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DIFFUSION LIMITS FOR NETWORKS OF MARKOV-MODULATED

INFINITE-SERVER QUEUES

H. M. JANSEN1,2, M. MANDJES1, K. DE TURCK3, S. WITTEVRONGEL2

Abstract. This paper studies the diffusion limit for a network of infinite-server queues operating

under Markov modulation (meaning that the system’s parameters depend on an autonomously

evolving background process). In previous papers on (primarily single-node) queues with Markov

modulation, two variants were distinguished: one in which the server speed is modulated, and one

in which the service requirement is modulated (i.e., depends on the state of the background process

upon arrival). The setup of the present paper, however, is more general, as we allow both the server

speed and the service requirement to depend on the background process. For this model we derive

a Functional Central Limit Theorem: we show that, after accelerating the arrival processes and the

background process, a centered and normalized version of the network population vector converges

to a multivariate Ornstein-Uhlenbeck process. The proof of this result relies on expressing the

queueing process in terms of Poisson processes with a random time change, an application of the

Martingale Central Limit Theorem, and continuous-mapping arguments.
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1. Introduction

Networks of infinite-server queues with time-dependent parameters have been extensively studied.

In a series of articles, several nice properties have been shown for the situation that the network’s

queues are fed by Poisson arrival streams with time-dependent deterministic arrival rates. In this

model, due to the fact that customer streams do not interact, departure streams are again time-

dependent Poisson (under specific assumptions on the queues’ initial conditions). In addition, at

any point in time the joint queue length has independent Poisson marginals. Without pursuing an

exhaustive overview, we refer to the contributions by Harrison and Lemoine [13] and Eick et al. [9].

Modelling customer streams as Poisson processes with time-dependent deterministic arrival rates

has, however, the following crucial drawback. Due to standard properties of such processes, for any

time interval the mean number of arrivals coincides with the corresponding variance. In various

practical contexts, however, there is overdispersion, i.e., the variance substantially exceeds the

mean; see e.g. [3, 17] and references therein. To incorporate overdispersion a common procedure is

to apply modulation, meaning that the arrival rate depends on an independently evolving stochastic

process (usually referred to as the background process). Due to the additional uncertainty that

is introduced by the background process, the variance of the number of arrivals now exceeds the
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mean. An example of modulation is to let the arrival process be a Cox process, i.e., a Poisson

process whose rate is a (nonnegative) stochastic process.

Above we introduced the concept of modulation for arrival processes, but it can clearly be applied to

the queues’ service processes as well. It is important to notice that modulation of service processes

comes in multiple flavors. In the first place, we can modulate the server speed. A slightly more

complicated form of modulation lets the service requirement distribution depend on the background

process: the service requirement is sampled upon arrival, with a parameter determined by the state

of the background process at the moment the customer arrives. Thus, based on which parameters

of the model are modulated, the following four types of modulation may be distinguished. In line

with the terminology used in [5],

◦ Model 0: only the arrival rate is modulated,

◦ Model I: only the arrival rate and the server speed are modulated,

◦ Model II: only the arrival rate and the service requirement distribution are modulated,

◦ Model III: all parameters are modulated.

Obviously, Model 0 is a special case of both Model I and Model II, and Model I and Model II are

special cases of Model III.

Introducing modulation complicates the analysis of networks of infinite-server queues considerably:

many of the nice properties that were found for time-dependent deterministic arrival rates do not

carry over to the setting in which the arrival rate is stochastic, for instance. More specifically, the

joint queue length ceases to have independent marginals, and in addition these marginals are not

Poisson. An important strand of work is focused on Markov modulation: the value of the model

parameters is determined by an external finite-state continuous-time Markov chain. Early work on

(primarily single-node) Markov-modulated infinite-server systems, such as [19], develops procedures

to identify the (transient and stationary) moments of the number of clients; see also [4, 8, 12] for

more recent contributions. A significant drawback of most of these results concerns their implicit

nature: systems of partial differential equations are derived for the moment generating function

pertaining to the joint distribution of the number of clients in the individual queues, and recursions

for the corresponding moments are found. Only in very special cases the underlying probability

distribution can be found in more explicit terms; see e.g. [11].

The lack of explicit expressions motivated the systematic study of scaling regimes in which the

queue length distribution can be given in closed form. Some recent papers have established scaling

limits in the context of single-queue Model 0 systems: [14] considers the scenario in which the

arrival rate is periodically resampled, whereas [18] analyzes the case in which the arrival rate is

given by a shot-noise process. For the case of single queues under Markov modulation, it is shown

in [2] (for Model 0) and [5] (for Model I and Model II) that, after appropriately accelerating the

arrival processes and the background process, a centered and normalized version of the number of

customers in the system converges to an Ornstein-Uhlenbeck process. The proof of this Functional

Central Limit Theorem (FCLT) relies on casting the queueing process in terms of Poisson processes

with a random time change and an application of the Martingale Central Limit Theorem.

The main goal of the present paper is to extend the findings of [2, 5] in two directions. First of

all, we study a network of infinite-server queues under Markov modulation (rather than a single

queue). Next to that, we do not restrict ourselves to Model 0, Model I, or Model II, but focus on

the Model III variant which covers the other variants as special cases. Our contribution is that we

derive, for this highly general setting, an FCLT.
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The different setting that we study also motivates the use of a different strategy to establish an

FCLT. As will become clear in the paper, the argumentation for this multivariate setting has some

elements in common with the one used in the single-queue case, but in general requires considerably

more delicate arguments. A key insight is that we may exploit continuous-mapping arguments

once we have established asymptotic equivalence of our network with some other, less complicated

stochastic process. Following this strategy, we succeed in establishing an FCLT: the centered and

normalized version of the joint queue length process converges to a multivariate Ornstein-Uhlenbeck

process.

The paper is organized as follows. In Section 2, we introduce our model and point out how to

express the network population vector in terms of unit-rate Poisson processes with a random time

change. We also show that, perhaps somewhat surprisingly, any network of Model III type can

be expressed in terms of a, seemingly more restrictive, Model I network, entailing that it suffices

to just consider the Model I setting from then on. Then Section 3 presents the fluid limit under

a scaling of both the arrival rates and the background process. Centering the queue lengths with

this fluid limit, the results in Section 4 show that, after a suitable normalization, the joint queue

length process weakly converges to a multivariate Ornstein-Uhlenbeck process. Proofs and auxiliary

results are given in Section 5.

2. Model and preliminaries

In this section we define a Markov-modulated network of infinite-server queues with exponentially

distributed service requirements. We introduce notation for the Model I variant and show how the

queue length vector can be represented in terms of Poisson processes with a random time change.

We then argue that, in the setting that we consider, a network containing Model II or Model III

queues can be represented as a network containing only Model I queues (justifying that we restrict

ourselves to Model I in the rest of the paper).

2.1. Definition of Model I. We now provide the mathematical description of the Model I version

of a Markov-modulated network of infinite-server queues. We assume that the background process

J is an autonomously evolving continuous-time Markov chain with finite state space {1, . . . , d} and

irreducible transition rate matrix Q. The invariant distribution corresponding to Q is denoted by

the d× 1 column vector π (so π has nonnegative entries that sum to 1 and πTQ = 0).

Jobs that leave a particular queue may be routed to another queue or leave the network altogether.

Throughout the paper we assume there are L ∈ {2, 3, . . .} queues in the network. We impose the

assumption of at least two queues, because this allows us to not explicitly record the jobs leaving

the system. Indeed, a job leaving the system is equivalent to sending it to some designated infinite-

server queue that has zero server speed (i.e., a queue from which jobs cannot leave). The assumption

L ∈ {2, 3, . . .} is therefore not a restriction and is merely intended to streamline notation.

Given a network of L queues, we define the set of queue indices I = {1, . . . , L}. For any k ∈ I,
we define Ik = I \ {k}. This is, of course, the set of all queues to which a job from queue k

may be routed after service completion. This set is always nonempty, because L ∈ {2, 3, . . .} by

assumption.

When the background process is in i ∈ {1, . . . , d}, jobs arrive at queue k as a Poisson process with

rate λk(i). In addition, again for the background process being in state i, we denote by µkl(i)

the rate at which any individual job present in queue k completes service and jumps to queue l.

Observe that during the time a job spends in a given queue, the rate of jumping to another queue

may change in time (when the state of the background process changes, that is).
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We denote the number of jobs in queue k ∈ I at time t ≥ 0 by Qk(t), and the L-dimensional queue

content process by

Q(t) = (Q1(t), . . . , QL(t)). (1)

Then we represent Q as the solution of the system of equations

Qk(t) = Qk(0) +Ak

(∫ t

0
λk(J(s)) ds

)
+
∑

l∈Ik

Slk

(∫ t

0
µlk(J(s))Ql(s) ds

)

−
∑

l∈Ik

Skl

(∫ t

0
µkl(J(s))Qk(s) ds

)
.

(2)

Here, Q(0) is an independent random vector taking values in Z
L
≥0, with its k-th entry describing

the initial number of jobs in queue k. The processes Ak and Skl with k ∈ I and l ∈ Ik form a

collection of independent standard (unit-rate, that is) Poisson processes. We use Ak to model the

exogenous arrivals to queue k, whereas we use Skl to model service completions in queue k that

are routed to queue l. This representation has been extensively used in e.g. [20], and is (in our

experience at least) an intuitive representation that is relatively easy to work with when studying

weak convergence.

2.2. Models II and III are covered by Model I. In the network setting that we consider, it

turns out, perhaps somewhat surprisingly, that any Model II or Model III network of infinite-server

queues can be described through a Model I network of infinite-server queues. At first sight, our

construction of a network of Model I queues may not seem very flexible, because the modulation of

service requirements (in Model II and Model III queues) is not explicitly incorporated. However,

the combination of Model I queues with the network setting gives us much more flexibility than we

might have thought.

The upcoming examples are intended to demonstrate this flexibility by explicitly showing how we

may incorporate modulated service requirements. In particular, the second example demonstrates

how we may construct a Model III queue as a network of Model I queues, thus showing that a

network of Model I queues is indeed the most general Markov-modulated network of infinite-server

queues.

Remark 2.1. Observe that the Model I setting incorporates probabilistic routing: when the back-

ground process is in state i, the rate of leaving queue k is µk(i) :=
∑

l 6=k µlk(i), and the probability

that after being served the job jumps to queue l is pkl(i) := µkl(i)/µk(i). As such, the routing

probabilities depend on the state of the background process at service completion. ♦

Example 2.2. In Remark 2.1 we already argued that Model I covers settings in which the routing

probabilities depend on the current state of the background process. An obvious extension would

be to make the routing probabilities depend on the state of the background process at the moment

of a job’s arrival. In this example we argue that such a mechanism still falls in the context of Model

I networks of Markov-modulated infinite-server queues.

We consider a network in which jobs arrive to queue a at rate λa(J(t)) and receive service there

with speed µa(J(t)). When a job completes service at this queue, it is routed with probability

p(i, j) to queue b, where i is the state of the background process J upon arrival of the job and j is

the state of J upon service completion. With probability 1 − p(i, j) the job is routed to queue c.

(What happens at queue b and c is not very relevant here; neither do we need a queue d for jobs

leaving the system.) The difficulty here is the dependence of the routing probabilities on both the

present and the past. Indeed, the routing probabilities for a job are determined when it completes

service, but also depend on the state of J upon its arrival.
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We can deal with this problem by registering the state of the background process J when a job

arrives to queue a. This naturally leads to the jobs in queue a being divided into d different classes

(where we recall that d is the size of the state space of J): a job belongs to class i when J is in state

i upon arrival of the job. The idea is now to split the content of queue a into d individual queues,

i.e., one for each class. Then the routing probabilities for jobs in those queues only depend on

the queue index and the state of J upon service completion, which is in line with the probabilistic

routing mechanism that we discussed in Remark 2.1.

In more concrete terms, the system considered as a network of Model I queues will look like this.

We denote the queues handling the different classes by 1, . . . , d. We define the arrival rates to these

queues by λk(i) = 1{i=k}λa(i) for k, i ∈ {1, . . . , d}. Then we have arrivals of only one class at a

time with the right arrival rate for each class.

Jobs from those d queues will be routed to queue d+1 and queue d+2 (which were queue b respec-

tively queue c in our original thought experiment). The routing mechanism is then incorporated

by defining the server speeds by picking µk(d+1)(i) = p(k, i)µa(i) and µk(d+2)(i) = (1− p(k, i))µa(i)

for k ∈ {1, . . . , d}. ♦

Example 2.3. In the previous example, we have seen how we can handle different classes (corre-

sponding to the state of the background process that the job sees upon arrival) by assigning them

to their own Model I queue. In this example, we use this idea to show how a Model III Markov-

modulated infinite-server queue may be represented as a Model I Markov-modulated network of

infinite-server queues.

Consider a single Model III Markov-modulated infinite-server queue where J is the background

process. In this case, jobs arrive according to a Poisson process with rate λ∗(i) while J is in state i.

If a job arrives to the system while J is in state i, then it will be of type i and has an independent

service requirement having an exponential distribution with parameter κ∗(i). The server speed is

µ∗(i) while the background process is in state i.

We will construct a network of L = d+1 queues: d queues for each job type (i.e., queue k contains

the jobs of type k that are still in service) and one queue to collect all jobs that have finished service

in their respective queue (i.e., queue d+1 with zero exogenous arrival rate and zero server speed).

In what follows, i ranges over {1, . . . , d}, and k and l range over {1, . . . , d, d+ 1}.
To construct the network, define λk(i) = 1{i=k}λ

∗(i) for k ∈ {1, . . . , d} and λd+1(i) = 0. This

means that jobs arrive to exactly one queue at a time: the arrival rate (of jobs of type i) to

queue i is λ∗(i) while J is in state i and zero while J is not in state i. Moreover, there are no

exogenous arrivals to queue d+ 1, which collects jobs that have finished service. Additionally, we

take µkl(i) = 1{l=d+1}κ
∗(k)µ∗(i) for k ∈ {1, . . . , d}. This ensures that jobs can only be routed to

queue d + 1 after service completion (the 1{l=d+1} part), that jobs of type k arriving at queue k

have an exponentially distributed service requirement with parameter κ∗(k), and that those jobs

in queue k experience server speed µ∗(i) while J is in state i.

We have thus defined a Model I network of d+1 infinite-server queues, Q1(t) up to Qd+1(t), that is

equivalent to our single Model III Markov-modulated infinite-server queue. Now the queue content

process of this single Model III queue at time is given by
∑d

k=1Qk(t). As a bonus, the departure

process of the Model III queue is captured by Qd+1(t). Thus, the Model I network constructed

above completely describes the behavior of the queue content of the Model III queue.

Along the same lines, it can be argued that a network of L Model III Markov-modulated infinite-

server queues can be described as a network of LdModel I Markov-modulated infinite-server queues.

We conclude that we can restrict ourselves to Model I. ♦
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Remark 2.4. It is directly seen that phase-type service requirements are also easy to deal with,

by introducing infinite-server queues corresponding to each of the phases. ♦

3. Convergence results: a fluid limit

As mentioned earlier, we are interested in proving a diffusion limit for our Markov-modulated

network of infinite-server queues. A first step towards such a result is the derivation of a fluid limit

for the network. This serves three purposes. First, the fluid limit is interesting in its own right, as it

describes the typical behavior of the network under scaling. It is, essentially, a law of large numbers

for the evolution of the network population. It holds under more general assumptions than the

diffusion limit. Second, in the proof for the diffusion limit we will apply the fluid limit to identify

the limiting process; the fluid limit limit is also used to appropriately center the network population

process. Third, we will use the fluid limit to point out differences between the modulated network

and its nonmodulated counterpart.

To establish the fluid limit result, we scale the parameters of the modulated network. We do so by

scaling the arrival rates to the queues, the server speeds, and the transition rates of the background

process. In addition, the network’s initial population is scaled appropriately. More specifically, we

impose the following assumption.

Assumption 3.1. In the n-th system,

◦ with Qn
k(0) denoting the initial number of jobs in queue k, we assume that 1

nQ
n(0) converges

in probability to the constant ρ(0);

◦ with λn
k the arrival rate to queue k, we assume that

lim
n→∞

1

n
λn
k = λk; (3)

◦ with µn
kl the service speed for jobs to be routed from queue k to queue l, we assume that

lim
n→∞

µn
kl = µkl; (4)

◦ the background process, denoted by Jn, corresponds to a continuous-time Markov chain

having irreducible generator matrix nαQ (for some α > 0) and invariant distribution π.

Regarding the µn
kl and λn

k , the main examples to keep in mind are λn
k = nλk and µn

kl = µkl.

Recalling that Jn(t) matches with J(nαt), we observe that the scaling proposed here amounts to

simultaneously speeding up the arrivals and the time scale of the background process, while the

server speeds approach some limiting value. Note that the speedup of the arrival rate is essentially

linear in n, whereas the speedup of the time scale of the background process is sublinear (α < 1),

linear (α = 1), or superlinear (α > 1) in n.

Under this scaling, the queue content process is denoted by the R
L-valued stochastic process Qn,

which is given by a system of equations involving unit-rate Poisson processes with a random time

change: for k = 1, . . . , L we have

Qn
k(t) = Qn

k(0) +Ak

(∫ t

0
λn
k(J

n(s)) ds

)
+
∑

l∈Ik

Slk

(∫ t

0
µn
lk(J

n(s))Qn
l (s) ds

)

−
∑

l∈Ik

Skl

(∫ t

0
µn
kl(J

n(s))Qn
k(s) ds

)
.

(5)

(See also Eq. 2.) As mentioned, we are interested in finding a fluid limit for Qn. This will involve

the time-averaged parameters λπ
k =

∑d
i=1 π(i)λk(i) and µπ

kl =
∑d

i=1 π(i)µkl(i). We present the fluid

limit in the next lemma.
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Lemma 3.2. Under Assumption 3.1, the process 1
nQ

n converges uoc in probability to the solution

of the system of integral equations

ρk(t) = ρk(0) +

∫ t

0
λπ
k ds+

∑

l∈Ik

∫ t

0
µπ
lkρl(s) ds−

∑

l∈Ik

∫ t

0
µπ
klρk(s) ds, (6)

for k = 1, . . . , L.

This fluid limit is exactly the fluid limit that we would obtain from a nonmodulated network of

infinite-server queues, and is in particular not affected by the value of α. (To see this, just replace

the modulated parameters of the queues by their time-averaged versions λπ
k and µπ

kl.) However,

modulation induces markedly different fluctuations around this fluid limit, i.e., in the diffusion

scaling. We explore this in the next section.

4. Convergence results: a diffusion limit

Our main goal in this section is to establish a diffusion limit for the queue content process of the

network under an appropriate scaling (which differs from the scaling imposed in the fluid limit

result). This diffusion limit depends explicitly on scaling properties of the background process,

thus giving insight into how the background process influences the behavior of the network on

process level.

We will use several different tools to prove the diffusion limit. Typically, diffusion limits are proven

relying on martingale methods and the Continuous Mapping Theorem (CMT); see, for instance,

[20, 22, 23]. Unfortunately, the classical continuous maps do not apply to our network, due to

the presence of the background process. We may get around this problem by constructing a more

refined continuous map, but we opt for another solution. A crucial step in this solution consists

of showing the asymptotic equivalence of the scaled network queue content process and a closely

related stochastic process, which turns out to have the desired weak convergence properties. This

approach combines queueing intuition with well-known continuous maps and convergence properties

of stochastic integrals to achieve these results.

The continuous map that we will use is (a multidimensional version of) the well-known integral

map presented in [20, Th. 4.1]. It is intimately related to standard infinite-server queues (cf. [20]

and Lemma 3.2). For completeness, we present the result here. Its proof is a straightforward

generalization of the proof of [20, Th. 4.1].

Lemma 4.1. Let h : RL → R
L be Lipschitz continuous, i.e.,

‖h(a1)− h(a2)‖ ≤ c‖a1 − a2‖

for all a1, a2 ∈ R
L for some c > 0. Also assume that h(0) = 0. If b ∈ R

L and x ∈ D
(
[0,∞);RL

)
,

then there exists a unique element y ∈ D
(
[0,∞);RL

)
satisfying the integral equation

y(t) = b+ x(t) +

∫ t

0
h(y(s)) ds. (7)

Thus, the integral equation (7) defines a function H : RL × D
(
[0,∞);RL

)
→ D

(
[0,∞);RL

)
. The

function H is continuous whenever the space D
(
[0,∞);RL

)
is equipped (in both the domain and

the range) either with the uniform topology or with the weak J1 topology.

The next corollary describes an example of a function H that is defined through the procedure

in Lemma 4.1. The function H defined in this corollary is, in fact, the map that we will use to

establish the diffusion limit. Moreover, H is clearly related to the fluid limit ρ (to see this, compare

Eq. (6) and Eq. (8)).
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Corollary 4.2. Define the L× L matrix M via

Mkl =

{
µπ
lk if k ∈ {1, . . . , L}, l ∈ Ik;

−∑l∈Ik
µπ
kl if k ∈ {1, . . . , L}, l = k.

Let h : RL → R
L be given by h(a) = Ma. Then h is Lipschitz continuous and Eq. (7) defines a

function H : RL × D
(
[0,∞);RL

)
→ D

(
[0,∞);RL

)
that has the continuity properties described in

Lemma 4.1. If y = H(b, x), then

yk(t) = bk + xk(t) +
∑

l∈Ik

∫ t

0
µπ
lkyl(s) ds−

∑

l∈Ik

∫ t

0
µπ
klyk(s) ds. (8)

Throughout this section, the following conditions are in force, with

β = max{1/2, 1 − α/2}. (9)

Assumption 4.3. In the n-th system,

◦ with Qn(0) denoting the vector with the initial number of jobs in queue k, we assume that

n1−β

(
1

n
Qn(0)− ρ(0)

)
→ X(0) (10)

in distribution, where X(0) is some random variable;

◦ with λn
k the arrival rate to queue k, we assume that

lim
n→∞

n1−β

(
1

n
λn
k − λk

)
= λ̂k; (11)

◦ with µn
kl the service speed for jobs to be routed from queue k to queue l, we assume that

lim
n→∞

n1−β(µn
kl − µkl) = µ̂kl; (12)

◦ the background process, denoted by Jn, corresponds to a continuous-time Markov chain

having irreducible generator matrix nαQ (for some α > 0) and invariant distribution π.

Note that the assumption concerning the initial number of jobs is compatible with 1
nQ

n(0) con-

verging in probability to ρ(0), due to Slutsky’s Lemma and β − 1 being strictly negative. In fact,

for these reasons (10) implies that 1
nQ

n(0) converges in probability to ρ(0).

The process of interest here is an an appropriately centered and normalized version of Qn, namely

the stochastic process Q̂n, which is defined via

Q̂n
k(t) = n1−β

(
1

n
Qn

k(t)− ρk(t)

)
. (13)

In words, Q̂n is the scaled and centered R
L-valued process describing how the number of jobs in

the network fluctuates around the fluid limit. As announced before, our objective is to show that

Q̂n converges to a diffusion process. Anticipating the application of continuous-mapping methods,

we represent Q̂n as

Q̂n
k(t) = Q̂n

k(0) + X̂n
k (t) +

∑

l∈Ik

∫ t

0
µlk(J

n(s))Q̂n
l (s) ds−

∑

l∈Ik

∫ t

0
µkl(J

n(s))Q̂n
k(s) ds, (14)

where

X̂n
k (t) = n1−βX̄n

k (t) (15)
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and

X̄n
k (t) = X̄n

1,k(t) + X̄n
2,k(t) + X̄n

3,k(t) +
∑

l∈Ik

(
X̄n

4,lk(t) + X̄n
5,lk(t) + X̄n

6,lk(t)
)

−
∑

l∈Ik

(
X̄n

4,kl(t) + X̄n
5,kl(t) + X̄n

6,kl(t)
)
,

(16)

with the processes X̄n
1,k, X̄

n
2,k, X̄

n
3,k, X̄

n
4,kl, X̄

n
5,kl, and X̄n

6,kl as defined in Eq. (22) (see Section 5.2).

Observe that the term µkl(J
n(s)) in the integral

∫ t
0 µlk(J

n(s))Q̂n
l (s) ds above makes a direct applica-

tion of Lemma 4.1 impossible. We deal with this problem by first showing that Q̂n is asymptotically

equivalent to the stochastic process Q̃n, which is defined via

Q̃n
k(t) = Q̂n

k(0) + X̂n
k (t) +

∑

l∈Ik

∫ t

0
µπ
lkQ̃

n
l (s) ds−

∑

l∈Ik

∫ t

0
µπ
klQ̃

n
k(s) ds (17)

or, equivalently,

Q̃n = H
(
Q̂n(0), X̂n

)
, (18)

with H denoting the continuous integral map from Example 4.2. Observe that (17) differs from (16)

in that the modulated server speeds µkl(J
n(s)) are replaced by their time-average counterparts.

The equivalence of both systems is motivated by the following intuitive reasoning.

Our idea is to establish the diffusion result relying on classical continuous-mapping arguments: we

would like to view Q̂n as a continuous integral map of some input processes. If the server speeds

were not modulated, it would be clear that the input is given by Q̂n(0) and X̂n, and that Q̂n is

a continuous integral map of these input processes. Then everything would fall nicely within the

scope of Lemma 4.1. Unfortunately, the server speeds do depend on the background process, so

this approach does not work.

However, notice that the service requirements are not scaled, whereas the background process is

scaled proportionally to nα. Intuitively, this means that a service requirement remains fixed as n

becomes large, while the background Markov chain is jumping faster and faster and approaches its

equilibrium distribution. Thus, as n becomes large, a service requirement is expected to effectively

experience the average or equilibrium server speed. These arguments suggest that, for large n,

we may replace the modulated server speeds µkl(J
n(s)) by the average server speeds µπ

kl. More

precisely, this means that the processes Q̂n and Q̃n should be asymptotically equivalent.

There are two major flaws in the reasoning above. First, Q̂n is a scaled and centered queueing

process rather than an actual queueing process; it is unclear what a ‘service requirement’ is in

this context. Second, and more importantly, the term µkl(J
n(s)) also appears in the input via the

X̂n (see Eq. (22) in Section 5.2). So why not take the average server speed there? The not so

convincing answer is that in the input µkl(J
n(s)) does not act as a server speed but is more like a

measure of how the parameters deviate from their averaged counterparts.

Again, the intuitive reasoning above is not entirely convincing from a mathematical point of view,

but at least it has given us a potentially useful idea. We formalize that idea in the following lemma.

Lemma 4.4. The process Q̃n is asymptotically equivalent to Q̂n, meaning that Q̂n − Q̃n converges

uoc in probability to the zero process as n → ∞.

This lemma is useful because it has the following important corollary as an immediate consequence.

Actually, the next result is the very reason for introducing Q̃n: it claims that proving weak con-

vergence of Q̂n is equivalent to proving weak convergence of the simpler process Q̃n, and that both

processes must have the same limit.
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Corollary 4.5. The process Q̂n converges weakly to X if and only if Q̃n converges weakly to X.

Thus, to prove weak convergence of Q̂n it suffices to prove weak convergence of Q̃n. However,

because the process Q̃n was defined as a continuous function of some input process (cf. Eq. (18)),

we only have to prove weak convergence of this input process. These observations are the basis of

the proof of the following theorem, which is the main result of this section.

The statement of the theorem contains two equivalent systems of stochastic integral equations. In

the first system, each term corresponds to the term in Eq. (14) or Eq. (16) from which is is derived.

In the second system, we have reordered the terms for easier interpretation and to show how the

form of the integral map H reappears in different parts of the limit.

Theorem 4.6. Under Assumption 4.3, the processes Q̃n and Q̂n both converge weakly to the unique

solution X of the system of stochastic integral equations

Xk(t) = Xk(0) + 1{α≥1}

√
λπ
kB1,k(t) + λ̂π

k t+ 1{α≤1}λ
T

kBb(t)

+
∑

l∈Ik

(
1{α≥1}

∫ t

0

√
µπ
lkρl(s) dBlk(s) +

∫ t

0
µ̂π
lkρl(s) ds+ 1{α≤1}µ

T

lk

∫ t

0
ρl(s) dBb(s)

)

−
∑

l∈Ik

(
1{α≥1}

∫ t

0

√
µπ
klρk(s) dBkl(s) +

∫ t

0
µ̂π
klρk(s) ds+ 1{α≤1}µ

T

kl

∫ t

0
ρk(s) dBb(s)

)

+
∑

l∈Ik

∫ t

0
µπ
lkXl(s)ds−

∑

l∈Ik

∫ t

0
µπ
klXk(s)ds

(19)

or, equivalently,

Xk(t) = Xk(0) +

∫ t

0


λ̂π

k +
∑

l∈Ik

µ̂π
lkρl(s)−

∑

l∈Ik

µ̂π
klρk(s)


 ds

+ 1{α≤1}

∫ t

0


λT

k +
∑

l∈Ik

µT

lkρl(s)−
∑

l∈Ik

µT

klρk(s)


 dBb(s)

+ 1{α≥1}

∫ t

0

(√
λπ
k dB1,k(s) +

∑

l∈Ik

√
µπ
lkρl(s) dBlk(s)−

∑

l∈Ik

√
µπ
klρk(s) dBkl(s)

)

+
∑

l∈Ik

∫ t

0
µπ
lkXl(s)ds−

∑

l∈Ik

∫ t

0
µπ
klXk(s)ds.

(20)

Here, the processes B1,k and Bkl are independent standard Brownian motions. The process Bb is an

independent d-dimensional Brownian motion with 〈Bb〉(t) = Σt, where Σ := diag(π)D+DTdiag(π)

and the matrix D denotes the deviation matrix corresponding to the transition rate matrix Q (as

defined in Section 5.1).

5. Proofs and auxiliary results

In this section, we provide the proofs of the three main results, namely the fluid limit (Lemma

3.2), asymptotic equivalence (Lemma 4.4), and the diffusion limit (Theorem 4.6). Additionally, we

present several auxiliary results which are used in those proofs. This section is organized in the

following way.
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First, we summarize some basic properties concerning the convergence of the state occupation

measure of a Markov chain. These properties are essential ingredients of the upcoming proofs. We

start with the proof of the fluid limit. This result is derived under slightly weaker conditions than

the diffusion limit. Moreover, it is used in the other two proofs. Then, we proceed by establishing

the asymptotic equivalence result in Lemma 4.4. Finally, relying on both the fluid limit and the

asymptotic equivalence result, we give the proof of the diffusion limit.

5.1. State occupation measures of Markov chains. In the three upcoming proofs, the be-

havior of the state occupation measure of a scaled Markov chain plays a key role. In particular,

we exploit weak convergence results for stochastic integrals with respect to the state occupation

measure. To make this paper more or less self-contained, we collect the most important results

concerning state occupation measures here. Their proofs can be found in [16].

As usual, J denotes a continuous-time Markov chain with state space {1, . . . , d} for some d ∈ N.

It has d × d generator matrix Q, which we assume to be irreducible. We denote the stationary

distribution corresponding to Q by π, i.e., π is the unique d × 1 vector (with nonnegative entries

summing to 1) that solves the equation πTQ = 0. Additionally, D denotes the deviation matrix

corresponding to Q. The entries of D are given by

Dij =

∫ ∞

0
(P(J(s) = j |J(0) = i)− πj) ds.

For some background on deviation matrices, see [7]. Define Σ = diag(π)D +DTdiag(π).

The state indicator function of J is the R
d-valued function K defined via

K(i; t) = 1{J(t)=i}

for i ∈ {1, . . . , d} and t ≥ 0. Then the state occupation measure corresponding to J is given by
∫ t

0
K(s) ds.

Thus, the state indicator function K is used to keep track of the state of J at a given time, whereas

the state occupation measure records how much time J has spent in each state during a time

interval.

The following theorem concerns the behavior of the state occupation measure of a Markov chain

when the generator matrix is scaled. Let Q, π, D, and Σ be as defined above. Let Jn be a

continuous-time Markov chain with generator matrix nαQ (for some α > 0) and state indicator

function Kn. Define the stochastic process Gn via

Gn(t) =

∫ t

0
(Kn(s)− π) ds. (21)

Additionally, let Y n denote the Dynkin martingale corresponding to Kn (cf. [1, Lem. 2.6.18]).

Theorem 5.1. The process Gn converges to the zero process uoc in probability for n → ∞. Addi-

tionally, nα/2Gn converges weakly to a Brownian motion Bb having predictable quadratic variation

process 〈Bb〉(t) = Σt.

In the proof of the diffusion limit, we also need weak convergence results of the form

Hn
· nα/2Gn ⇒ H ·G,

where Y ·X denotes the Itô integral of Y with respect to X. This type of convergence generally

does not hold, even when G is a Brownian motion, H is the zero process, and Hn converges to H

uoc almost surely. However, under even stronger conditions this type of convergence does hold.

We state such conditions in the next theorem.
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Before we can state the theorem, we need to introduce some more notation (which by and large

follows [15, p. 204]). Let X be a d-dimensional locally square-integrable martingale with respect

to a filtration F. For simplicity, we assume that

〈X〉(t) =
∫ t

0
C(s) ds

for a predictable process C taking values in the set of all symmetric nonnegative d×d matrices. We

denote by L2
loc(X) the set of predictable processes H taking values in R

k×d such that the process
∫ t

0
H(s)C(s)H(s)T ds

is locally integrable.

Theorem 5.2. Consider the setting of Theorem 5.1. For fixed m ∈ N, let H1,n, . . . ,Hm,n be

càdlàg processes in L2
loc(Y

n) and define Hj,n
− via Hj,n

− (t) = Hj,n(t−). Assume that each Hj,n

converges to a deterministic continuous function Hj uoc in probability and that n−α/2Hj,n is a

finite variation process whose total variation process converges to the zero process uoc in probability.

Then
(
H1,n

− · nα/2Gn, . . . ,Hm,n
− · nα/2Gn

)
converges weakly to

(
H1

·Bb, . . . ,H
m
·Bb

)
.

5.2. Proof of the fluid limit. To establish the fluid limit in Lemma 3.2, we follow a standard

approach by combining the Functional Law of Large Numbers (FLLN) for Poisson processes with

an application of Gronwall’s Lemma. The fact that the parameters are modulated by a background

process is a minor complication here, but we can deal with that by exploiting convergence properties

of irreducible Markov chains (cf. Section 5.1).

Impose Assumption 3.1, as introduced in Section 3. Under these conditions, Lemma 3.2 claims uoc

convergence of Q̄n
k to the zero process, where

Q̄n
k(t) =

1

n
Qn

k(t)− ρk(t).

We prove this claim in the following way.

Using the expressions in Eq. (5) and Eq. (6), some simple algebra gives us

Q̄n
k(t) = Q̄n

k(0) + X̄n
1,k(t) + X̄n

2,k(t) + X̄n
3,k(t)

+
∑

l∈Ik

(
X̄n

4,lk(t) + X̄n
5,lk(t) +

∫ t

0
µlk(J

n(s))Q̄n
l (s) ds+ X̄n

6,lk(t)

)

−
∑

l∈Ik

(
X̄n

4,kl(t) + X̄n
5,kl(t) +

∫ t

0
µkl(J

n(s))Q̄n
k(s) ds+ X̄n

6,kl(t)

)
,

with

X̄n
1,k(t) =

1

n
Ak

(
n

∫ t

0

1

n
λn
k(J

n(s)) ds

)
−
∫ t

0

1

n
λn
k(J

n(s)) ds,

X̄n
2,k(t) =

∫ t

0

1

n
λn
k(J

n(s)) ds−
∫ t

0
λk(J

n(s)) ds,

X̄n
3,k(t) =

∫ t

0
λk(J

n(s)) ds−
∫ t

0
λπ
k ds,

X̄n
4,kl(t) =

1

n
Skl

(
n

∫ t

0
µn
kl(J

n(s))
1

n
Qn

k(s) ds

)
−
∫ t

0
µn
kl(J

n(s))
1

n
Qn

k(s) ds,

X̄n
5,kl(t) =

∫ t

0
(µn

kl(J
n(s))− µkl(J

n(s)))
1

n
Qn

k(s) ds,

X̄n
6,kl(t) =

∫ t

0
(µkl(J

n(s))− µπ
kl)ρk(s) ds.

(22)
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Now suppose that all six types of the above processes converge to the zero process uoc in probability

when 1
nQ

n(0) converges to ρ(0) in probability. Then, for fixed T ≥ 0, the random variables

Ȳ n
1 (T ) =

L∑

k=1

(
sup

t∈[0,T ]

∣∣X̄n
1,k(t)

∣∣+ sup
t∈[0,T ]

∣∣X̄n
2,k(t)

∣∣+ sup
t∈[0,T ]

∣∣X̄n
3,k(t)

∣∣
)
,

Ȳ n
2 (T ) =

L∑

k=1

∑

l∈Ik

(
sup

t∈[0,T ]

∣∣X̄n
4,lk(t)

∣∣+ sup
t∈[0,T ]

∣∣X̄n
5,lk(t)

∣∣+ sup
t∈[0,T ]

∣∣X̄n
6,lk(t)

∣∣
)
,

and

Ȳ n
3 (T ) =

L∑

k=1

∑

l∈Ik

(
sup

t∈[0,T ]

∣∣X̄n
4,kl(t)

∣∣+ sup
t∈[0,T ]

∣∣X̄n
5,kl(t)

∣∣+ sup
t∈[0,T ]

∣∣X̄n
6,kl(t)

∣∣
)

converge to 0 in the same way. Observe that

L∑

k=1

∣∣Q̄n
k(t)

∣∣ ≤
L∑

k=1

∣∣Q̄n
k(0)

∣∣+ Ȳ n
1 (T ) + Ȳ n

2 (T ) + Ȳ n
3 (T )

+

L∑

k=1

∑

l∈Ik

∫ t

0
µ∗
∣∣Q̄n

l (s)
∣∣ds+

L∑

k=1

∑

l∈Ik

∫ t

0
µ∗
∣∣Q̄n

k(s)
∣∣ ds

for all t ∈ [0, T ], where µ∗ =
∑L

k=1

∑
l∈Ik

∑d
i=1 µkl(i). It follows that

L∑

k=1

∣∣Q̄n
k(t)

∣∣ ≤
L∑

k=1

∣∣Q̄n
k(0)

∣∣+ Ȳ n
1 (T ) + Ȳ n

2 (T ) + Ȳ n
3 (T ) +

∫ t

0
2(L− 1)µ∗

L∑

k=1

∣∣Q̄n
k(s)

∣∣ds

for all t ∈ [0, T ]. An application of Gronwall’s Lemma (cf. [10, Th. A.5.1]) then leads to

L∑

k=1

∣∣Q̄n
k(t)

∣∣ ≤
(

L∑

k=1

∣∣Q̄n
k(0)

∣∣+ Ȳ n
1 (T ) + Ȳ n

2 (T ) + Ȳ n
3 (T )

)
e2(L−1)µ∗T

for all t ∈ [0, T ], so supt∈[0,T ]

∑L
k=1

∣∣Q̄n
k(t)

∣∣ converges to 0 in probability under the assumptions

imposed (in particular, recall that Q̄n(0) → 0 in probability).

Consequently, it remains to show that Ȳ n
1 (T ), Ȳ n

2 (T ), and Ȳ n
3 (T ) converge to 0 in probability as

soon as 1
nQ

n(0) converges to ρ(0) in probability. To this end, we first define

λ∗ = 1 +

L∑

k=1

d∑

i=1

λk(i).

Then
∫ t
0

1
nλ

n
k(J

n(s)) ds ≤ 2λ∗t for all n large enough. Moreover, 1
nAk(n 2λ∗t) converges uoc

to 2λ∗t almost surely by the FLLN for Poisson processes (cf. [6, Th. 5.5.10]), implying that

supt∈[0,T ] |X̄n
1,k(t)| converges to 0 almost surely.

Next, observe that supt∈[0,T ] |X̄n
2,k(t)| converges to 0 almost surely, due to the convergence of 1

nλ
n
k

to λk. Also observe that both supt∈[0,T ] |X̄n
3,k(t)| and supt∈[0,T ] |X̄n

6,kl(t)| converge to 0 in probability

by Theorem 5.1 and Theorem 5.2, respectively.

To analyze X̄n
4,kl(t) and X̄n

5,kl(t), we need to know more about the behavior of Qn
k(s). Clearly, the

queueing dynamics are such that
∣∣∣∣
1

n
Qn

k(s)

∣∣∣∣ ≤
∑

m∈I

(
1

n
Qn

m(0) +
1

n
Am(nλ∗T )

)
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for all s ∈ [0, T ]. The sum on the right-hand side converges to
∑

m∈I(ρm(0) + λ∗T ) in probability,

due to Slutsky’s Lemma (cf. [21, Lem. 2.8]). Another application of Slutsky’s Lemma shows that

|µn
kl(J

n(s))− µkl(J
n(s))|

L∑

l=1

(
1

n
Qn

l (0) +
1

n
Al(nλ

∗T )

)

converges to 0 in probability. Then supt∈[0,T ] |X̄n
5,kl(t)| must converge to 0 in probability, too.

Regarding X̄n
4,kl(t), we observe that, for fixed ǫ > 0, we have the very crude inequality

∫ t

0
µn
kl(J

n(s))
1

n
Qn

k(s) ds ≤ µ∗
∑

m∈I

(ρm(0) + λ∗T )T + ǫ

on a set with probability at least 1 − ǫ for all n large enough. Combined with the FLLN for the

standard Poisson process Skl, this gives us the convergence of supt∈[0,T ] |X̄n
4,kl(t)| to 0 in probability.

Using Slutsky’s Lemma once again, we conclude that Ȳ n
1 (T ), Ȳ n

2 (T ), and Ȳ n
3 (T ) converge to 0 in

probability. This completes the proof.

5.3. Proof of asymptotic equivalence. Impose Assumption 4.3, as stated in Section 4. Our

goal is to prove the claim in Lemma 4.4, namely that Q̃n is asymptotically equivalent to Q̂n. Recall

that Q̂n represents the scaled and centered queue content process and that Q̃n is a similar but

simpler stochastic process defined using a continuous map. (Note that, in general, Q̃n is not a

scaled and centered queue content process.)

For completeness, we first show that Q̃n is a well-defined stochastic process. We already know that

Q̂n(0) and X̂n are well-defined random elements. As observed in Example 4.2, the integral map

H that defines Q̃n satisfies the conditions of Lemma 4.1, so Q̃n is a continuous function (in the

Skorokhod J1 topology) of a stochastic process. Then Q̃n is a well-defined stochastic process.

We turn to proving asymptotic equivalence of Q̂n and Q̃n. The difference between these two

processes can be written as

Q̂n
k(t)− Q̃n

k(t)

=
∑

l∈Ik

(∫ t

0
µlk(J

n(s))Q̂n
l (s) ds−

∫ t

0
µπ
lkQ̃

n
l (s) ds

)

−
∑

l∈Ik

(∫ t

0
µkl(J

n(s))Q̂n
k(s) ds−

∫ t

0
µπ
klQ̃

n
k(s) ds

)

=
∑

l∈Ik

(∫ t

0
(µlk(J

n(s))− µπ
lk)Q̂

n
l (s) ds−

∫ t

0
µπ
lk

[
Q̃n

l (s)− Q̂n
l (s)

]
ds

)

−
∑

l∈Ik

(∫ t

0
(µkl(J

n(s))− µπ
kl)Q̂

n
k(s) ds−

∫ t

0
µπ
kl

[
Q̃n

k(s)− Q̂n
k(s)

]
ds

)
,

so this difference is, in fact, given by the continuous integral map H of some input process. Con-

sequently, if this input process converges to the zero process uoc in probability, then the difference

between Q̂n and Q̃n must converge to the zero process uoc in probability, too.

This input process is essentially a sum of other input processes of the form
∫ t

0
(µkl(J

n(s))− µπ
kl)Q̂

n
k(s) ds. (23)

Thus, to prove the lemma, it suffices to establish the convergence of each of these terms to the zero

process uoc in probability. We will do this in the remainder of this proof.
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Recall from Section 5.1 that the state indicator function of Jn is denoted by Kn and that the

Dynkin martingale associated with Jn is denoted by Y n. Now rewrite the integral in Eq. (23) as
∫ t

0
n−α/2Q̂n

k(s)µ
T

kln
α/2(Kn(s)− π) ds =

∫ t

0
Un
kl(s)n

α/2(Kn(s)− π) ds, (24)

where

Un
kl(t) = n−α/2Q̂n

k(t−)µT

kl.

Convergence of Un
kl to the zero process implies, under certain assumptions, convergence of the

integral (24) to the zero process; this is described Theorem 5.2.

To be able to apply Theorem 5.2, we have to check several properties. We will break this up in

four steps and then apply Theorem 5.2 in the fifth and final step.

Step 1. We would like to verify (in this step and the next) that Un
kl is a process in L2

loc(Y
n). First

of all, we should have a filtration with respect to which Un
kl is predictable and Y n is a martingale.

For this filtration, say G, we can just take the natural filtration of Jn and add to this the entire

filtration of all Poisson processes and Qn(0), which are independent of Jn. Then Y n is still a (locally

square-integrable) martingale with respect to this filtration, due to the independence. Moreover,

the left-continuous process Un
kl is adapted to G and thus predictable. This settles the filtration and

measurability issues of Theorem 5.2.

Step 2. From the previous step, we know that Un
kl has the right measurability properties. To verify

that Un
kl is a process in L2

loc(Y
n), we also have to check that the process

∫ t

0
Un
kl(s)

[
diag

(
QTK(s)

)
−QTdiag(K(s))− diag(K(s))Q

]
Un
kl(s)

T ds

is locally integrable. This is rather obvious, as
∣∣∣Q̂n

k(t)
∣∣∣ ≤ n1−β 1

n
Qn

k(t) + n1−βρk(t)

≤ n1−βρk(t) +

L∑

l=1

Al

(∫ t

0
λn
l (J

n(s)) ds

)

≤ n1−βρk(t) +
L∑

l=1

Al(λ
∗t),

where we now define λ∗ as
∑L

k=1

∑d
i=1 λk(i). From this, we conclude that Un

kl is a process in

L2
loc(Y

n).

Step 3. Perhaps the most important step is to check that Un
kl converges to the zero process uoc in

probability. From the definition of Q̂n
k in Eq. (14), it follows that

Un
kl(t) = n1−β−α/2

(
1

n
Qn

k(t−)− ρk(t−)

)
µT

kl. (25)

By the fluid limit in Lemma 3.2, the process 1
nQ

n
k − ρk converges to the zero process uoc in

probability. Because 1 − β − α/2 = min{0, (1− α)/2}, we know that Un
kl converges to the zero

process in the same way.

Step 4. Now we only have to verify that n−α/2Un
kl is a finite variation process whose total variation

process converges to the zero process uoc in probability. From Eq. (25), we obtain

n−α/2Un
kl(t) = n−α/2n1−β−α/2

(
1

n
Qn

k(t−)− ρk(t−)

)
µT

kl

= n1−β−α

(
1

n
Qn

k(t−)− ρk(t−)

)
µT

kl. (26)
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Clearly, it suffices to show that n1−β−α
(
1
nQ

n
k(t−)− ρk(t−)

)
is a finite variation process whose total

variation process converges to the zero process uoc in probability.

To this end, observe that ρk is continuously differentiable, so it is of bounded variation. Moreover,

ρk does not depend on n and we have

1− β − α = min{−α/2, (1− 2α)/2} < 0, (27)

so the total variation process of n1−β−αρk converges to the zero process uoc. Consequently, it

suffices to show that n1−β−α 1
nQ

n
k(t−) is a finite variation process whose total variation process

converges to the zero process uoc in probability.

Now note that 1
nQ

n
k(t−) can be written as the difference of nondecreasing processes (cf. Eq. (5)).

This means that n1−β−α 1
nQ

n
k(t−) is a finite variation process. It also follows from Eq. (5) that the

total variation process of n1−β−α 1
nQ

n
k(t−) is given by

n1−β−α 1

n
Qn

k(0) + n1−β−α 1

n
Ak

(
n

∫ t

0

1

n
λn
k(J

n(s)) ds

)

+ n1−β−α
∑

l∈Ik

1

n
Slk

(
n

∫ t

0
µn
lk(J

n(s))
1

n
Qn

l (s) ds

)

+ n1−β−α
∑

l∈Ik

1

n
Skl

(
n

∫ t

0
µn
kl(J

n(s))
1

n
Qn

k(s) ds

)
.

As a result of Lemma 3.2 and the fact that 1 − β − α = min{−α/2, (1− 2α)/2}, we obtain the

convergence of this expression to the zero process uoc in probability.

As argued before, this implies that n−α/2Un
kl is a finite variation process whose total variation

process converges to the zero process uoc in probability.

Step 5. Recall that we aim to show convergence of the integral in Eq. (24) to the zero process

via an application of Theorem 5.2. In the previous four steps, we have verified the assumptions of

Theorem 5.2. Moreover, we have shown that Un
kl converges to the zero process uoc in probability, so

Theorem 5.2 implies that the integral in Eq. (24) converges to the zero process uoc in probability,

as required.

5.4. Proof of the diffusion limit. Before we turn to the proof of the diffusion limit result of

Theorem 4.6, let us first comment on notation. We will be mainly concerned with joint weak

convergence of certain stochastic processes. Because this involves many different processes, we will

not explicitly order them in a vector, so as to minimize potential confusion. As an example, we will

just say that Yk and Ykl converge jointly, where it is tacitly understood that k ∈ {1, . . . , L} and

l ∈ Ik (the ranges of the indices should be clear from the context), and that all these processes are

ordered in some vector.

Impose Assumption 4.3, as was stated in Section 4. We would like to establish the diffusion limit

in Theorem 4.6 under these conditions. To this end, it suffices to show that Q̃n converges weakly

to the process X given in Theorem 4.6, due to Lemma 4.4. However, because Q̃n is defined as a

continuous function of certain input processes Q̂n(0) and X̂n, the CMT implies that we only have

to prove joint weak convergence of these input processes. Consequently, the remainder of this proof

will focus on establishing this joint weak convergence.

Following the notation from Section 5.1, we denote byKn the state indicator function corresponding

to the background process Jn. Recall that Kn is a {0, 1}d-valued process that is given by Kn(i; t) =
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1{Jn(s)=i} for i ∈ {1, . . . , d}. In addition, we define the continuous semimartingale Gn via

Gn(t) =

∫ t

0
(Kn(s)− π) ds.

As argued before, we only have to prove weak convergence of the input processes of Q̃n, i.e., we

have to prove joint weak convergence of Q̂n(0) and X̂n. We will show that weak convergence of

X̂n follows (after an application of the CMT) from the joint weak convergence of other, more basic

processes. Joint convergence of Q̂n(0) and these basic processes will be straightforward (as they

are independent of Q̂n(0) or converge to a deterministic limit), so we will focus on the convergence

of X̂n.

Recall from Eq. (15) and Eq. (16) that X̂n is built up from six different types of one-dimensional

processes, namely

n1−βX̄n
1,k, n1−βX̄n

2,k, n1−βX̄n
3,k, n1−βX̄n

4,kl, n1−βX̄n
5,kl, and n1−βX̄n

6,kl. (28)

Clearly, joint weak convergence of all these processes implies weak convergence of X̂n, as a result

of the CMT.

To establish joint weak convergence of these processes, we will exploit the fact that some of them

are independent or converge to deterministic functions. For those processes that are independent

or converge to a deterministic function, joint convergence follows automatically (cf. [23, Th. 11.4.4]

and [23, Th. 11.4.5]). We will prove joint weak convergence of the six processes in (28) in four

steps. We will then summarize these steps in a fifth and final step.

Step 1. Some of the six types of processes (namely the the processes n1−βX̄n
2,k and n1−βX̄n

5,kl)

converge in probability to deterministic functions. Indeed,

n1−βX̄n
2,k(t) = n1−β

(
1

n
λn
k − λk

)
T ∫ t

0
Kn(s) ds,

which converges uoc in probability to the deterministic process

λ̂T

k

∫ t

0
π ds =

∫ t

0
λ̂π
k ds

by Eq. (11) and Theorem 5.1. The process n1−βX̄n
5,kl satisfies

n1−βX̄n
5,kl(t) = n1−β

(
1

n
µn
kl − µkl

)T ∫ t

0

1

n
Qn

k(s)K
n(s) ds

= n1−β

(
1

n
µn
kl − µkl

)T ∫ t

0

(
1

n
Qn

k(s)− ρk(s)

)
Kn(s) ds

+ n1−β

(
1

n
µn
kl − µkl

)T ∫ t

0
ρk(s)K

n(s) ds.

Consider the last two terms above. The first of these converges uoc in probability to the zero process.

This follows immediately from the fluid limit in Lemma 3.2 and the fact that Kn is bounded by 1.

The convergence of the second term, on the other hand, follows from similar arguments as the

convergence of n1−βX̄n
2,k by combining Eq. (12) and Theorem 5.1. In this case, the limiting process

is given by
∫ t

0
µπ
klρk(s) ds.

Consequently, n1−βX̄n
5,kl converges uoc in probability to this process, too.
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Step 2. We have reduced our task to proving joint convergence of n1−βX̄n
1,k, n

1−βX̄n
3,k, n

1−βX̄n
4,kl,

and n1−βX̄n
6,kl. A closer inspection of these processes reveals that each of them comes in one of

two flavors. On the one hand, n1−βX̄n
3,k and n1−βX̄n

6,kl can be written as a stochastic integral with

respect to the semimartingale Gn. On the other hand, n1−βX̄n
1,k and n1−βX̄n

4,kl can be viewed as a

random time change of the Poisson martingales

n1−βĀn
k(t) = n1−β

(
1

n
Ak(nt)− t

)
, n1−βS̄n

kl(t) = n1−β

(
1

n
Skl(nt)− t

)
,

respectively. Indeed, defining the random times

τn1,k(t) =

∫ t

0

1

n
λn
k(J

n(s)) ds, τn4,kl(t) =

∫ t

0
µn
kl(J

n(s))
1

n
Qn

k(s) ds,

we see that n1−βX̄n
1,k = n1−βĀn

k ◦ τn1,k and n1−βX̄n
4,kl = n1−βS̄n

kl ◦ τn4,kl.

The idea is to prove joint weak convergence of n1−βX̄n
3,k and n1−βX̄n

6,kl, together with n1−βĀn
k ,

n1−βS̄n
kl, and the random times τn1,k and τn4,kl. Say that they have limits X3,k, X6,kl, Bk, Bkl,

τ1,k, and τ4,kl, respectively. Then, under mild conditions, [23, Th. 13.2.2] guarantees the joint weak

convergence of n1−βX̄n
3,k, n

1−βX̄n
6,kl, n

1−βĀn
k ◦τn1,k, and n1−βS̄n

kl◦τn4,kl. Additionally, [23, Th. 13.2.2]
identifies the corresponding limits as X3,k, X6,kl, Bk ◦ τ1,k, and Bkl ◦ τ4,kl. The conditions of this

theorem will be clearly met in our case, as all limits will turn out to be continuous.

Step 3. Thus, before applying [23, Th. 13.2.2], we have to prove joint weak convergence of n1−βX̄n
3,k

and n1−βX̄n
6,kl, together with n1−βĀn

k , n
1−βS̄n

kl, and the random times τn1,k and τn4,kl. To prove this

joint weak convergence, observe that the processes n1−βX̄n
3,k and n1−βX̄n

6,kl are independent from

the Poisson martingales, because the background process is independent from these martingales by

assumption. Consequently, n1−βX̄n
3,k, n

1−βX̄n
6,kl, and the Poisson martingales converge jointly as

soon as n1−βX̄n
3,k and n1−βX̄n

6,kl converge jointly and the Poisson martingales converge jointly.

However, in general n1−βX̄n
3,k, n

1−βX̄n
6,kl, and the Poisson martingales are not independent from

τn1,k and τn4,kl. Nevertheless, dealing with the random time changes is relatively straightforward:

they converge uoc in probability to deterministic functions, which is a sufficient condition for joint

weak convergence. Note that, similar to n1−βX̄n
2,k and n1−βX̄n

5,kl, the process τn1,k converges to the

continuous function τ1,k(t) =
∫ t
0 λ

π
k ds and the process τn4,kl converges to the continuous function

τ4,kl(t) =
∫ t
0 µ

π
klρk(s) ds.

Now consider the Poisson martingales and recall that they are all independent. For ease of expo-

sition, take n1−βĀn
k = n1/2−β√nĀn

k . We know from the MCLT that
√
nĀn

k converges weakly to a

standard Brownian motion Bk (cf. [20, Th. 4.2]). Since 1/2−β = min{0, (α− 1)/2}, it follows that
n1−βĀn

k converges weakly to 1{α≥1}Bk. Similarly, n1−βS̄n
kl converges weakly to 1{α≥1}Bkl, where

Bkl is a standard Brownian motion. Because of the Poisson martingales being independent, joint

convergence holds as well and the Brownian motions Bk and Bkl are independent.

Step 4. It remains to show joint weak convergence of the processes n1−βX̄n
3,k and n1−βX̄n

6,kl.

We observed earlier that these processes are stochastic integrals with respect to the continuous

semimartingale Gn. More concretely, we have

n1−βX̄n
3,k(t) =

∫ t

0
n1−β−α/2λT

k dnα/2Gn(s)

and

n1−βX̄n
6,kl(t) =

∫ t

0
n1−β−α/2ρk(s−)µT

kl dn
α/2Gn(s).

The form of these integrals suggests that we may apply Theorem 5.2.
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Let us check that the conditions of Theorem 5.2 are satisfied here. First, recall the definition

of β in Eq. (9). In particular, it holds that 1 − β − α/2 = 0 for α ≤ 1, 1 − β − α/2 < 0 for

α > 1, and 1 − β − α < 0. Next, observe that n1−β−α/2λT

k converges to 1{α≤1}λ
T

k uoc. In

addition, n1−β−α/2ρkµ
T

kl converges to 1{α≤1}ρkµ
T

kl uoc. Third, notice that ρk is a function of

bounded variation and that ρk does not depend on n. Consequently, both n−α/2n1−β−α/2λT

k and

n−α/2n1−β−α/2ρkµ
T

kl are finite-variation processes whose total variation processes converge to the

zero process uoc.

Combining all these observations, we see that the conditions of Theorem 5.2 are satisfied. Then

Theorem 5.2 implies the joint weak convergence of the stochastic integrals n1−βX̄n
3,k and n1−βX̄n

6,kl

to ∫ t

0
1{α≤1}λ

T

k dBb(s) and

∫ t

0
1{α≤1}ρkµ

T

kl dBb(s),

respectively.

Step 5. Summarizing, we have shown joint weak convergence of the eight processes

n1−βX̄n
2,k, n1−βX̄n

5,kl, n1−βĀn
k , n1−βS̄n

kl, τn1,k, τn4,kl, n1−βX̄n
3,k, and n1−βX̄n

6,kl

to, respectively,
∫ t

0
λ̂π
k ds,

∫ t

0
µπ
klρk(s) ds, 1{α≥1}Bk, 1{α≥1}Bkl, τ1,k, τ4,kl,

∫ t

0
1{α≤1}λ

T

k dBb(s), and

∫ t

0
1{α≤1}ρkµ

T

kl dBb(s).

This implies joint weak convergence of the six processes

n1−βX̄n
2,k, n1−βX̄n

5,kl, n1−βX̄n
1,k, n1−βX̄n

4,kl, n1−βX̄n
3,k, and n1−βX̄n

6,kl

to, respectively,
∫ t

0
λ̂π
k ds,

∫ t

0
µπ
klρk(s) ds, 1{α≥1}Bk ◦ τ1,k, 1{α≥1}Bkl ◦ τ4,kl,

∫ t

0
1{α≤1}λ

T

k dBb(s), and

∫ t

0
1{α≤1}ρkµ

T

kl dBb(s).

Now applying the CMT, and using that 1{α≥1}Bk ◦ τ1,k and 1{α≥1}Bkl ◦ τ4,kl have the same distri-

butional properties as the integrals

1{α≥1}

∫ t

0

√
λπ
k dB1,k(s) and 1{α≥1}

∫ t

0

√
µπ
klρk(s) dBkl(s),

the statement of Theorem 4.6 follows immediately.
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