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Abstract

The two main sources of impairment in overlay multicast systems are packet losses and node churn. Yet, little is known about
their effects on the data distribution performance. In this paper we develop an analytical model of a large class of peer-to-peer
streaming architectures based on decomposition and non-linear recurrence relations. We analyze the stability properties of these
systems using fixed-point analysis. We derive bounds on the probabilitythat nodes in the overlay receive an arbitrary packet of the
stream. Based on the model, we explain the effects of the overlay’s size,node heterogeneity, loss correlations and node churn on the
overlay’s performance. Our findings lead us to the definition of an overlay structure with improved stability properties. We show
how and under what conditions overlays can benefit from the use of error control solutions, prioritization and taxation schemes.
Based on our results, we identify the components that are needed to achieve good data distribution performance in multi-tree-based
overlay multicast.
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1. Introduction

The peer-to-peer paradigm has proved to be an efficient meansboth for file distribution, and for lookup services without
the need for expensive infrastructure. Peer-to-peer multicast streaming overlays could serve content providers as a cheap and
efficient alternative to commercial content distribution networks for delivering live media to a large number of spectators.
In peer-to-peer multicast, peers are organized or organizethemselves into an application layer overlay and distribute the
data among themselves. The main advantages are that the multicast is easy to deploy and it reduces the load of the content
provider, since the distribution cost in terms of bandwidthand processing power is shared by the nodes of the overlay.

A large number of overlay multicast architectures has been proposed by the research community ([1–7] and references
therein), and a number of large scale commercial deployments of peer-to-peer streaming systems were also recorded [8,9].
There is however not much analytical understanding of the data distribution performance of these systems, such as the packet
reception probability of the participating nodes. Most of the results in the literature are based on simulations, and focus on
metrics like the depth of the overlay, the amount of control overhead and the link stress. There is a lack of understanding
of how the parameters of the overlay (e.g., the error controlsolutions employed) and the environmental dynamics (e.g.,
the number of nodes, node churn and losses due to network failures) affect the end-to-end delays and the packet reception
probability.
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The goals of this paper are twofold. First, to give an understanding of how and why the above factors and the policies
proposed in the literature influence the data distribution performance of overlay multicast. Second, to give a tool for system
designers to evaluate the performance of their proposals, and give guidelines on how to achieve good performance.

We consider overlay multicast systems based on multiple distribution trees and the push model, such as the ones in [2–6,10–
12]. Multiple trees offer two advantages: they ensure graceful quality degradation in dynamic overlays, in which peerscan
leave during the streaming session and they enable nodes to contribute to the overlay with fractions of the stream bandwidth.
The higher the number of trees, the smaller the fractions, sothat nodes’ output capacities can be better utilized. With multi-
path transmission, parts of the stream reach the peers through independent overlay paths. Consequently a node receiveslarge
part of the streaming data even if some of its parent peers stop forwarding.

The contributions of the paper are the following. (i) We present a model to describe the probability that a peer in the overlay
possesses an arbitrary packet of the data stream. We describe the model applied to multi-tree based overlay multicast, but
the modeling approach can generally be applied to multicastdata distribution employing FEC in multi-hop environments.
For example, in overlays that employ the pull model, data reach the nodes via spanning trees of the overlay graph, and
hence we believe that some of our results can be applied to pull based overlays by adapting the packet loss model. (ii) We
show that node churn can be treated as a form of packet losses.(iii) Based on the model, we show how factors, such as the
overlay’s size, heterogeneous loss probabilities, heterogeneous input and output capacities and loss correlations influence
the data distribution performance of the overlays. (iv) We explain how the parameters of the overlay, such as the number of
distribution trees, the error control schemes employed, the prioritization and taxation schemes affect the performance. (v)
Based on our findings we propose a tree structure that improves the scalability of the overlay with respect to the number of
nodes.

The rest of the paper is organized as follows. We review related work in Section 2. In Section 3 we give a description of the
considered overlays. We develop the analytical model of theoverlay in Section 4 and derive asymptotic bounds on the system
performance in Section 5. We describe the simulation methodology used to validate the model in Section 6. We evaluate the
effects of packet losses in Section 7 and apply the model to node churn in Section 8. We conclude our work in Section 9.

2. Related work

Peer-to-peer streaming systems utilizing a single transmission tree were analyzed in [13]. The authors derived results on
the number of levels as a function of the upload capacities ofthe peers, and evaluated the probability of blocking arriving
nodes in the overlay. The first models that describe the data distribution performance of multi-tree-based overlay multicast
were proposed in [14,15] and showed that these systems exhibit a phase-transition when using FEC. The model we present
here generalizes the above models, and makes it possible to evaluate the effects of node heterogeneity, churn and different
overlay management policies. The effect of the forwarding capacity on multi-tree-based overlays was investigated in [16]
using a queuing theoretic approach, and in [17] based on a fluid model.

The effect of node dynamics on the connectivity of peers was evaluated in [18] for peer-to-peer file sharing systems. The
authors derived results for the time to isolation and the probability of isolation for various node lifetime distributions. The
authors in [19] proposed master equations to model the evolution of the number of neighbors of the peers in an overlay, they
did not provide however any closed form solution. To the bestof our knowledge, ours is the first work to propose a general
framework for modeling the data distribution performance of multi-tree based peer-to-peer streaming systems employing
FEC in a dynamic environment.

3. System description

In this section we describe the considered general overlay structure in Section 3.1, our assumptions regarding the overlay
maintenance and the data distribution in Sections 3.2 and 3.3 respectively.

3.1. Overlay model

The overlay consists of a source node andN peer nodes. The peer nodes are organized inτ distribution trees, and the source
is the root of all trees. Each peer node is member of at least one tree, and in each tree it has a different predecessor node
(called parent) from which it receives data. We say that a node that isl hops away from the source node in treee is in level l
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Fig. 1. Nodes, levels and parent-child relationships for anoverlay with
N = 11,τ = 2,m = 2. The square indicates that the node forwards data
in the tree.
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Fig. 2. Clusters, levels, direct dependencies and imports for the same over-
lay (see Section 4). The nodes are divided into five clusters.

of treee. We denote the maximum outdegree (the maximum number of children) of the source node in each tree bym, and
the maximum outdegree of a noder by dr . m is limited by the ratio of the source’s upload capacity and the stream’s bitrate.
dr is limited by the ratio of the node’s upload capacity and the stream’s bitrate divided by the number of treesτ.

Nodes can split their forwarding capacity betweens trees. In our model the nodes balance their forwarding capacity
between thes trees, i.e., a node can have up to⌈dr/s⌉ children in each of thes trees. One gets the minimum breadth trees
described in [3] fors= τ, and the minimum depth trees evaluated in [2,3,11] fors= 1. The case 1< s< τ was proposed
in [16] to improve the overlay’s stability under churn. Fig.1 shows an overlay in which each node forwards data in one tree
only (s= 1), and the source has two child nodes in each tree (m= 2). The solid black lines show the parent-child relations
between the nodes in the overlay.

We introduce the notion of well-maintained overlay: the number of nodes that forward data is maximal in every level of its
trees. Well-maintained overlays have the smallest depth for givenN, τ ands. For instance, in a well-maintained overlay with
L levels, each node is 1≤ l ≤ L hops away from the source node in the trees in which it forwards data, andL−1≤ l ≤ L
hops away in the trees in which it does not. Furthermore, fors< τ the number of levelsL in the trees isO(logN).

It is however not necessary for an overlay to be well maintained. Motivated by our modeling work, we propose a tree
structure withlimited level spread. In an overlay with level spread limit∆l a node that forwards data in levell in a tree should
be located no deeper than levell + ∆l in the other trees. We do not discuss here how to implement such a tree structure, our
goal is to show its possible benefits assumed it can be implemented.

3.2. Tree management

The construction and the maintenance of the trees can be doneeither by a distributed protocol (structured, like in [2] or
unstructured, like in [4]) or by a central entity, like in [3]. The results presented in this paper do not depend on the particular
algorithm used, our focus is on the performance of the overlay as a function of the overlay’s structure, rather than on the
efficiency of the tree maintenance algorithm.

The purpose of the tree maintenance algorithm is to find eligible parents for the nodes based on the parent selection criteria
(e.g., closest to the source) and the nodes’ priorities. Priorities were introduced in multi-tree-based overlays in order to allow
the most important nodes to be closest to the source. In the simplest case nodes that forward data in a tree have high priority,
and hence can preempt nodes that do not forward data in that tree. Such a strategy was proposed in [3] in order to push
contributing nodes close to the source and non-contributing nodes to the last levels of the trees. Prioritization can also be
based on more complex criteria, such as the packet receptionprobability of a node, the level spread of a node, the input
capacity of a node or the maximum outdegree of a node (e.g., [5]).

We consider three aspects of the tree maintenance algorithm. First, it influences the number of levels in the overlay and
the distribution of the nodes among the levels. Second, it influences how often a node loses its parent in a tree depending
on the node’s priority in the tree. We call this the inter-disconnection time of noder in treee, and model it with a random
variableΩr

e. Third, it influences how long it takes for a node to find a parent in a tree depending on its priority. We call this
the reconnection time, and model it with a random variableΞr

e. The reconnection time consists of the time needed for the
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detection of the loss of the parent node, the time needed for searching for a new eligible parent node, and the time needed for
connecting to the eligible parent. The expected valueE[Ξr

e] of the reconnection time can be up to tens of seconds depending
on the tree management and the forwarding capacity in the tree [11].

3.3. Data transmission and error resilience

The source splits the data stream intoτ stripes, with everyτth packet belonging to the same stripe, and it sends the packets
in round-robin to its children in the different trees. Peer nodes relay the packets upon reception to their respective child nodes.
Consequently, subsequent packets of the stream reach a nodevia different overlay paths.

The source uses block based FEC, e.g., Reed-Solomon codes [20], so that nodes can recover from packet losses due to
network congestion and node departures. To everyk consecutive packets of informationc packets of redundant information
are added resulting in a block length ofn= k+c. We denote this FEC scheme by FEC(n,k). Lost packets can be reconstructed
as long as no more thanc packets are lost out ofn packets. Once a node receives at leastk packets of a block ofn packets, it
may recover the remainingc packets. If a packet, which should have been received in the tree where the node forwards data,
is recovered, then it is sent to the respective children. Duplicate packets are discarded by the nodes. Since subsequentpackets
of an FEC block reach a node via different overlay paths, the packet loss process as seen by a node is close to independent,
which improves the efficiency of FEC in reconstructing lost packets [21]. Using this FEC scheme one can implement unequal
error protection (UXP), priority encoding transmission (PET), or the multiple description coding (MDC) scheme considered
in [3]. If the source would like to increase the ratio of redundancy while maintaining its bitrate unchanged, then it has to
decrease the source rate.

4. Performance metrics and data distribution model

The building blocks of the overlay are the individual nodes,so first we describe the model of a single node in Section 4.1.
Using the notations introduced there we define the performance metrics we consider in Section 4.2. We define clusters of
nodes in Section 4.3, and describe the model of the overlay inSection 4.4. We then turn to the modeling of node dynamics in
Section 4.5, and describe how to estimate the overlay’s structure in Section 4.6.

4.1. Node model

The input capacity of a node determines the number of trees the node can connect to. We denote the set of trees that node
r can connect to byH r , H r ⊆ {1. . .τ}, |H r | ≤ τ. The maximum outdegree of the node in treee is dr

e, its number of children
is wr

e. Our model captures three sources of disturbances in the overlay.
First, a node cannot receive data in a tree if it is not connected to a parent node in that tree. We model whether a node

is connected with the binary r.v.Dr
e, such thatDr

e = 0 corresponds to noder being disconnected in treee. We assume that
whether a node is disconnected in a tree is independent of it being disconnected in another tree, i.e.,Dr

e is independent ofDr
h

(h∈ H r\{e}). The independence assumption is reasonable if nodes do nothave the same node as parent in different trees.
We show how to calculate the probabilityP(Dr

e = 0) in Section 4.5.
Second, a node might experience losses on its input link. (Werefer as input link of a node to the part of the network that

is shared between data arriving from all parent nodes.) We denote the probability thati out of j packets are lost on the input
link of a node byPr

I (i, j). Pr
I (i, j) can be calculated using loss models such as the Bernoulli model or the Gilbert model [22].

Third, a node might experience losses on its output link. (Werefer as output link of a node to the part of the network that is
shared between data departing to all child nodes.) We denotethe probability thati out of j packets are lost on the output link
of a node byPr

O(i, j). Pr
O(i, j) can be calculated in a similar way asPr

I (i, j). We model these two loss processes separately
because the correlations in the two loss processes will havedifferent effects on the performance of the overlay.

4.2. Performance metrics

To measure the performance of the data distribution in the overlay we use the probabilityπ that an arbitrary node receives or
can reconstruct (i.e., possesses) an arbitrary packet. If we denote by the random variableRr the number of packets possessed
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by noder in an arbitrary block ofn packets, thenπ can be expressed as the average ratio of packets possessed ina block over
all nodes, i.e.,π = 1

N E[∑r Rr/n]. Typically, multimedia applications requireπ > 0.99.
We do not consider the delay performance in this model. We assume that delay jitters can be compensated at the playout

buffers of the nodes, and end-to-end delays are controlled by keeping the depth of the transmission trees low.

4.3. Decomposition and Clustering

Modeling large-scale overlays on a per node basis is computationally not feasible, hence we introduce two techniques in
order to make the data distribution model scalable.

Clustering of nodes:We introduce the notion of clusters of nodes. Nodes belonging to a cluster forward data in the same
trees, have their parents in the same trees in the same levels, have the same input capacities, and experience the same input and
output loss probabilities. Consequently, a level of a tree possibly consists of several clusters, the different clusters correspond
to sets of nodes with different characteristics. We treat nodes within a cluster as stochastically identical, so that weonly
have to calculate the packet possession probabilities for clusters of nodes. Consequently, we can use the random variables
introduced for individual nodes in Section 4.1 for clustersof nodes, e.g., we use the random variableD f

e to model whether a
node that belongs to clusterf is connected to its parent node in treee. Clustering can be thought of as a form of quantization:
more clusters give more accurate results but increased computation time. As nodes belonging to a cluster might have parents
in different clusters (within the same level), we assume that a level appears to be homogeneous to nodes in the next level.
The model can be used without this assumption, at the price ofincreased number of clusters.

Decomposition:We decompose the overlay intoτ nearly independent subsystems. Such a decomposition approach was
used for the solution of large stochastic Petri nets in [23].The subsystems are the trees of the overlay: the probabilitythat a
node possesses a packet in a tree does not only depend on whether its parent node in the same tree possesses that packet, but
is also dependent on the probability of some nodes possessing packets of the same block in other trees due to the use of FEC.
We call the dependency within a treedirect dependency, such a dependency exists between a level and the clusters inthe
subsequent level. The dependencies of other trees are called imports. The dependency graph contains cycles for most overlay
structures, hence, to solve the model, we provide initial guesses for the imports and use fixed point iteration.

The decomposition involves an assumption of independence:whether the parent of a node in treee possesses a packet is
independent of whether the parent of the same node in treeh possesses a packet of the same block. This assumption does
not hold, for example, if nodes have the same parent in various trees. Nevertheless, one of the main goals of multiple tree
based overlays is to maintain independent paths in the different trees, i.e., different parents in every tree, which supports the
independence assumption.

We illustrate clustering and decomposition in Fig. 2, whichshows the clusters, the levels, the direct dependencies andthe
imports used in the model for the overlay shown in Fig. 1. Clustering reduces the calculation complexity of the model: instead
of calculating the probability of receiving a packet for each of the 11 nodes, we only have to perform the calculations forthe

Var. Definition Var. Definition

N # of nodes in the overlay τ,m # of trees and outdegree of the source respectively

s # of trees in which a node can forward data n,k FEC block length and number of data pkts respectively

H f Set of trees that nodes in clusterf connect to,|H f | = τ f C l Set of clusters that forward data in levell

N f # of nodes in clusterf N(l) # of nodes that forward data in levell

d f Maximum outdegree of nodes in clusterf wf
e Average # of children of nodes of clusterf in treee

J( j) # of lost pkts in a block ofj pkts,P(J( j) = i) = P(i, j) We(l) # of pkts successfully departing from nodes that forward in level l

in treee (not lost on output link)

X f
e # of pkts a node in clusterf can receive from its parent in treee Y f

e # of pkts a node in clusterf receives from its parent in treee

V f
e # of treeepkts possessed by a node in clusterf in treee Z f

e # of pkts that depart from a node in clusterf in treee

π(l) Packet possession probability of nodes that forward data inlevel l π Packet possession probability of an arbitrary node

Table 1
List of notations frequently used in the paper.
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f
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) and

Wh2(l
f
h2

) are imports. Eqs. (1)-(8) give the relationships between therandom variables.

5 clusters indicated in the figure. For example, nodes 3, 4 and5 belong to the same cluster, because they receive data in Tree
1 from nodes in level 1, and in Tree 2 from nodes in level 2, and we assume for the example that they have the same input
capacities and packet loss probabilities. Decomposition means that when we calculate the probability that a node receives a
packet in Tree 1 then we assume that we already know the probability that it will receive some other packets in Tree 2. Once
we have the new probabilities for Tree 1, we recalculate the results for Tree 2. The solution is then obtained in an iterative
way.

4.4. Data distribution model

Let us consider a clusterf , in which nodes join treesh∈H f , H f ⊆ {1. . .τ}, |H f | = τ f ≥ 1, and the parents of the nodes

in treeh are in levell f
h (h∈ H f ). The key to the overlay’s performance is the probability that a node in clusterf possesses

the packets in the trees where it has to forward data. In the following we describe how to calculate this probability usingthe
reasoning that a node possesses a packet in a tree if it receives the packet from its parent in the tree, or if it receives enough
packets in order to reconstruct the packet using FEC. Let us denote byC l

e the set of clusters that forward data in treee in
level l , and by the random variableV f

e the number of packets possessed by a node in clusterf out of then/τ packets it should
forward in treee. In the following we show how the distribution of this randomvariable can be calculated.

We chose to give the relationships between the random variables instead of the stochastic vectors representing their dis-
tributions, as we believe that this formulation makes understanding easier. Figure 3 shows a graphical representationof the
calculation of the random variables described in the following.

Let us denote by the random variableWe(l) the number of packets out of then/τ packets transmitted in treee that success-
fully depart from an arbitrary node in levell in treeeof the overlay, i.e., the packets that do not get lost on the output links of
the nodes. Note thatWe(l) is related to the level of the tree and not to specific clusters, because we consider layers to appear
as homogeneous towards lower levels of the overlay. Let us now consider a clusterf in level l + 1 in treee, i.e., f ∈ C l+1

e

andl f
e = l . A node in clusterf can only receive a packet from its parent if it is connected toone. Hence, givenWe(l) we can

express the random variableX f
e , the number of packets that nodes in clusterf can receive from their parents in treee

X f
e = We(l

f
e)D f

e. (1)

Similarly, we can define the number of packets that can be received in other trees based on the importsWh(l
f
h), h∈H f \{e}

andD f
h. Eq. (1) is approximate ifn/τ > 1, it assumes thatD f

e does not change during the transmission of a block of packets,
even though a parent can depart and a parent can be found during the transmission of a block. The model can be extended so
that this assumption does not have to be made, but this approximation works well if the time to transmit a block of packets is
much shorter than the inter-disconnection and the reconnection times.

The number of packets actually received by a node depends on the loss probability on the input link of the node, so we
define the random variableY f

e as the number of packets received by nodes of clusterf in treee

Y f
e = X f

e −J f
I (X f

e ), (2)
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whereJ f
I ( j) is the number of lost packets out ofj packets on the input link, and it is a random variable with distribution

P(J f
I ( j) = i) = Pf

I (i, j). Similarly, we can approximate the total number of packets received in the other trees

Y f
e = ∑

h∈H f \{e}
X f

h − ∑
h∈H f \{e}

J f
I (X f

h ). (3)

If FEC(n,k) is used to recover missing packets then the relationship between the number of packets possessed in treee, the
number of packets received in treeeand the number of packets received in the other trees is

V f
e =







n/τ if Y f
e +Y f

e ≥ k

Y f
e otherwise.

(4)

Now what remains is to show howWe(l +1) can be calculated. We express the random variableW f
e , the number of packets

out ofn/τ packets that do not get lost on the output link of a node of cluster f

W f
e = V f

e −J f
O(V f

e ), (5)

whereJ f
O( j) is the number of lost packets out ofj packets on the output link, and is a random variable with distribution

P(J f
O( j) = i) = Pf

O(i, j). Based on theW f
e for all f ∈ C l+1 we can expressWe(l +1)

We(l +1) =
∑ f∈C l+1

e
W f

e N f wf
e

∑ f∈C l+1
e

N f wf
e

, (6)

whereN f is the number of nodes in clusterf andwf
e is the number of children in treeeof the nodes that belong to clusterf .

We start the calculation of the distributions of the above random variables by using the initial conditionP(Vsrc
e = n/τ) = 1

(1 ≤ e≤ τ), i.e., the source node possesses all data in all trees, and the importsP(We(l)(0) = 0) = 1, 1≤ e≤ τ. Then,
in iteration i, we calculate the distribution ofWe(l)(i), (1 ≤ l < L and 1≤ e≤ τ) using the direct dependencies and the
imports from iterationi −1. The iteration stops when|E[We(L−1)(i−1)]−E[We(L−1)(i)]| < ε, whereε > 0. E[We(l)(i)] is
monotonically increasing as long as (1)-(6) are monotonically increasing functions in their respective variables. Consequently,
asE[We(l)(i)] ≤ n/τ the iteration converges.

The iterative solution we outlined here can be interpreted as the application of the belief propagation algorithm to a loopy
Bayesian network partitioned intoτ trees [24]. A Bayesian network is a graphical representation of conditional dependencies
between random variables. The nodes of the graph are the random variables, in our case theV f

e , and the arcs represent the
dependencies that we have described above. The belief propagation algorithm is an iterative algorithm used to calculate
the marginals of the joint distribution of the random variables represented by the nodes of the graph, i.e., in our case the
distributions of the random variablesV f

e . The algorithm starts from the leaf nodes of the graph, in ourcase the leaf nodes are
the source of the trees and the imports, and calculates the marginals in an iterative way.

Based on the final value ofWe(le)(i), we can express the random variableZ f , the number of packets out ofn that a node
belonging to clusterf receives

Z f = ∑
e∈H f

Y f
e . (7)

Finally, we define the packet possession probabilityπ f , as the ratio of packets in a block that a node belonging to cluster f
possesses

π f =
1
n

Rf =
1
n

E[Z f +ρ(Z f )], (8)

whereρ(i) is the number of reconstructed packets ifi packets are received in a block ofn packets

ρ(i) =







0 0≤ i < k

n− i k ≤ i ≤ n.

Finally, we define the packet possession probability of nodes that forward data in levell as the weighted average of theπ f

for f ∈ C l

π(l) =
∑ f∈C l π f N f

∑ f∈C l N f , (9)
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and the packet possession probability of an arbitrary node in the overlay as the weighted average of theπ f

π =
∑ f π f N f

∑ f N f . (10)

4.5. Modeling node dynamics

In the following section we calculate the probability that anode in clusterf is disconnected in treee, i.e., the probability
P(D f

e = 0). This probability is influenced by how often a node in clusterf loses its parent in treee, and for how long it has
to look for a new one. These two measures are influenced by the priority of the nodes of clusterf in treee, because a node
is likely to find a parent faster in a tree in which it has a high priority, and it is less often disconnected from its parent due to
preemption. Consequently, we consider a set of treesH

f
b , |H f

b | = τb, in which the nodes of clusterf have the same priority.
As an example, consider that nodes forward data in one tree only (s= 1), and nodes that forward data in treeeobtain a parent
in treee faster than those that do not forward data in treee because of a prioritization scheme such as the one we explained
in Section 3.2. Then for a clusterf that consists of nodes forwarding data in treee, H f consists of two sets of trees, the tree
in which the nodes forward dataH f

F = {e}, and the trees in which they do not forward dataH
f

S = H f \H f
F . Consequently,

τF = 1 andτS = τ−1, andH f
b refers to one of these two sets. Since in the remainder of thissection all random variables

refer to the same cluster of nodes, we omit the superscriptf in order to simplify the notation.
Let us denote byu = {u0, ...,uτb} the stochastic vector who’sith component contains the probability that a node isnot con-

nectedto a parent ini of theτb trees that belong toHb upon joining the overlay. The probability of a node being disconnected
given the initial state distributionu can be expressed using the law of total probability

P(De = 0|u) =
τb

∑
i=0

uiP(De = 0|ui), (11)

whereui is the initial state distribution with exactlyi disconnected parents.
In order to develop a closed form solution forP(De = 0|ui), we assume that the distribution of the nodes’ lifetimes (M),

the inter-disconnection times (Ωb) and the reconnection times (Ξb) can be modeled as exponential. That is,M is exponential
distributed with parameterµ, E[M] = 1/µ, Ωb is exponential distributed with parameterωb, E[Ωb] = 1/ωb, andΞb is ex-
ponential distributed with parameterξb, E[Ξb] = 1/ξb. Without preemptions and if preemptions are graceful,Ωb andM are
equal in distribution due to the exponential assumption. Ifpreemptions are ungraceful, then the disconnection intensity ωb of
a node is the sum of the preemption intensity and the death intensity of the parents of the node. We will evaluate the accuracy
of the exponential modeling assumption in Section 8. Using the exponential assumptions, in the following we give a closed
form expression for the probabilityP(De = 0|ui).
Theorem 1 For initial state distributionui the probability of a node being disconnected in tree e∈Hb is

P(De = 0|ui) =
τb + iαb

τb(κb +αb +1)
, (12)

whereκb = ξb/ωb andαb = µb/ωb.
Proof We can model the evolution of the number of disconnected parents in treese∈ Hb of a node with a continuous time
discrete state space Markov processX(h) ∈ S, S= [0. . .τb]. The transition intensities of the Markov process are

qi,i+1 = (τb− i)ωb 0≤ i ≤ τb−1 (13)

qi,i−1 = iξb 1≤ i ≤ τb. (14)

The ratio of disconnected parents isr i = i/τb in statei (0 ≤ i ≤ τb) of the Markov process. The conditional probability
P(De = 0|ui) can be expressed as the average ratio of disconnected parents in treese∈ Hb of a nodeas seen by a random
observergivenui . Without loss of generality we can denote the arrival time ofthe observer by 0,

P(De = 0|ui) = E[∆b|ui ] =
τb

∑
j=0

j
τb

P(X(0) = j|ui). (15)
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The above model is an Engset system [25], and we are interested in the probabilityP(X(0) = j|ui) that a random observer
finds an arbitrary node in statej, given that the node was started with initial state distribution ui . Let us denote byt the age
of the node when the random observer arrives and byA(t) its distribution function, then

P(X(0) = j|ui) =
Z ∞

0
pi, j(t)dA(t). (16)

pi, j(t) is given bypi, j(t) = P(X(0) = j|X(−t) = i) = eQt
{i, j}, whereQ is the intensity matrixQ = {qi, j}. We use zero-based

indexing for the rows and columns of the matrices. The evolution of {pi, j(t)} is governed by the differential-difference
equations

p′i,0(t) =−τbωbpi,0(t)+ξbpi,1(t)

p′i, j(t) =−((τb− j)ωb + jξb)pi, j(t)+(τb− j)ωbpi, j−1(t)+( j +1)ξbpi, j+1(t)

p′i,τb
(t) =−τbξbpi,τb(t)+ωbpi,τb−1(t).

The generating function of the probabilities{pi, j(t)} is

Pi(z, t) =
τb

∑
j=0

pi, j(t)z
j =

1
(1+κ)τb

(B+Az)τb−i(D+Cz)i , (17)

whereA = 1−M(t), B = M(t)+κb, C = κbM(t)+1, D = κb(1−M(t)), andM(t) = e−ωb(1+κb)t .
The age of an arbitrary node as seen by a random observer is thebackward recurrence time of a renewal process with

exponentially distributed inter-renewal times. Hence, the distribution oft is exponential with parameterµ. Consequently,
after substituting (16) into (15) we get

E[∆b|ui ] =
τb

∑
j=0

j
τb

{

Z ∞

0
pi, j(t)µe−µtdt

}

=
Z ∞

0

{

τb

∑
j=0

j
τb

pi, j(t)

}

µe−µtdt. (18)

We can substitute the inverse z-transform of (17) into the sum on the right hand side of (18) to get

τb

∑
j=0

j
τb

pi, j(t) =
(τb− i)(1−M(t))+ i(κbM(t)+1)

τb(1+κb)
, (19)

and by substituting (19) into (18) we get the theorem

E[∆b|ui ] =
τb + iαb

τb(κb +αb +1)
. 2

Discussion of the result:The parameterκb = ξb/ωb in (12) reflects the self-healing capability of the overlay:the higher its
value, the more resilient is the overlay to node churn. Similarly, the parameterαb = µb/ωb in (12) reflects the likelihood of
that a node will depart before one of its parents will be disconnected: the higher its value, the more likely that the node will
depart before it gets disconnected. Foruτb andu0 evaluating (17) leads to the well known product form solution [25], but we
are not aware of any results for the general case described here. Forα → ∞ (12) reduces toi/τb, while for α → 0 it converges
to the steady state solution of the mean number of jobs in an Engset system [25]. Based on (12) one can calculate the mean
number of the children of a node as well, if one substitutesω by the arrival rate of the children as seen by the node, andξ by
the departure rate of the children of the node.

4.6. Overlay structure

Important parameters of the model are the depthL of the overlay and the number of nodes per clusterN f . These can be
estimated for given overlay sizeN, maximum source degreem, number of treesτ, number of trees in which a node forwards
datasand node parameters, such as input and output capacities.

The number of nodes that forward in levell of a well-maintained tree can be approximated by the recurrence Nl =

∑r∈R (l−1) dr/s with initial conditionN1 = min(N/(τ/s),m), whereR (l −1) denotes the set of nodes that forward in level
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l −1. Prioritization schemes affect the probability that nodes with certain properties (e.g., high output capacity) are located
close to the source, and hence they influence the depth of the trees. Without prioritization, one can assume that nodes with
different parameters are distributed uniformly among the levels. With prioritization, we assume that prioritized nodes are as
close as possible to the source. There is a difference between the overlay structure estimated this way and the real overlay
structure due to node churn and the distributed tree maintenance, but the simulations we present later show that the effects of
these differences are negligible.

4.7. Example

Consider a well-maintained minimum depth overlay in which nodes are organized inτ = 3 trees. The outdegree of the
source ism= 2, and an FEC(3,2) code is used for error resilience. There are N = 24 nodes in the overlay inL = 3 levels.
Assume that packet losses between nodes are i.i.d. with probability p, and the losses happen on the input links of the nodes,
i.e., Pf

I (i, j) follows a binomial distribution with parameterp. Sincen = τ, every node receives one packet of a block ofn

packets in a tree, and consequently theV f
e are binary random variables. In each tree there are two clusters: the nodes that

forward data in level 1, and the nodes that forward data in level 2.
Consider now treee, in which the two clusters areE1 andE2. The source possesses all packets, hence we haveP(Vsrc

e =
1) = 1, and since there are no losses on the output link of the source, we haveP(We(0) = 1) = 1 from (5) and (6). Since
we do not consider node churn in the example, we haveP(XE1

e = 1) = P(We(0) = 1) = 1 from (1). Nevertheless, packets
get lost with probabilityp on the input links of the nodes, so thatP(YE1

e = 1) = P(XE1
e = 1)(1− p) from (2). Nodes that

forward packets in level 1 are in level 3 of the other trees, sothat they receive both of the other packets in the FEC block from
their parent nodes in level 2 with probabilityP(YE1

e = 2) = P(XE1
e = 2)(1− p)2 from (1)-(2). A node in level 1 possesses a

packet if it receives it from the source, or if it receives thetwo other packets in the FEC block in level 3, i.e.,P(VE1
e = 1) =

P(YE1
e = 1)+(1−P(YE1

e = 1))P(YE1
e = 2) from (4). The trees are statistically identical, there is only one cluster per level in

every tree, and there are no losses on the output links of the nodes, so that for treeh 6= ewe haveP(Wh(2) = 1) = P(We(2) =
1) = P(VE2

e = 1) from (5) and (6). For the same reason we can also omit the subscripts denoting the trees, so that for the
probability that a node in level 1 possesses a packet that it should forward we get

P(V1 = 1) = P(Vsrc = 1)(1− p)+ [1−P(Vsrc = 1)(1− p)]P(V2 = 1)2(1− p)2 = 1− p+ p(1− p)2P(V2 = 1)2. (20)

Similarly, we can express the probability that a node in level 2 possesses a packet that it should forward, i.e.,P(V2 = 1), as

P(V2 = 1) = P(V1 = 1)(1− p)+ [1−P(V1 = 1)(1− p)]P(V2 = 1)2(1− p)2. (21)

For this simple example we do not need an iterative solution,but we can substitute (20) into (21), and solve forP(V1 = 1)
andP(V2 = 1). For example, forp = 0.1 we getP(V1 = 1) = 0.9764 andP(V2 = 1) = 0.9714. We can use these results to
calculate the distribution ofZ1 andZ2, and finallyπ.

5. Overlay stability

In the following we analyze the stability of a class of overlays, and we establish bounds on the packet possession probability
π as a function of the loss probability and the depth of the overlay. We observe that in all overlays proposed in the literature,
nodes should be at least as close to the source in the trees in which they forward data as they are in the other trees. We
consider the casen = τ, so that the random variablesV f

e are binary. We consider overlays consisting of homogeneousnodes
in terms of loss probability and input capacity. We restrictourselves to the case when nodes can receive data in every tree,
thus|H f | = τ. A consequence of this assumption is that all trees are statistically identical, i.e., theWe(l), 1≤ e≤ τ are equal
in distribution. We assume independent packet losses, so that losses due to node departures, on the input links and on the
output links can be treated together as independent losses on the input links. If we denote the loss probability on the path
between two nodes byp, then the number of lost packetsi in a block of j packets follows a binomial distribution.
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5.1. Upper bound of the packet possession probability

Using the above simplifying assumptions, from (1)-(6) and the initial conditionE[Vsrc
e ] = n/τ (1≤ e≤ τ) it follows that

E[We(l)] is a non-increasing function ofl . Hence, we can give an upper bound onE[V f
e ] = P(V f

e = 1) (V f
e is a binary r.v.

becauseτ = n) by assuming that the parents of the nodes forwarding in a tree in levell are in levell = minh∈H l f
h in all trees.

Since nodes are homogeneous, we only have to consider one cluster of nodes per level. Furthermore, sinceV f
e is a binary

random variable, (1)-(6) implies that a packet is possessedby a node if it receives it from its parent or if it receives at least
k packets of the othern−1 packets of the block from its other parents, at most one packet from each parent. That is, if we
denote the upper bound of the packet possession probabilityin level l by π(l), then

π(l +1) = π(l)(1− p)+(1−π(l)(1− p))
n−1

∑
j=k





n−1

j



π(l) j(1−π(l))n−1− j
j−k

∑
i=0

P(i, j). (22)

The π(l) can be calculated using the initial conditionπ(0) = 1. Similar to (10), the upper bound of the packet possession
probability for an overlay withL levels andN(l) nodes in levell can be calculated as

π =
∑L

l=1 π(l)N(l)
N

. (23)

5.2. Asymptotic behavior

Eq. (22) defines a non-linear recurrence relation forπ(l), consequently we are interested in the existence of the fixedpoints
of (22) on(0,1].
Theorem 2 (Existence of fixed points)For the i.i.d Bernoulli loss model the number of fixed points of (22) is 0,1 or 2.
For k = 1 a fixed point exists and is asymptotically stable iff p< (n− 1)/n. For k > 1 the number of fixed points is0 if
p > (n−k+1)/n. If there are2 fixed points r1 and r2 (r1 < r2) then r2 is asymptotically stable and r1 is unstable.
Proof At the fixed point of the discrete dynamic system the mean number of lost packets has to equal the mean number of
reconstructed packets. The mean number of packets that a node can reconstruct is given by

r(π, p,n,k) =
n

∑
j=k





n

j



π j(1−π)n− j
j−k

∑
z=0

(n− j +z)





j

z



 pz(1− p) j−z. (24)

The mean number of lost packets isnπp, so that

nπp = r(π, p,n,k). (25)

Our goal is to show that the number of intersections of the linesnπp andr(π, p,n,k) on (0,1] is no more than two, i.e., there
are at most two fixed points. Fig. 4 illustrates the solution of (25) on four examples.

We start the proof by showing thatr(1, p,n,k) < np. We substituteπ = 1 into (25)
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np=
n

∑
i=0

iP(i,n) >
n−k

∑
i=0

iP(i,n) = r(1, p,n,k) (26)

for any loss distribution that satisfies∑n
i=n−k+1P(i,n) > 0, e.g., the Bernoulli loss model withp > 0.

For k = 1 we know thatr(π, p,n,1) is concave on(0,1], as

r(1)(π, p,n,1)|π=0 = n(n−1)(1− p) > 0,

r(2)(π, p,n,1)|π=0 =−n2(n−1)(1− p)2 < 0,

and the second derivative has one nonzero root at 1/(1− p) > 1, so that there can be no inflection point on(0,1]. Due
to the concavity ofr(π, p,n,1) on (0,1], the two curves intersect in one point, denoted byr2, iff r(1)(0, p,n,1) > np, i.e.,
p< (n−1)/n. If it exists,r2 is asymptotically stable and its domain of attraction is(0,1]. (E.g., the solid and the dashed lines
in Fig 4.)

For 1< k < n we start by showing that there is aπ∗∗ for which r(π, p,n,k) is convex for 0< π < π∗∗. We know that
r(0, p,n,k) = 0, r(1)(0, p,n,k) = 0, and that there isπ for which r(π, p,n,k) > 0. Sincer(π, p,n,k) is a continuous function,
r(1)(π, p,n,k) > 0 for someπ > 0 and hencer(2)(π, p,n,k) > 0 as well. Thus,π∗∗ exists and is the smallest positive inflection
point.

If π∗∗ > 1, that is,r(π, p,n,k) has no inflection point on(0,1], thenr(π, p,n,k) is convex on(0,1], so that the number of
intersection points is 0, because of (26) andr(0, p,n,k) = 0.

Forπ∗∗ ≤ 1 it is enough to show thatr(π, p,n,k) has exactly one inflection point on(0,1], and hence it is the combination of
a convex and a concave curve. For anyk > 1, r(2)(π, p,n,k) hasn−k nonzero real roots:π∗∗

1 = 1
1−p of multiplicity n−k−1

andπ∗∗
2 = k−1

n(1−p) . Both π∗∗
1 andπ∗∗

2 are inflection points asr(3)(π∗∗
1 , p,n,k) > 0 andr(3)(π∗∗

2 , p,n,k) < 0 (i.e., the second

derivatives change sign). 1/(1− p) > 1, so thatr(π, p,n,k) has an inflection point on(0,1] iff p≤ (n− k+ 1)/n, and then
π∗∗ = π∗∗

2 . Consequently, ifp ≤ (n− k+ 1)/n then r(π, p,n,k) has one inflection point on(0,1] and the number of fixed
points can be 0, 1 or 2. (E.g., the dotted line in Fig 4.)

If there is 1 fixed pointr1 thenr(1)(r1, p,n,k) = np, and the fixed point is unstable. If there are two fixed pointsr1 andr2

(r1 < r2), thenr2 is asymptotically stable (r(π, p,n,k) > nπp for π ∈ (r1, r2), andr(π, p,n,k) < nπp for π > r2). For r1 the
contrary is true, hence it is unstable. Furthermore, the domain of attraction ofr2 is (r1,1]. (E.g., the dash-dotted line in Fig
4.) 2

A consequence of the proof is that for anyp andε > 0 there is ann,k pair for whichr2 exists andr2 > 1− ε. Fig. 5 shows
the number of redundant packets needed in a block of packets in order to achieve various objectives for the asymptotically
stable fixed pointr2 as a function of the loss probabilityp.

If (22) has an asymptotically stable fixed point on(0,1] thenπ(l) converges to that fixed point, and we say that the overlay
is potentially stable: for the given loss probability and FEC parameters there exists an overlay structure for which a lower
bound onπ (the stable fixed point of (22)) can be given independent of the overlay’s size. This overlay is a minimum breadth
overlay (s= τ) in which the nodes are in the same level in all trees. Otherwise,π(l) converges to 0, and the overlay isunstable:
for the given loss probability and FEC parameters there is nooverlay structure for which a lower bound onπ can be given
independent of the overlay’s size.

Fig. 6 shows the theoretical upper bound of the packet possession probability as a function of the loss probability. The
bound is obtained by combiningπ(l) from (22) with the node distributionN(l) of a minimum depth overlay (s= 1) with N
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nodes. The upper bound of the performance of an unstable overlay decreases as the overlay’s size increases, while that ofa
potentially stable overlay is insensitive to the overlay’ssize. For large overlays (N = ∞) the upper bound is approximately
equal to the stable fixed point of (22) if that exists, and is 0 otherwise.

5.3. Sufficient condition for stability

We call an overlaystableif it is potentially stable and for given overlay size, loss probability and FEC parameters the
packet possession probability is no less than the asymptotically stable fixed point of (22). We can get a sufficient condition
for the overlay to be stable using similar reasoning as used to obtain the necessary conditions.
Theorem 3 (Sufficient condition for stability) For k= 1 if p < (n−1)/n then the overlay is stable. For k> 1, if the number
of fixed points of (22) is2 and(1− p)L > r1 then the overlay is stable.
Proof Let us denote the lower bound of the packet possession probability in level l by π(l). If there is no FEC reconstruction,
thenπ(l) = (1− p)L. Using FEC, ifk = 1 then according to Theorem 2 forp< (n−1)/n there exists an asymptotically stable
fixed pointr2 of (22) with domain of attraction(0,1]. Hence, after successive iterations of the modelπ(l) ≥ π(L) ≥ r2. For
k> 1, if the number of fixed points of (22) is 2 and(1−p)L > r1 then after successive iterations of the modelπ(l)≥ π(L)≥ r2,
the stable fixed point of (22).2

Consequently, the deeper the overlay, the smaller the rangeof loss probabilities for which an overlay with arbitrary structure
is stable.

5.4. Examples

Example 1:Consider that an FEC(3,2) code is used to distribute data. Wecan calculate the fixed points of (22) analytically
on (0,1]. The mean number of packets that can be reconstructed, (24),is

r(π, p,3,2) = 3π2(1−π)[(1− p)2]+π3[3p(1− p)2]. (27)

In order to find the fixed points of (22) we solve the equation 3πp = r(π, p,3,2), which yields

r1 =
1− p−

√

1−6p+5p2

2(1− p)2 r2 =
1− p+

√

1−6p+5p2

2(1− p)2 .

In order for two fixed points to exist we need 1−6p+5p2 > 0, i.e.,p < 0.2. Consequently, forp < 0.2 one can construct an

overlay of arbitrary size such thatπ ≥ 1−p+
√

1−6p+5p2

2(1−p)2 . For p > 0.2 this is however not possible.
Example 2:Consider a minimum depth overlay in which nodes are organized in τ = 3 trees. The outdegree of the source

is m = 2, and an FEC(3,2) code is used for error resilience. There are N = 24 nodes in the overlay, so that if the overlay

is well-maintained thenL = 3, and the sufficient condition for stability is(1− p)3 ≥ 1−p−
√

1−6p+5p2

2(1−p)2 , i.e., p≤ 0.1957. The

same condition for an overlay withN = 105, L = 10 would bep≤ 0.137.

6. Simulation methodology

Before presenting numerical results, we briefly describe the simulation environment we used to validate the results. Wede-
veloped a packet level event-driven simulator to validate our model. We used the GT-ITM topology generator [26] to generate
a transit-stub network with 104 nodes and average node degree 6.2. We placed each node of the overlay at random at one of the
104 nodes of the topology and used the one way delays given by the generator between the nodes. The delay between overlay
nodes residing on the same node of the topology was set to 1 ms.We assume that the interarrival times between the nodes are
exponentially distributed, this assumption is supported by several measurement studies [27,28]. We consider two distribu-
tions for the session holding timesM: the log-normal distribution [27] with CDFFM(x) = 0.5+0.5er f((ln(x)−a)/(b

√
2))),

a= 4.93,b= 1.26; and the shifted Pareto distribution [28] with CDFFM(x) = 1− (1+x/b)−a, b= 612,a= 3. In both cases
the mean lifetime isE[M] = 306s [27].

Tree maintenance:We assume that a distributed algorithm, such as gossip basedalgorithms, is used by the nodes to learn
about other nodes. We do not simulate the information dissemination, but assume that it provides random knowledge of the
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overlay such as in [29]. Since our focus is not on the structure of the resulting overlays, this assumption does not influence
our conclusions.

When a node wants to join the overlay, it contacts the source and obtains a random list ofg = 100 members of every tree.
The source tells to the arriving node in which trees it shouldforward data: in the ones with the least amount of forwarding
capacity. The arriving node then uses the following parent selection procedure to find a parent.

To select a parent in a tree, the node sorts theg members it is aware of into increasing order according to their distances
from the source, and looks for the first node that has available capacity or has a child that can be preempted, i.e., which has
lower priority. We describe the considered priority schemes below. If the node has to preempt a child, but itself has available
capacity, then the preempted child can immediately become achild of the preempting node. Otherwise, the preempted child
has to follow the parent selection procedure just like the child nodes of a departed node. As opposed to [29,30], we do not
force all nodes in the subtree of a departed node to reconnectindividually. We believe that forcing all nodes in a subtreeto
disconnect in a large overlay creates large control overhead and can lead to scalability issues.

Node priority:We consider two node preemption strategies. For simplicitywe represent a node’s priority as an unsigned
32 bit integerb consisting of 4 bytesb0 (MSB) tob3 (LSB). Higherb means higher priority. In the following we specify how
these bytes are set to reflect the priority of a node, which candepend both on the tree and on the level where it looks for a
parent.

In the non-prioritized preemption strategy the only preemption is when nodes that forward data in a tree can preempt nodes
that do not forward data in that tree. This is necessary to push contributing nodes close to the source and non-contributing
nodes to the last levels of the trees.b1 is 1 if the node forwards data in thetree and it is 0 otherwise. This strategy was
proposed in [3], and we will refer to it as NP.

The second preemption strategy is specific to some performance measure, such as the packet reception probability, the
maximum outdegree of a node or the input capacity of the node.We setb0 proportional to the performance measure of the
node in thetree, b1 is the forwarding capacity of the node in thetree, b2 is proportional to the performance measure of the
node in theoverlay, andb3 is thetotal forwarding capacity of the node. For example, if we want to prioritize nodes according
to the packet loss probabilities they experience, we setb0 to ⌈255(1− p)⌉. Another example for a strategy that fits into this
framework is the one proposed in [5], in which prioritization is based on the maximum forwarding capacities of the peers.
We will refer to this strategy byP.

Data distribution: We consider the streaming of a 112.8 kbps data stream. The particular choice of the bitrate does not
affect the validity of our conclusions, as we express the links’ capacities relative to the bitrate. The packet size is 1410 bytes.
Nodes have a playout buffer capable of holding 140 packets, which corresponds to 14 s delay with the given parameters.
Every node has an input and an output buffer of 80 packets eachto absorb the bursts of incoming and outgoing packets.
Apart from packet losses due to the overflow of the input and output buffers and due to late arriving packets, we simulate
packet losses on the input and the output links of the nodes via two-state Markovian models, often referred to as the Gilbert
model [31]. For given stationary loss probabilityp and conditional loss probability (the probability that a packet is lost given
that the previous packet was lost)pω|ω we set the parameters of the model as described in [14].

To obtain the results for a given overlay sizeN, we start the simulation withN nodes in its steady state as described in [32].
We setλ = N/E[M] and let nodes join and leave the overlay for 5000 s. The purpose of this warm-up period is to introduce
randomness into the trees’ structure. The measurements aremade after the warm-up period for 1000 s and the presented
results are the averages of 10 simulation runs. The results have less than 5 percent margin of error at a 95 percent level of
confidence.

7. Performance evaluation: Packet loss

We start the evaluation by considering the simplest case, homogeneous nodes with independent packet losses. When
considering heterogeneous systems, we follow the “ceterisparibus” principle, i.e., we change one property at a time and
keep all other properties equal. Doing so allows us to understand and explain the effects of different types of heterogeneity.
The results we present were obtained with the mathematical model presented in Section 4, we show simulation results to
validate the simplifying assumptions of the model when necessary. Most figures we show are composed of two sub-figures.
The sub-figure on the left shows the behavior of the overlay for a large interval of the input parameter. The one on the right
is zoomed on values ofπ of practical interest and can show both analytical and simulation results.
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7.1. The minimum depth overlay

We start the evaluation with the minimum depth overlay, thatis s= 1, as this is the most common multi-tree-based overlay
structure in the literature [2,3,5,11,29,30]. We begin with a homogeneous overlay, and in the following subsections weshow
how heterogeneity influences the overlay’s performance. Tokeep the number of clusters low, when calculating the trees’
structure, we assume that a node is in the same level in all trees in which it does not forward data, i.e., either the penultimate
or the last level. Thus the nodes that forward data in a level of the tree belong to one of two clusters depending on the level
where they are in the trees in which they do not forward data. The nodes are members of allτ trees and the outdegree of
each node isdr = τ. We consider independent, homogeneous losses on the overlay links, so thatPf

I (i, j) follows a binomial
distribution with parametersj, p, andPf

O(0, j) = 1 for all clusters.
Figure 7 shows the packet possession probability as a function of the level where nodes are in the tree in which they forward

data for two loss probabilitiesp = 0.1 andp = 0.14. The stability threshold ispmax= 0.129 for the given FEC parameters,
i.e., for p = 0.14 the overlay is unstable. Forp = 0.1 the analytical results show a perfect match with the simulation results.
For the unstable overlay the analytical results slightly overestimate the simulation results, because the trees are deeper in
the simulations than calculated for a well-maintained tree. The upper bound of the packet possession probability givenby
(22) is tight for the potentially stable overlay only: in theunstable overlay the poor reception in the last level impacts the
performance of the uppermost level. The lower bound given inSection 5.3 is far below in the unstable state, which shows
that FEC reconstruction improvesπ significantly in the unstable state as well.

Figure 8 plotsπ as a function of the loss probability. Figure 9 shows simulation results for the same scenarios. The
simulations verify that the decomposition approach gives accurate results even for small overlays. The overlays are unstable
whereπ(∞) = 0 for the corresponding FEC parameters and number of trees. In the unstable stateπ drops suddenly. The
drop is faster for larger overlays, hence good results obtained with a small overlay do not necessarily hold as the numberof
nodes increases. The results are however independent of theoverlay’s size in the stable state. Comparing results for different
redundancy rates (c/n) shows that a higher redundancy rate results in a wider region of stability and higher values ofπ.

Figs. 8 and 10 show that increasing the FEC block length, in general, improves the performance of FEC in accordance
with earlier results on FEC performance [21]. Fig. 8 shows that π can be increased at a given redundancy rate by increasing
the number of treesτ and the block lengthn. Fig. 10 shows that increasingn can improveπ without having to increase the
number of trees, as long as the overlay is stable and losses are not correlated.

7.2. Splitting the forwarding capacity

Increasing the number of trees decreases the depth of the overlay and, as we have seen, improves the FEC performance.
At the same time it can increase the time it takes to find a parent, unless one increases the number of trees where a node
can forward data [16]. Figure 10 showsπ as a function ofp for cases whens> 1. To decrease the number of clusters, we
assume for the model that a node is in the same level in the trees in which it forwards data. The simulation results in the right
sub-figure show that this approximation is accurate. As shown in the figure, for the considered independent losses increasing
s decreases the stability region. Consequently, to improve FEC performance it looks more favorable to increasen without
increasingτ ands. We will see that under node churn the contrary is true in Section 8.
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The minimum breadth overlayThe minimum breadth overlay, in which nodes forward data in all trees, is thes= τ special
case ofs> 1 and has been studied earlier in the literature. The number of levels and the average number of hops between the
source and the peer nodes in this overlay isO(N), so that nodes have to remain in almost the same level in all trees to avoid
large delays between the data arriving in different trees. If they do so, the packet possession probability of nodes in level l of
the overlay approaches the upper bound given in (22). A detailed analysis of this overlay was presented in [14].

7.3. Overlay size

Figure 11 shows the dependence ofπ on the number of nodes in the overlay. We conclude that a stable overlay can become
unstable for two reasons: increased packet losses and increased number of levels. It is not the number of nodes that causes
the degradation, but the number of levels needed to accommodate them. Consequently, an overlay can become unstable for
lower values ofN if the tree maintenance algorithm cannot keep the trees close to well-maintained.

Surprisingly, forτ = n = 4 the overlay is stable in the whole considered interval, forτ = 16,n = 4 and forτ = n = 16 it is
however not, even though the overlay is not as deep forτ = n = 16. This result seems counter-intuitive at the first sight, as in
point-to-point communications longer FEC blocks are usually more efficient [21]. Nevertheless, in the case of multipletrees,
FEC reconstruction close to the source requires packet reception in the trees, in which nodes are located in the last levels,
and consequently are likely not to receive the packets unless FEC reconstruction works close to the source. Thus, a longer
FEC code leads to higher possession probability if the system is stable, the region of stability is however smaller.

7.4. Limiting the level spread

Our model reveals a significant deficiency of the minimum depth overlay. The depth of the overlay influences the probabil-
ity of reconstruction even in nodes close to the source in thetree in which they forward, since reconstruction requires packet
reception in the other trees, in which nodes are located in the last levels. Motivated by this deficiency, we consider how our
proposal to limit the level spread influences the overlay’s performance. Limiting the level spread can of course increase the
number of levels in the overlay, but it makes FEC reconstruction more efficient. Figure 11 shows that limiting the level spread
does not decrease the performance of a stable overlay, but, as expected, the overlays with limited level spread remain stable
for larger values ofN.

7.5. Sensitivity to correlated losses

One of the major detriments of FEC is its poor performance when losses are correlated. In order to evaluate how loss
correlations affect the performance of overlay multicast employing FEC we showπ for correlated losses on the input links
or on the output links of the nodes in Fig. 12. We used the Gilbert model with a conditional loss probability ofpω|ω = 0.3 to

calculatePf
I (i, j) andPf

O(i, j), respectively. Correlations on the output links of the nodes have no effect on the performance
if n = τ, since the consecutive packets will be received by different child nodes. Correlations on the input links decrease
however the performance compared to the case of independentlosses forn = τ. A longer FEC block (n > τ) increases
the packet possession probability for both kinds of correlations when the overlay is stable. Based on the model we know
that for correlated losses on the output links and forn > τ the performance approaches that ofn = τ as pω|ω increases.
Correlated losses affect the overlay’s performance mostlyat low loss probabilities as correlations decrease the meannumber
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Fig. 13.π(l) vs l for inhomogeneous losses.N = 104, m= 50, τ = n = 4,
k = 3, s= 1. Model and simulations.

of reconstructed packets. Consequently, correlations decrease the system’s region of stability and its region of potential
stability. The simulations shown in the right sub-figure show a good match with the model for correlated losses on the output
links. There is a mismatch in the case of correlations on the input links, as packets of the same block do not necessarily arrive
successively in the simulation (and in real systems), hencethe loss correlation between packets in a block in the simulation
is lower thanpω|ω.

7.6. Inhomogeneous losses

Figure 13 compares the performance of an overlay withN = 104 for four distributions of the loss probability experienced
by nodes and with the Bernoulli loss model. We use homogeneous (H) losses with probabilityp as the reference, and compare
that to the following scenarios: 80 percent of the nodes experience 0.75p while the rest 2p; uniform distribution on[0,2p]; 50
percent of the nodes experience 0 while the rest 2p. We used 100 clusters per level to approximate the uniform distribution
in the model. Both the model and the simulations show thatπ(i) decreases as the variance of the losses increases.

To see whether prioritization could help to alleviate the negative effects of loss inhomogeneity, Fig. 14 compares the
average packet possession probability in the overlay for four cases: homogeneous losses, for inhomogeneous losses without
any priority scheme (Inhom-NP), for inhomogeneous losses prioritizing nodes with low packet loss probability (Inhom-P)
and for inhomogeneous losses and prioritization, also limiting the level spread (Inhom-PL) with∆l = 2. We considerτ = 4,
andN = 104 of which 50 percent experience 2p and 50 percent experience no losses. Prioritizing nodes based on the packet
losses they experience can be difficult in practice, but it isstill interesting if one could improve the system by such a scheme
at all. Surprisingly, prioritization does not improveπ in the stable region of the system. Nevertheless, nodes withno losses
experience better performance due to prioritization, limiting the level spread giving slightly larger gain. In the unstable region,
prioritization pays off as the decrease ofπ becomes much slower.
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Fig. 17. π vs p for inhomogeneous input and output capacities.
N = 104,m= 50,τ = n = 4,k = 3

7.7. Inhomogeneous capacities

We start by showing the effects of inhomogeneous output capacities. We consider prioritization based on the output ca-
pacities of the nodes. A practical alternative would be to consider the number of children of a node [11], as that is easierto
estimate, but it would not help high contributor nodes joining the overlay for the first time.

Fig 15 considers an overlay withτ = 4, andN = 104, of which 65 percent are low contributors (LC) withdr = 2 and 35
percent are high contributors (HC) withdr = 8. This ratio of high and low contributors is similar to that considered in [11]
based on a measured trace. The figure shows a scenario with homogeneous output capacities as reference, the inhomogeneous
case without priority, with priority, and also limiting thelevel spread with∆l = 2. Prioritization does not make any difference
for a stable overlay, as the number of levels does not influence the performance of the overlay in the stable region. High and
low contributors experience the same performance too. We note that as the number of levels decreases due to prioritization
based on the output capacities, the stability region might increase. For the same reason, prioritization gives superior perfor-
mance in the unstable state of the overlay. The simulations show a good match with the model, though for high losses the
model somewhat overestimatesπ which is due to the difference between the number of levels inthe simulation and the one
we calculated with.

Next, we consider inhomogeneous input capacities in Fig. 16for τ = 4 andN = 104. 65 percent of the nodes have|H r | =
2 and the rest|H r | = 4. Prioritization is based on the input capacities of the nodes. Prioritization does not improve the
performance of the overlay in the stable state, though it proves to be beneficial in the unstable regime. Nevertheless, using
prioritization, nodes with high input capacity experiencesignificantly better performance.

As a next step, we combine the previous two scenarios in Fig. 17: for the low contributors we use|H r | = 2, and for
the high contributors we use|H r | = 4. The results show that the effects of prioritization are similar to those in Fig. 16,
i.e., prioritization can give incentives to high contributors but does not improve the overall performance in the stable state.
Limiting the level spread slightly improves the performance seen by high contributors, as expected.

8. Performance evaluation: Node churn

We start by evaluating the sensitivity of the mean ratio of disconnected parents,E[∆] to the node lifetime and the reconnec-
tion time distributions. We consider homogeneous input andoutput capacities andE[ΞF ] = E[ΞS], that is, the reconnection
times are the same in the different trees. The simplicity of this scenario allows us to focus on the sensitivity of the results
to the distributions. We simulated two node lifetime and three reconnection time distributions, and for each combination we
considered two scenarios, corresponding tou0 anduτ with graceful preemptions (α = 1). We setN = 104, m= 50. Figs. 18-
20 show that the exponential approximation is accurate, andgives a lower bound for other distributions. Using a heavy-tailed
distribution the proportion of short lived nodes is high, but they have fewer children upon their departure, hence theirimpact
is lower onE[∆].

8.1. Effects on the data distribution

Next we apply the data distribution model to calculateπ in the presence of node churn: for givenκ we setP(D f
e = 0) = E[∆].

The simulation results shown foru0 for the data distribution performance show a similarly goodmatch in Fig. 21.
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For packet losses due to network failures increasing the block length without increasing the number of trees does improve
the performance in a stable overlay as seen in Section 7. Fig.22 shows that in the case of node departures this is not necessarily
true. Forτ = 4, n = 16 the performance is equal to that ofτ = 4, n = 8, and in fact is equal to that ofτ = n = 4. Increased
block length gives however increased performance if the number of trees and the number of trees in which a node forwards
data increase as well, as shown in the figure fors> 1. The simulations were performed using the Pareto lifetimeand normal
reconnection time distributions and show that the approximation forn > τ is accurate.

8.2. Why does preemption improve the performance?

We showed in Section 7 that not even the ideal preemption strategies can significantly improve the average performance
of an overlay in its stable state in the case of packet losses.Nevertheless, simulation and measurement studies [5,11] show
that preemption does improve the overlay’s stability. The two are not contradictory.

Fig. 23 showsπ as a function of the ratio of the mean reconnection times of nodes in the trees in which they forward data
(E[ΞF ]) and in the ones in which they do not (E[ΞS]). For givenE[Ξ] we setE[ΞF ]+ (t −1)E[ΞS] = E[Ξ] and consider two
cases. The best case, graceful preemptions (E[ΩS] = E[M],α = 1), and the worst case, non-graceful preemptions occurring
after the departure of every node that forwards data (E[ΩS] = (t −1)/tE[M],α = 0). The performance significantly improves
as E[ΞS]/E[ΞF ] increases in both scenarios with a decreasing marginal gain, i.e., any preemption scheme that decreases
E[ΞF ] without increasingE[Ξ] is beneficial.

Finally we look at the effects of taxation and contribution aware parent allocation [11] in Fig. 24. We consider an overlay
with τ = n = 8, k = 6, andN = 104. 75% of the nodes are low contributors (LC) with maximum outdegreedr = 4 and the
rest are high contributors (HC) with maximum outdegreedr = 16. The sum of all outdegrees is not enough for all nodes to
connect to all trees. Hence, we consider four scenarios. In scenarioNP 25% of the nodes connect toτ trees, 50% of them
connect toτ−1 trees, and the rest toτ−2 trees independent of their contribution. In scenariosP, Tax−P andCA−P nodes
are prioritized based on their maximum outdegrees. In scenario P the number of trees the nodes can join is random as inNP.
In scenarioTax−P every node connects toτ−1 trees (taxation). In scenarioCA−P HC nodes connect toτ trees, 67% of
LC nodes connect toτ−1 trees, the remaining 33% connect toτ−2 trees (contribution-aware parent allocation). We use
E[ΞS]/E[ΞF ] = 11 for all scenarios, that is, the reconnection time is shorter in the trees in which a node forwards data, but
prioritizing HC nodes does not decrease their reconnectiontimes. Based on Fig. 23 a further increase ofE[ΞS]/E[ΞF ] would
not significantly influence the results. We do not model the decrease ofE[ΞHC

F ] andE[ΞHC
S ], neither the possible increase of

E[ΞLC
F ] andE[ΞLC

S ]. The effect of such inhomogeneity is like that of decreasingthe loss probability seen by HC nodes and
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increasing that seen by LC nodes. Hence, it is equivalent to the case of inhomogeneous losses, for which we showed earlier
that prioritization does not improve the overall performance in the stable state of the system (Fig. 14).

The best average performance is achieved by theTax−P scheme, theCA−P scheme performs slightly better than theNP
scheme.CA−P achieves the best performance for HC nodes, but the worst forLC nodes. Consequently, giving incentives to
HC nodes can contradict to the goal of improving the average performance of the overlay.

9. Conclusion and practical consequences

In this paper, we presented an analytical model of the data distribution performance of multiple-tree-based overlay multi-
cast architectures. We developed lower and upper bounds fora class of overlays, and showed that the overlay’s performance
shows a phase transition depending on the packet loss probabilities and the size of the overlay. Our findings led us to the
definition of an overlay architecture with limited level spread that shows improved stability and scalability properties. Using
the model, we evaluated the effects of inhomogeneous and correlated losses, heterogeneous input and output capacities, and
investigated how prioritization can improve the overlay’sperformance. We showed that the effects of node churn are deter-
mined by the ratio of the reconnection time and parent disconnection intensity, and are similar in nature to those of packet
losses. Based on our results we can draw a number of practicalconsequences that can serve as design guidelines for future
systems.

FECperformance in overlay multicast is determined by many system parameters, a number of which (e.g., loss probability,
node churn and overlay size) change dynamically. Hence, theFEC block length and the ratio of redundancy have to be
adjusted adaptively in order to maintain the system in a stable state. Albeit FEC can provide arbitrarily good performance,
the necessary ratio of redundancy can be high if retransmissions are not used to decrease the packet loss rate between nodes.

Retransmissions and FECare both needed to define an efficient and scalable overlay architecture. Nodes should maintain a
list of backup parents in order to decrease the losses causedby node departures. Backup parents can be asked occasionally to
retransmit a piece of data, and should be located no deeper inthe tree than the parents of the node. Otherwise, if retransmission
requests are limited to the parent within the tree, then retransmissions do not decrease the loss probability caused by the
disconnections after node departures.

Prioritization: The primary benefit of prioritization is the decrease of disturbances in the trees in which a node forwards
data. Prioritization does not always significantly improvethe overall system performance, but it gives incentives to nodes
with good performance.

Stability: If the overlay is stable, the number of levels does not influence the performance significantly. The number of
levels influences however the region of stability, so that the number of levels has to be kept low, e.g., by prioritizing high
contributor nodes. The stability region can be increased byusing shorter FEC codes, though shorter FEC codes give inferior
performance in the case of stability.

Limited level spread:It is possible to increase the stability region of large overlays by limiting the spread between the
levels where nodes receive data. Limiting the level spread also helps to decrease the effects of nodes with poor connections
on the performance of high contributors. While one can argue about the fairness of this solution, it definitely gives incentives
to nodes to contribute.

The proposed model can easily be extended, and can be a usefultool for future system designers. It is an open question
how the model can be applied to pull-based (a.k.a swarming) overlay multicast systems. We believe that there are many
similarities between the two approaches, but we leave this as an area of future work.
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