector of the first partial derivatives of log-likelihood function `(θ) of the gamma process

can be written:

∇`(θ) =


∂`(θ)
∂u

∂`(θ)
∂c

∂`(θ)
∂b

 , (14)

and the Hessian matrix with the second partial derivatives of log-likelihood function `(θ) is the following:

∇2`(θ) =


∂2`(θ)
∂u2

∂2`(θ)
∂u∂c

∂2`(θ)
∂u∂b

∂2`(θ)
∂c∂u

∂`(θ)
∂c2

∂2`(θ)
∂c∂b

∂2`(θ)
∂b∂u

∂`(θ)
∂b∂c

∂2`(θ)
∂b2

 . (15)

It is possible to compute confidence intervals on θ using the asymptotic normality of MLE. The asymp-

totic approximate symmetric two-sided confidence intervals at level 1−α, 0 < α < 1, for θ considering each

of its components θi are:

[
θ̂ML,i − s

√(
J(θ̂)−1

)
ii

; θ̂ML,i + s

√(
J(θ̂)−1

)
ii

]
, (16)

where s = Φ
(

1− α

2

)
(e.g.: 1.96 for 1− α = 95% confidence level).

3.2. Delta method

The delta method (DM), also called the method of propagation of error, allows analyst to derive the

variance of a transformation of one or more random variables [44]. DM states that the asymptotic behavior of

functions over a random variable can be approximated if the random variable is itself asymptotically normal.

In particular, DM can be used to derive percentiles of hitting time distribution from estimated parameters

and their respective CI. To our knowledge, we are the first to apply delta method in the framework of gamma

processes.

First, as described in [45], let us consider the sequence (Wn)n∈N of Rp-valued random vectors. Assume

there exist µW ∈ Rp and Σ a p× p definite positive matrix such that:

√
n(Wn − µW )

d−−−−→
n→∞

N (0,Σ). (17)
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Consider r real functions g1, . . . , gr with continuous first partial derivatives in µW , where at least one of these

derivatives is non-zero. For i ∈ {1, . . . , r} and for any n ∈ N∗, set Zi,n = gi(Wn), Zn = (Z1,n, . . . , Zr,n)T

and µZ = (g1(µW ), . . . , gr(µW ))
T

. Then the sequence (Zn)n∈N∗ is also asymptotically normal:

√
n(Zn − µZ)

d−−−−→
n→∞

N (0,KΣKT ), (18)

where K is the r × p matrix with elements ki,j =
dgi
dwj

for i ∈ {1, . . . , r} and j ∈ {1, . . . , p}.

In this study, we are interested in how estimation uncertainties on θ may impact the distribution of Tρ,

in particular its percentiles of order q, 0 < q < 1, given by: P qTρ = F−1Tρ (q|θ) ≈ F−1BS(q|θ). If we consider

the hypothesis of convergence given in equation (12) is satisfied, therefore DM can be applied. Thus when

N =
∑m
j=1 nj is large enough, g(θ̂ML) follows the normal distribution: N

(
g(θ), Jg(θ)J−1(θ̂ML)Jg(θ)T

)
,

where Jg(θ) is the Jacobian of g, i.e. the r× p = 1× 3 matrix of partial derivatives of the entries of g with

respect to the entries of θ and J is defined in equation (13).

For this purpose, considering the Birnbaum-Saunders approximation given in (11), we need to invert

the Birnbaum-Saunders CDF and consider g(θ) = gq(θ) = F−1BS(q|θ) in the DM. The resulting function g is

given by the following equation:

gq(θ) =
(

Φ[h(P qTρ |θ)]
)−1

= h−1
(
Φ−1(q)|θ

)
= 2−1/b

2cρu+ 2c erf−1c (2q)2 −
√

2c erf−1c (2q)
√

4ρu+ 2 erf−1c (2q)2

c2

1/b

,

(19)

where h(t|θ) =
√
uρ

(√
v(t)
uρ −

√
uρ
v(t)

)
refers to Birnbaum-Saunders approximation FBS(t|θ) = Φ (h(t|θ))

in equation (11) and erf−1c denotes the inverse function of erfc which is the complementary error function

given in the following expression:

erfc(z) =
2√
π

∫ ∞
z

exp(−t2)dt. (20)

3.3. Bootstrap techniques

In the previous section, confidence intervals were built upon the assumption of asymptotic convergence

of MLE, which implies that the total number of observations is large enough to be considered as infinite:

N =
∑m
j=1 nj → +∞. Because of the small size of data studied in section 4, the CLT conditions may not

be satisfied. In this section, we consider using several bootstrap techniques to enrich dataset and analyze

the asymptotic confidence bounds. Efron [46] and Efron and Tibshirani [47] were the firsts to introduce

the principle of bootstrapping. It consists in drawing in a reference sample to built a large number of

bootstrap samples with the same size as the original data (see [48]) and in estimating the model parameters
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on each of these samples. Especially, [49] showed this type of techniques is useful to approximate parameters’

estimators distributions of complex models from a small number of data.

3.3.1. Parametric bootstrap

For parametric bootstrap (PB), we make the assumption that data come from a given parametric model

and the fitted gamma process and its associated parameter θ̂ML are used to generate new datasets [50, 51].

Given the observations Dobs, with size N =
∑m
j=1 nj , we first estimate θ̂ML (see section 2.4). Then, θ̂ML

is used to resample B times m degradation paths of length nj , 1 ≤ j ≤ m, of the gamma process using the

GSS method [52]. Hence, the resulting B bootstrap samples are used to obtain B estimates of θ̂ML : θ̂∗PB,v,

1 ≤ v ≤ B. From these B values of θ̂∗PB , we can derive information on the estimation uncertainty on

θ̂ML and thus on how θ̂ML behaves in comparison to θ. We can illustrate the procedure with the following

algorithm:

1. Given the degradation observations Dobs, fit a non-homogeneous gamma process. This leads to MLE

θ̂ML.

2. Generate m degradation paths of length nj , 1 ≤ j ≤ m, following the gamma process having θ̂ML as

parameter on discrete time interval [0, tnj ].

3. Estimate θ̂∗PB from step 2. new dataset.

4. Repeat steps 2. and 3. B times to get B MLE: θ̂∗PB,v, 1 ≤ v ≤ B, from B simulated datasets of N

measurements.

5. From the B obtained θ̂∗PB,v, 1 ≤ v ≤ B, compute the empirical mean θ̂∗PB =
1

B

∑B
v=1 θ̂

∗
PB,v and the

empirical quantiles of order q, 0 < q < 1, P̂ q
θ̂∗
PB

. These quantiles give an image of the scatter of θ̂∗PB

compared with θ̂ML and allow to derive order of magnitude of the statistical estimation uncertainty

on θ.

We will consider θ̂PB is the natural boostrap estimator of θ, with θ̂PB = θ̂∗PB =
1

B

∑B
v=1 θ̂

∗
PB,v.

3.3.2. Non-parametric bootstrap

Non-parametric bootstrap techniques consist in resampling data like parametric bootstrap method except

that data are not assumed to belong to a given parametric model.

Moving Block Bootstrap (MBB). When data are organized in time series, resampling single observations as

considered by Efron and Tibshirani [47] can fail to produce valid approximations in presence of dependence

(in time or between components) [53]. Thus, to solve this issue, Moving Block Bootstrap (MBB) can

be suitable to efficiently resample time-dependent data such as erosive cavitation successive measurements.

This resampling method relies on retaining neighbors observations to form blocks. This way, the dependence

structure of data at short distances is preserved, Kreiss and Lahiri [53].

14



Let us consider the jth degradation path of length nj of a gamma process as a time series and that

degradation increments δi,j are observed between discrete times ti,j and ti+1,j , 0 ≤ i ≤ nj − 1. We denote

Yj = {Y0,j , . . . , Ynj−1,j}, with Yi,j = {ti,j , ti+1,j , δi,j}, 1 ≤ j ≤ m. Let l be an integer with 1 ≤ l ≤ nj . The

overlapping blocks B0,j , . . . , Bp,j , p = nj − l of length l contained in Yj are defined as follow:

B0,j = (Y0,j , Y1,j , . . . , Yl−1,j),

B1,j = (Y1,j , . . . , Yl−1,j , Yl,j),

... ...

Bp,j = (Ynj−l,j , . . . , Ynj−1,j).

For state of simplicity, consider that nj is a multiple of l. Let bj = nj/l. To generate one MBB sample,

bj blocks are taken at random with replacement from the collection {B0,j , . . . , Bp,j}. The bootstrapped

dataset Yj = {Y ∗0,j , . . . , Y ∗nj−1,j} contains bj · l = nj elements since each resampled block has l elements and

bj blocks are drawn. For time-dependent data, l should satisfy the condition: l = Cn
1/k
j , with k = 3 or

4, where C ∈ R is a constant [53]. In the general case, where l does not divide nj , bj = b0 blocks may be

resampled with b0 = min{k ≥ 1 : kl ≥ nj} and only the first nj resampled data-values are retained to define

the bootstrap observations Y∗j . The following algorithm illustrates the MBB procedure:

1. Set the block length l.

2. Draw with replacement a block of l consecutive observations from Yj .

3. Repeat bj times step 2. until the bootstrap sample Y∗j has bj · l ≥ nj elements.

4. Retain only the first nj resampled values.

5. Repeat steps 2-4 for each degradation path j, 1 ≤ j ≤ m, to get a set of m paths Y∗ = {Y∗1, . . . ,Y
∗
m}.

6. Repeat steps 5. B times to generate B sets of bootstrap samples Y∗v, 1 ≤ v ≤ B.

7. Compute θ̂∗MBB,v using the ML method for each bootstrap samples Y∗v.

Similarly to PB method, from the B obtained θ̂∗MBB,v, 1 ≤ v ≤ B, we can consider θ̂MBB = θ̂∗MBB =
1

B

∑B
v=1 θ̂

∗
MBB,v the natural MBB estimate of θ, and the empirical quantiles of order q, 0 < q < 1, P̂ q

θ̂∗
MBB

.

In the case study presented in the next section, the block length l was chosen equal to 3 to make a compromise

between time dependence structure and the relative short path length nj .

Efron bootstrap (EB). The bootstrap method originally introduced by Efron [46] can be seen as a special

case of MBB. Indeed if we set l = 1, the MBB is equivalent to the ordinary non parametric bootstrap

method described by Efron and Tibshirani [47] for i.i.d. data. Similarly to previous methods, from the B

obtained θ̂∗EB,v, 1 ≤ v ≤ B, we can introduce the empirical mean θ̂EB = θ̂∗EB =
1

B

∑B
v=1 θ̂

∗
EB,v which will

be considered as the EB estimate of θ, and the empirical quantiles of order q, 0 < q < 1, P̂ q
θ̂∗
EB

.
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3.3.3. Bootstrap uncertainty on hitting time Tρ

From the B obtained θ̂∗v , 1 ≤ v ≤ B, from previous bootstrap techniques, the percentiles (of order

q) of first hitting time distribution, noted F−1BS(q|θ̂∗v), can be easily derived using the Birnbaum-Saunders

approximation (see section 3.2).

3.4. Statistical indicators for performance assessment

In Table 1, we introduce some classic statistical indicators to assess bootstrap techniques performance

and compare them with MLE + DM. If we consider the case of model parameters’ estimation, bias measures

how well the true unknown parameter θ is approximated by θ̂. Similarly, variance and dispersion give an

indication on the estimation accuracy of θ by θ̂. Finally, the Mean Squared Error (MSE) combines both

indicators and allows to compare techniques between each other. θ̂∗ denotes the mean of θ̂∗v , 1 ≤ v ≤ B, as

introduced for each bootstrap technique in the previous sections.

Mathematical expression

Bias θ̂∗ − θ̂ML

Relative bias
θ̂∗ − θ̂ML

θ̂ML

Variance
1

B

∑B
v=1

(
θ̂∗v − θ̂∗

)2

Relative error

√
variance

θ̂∗

Dispersion (at 95%) P̂ 97.5%
θ̂∗ − P̂ 2.5%

θ̂∗

Mean squared error bias2 + variance

Table 1: Statistical indicators used to assess bootstrap methods performance

4. Case study

4.1. Experimental dataset

In this study, we aim to model erosive cavitation using NHGP and evaluate confidence intervals of model

parameters with limited dataset. In [54], a sensitivity analysis was conducted on gamma process parameters

and size of dataset using Monte Carlo simulations. The latter study shows the performances of maximum

likelihood estimation vary depending on the degradation acceleration (parameter b of the shape function)
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and the number of paths m. In particular, authors show a dataset with more degradation paths should be

preferred for a same total number of observations N .

Although we focused in the present paper on modeling cavitation observed on hydraulic runner, the

same methodology can be applied to other cumulative and monotonic deterioration measured on other

types of systems. Moreover, resulting hitting time distribution variability will be computed according to the

results from the previous confidence intervals (using DM and bootstrap techniques). We used a dataset Dobs

consisting in m = 3 degradation paths presented in Figure 3 (right) obtained from a vibratory cavitation test

(2 replications) performed in laboratory conforming to standard given in [55]. During test j, the degradation

level, here the specimen mass, is measured at instants ti,j , 1 ≤ i ≤ nj , to determine the cumulative mass

loss xi,j as depicted by degradation path j in Figure 1. Meanwhile, for actual Francis turbine prototypes,

the incubation and acceleration regions of the erosive cavitation pattern (shown in Figure 3 (left)) are not

observed. For this reason, we decided to only focus on modeling the degradation on the maximum rate region

(ie: from time = tA,j to tnj ). First, degradation data in the region of interest have been transformed to satisfy

the first gamma process property, X(0) = 0, with t′i,j = ti,j − tA,j and x′i,j = xi,j − xA,j , A ≤ i ≤ nj . Note

that tA,j (considered to be deterministic) is determined by the intersection between the x-axis and the slope

of the degradation path in the maximum stage region. Further explanations on the standard test method

can be found, as detailed in [55]. Because we notice in Figure 3 (right) an increasing trend in degradation

over time, we chose to model it with a NHGP (a performance comparison, conducted previously in [56] on

the same dataset, between homogeneous and non-homogeneous gamma process has shown better results for

NHGP). Thus, θ̂ML = (ûML, ĉML, b̂ML) was computed from the m = 3 paths of length nj ∈ {10, 10, 14},

1 ≤ j ≤ 3, for a total of N =
∑m=3
j=1 nj = 34 observations, using ML equations (see section 2.4) and

optimization tools. Because of numerical difficulties induced by the gamma function, equations (5) to (7)

have been used instead of maximizing directly expression (4).

4.2. Calibration of bootstrap sample number

In order to determine a relevant value of B, the number of bootstrap datasets to be drawn (see sec-

tion 3.3.2), a convergence analysis was performed. For this purpose, we considered the previous dataset

Dobs and the three bootstrap methods were applied for different values of B, 10 ≤ B ≤ 104. Figure 4 shows

θ̂EB and percentiles, P̂ 2.5%
θ̂∗
EB

and P̂ 97.5%
θ̂∗
EB

, respectively represented with upper and lower bars as defined in

Section 3.3. We observe the asymptotic convergence is reached around B = 103 draws. We retained B = 104

draws for the three bootstrap techniques to ensure a good convergence.

4.3. Estimation uncertainties for model parameters

The three different boostrap methods presented in section 3.3 have been applied on the experimental

dataset introduced in section 4.1. Approximate asymptotic confidence intervals introduced in section 3.3.1

were derived to get the approximate symmetrical two-sided 95% confidence intervals on θ.
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Figure 3: (Left) Characteristic stages of the cumulative erosion-time curve, adapted from [55] - (Right) Cavitation erosion

paths (m = 3) from laboratory.

Figure 4: θ̂EB , P̂ 2.5%
θ̂∗
EB

and P̂ 97.5%
θ̂∗
EB

- Convergence analysis on bootstrap iteration number B for EB method

Table 3 presents statistical indicators from bootstrap techniques and ML results. For ML method, results

are derived from formulas (12) and (16). We observed in this study, that the best methods (EB and MBB),

with the relative error reaching around 25% for parameters u and c, which can be considered as quite

high. Meanwhile, EB seems to produce better estimation of θ than MBB in terms of relative estimation

uncertainties. For better illustration and comparison, Figure 5 shows boxplots of θ̂∗v , 1 ≤ v ≤ B, for the

three bootstrap techniques. Lower and upper whiskers denote P̂ 2.5%
θ̂∗ and P̂ 97.5%

θ̂∗ respectively; box shows

first P̂ 25%
θ̂∗ and third P̂ 75%

θ̂∗ quartiles and median P̂ 50%
θ̂∗ . Left and right doted lines respectively represent the

lower and upper bounds of the asymptotic two-sided 95% confidence intervals in Table 2, obtained by the

asymptotic normality of MLE. The centered doted line represents θ̂ML = (ûML, ĉML, b̂ML). In both Table 3
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û ĉ b̂

ML 32.501 1.2722 1.1348

Approximate asymptotic CI (at 95%) [16.32, 48.69] [1.101, 1.939] [1.108, 1.162]

PB 35.154 1.9516 1.0888

EB 34.971 1.3572 1.1361

MBB 36.420 1.3549 1.1421

Table 2: Estimations of θ for ML method and 3 different bootstrap techniques - Approximate asymptotic confidence interval

(at 95%) of θ.

Figure 5: Comparison of bootstrap and asymptotic CI.

and Figure 5 we observe the largest (positive, leading to a possible over-estimation) bias (but also relative

bias) for PB method (for parameters c and b, around 10% and 50% respectively) and the largest scatter on

u and c, while EB and MBB bias is around 10%. In terms of bias and scatter, EB and MBB show similar

results except for EB estimation of b which exhibits a bias close to zero. One of the main hypothesis of

approximate asymptotic confidence intervals from MLE is highlighted in Table 3: θ̂ML is considered centered

on true unknown parameter θ and hence shows no bias (asymptotically, which may be a wrong hypothesis

for small dataset). Nonetheless, considering ML has no bias, the MSE is the smallest for EB method on both

u, b and c parameters. We observe in Figure 5 boxplots are asymmetrical while approximate asymptotic CI

are centered around θ̂ML which is not confirmed by bootstrap distributions of θ̂∗. Tables 2, 3 and Figure 5

show a small relative error on parameter b estimations (around 1%) for non-parametric methods and exhibit

value of power b = 1 is not included in confidence interval at 95% level, thus justifying the use of NHGP to

model our cavitation erosion dataset.
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ML Bootstrap techniques

PB EB MBB

Bias

û

0 (supposed)

2.653 2.470 3.919

ĉ 0.6794 0.0850 0.0827

b̂ -0.0461 0.0013 0.0073

Relative bias

û

0 (supposed)

0.0816 0.0760 0.1206

ĉ 0.5340 0.0668 0.0650

b̂ -0.0406 0.0011 0.0064

Variance

û 68.20 87.56 48.59 58.11

ĉ 0.1158 0.2926 0.0787 0.0865

b̂ 0.0002 0.0002 0.0002 0.0004

Relative error

û 0.2541 0.2879 0.2145 0.2346

ĉ 0.2675 0.4252 0.2206 0.2312

b̂ 0.0120 0.0109 0.0108 0.0182

Dispersion at 95%

û 32.64 36.77 25.84 29.31

ĉ 0.838 2.099 1.040 1.133

b̂ 0.0540 0.0486 0.0485 0.0814

MSE

û 68.195 94.69 56.74 73.89

ĉ 0.1158 0.7544 0.08961 0.09553

b̂ 0.0002 0.0023 0.0002 0.0003

Table 3: Statistical indicators from different methods’ results
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Quartiles of Tρ ML+DM PB EB MBB

P 2.5%
Tρ

Median 976 950 976 976

Dispersion at 95% 31 40 40 54

Relative error 0.032 0.042 0.041 0.055

P 50%
Tρ

Median 1006 979 1005 1006

Dispersion at 95% 31 40 40 54

Relative error 0.031 0.041 0.040 0.054

P 97.5%
Tρ

Median 1037 1011 1036 1036

Dispersion at 95% 34 44 41 56

Relative error 0.033 0.044 0.040 0.054

Table 4: Estimation of hitting time percentiles: P 2.5%
Tρ

, P 50%
Tρ

, P 97.5%
Tρ

and their associated estimation uncertainty for the 3

bootstrap methods and ML + DM.

4.4. Influence of model parameter uncertainties on hitting-time

Figure 6 illustrates the concept of propagation of uncertainties. Indeed, influence of θ estimation uncer-

tainty on hitting time distributions FTρ can be derived using the Birnbaum-Saunders approximation from

both delta method (see section 3.2) and bootstrap techniques results. To study how uncertainties impact

the whole distribution of Tρ (threshold ρ = 100 mg), we compute in Figure 6 for each percentile order

q = {2.5%, 5%, . . . , 97.5%}: F−1BS(q|θ̂ML) and its variability using DM (see section 3.2) and F−1BS(q|θ̂∗v), with

1 ≤ v ≤ B, for the three bootstrap techniques (see section 3.3). In Figure 6, doted lines and shaded areas

represent respectively medians and P̂ 75%
P qTρ
− P̂ 25%

P qTρ
of F−1BS(q|θ̂∗v). We observe clearly that the dispersion seems

to remain constant for the different percentile orders q for all bootstrap methods. As observed in Figure 5

with boxplots, the shaded areas in Figure 6 are slightly asymmetrical compared to median (more significantly

for MBB technique): most values are concentrated on lower half of distribution. ML+DM, EB and MBB

produce very close results on both percentiles of lower and upper orders but also on percentile estimation

of central order. For ML+DM and EB methods, we observe also close results in terms of dispersion of

percentile estimations. Only MBB produces larger dispersion on hitting time percentile distributions. If we

look closely at the relative error of P qTρ in Table 4, we can stress that Tρ seems to be better estimated than

θ. This result could be explained by an offset effect of estimation uncertainty of parameters u, c and b on

the hitting time distribution.
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Figure 6: Hitting time distributions of Tρ (for ρ = 100 mg) for 3 bootstrap methods and ML + DM.

5. Discussion

In the light of results presented in section 4.3, the use of a NHGP can be justified considering CI of

parameter b does not include value 1, i.e. the homogeneous case. Non-parametric bootstrap techniques

seem to provide results close to ML method, while parametric bootstrap presents both the largest bias

and scatter on parameter estimation. Even if this may seem counter-intuitive, we noticed PB tends to fail

producing “good” simulated paths when their length nj is small (lower than 103 increments). This trend is

particularly true for NHGP, with a MLE convergence performance worse than HGP for short path length.

MBB and EB give a good estimation of the degradation acceleration depicted by power parameter b,

with relative bias and dispersion lower than 1% for both methods. The same indicator reaches around

10% for parameters u and c, which denotes that non parametric bootstrap methods have more difficulties

when it comes to estimate these parameters. Among bootstrap techniques, EB seems to produce the closest

estimations relatively to θ̂ML. This result can be surprising considering MBB is supposed to better capture

temporal dependence of time series. This may be explained by the relatively small dataset (short path

length) used to resample; the new resampled dataset does not provide much more information compared to

the original one. Note that this remark applies also for other bootstrap techniques.

According to Table 3 and Figure 6, we observe that the estimation uncertainty on parameter b has

the greatest influence on hitting time distribution. The larger the scatter on parameter b is, the larger

Tρ percentile estimate scatter at a given order will be. A further investigation should be carried out to
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quantify the influence of each parameter on hitting time Tρ using a sensitivity analysis. Combination

of ML and DM seems to give results close to EB, for a computing lower cost: around 0.0029 sec 1 for

ML+DM and around 2035 sec for bootstrap techniques (to generate B = 104 datasets and estimate the

associated parameters). Meanwhile, mathematical developments require much more effort for the DM to

obtain uncertainty on hitting time distribution. Moreover, bootstrap techniques give the entire distribution

of parameters’ estimators instead of only brackets centered on θ̂ML for approximate asymptotic confidence

intervals for ML method. This feature allows, in the case of bootstrap techniques, to estimate possible bias

between θ̂ML and θ. For these reasons and because ML relies on asymptotic hypothesis (not necessarily

satisfied), EB shows better performances and tends to be more robust than the combination of ML and DM.

6. Conclusion and perspectives

In this paper we modeled erosive cavitation from laboratory experiments with a stochastic process taking

into account physical random dynamics. Maximum likelihood method was used to estimate the unknown

parameters of the NHGP. Moreover, several methods were used to assess model parameters estimation

uncertainties and their influence on the distribution of the hitting time for a given degradation level threshold.

To our knowledge, we are the first to apply delta method in the framework of gamma processes. It is found

on our case that the combination of ML+DM, and Efron bootstrap produce similar results. Meanwhile,

bootstrap methods exhibit quicker and simpler implementation than delta method. Similarly, MBB shows a

reasonable bias but more dispersion. On the contrary, PB fails to give “accurate” estimates of parameters.

However, reader needs to keep in mind the reference dataset show a particularly small size and general

conclusions should not be drawn from this specific case. In particular, data were collected during experiments

under controlled environment showing small discrepancy. Meanwhile, random effect models can be useful

to consider unexplained heterogeneous degradation rates within a same product population or a same test

procedure [23, 57]. For a further study on the performances of ML parameter estimation, we refer the reader

to [54].

Because of the small dataset and the potential availability of other sources of information about cavita-

tion erosion, such as expert knowledge, monitoring data or results from numerical simulations, a Bayesian

framework should be well suited to combine these multiple sources of information and decrease uncertainty

on parameters estimations [58, 59]. Further investigation could be carried out using other stochastic pro-

cesses or degradation models such as degradation paths [11], cumulative shock models [30] or inverse gaussian

process [23]. Likewise, other bootstrap techniques, such as Markov bootstrap [60], could also be investigated.

This paper can be seen as the first step in development of condition based maintenance policies for high

cost systems as presented in [61] and Lei et al. [62]. Although this study focuses on cavitation erosion, a

1performed on a quad core Intel i7 2.8GHz processor with 16GB RAM
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similar methodology could be applied to other cumulative and monotonic degradation observed on different

systems. Next steps would imply using real monitoring cavitation measurements and study the influence

on degradation phenomenon of covariates, such as material properties of studied systems or even operating

conditions, to develop specific sub-models. These improvements may lead to more realistic degradation

prediction and maintenance planning.

Appendix A.

For a gamma process with shape function v(t) = ctb, first and second partial derivatives of log-likelihood

function `(θ), respectively to parameter θ, are given in the following expressions:

∂`(θ)
∂u =

∑m
j=1

∑nj
i=1

c
u

[
tbi,j − tbi−1,j

]
− δi,j

∂`(θ)
∂c =

∑m
j=1

∑nj
i=1

[
tbi,j − tbi−1,j

] [
log(δi,j) + log(u)− ψ

(
c[tbi,j − tbi−1,j ]

)]
∂`(θ)
∂b =

∑m
j=1

∑nj
i=1 c

[
tbi,j log(ti,j)− tbi−1,j log(ti−1,j)

] [
log(δi,j)− ψ

(
c[tbi,j − tbi−1,j ]

)
+ log(u)

]
(A.1)

∂2`(θ)
∂u2 = −

∑m
j=1

∑nj
i=1

c
u2

[
tbi,j − tbi−1,j

]
∂2`(θ)
∂c2 = −

∑m
j=1

∑nj
i=1

[
tbi,j − tbi−1,j

]2
ψ′
(
c[tbi,j − tbi−1,j ]

)
∂2`(θ)
∂b2 =

∑m
j=1

∑nj
i=1 c

{[
tbi,j log(ti,j)

2 − tbi−1,j log(ti−1,j)
2
] [

log(ti,j)− ψ(c[tbi,j − tbi−1,j ]
)

+ log(u)
]

−c
[
tbi,j log(ti,j)− tbi−1,j log(ti−1,j)

]2 [
ψ′
(
c[tbi,j − tbi−1,j ]

)]
}

∂2`(θ)
∂u∂c =

∑m
j=1

∑nj
i=1

1
c

[
tbi,j − tbi−1,j

]
∂2`(θ)
∂u∂b =

∑m
j=1

∑nj
i=1

c
v

[
tbi,j log(ti,j)− tbi−1,j log(ti−1,j)

]
∂2`(θ)
∂c∂u =

∑m
j=1

∑nj
i=1

1
u

[
tbi,j − tbi−1,j

]
∂2`(θ)
∂c∂b =

∑m
j=1

∑nj
i=1

[
tbi,j log(ti,j)− tbi−1,j log(ti−1,j)

]
{log(δi,j − ψ

(
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)
+ log(u)
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(
c[tbi,j − tbi−1,j ]

)
}

∂2`(θ)
∂b∂u = ∂2`(θ)

∂u∂b

∂2`(θ)
∂b∂c = ∂2`(θ)

∂c∂b

(A.2)
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