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Abstract

The two main sources of impairment in overlay multicast systems areepfidses and node churn. Yet, little is known about
their effects on the data distribution performance. In this paper we deegl@nalytical model of a large class of peer-to-peer
streaming architectures based on decomposition and non-linearareceinelations. We analyze the stability properties of these
systems using fixed-point analysis. We derive bounds on the probabdityodes in the overlay receive an arbitrary packet of the
stream. Based on the model, we explain the effects of the overlay'siside heterogeneity, loss correlations and node churn on the
overlay’'s performance. Our findings lead us to the definition of anlayestructure with improved stability properties. We show
how and under what conditions overlays can benefit from the useaf @ntrol solutions, prioritization and taxation schemes.
Based on our results, we identify the components that are needed teeagba data distribution performance in multi-tree-based
overlay multicast.

Key words: Overlay multicast, FEC, Data distribution performance, BtgbPerformance bounds

1. Introduction

The peer-to-peer paradigm has proved to be an efficient nmmshdor file distribution, and for lookup services without

the need for expensive infrastructure. Peer-to-peer oagltistreaming overlays could serve content providers heapcand
efficient alternative to commercial content distributicgtwiorks for delivering live media to a large number of specta
In peer-to-peer multicast, peers are organized or orgahemselves into an application layer overlay and distelihe

data among themselves. The main advantages are that tHeastis easy to deploy and it reduces the load of the content

provider, since the distribution cost in terms of bandwialtldl processing power is shared by the nodes of the overlay.

A large number of overlay multicast architectures has beepgsed by the research community ([1-7] and references
therein), and a number of large scale commercial deploysn&inpeer-to-peer streaming systems were also recordeld [8,9
There is however not much analytical understanding of the diatribution performance of these systems, such as tepa

reception probability of the participating nodes. Mostlué results in the literature are based on simulations, atukfon

metrics like the depth of the overlay, the amount of contr@rbead and the link stress. There is a lack of understanding
of how the parameters of the overlay (e.g., the error corsintitions employed) and the environmental dynamics (e.g.,
the number of nodes, node churn and losses due to netwoukefglaffect the end-to-end delays and the packet reception

probability.
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The goals of this paper are twofold. First, to give an un@eding of how and why the above factors and the policies
proposed in the literature influence the data distributieriggmance of overlay multicast. Second, to give a tool j@tam
designers to evaluate the performance of their proposadsgize guidelines on how to achieve good performance.

We consider overlay multicast systems based on multiptglaligion trees and the push model, such as the ones in [2—6,1
12]. Multiple trees offer two advantages: they ensure dracpiality degradation in dynamic overlays, in which peeas
leave during the streaming session and they enable nodestiibtite to the overlay with fractions of the stream baratiui
The higher the number of trees, the smaller the fractionthatonodes’ output capacities can be better utilized. Withtim
path transmission, parts of the stream reach the peergjiiindependent overlay paths. Consequently a node redaiges
part of the streaming data even if some of its parent peepsfstavarding.

The contributions of the paper are the following. (i) We preisa model to describe the probability that a peer in thelayer
possesses an arbitrary packet of the data stream. We detiogimodel applied to multi-tree based overlay multicast, b
the modeling approach can generally be applied to multidast distribution employing FEC in multi-hop environments
For example, in overlays that employ the pull model, datzhvethe nodes via spanning trees of the overlay graph, and
hence we believe that some of our results can be applied tdasikd overlays by adapting the packet loss model. (ii) We
show that node churn can be treated as a form of packet IqggeBased on the model, we show how factors, such as the
overlay’s size, heterogeneous loss probabilities, hg&reous input and output capacities and loss correlatidheence
the data distribution performance of the overlays. (iv) \¥lan how the parameters of the overlay, such as the nuniber o
distribution trees, the error control schemes employeel ptiioritization and taxation schemes affect the perforceaiv)
Based on our findings we propose a tree structure that imprinescalability of the overlay with respect to the number of
nodes.

The rest of the paper is organized as follows. We reviewedlaiork in Section 2. In Section 3 we give a description of the
considered overlays. We develop the analytical model obtleglay in Section 4 and derive asymptotic bounds on thesyst
performance in Section 5. We describe the simulation metlogg used to validate the model in Section 6. We evaluate the
effects of packet losses in Section 7 and apply the modelde ohurn in Section 8. We conclude our work in Section 9.

2. Related work

Peer-to-peer streaming systems utilizing a single tragsion tree were analyzed in [13]. The authors derived result
the number of levels as a function of the upload capacitigh@peers, and evaluated the probability of blocking argvi
nodes in the overlay. The first models that describe the datdbdition performance of multi-tree-based overlay ncalst
were proposed in [14,15] and showed that these systemsieatphase-transition when using FEC. The model we present
here generalizes the above models, and makes it possiblaltate the effects of node heterogeneity, churn and difiter
overlay management policies. The effect of the forwardiagacity on multi-tree-based overlays was investigated &} [
using a queuing theoretic approach, and in [17] based oncarfiodel.

The effect of node dynamics on the connectivity of peers wakiated in [18] for peer-to-peer file sharing systems. The
authors derived results for the time to isolation and théabdlity of isolation for various node lifetime distribotis. The
authors in [19] proposed master equations to model the #onlaf the number of neighbors of the peers in an overlay; the
did not provide however any closed form solution. To the loéstur knowledge, ours is the first work to propose a general
framework for modeling the data distribution performanéemalti-tree based peer-to-peer streaming systems emoyi
FEC in a dynamic environment.

3. System description

In this section we describe the considered general ovetlagtare in Section 3.1, our assumptions regarding thelayer
maintenance and the data distribution in Sections 3.2 &hrke8pectively.

3.1. Overlay model

The overlay consists of a source node ahgeer nodes. The peer nodes are organizedlistribution trees, and the source
is the root of all trees. Each peer node is member of at leastree, and in each tree it has a different predecessor node
(called parent) from which it receives data. We say that a&nbdt isl hops away from the source node in tesis in levell

2



Tree 1 E _— %. Tree 2 Tree 1 E _— EF] Tree 2

Level —— Tree edge "% Cluster Level ——> Import ----» Direct dependency

Fig. 2. Clusters, levels, direct dependencies and importhésame over-

Fig. 1. Nodes, levels and parent-child relationships foromarlay with lay (see Section 4). The nodes are divided into five clusters.
N =111 =2 m= 2. The square indicates that the node forwards data
in the tree.

of treee. We denote the maximum outdegree (the maximum number afreli) of the source node in each treerhyand
the maximum outdegree of a nodey d'. mis limited by the ratio of the source’s upload capacity areldtream’s bitrate.
d" is limited by the ratio of the node’s upload capacity and tineasn’s bitrate divided by the number of traes

Nodes can split their forwarding capacity betweetrees. In our model the nodes balance their forwarding dégpac
between thes trees, i.e., a node can have up[t/s| children in each of the trees. One gets the minimum breadth trees
described in [3] fors = 1, and the minimum depth trees evaluated in [2,3,11]sfer1. The case k s < t was proposed
in [16] to improve the overlay’s stability under churn. Figshows an overlay in which each node forwards data in one tree
only (s= 1), and the source has two child nodes in each tree ). The solid black lines show the parent-child relations
between the nodes in the overlay.

We introduce the notion of well-maintained overlay: the fm@mof nodes that forward data is maximal in every level of its
trees. Well-maintained overlays have the smallest depthifenN, T ands. For instance, in a well-maintained overlay with
L levels, each node is4 | <L hops away from the source node in the trees in which it foravalata, and —1 <1 <L
hops away in the trees in which it does not. Furthermores forr the number of levelk in the trees i€(logN).

It is however not necessary for an overlay to be well maim@irMotivated by our modeling work, we propose a tree
structure witHimited level spreadin an overlay with level spread limlf; a node that forwards data in leveh a tree should
be located no deeper than levet 4 in the other trees. We do not discuss here how to implemeiht stiee structure, our
goal is to show its possible benefits assumed it can be impiEde

3.2. Tree management

The construction and the maintenance of the trees can bediibree by a distributed protocol (structured, like in [2] or
unstructured, like in [4]) or by a central entity, like in [3[he results presented in this paper do not depend on thewart
algorithm used, our focus is on the performance of the oyaataa function of the overlay’s structure, rather than on the
efficiency of the tree maintenance algorithm.

The purpose of the tree maintenance algorithm is to findldégiarents for the nodes based on the parent selectioriarite
(e.g., closest to the source) and the nodes’ prioritiesrilgs were introduced in multi-tree-based overlays iteorto allow
the most important nodes to be closest to the source. Int@esst case nodes that forward data in a tree have hightgriori
and hence can preempt nodes that do not forward data in get3uch a strategy was proposed in [3] in order to push
contributing nodes close to the source and non-contrigutimdes to the last levels of the trees. Prioritization cao &k
based on more complex criteria, such as the packet receptairability of a node, the level spread of a node, the input
capacity of a node or the maximum outdegree of a node (ely., [5

We consider three aspects of the tree maintenance algodiinst, it influences the number of levels in the overlay and
the distribution of the nodes among the levels. Secondflitences how often a node loses its parent in a tree depending
on the node’s priority in the tree. We call this the interedisnection time of node in treee, and model it with a random
variableQg. Third, it influences how long it takes for a node to find a parer tree depending on its priority. We call this
the reconnection time, and model it with a random vari&leThe reconnection time consists of the time needed for the
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detection of the loss of the parent node, the time needee&ocking for a new eligible parent node, and the time neeafed f
connecting to the eligible parent. The expected v&l{i€,| of the reconnection time can be up to tens of seconds dependin
on the tree management and the forwarding capacity in teq1dd.

3.3. Data transmission and error resilience

The source splits the data stream instripes, with every™™ packet belonging to the same stripe, and it sends the packets
in round-robin to its children in the different trees. Peedes relay the packets upon reception to their respectilcerabdes.
Consequently, subsequent packets of the stream reach aiaadiferent overlay paths.

The source uses block based FEC, e.g., Reed-Solomon cd¥lesd2zhat nodes can recover from packet losses due to
network congestion and node departures. To ekemynsecutive packets of informatiarpackets of redundant information
are added resulting in a block lengthrof k+c. We denote this FEC scheme by FEC(n,k). Lost packets carcbasgucted
as long as no more tharpackets are lost out of packets. Once a node receives at légsackets of a block ofi packets, it
may recover the remainingpackets. If a packet, which should have been received irdleanthere the node forwards data,
is recovered, then it is sent to the respective childrenlitafe packets are discarded by the nodes. Since subsqrpekats
of an FEC block reach a node via different overlay paths, #uket loss process as seen by a node is close to independent,
which improves the efficiency of FEC in reconstructing lastkets [21]. Using this FEC scheme one can implement unequal
error protection (UXP), priority encoding transmissioiE{R, or the multiple description coding (MDC) scheme coesidl
in [3]. If the source would like to increase the ratio of redancy while maintaining its bitrate unchanged, then it lwas t
decrease the source rate.

4. Performance metrics and data distribution model

The building blocks of the overlay are the individual nodssfirst we describe the model of a single node in Section 4.1.
Using the notations introduced there we define the perfocenametrics we consider in Section 4.2. We define clusters of
nodes in Section 4.3, and describe the model of the overl8gation 4.4. We then turn to the modeling of node dynamics in
Section 4.5, and describe how to estimate the overlay'ststrel in Section 4.6.

4.1. Node model

The input capacity of a node determines the number of treesdHe can connect to. We denote the set of trees that node
r can connect to by/", #" C {1...1}, |H"| < 1. The maximum outdegree of the node in tege di, its number of children
is wi,. Our model captures three sources of disturbances in thragve

First, a node cannot receive data in a tree if it is not coratett a parent node in that tree. We model whether a node
is connected with the binary r.@f, such thaD; = 0 corresponds to nodebeing disconnected in tree We assume that
whether a node is disconnected in a tree is independent einglulisconnected in another tree, i@},is independent oD},

(h e #{"\{e}). The independence assumption is reasonable if nodes dwmmetthe same node as parent in different trees.
We show how to calculate the probabilByD; = 0) in Section 4.5.

Second, a hode might experience losses on its input link.réfég as input link of a node to the part of the network that
is shared between data arriving from all parent nodes.) Wetdehe probability thatout of j packets are lost on the input
link of a node byP (i, j). P (i, j) can be calculated using loss models such as the Bernoulhoodhe Gilbert model [22].

Third, a node might experience losses on its output link. (¥fler as output link of a node to the part of the network that is
shared between data departing to all child nodes.) We démefarobability that out of j packets are lost on the output link
of a node byP; (i, j). P5(i, j) can be calculated in a similar way BS(i, j). We model these two loss processes separately
because the correlations in the two loss processes will tiffeeent effects on the performance of the overlay.

4.2. Performance metrics

To measure the performance of the data distribution in teelay we use the probabilitythat an arbitrary node receives or
can reconstruct (i.e., possesses) an arbitrary packeg tfamote by the random variali¥ the number of packets possessed
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by noder in an arbitrary block oh packets, themcan be expressed as the average ratio of packets posseadaddk over
all nodes, i.e.t= %E[z, R /n]. Typically, multimedia applications require> 0.99.

We do not consider the delay performance in this model. Wenagsghat delay jitters can be compensated at the playout
buffers of the nodes, and end-to-end delays are controjlde:&ping the depth of the transmission trees low.

4.3. Decomposition and Clustering

Modeling large-scale overlays on a per node basis is cortipngdly not feasible, hence we introduce two techniques in
order to make the data distribution model scalable.

Clustering of nodesWe introduce the notion of clusters of nodes. Nodes belgntgira cluster forward data in the same
trees, have their parents in the same trees in the same lleaedsthe same input capacities, and experience the saoteimgh
output loss probabilities. Consequently, a level of a tressjbly consists of several clusters, the different clssterrespond
to sets of nodes with different characteristics. We treatesowithin a cluster as stochastically identical, so thatowky
have to calculate the packet possession probabilitieslfisters of nodes. Consequently, we can use the random leswriab
introduced for individual nodes in Section 4.1 for clustefsodes, e.g., we use the random variableto model whether a
node that belongs to clustéiis connected to its parent node in tee€lustering can be thought of as a form of quantization:
more clusters give more accurate results but increasedwaitign time. As nodes belonging to a cluster might havergare
in different clusters (within the same level), we assume ghigvel appears to be homogeneous to nodes in the next level.
The model can be used without this assumption, at the pricefased number of clusters.

DecompositionWe decompose the overlay intonearly independent subsystems. Such a decompositionaghpreas
used for the solution of large stochastic Petri nets in [ZBf subsystems are the trees of the overlay: the probattiitya
node possesses a packet in a tree does not only depend orenitefiarent node in the same tree possesses that packet, but
is also dependent on the probability of some nodes posggsaakets of the same block in other trees due to the use of FEC.
We call the dependency within a tre@ect dependengysuch a dependency exists between a level and the clustdrs in
subsequent level. The dependencies of other trees ard aplerts The dependency graph contains cycles for most overlay
structures, hence, to solve the model, we provide initialsges for the imports and use fixed point iteration.

The decomposition involves an assumption of independemisether the parent of a node in trepossesses a packet is
independent of whether the parent of the same node irtpEssesses a packet of the same block. This assumption does
not hold, for example, if nodes have the same parent in vaui@es. Nevertheless, one of the main goals of multiple tree
based overlays is to maintain independent paths in therdiffarees, i.e., different parents in every tree, whichpsugs the
independence assumption.

We illustrate clustering and decomposition in Fig. 2, whitlows the clusters, the levels, the direct dependenciethand
imports used in the model for the overlay shown in Fig. 1. @ing reduces the calculation complexity of the modetdad
of calculating the probability of receiving a packet for eat the 11 nodes, we only have to perform the calculationghier

’Var.‘Definition HVar. ‘Definition

N |# of nodes in the overlay T,m | # of trees and outdegree of the source respectively

s |# of trees in which a node can forward data nk |FEC block length and number of data pkts respectively

H' |Set of trees that nodes in clusteconnect to|# | = tf C'  |Set of clusters that forward data in level

Nf |# of nodes in clustef N(l) [# of nodes that forward data in level

df |Maximum outdegree of nodes in cluster wi Average # of children of nodes of clustéin treee

J(j)[# of lost pkts in a block of pkts,P(J(j) =i) = P(i, ) We(I)[# of pkts successfully departing from nodes that forwarairel|

in treee (not lost on output link)

Xd |#of pkts a node in clustefr can receive from its parent in tree Yd  [#of pkts a node in clustefr receives from its parent in tree

Ve |# of treee pkts possessed by a node in clustén treee 28 |#of pkts that depart from a node in clustein treee
1i(l) |Packet possession probability of nodes that forward da&ved |1t Packet possession probability of an arbitrary node
Table 1

List of notations frequently used in the paper.



Packets leaving an arbitrary

W ~w
node in level | \Whphl)) \Wh2(|h2)>

Packets that can be receive
by a node in cluster f

Packets received
by a node in cluster f

Packets received or reconstructed
by a node in cluster f
Packets leaving

a node in cluster f

Packets leaving an arbitrary
node in level 1+1

Fig. 3. Random variables and their relations used for theutation ofWe(l + 1) from We(l) through clusterf C,'a“, Hf = {e,h1,h2}. Whl(hf]l) and
\an(lgz) are imports. Egs. (1)-(8) give the relationships betweemahdom variables.

5 clusters indicated in the figure. For example, nodes 3, bdralong to the same cluster, because they receive dataen Tre
1 from nodes in level 1, and in Tree 2 from nodes in level 2, arcagsume for the example that they have the same input
capacities and packet loss probabilities. Decompositieama that when we calculate the probability that a nodevesei
packet in Tree 1 then we assume that we already know the glibp#timat it will receive some other packets in Tree 2. Once
we have the new probabilities for Tree 1, we recalculate #iselts for Tree 2. The solution is then obtained in an iteeati
way.

4.4. Data distribution model

Let us consider a clustdt, in which nodes join treese #, #f C {1...1}, |H"| =1¢ > 1, and the parents of the nodes

in treeh are in Ievellg (he #™). The key to the overlay’s performance is the probabilityt thaode in clustef possesses
the packets in the trees where it has to forward data. In ti@vimg we describe how to calculate this probability usthg
reasoning that a node possesses a packet in a tree if itesdbiz packet from its parent in the tree, or if it receivesugho
packets in order to reconstruct the packet using FEC. Letnsté by}, the set of clusters that forward data in tesa
levell, and by the random variab‘bef the number of packets possessed by a node in cléistet of then/T packets it should
forward in treee. In the following we show how the distribution of this randeariable can be calculated.

We chose to give the relationships between the random Vesiafistead of the stochastic vectors representing their di
tributions, as we believe that this formulation makes usterding easier. Figure 3 shows a graphical representattithe
calculation of the random variables described in the failhgw

Let us denote by the random variallg(l) the number of packets out of thet packets transmitted in trexthat success-
fully depart from an arbitrary node in leveln treee of the overlay, i.e., the packets that do not get lost on thpuduinks of
the nodes. Note th&tk(1) is related to the level of the tree and not to specific clustersause we consider layers to appear
as homogeneous towards lower levels of the overlay. Let usaomsider a clustef in level | +1 in treee, i.e., f € C*?
andlé =1. A node in clusterf can only receive a packet from its parent if it is connecteore. Hence, giveWk(l) we can
express the random variabré, the number of packets that nodes in cludtean receive from their parents in tree

X{ =140}, @

Similarly, we can define the number of packets that can beveté other trees based on the imp0M$(I,:), he #"\{e}
and D,E. Eq. (1) is approximate ifi/T > 1, it assumes thzné does not change during the transmission of a block of packets
even though a parent can depart and a parent can be found theitransmission of a block. The model can be extended so
that this assumption does not have to be made, but this appaitan works well if the time to transmit a block of packeds i
much shorter than the inter-disconnection and the recdiometimes.

The number of packets actually received by a node dependseoings probability on the input link of the node, so we
define the random variabhgf as the number of packets received by nodes of clustetreee

Y =xf -9 (xh), 2)
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whereJ,f(j) is the number of lost packets out pfpackets on the input link, and it is a random variable withritigtion
P(J,f (h)=i)= P,f (i, ]). Similarly, we can approximate the total number of packetgived in the other trees

Ye = . 3 (%)- (3
he}[Z\{e}Xh he}[Z\{e} ! Xh

If FEC(n,k) is used to recover missing packets then the relationshipdssn the number of packets possessed indréee
number of packets received in treand the number of packets received in the other trees is

LA YS 4y >k
© \A otherwise

(4)

Now what remains is to show howg(l + 1) can be calculated. We express the random variBlethe number of packets
out of n/T packets that do not get lost on the output link of a node oftetus

\Nef = Vef - ‘](B(Vef )v %)

WhereJé(j) is the number of lost packets out pfpackets on the output link, and is a random variable withriistion
P(Jé(j) =i)= P(-f)(i, j). Based on thewe forall f € ¢!+ we can expresdk(l +1)

Fagfof
S ey We Nve

We(l +1) = (6)

f
Y et N e

whereN is the number of nodes in clustérandwé is the number of children in tremof the nodes that belong to cluster

We start the calculation of the distributions of the abovedman variables by using the initial conditi®{V"™=n/1) =1
(1 <e<r), i.e., the source node possesses all data in all trees,henanportsP(We(1)(© = 0) =1, 1< e < 1. Then,
in iterationi, we calculate the distribution (We(l)(‘), (1<l <L and 1< e< 1) using the direct dependencies and the
imports from iteratiori — 1. The iteration stops whele[We(L — 1)0-Y] — EMM&(L — 1)]| < €, wheree > 0. E\Wy(1)V)] is
monotonically increasing as long as (1)-(6) are monotdlyigecreasing functions in their respective variablesn€aquently,
asEW,(1))] < n/1 the iteration converges.

The iterative solution we outlined here can be interpretetha application of the belief propagation algorithm to@plp
Bayesian network partitioned intdrees [24]. A Bayesian network is a graphical represematfa@onditional dependencies
between random variables. The nodes of the graph are thermawariables, in our case thef, and the arcs represent the
dependencies that we have described above. The beliefgatpa algorithm is an iterative algorithm used to calailat
the marginals of the joint distribution of the random vakesbrepresented by the nodes of the graph, i.e., in our case th
distributions of the random variabllalé. The algorithm starts from the leaf nodes of the graph, incaise the leaf nodes are
the source of the trees and the imports, and calculates thggmaks in an iterative way.

Based on the final value &%(l¢)"), we can express the random varialifg the number of packets out afthat a node
belonging to clustef receives

AR (7)
ecHf
Finally, we define the packet possession probabitityas the ratio of packets in a block that a node belonging tstet
possesses
1 1
o :ﬁRf :ﬁE[Zf+p(Zf)]a (8)

wherep(i) is the number of reconstructed packetspickets are received in a blockmpackets
) 0 0<i<k
p(i) = _ ,
n—i  k<i<n.

Finally, we define the packet possession probability of sdtiat forward data in levelas the weighted average of tié
for f €
ff
TN
) = 2fed f
Ytec N

7
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and the packet possession probability of an arbitrary noded overlay as the weighted average oftiie

- SN (10)

4.5. Modeling node dynamics

In the following section we calculate the probability that@de in clusterf is disconnected in treg i.e., the probability
P(Dé = 0). This probability is influenced by how often a node in clustdoses its parent in tree and for how long it has
to look for a new one. These two measures are influenced byritréty of the nodes of clustef in treee, because a node
is likely to find a parent faster in a tree in which it has a higiogity, and it is less often disconnected from its parerd thu
preemption. Consequently, we consider a set of tﬁébés|%f| = Tp, in which the nodes of clustdrhave the same priority.
As an example, consider that nodes forward data in one tilgg ®a 1), and nodes that forward data in teeebtain a parent
in treee faster than those that do not forward data in &d®cause of a prioritization scheme such as the one we egglain
in Section 3.2. Then for a clustérthat consists of nodes forwarding data in teeg/ consists of two sets of trees, the tree
in which the nodes forward datE{Ff = {e}, and the trees in which they do not forward da{é = ﬂf\ﬂ{Ff. Consequently,

TF=1landis=1-1, and%f refers to one of these two sets. Since in the remainder os#uton all random variables
refer to the same cluster of nodes, we omit the superstiipbrder to simplify the notation.

Let us denote by = {uo, ..., Uy, } the stochastic vector who'® component contains the probability that a nodedscon-
nectedo a parent in of thety, trees that belong té#, upon joining the overlay. The probability of a node beingdisnected
given the initial state distribution can be expressed using the law of total probability

Th
P(De=0Ju) = Z)uiP(De:0|ui)7 (11)
=
whereu; is the initial state distribution with exactlydisconnected parents.

In order to develop a closed form solution f8{De = OJu;), we assume that the distribution of the nodes’ lifetines, (
the inter-disconnection time€() and the reconnection timesy) can be modeled as exponential. ThaMsis exponential
distributed with parametq, E[M] = 1/, Qp, is exponential distributed with parameteg, E[Qp] = 1/wyp, and=y is ex-
ponential distributed with paramet&s, E[=p] = 1/§),. Without preemptions and if preemptions are grace@ylandM are
equal in distribution due to the exponential assumptioprdemptions are ungraceful, then the disconnection iityews of
a node is the sum of the preemption intensity and the deathsity of the parents of the node. We will evaluate the acyura
of the exponential modeling assumption in Section 8. Udimgexponential assumptions, in the following we give a eose
form expression for the probabili§(De = O|u;).

Theorem 1 For initial state distributionu; the probability of a node being disconnected in tree # is

Tp+i0p

P(De=0lUj) = —————
(De ui) Tb(Kb—FGb—&—l)’

12)

wherekp = &p /0wy anday = pp/ 0.
Proof We can model the evolution of the number of disconnectedpsie trees € #, of a node with a continuous time
discrete state space Markov proc&sh) € S, S=[0...Tp). The transition intensities of the Markov process are

Giit1= (To—i)wp 0<i<t—1 (13)
0ii-1= &b 1<i<1y,. (14)

The ratio of disconnected parentsris=i/1, in statei (0 <i < 1) of the Markov process. The conditional probability
P(De = 0Ju;) can be expressed as the average ratio of disconnected parérgese € #, of a nodeas seen by a random
observemivenu;. Without loss of generality we can denote the arrival timéhefobserver by 0,

—Olu) = oo i
P(De = 0ui) = E[Ap|ui] = J;)pr(x(o) = jlui). (15)



The above model is an Engset system [25], and we are intdrigstee probabilityP(X(0) = j|u;) that a random observer
finds an arbitrary node in staje given that the node was started with initial state distidouu;. Let us denote by the age
of the node when the random observer arrives ané(byits distribution function, then

POX(0) = jlu) = [ piy (DAA) (16)

pi.j(t) is given byp; j(t) = P(X(0) = j|X(-t) =i) = eﬁfj}, whereQ is the intensity matribQ = {q; ; }. We use zero-based

indexing for the rows and columns of the matrices. The eimtuof {p; ;(t)} is governed by the differential-difference
equations

/

Pio(t) = —Tooppio(t) +&bpia(t)
pij () = —((To— J)wb+ &) Pi,j (1) + (Tb — [)@opij—1(t) + (J + 1)&bpi j+a(t)
Pl 1y (1) = —Tb&b i1, (1) + 00 Pix,—1(1).

The generating function of the probabilitigp; j(t)} is

Th

: 1 . :
R(zt) =Y pij()Z = ———(B+A2"™ ' (D+C2), 7
J;) ) (1+K)™

whereA=1—M(t), B=M(t) +Kp, C=KpM(t) +1,D = Kp(1— M(t)), andM(t) = e “(1+Ko)t,

The age of an arbitrary node as seen by a random observer imthevard recurrence time of a renewal process with
exponentially distributed inter-renewal times. Hence, dlistribution oft is exponential with parametgr Consequently,
after substituting (16) into (15) we get

E[Ap|ui] = :ijrjb {/Om Pi,j (t)ue“tdt} = /Om {ir{)p"j(t)} pe Hdt. (18)

We can substitute the inverse z-transform of (17) into thne en the right hand side of (18) to get

S ey (=1)(A-M@O))+i(keM(t) +1)
J;jﬁpl,](t) - Tb(1+Kb) ’ (19)

and by substituting (19) into (18) we get the theorem

Tp+10p

Elfo|ui] = Tb(Kb-l—Gb-i-l)' -
Discussion of the resulffhe parametek, = §,/wy, in (12) reflects the self-healing capability of the overlthe higher its
value, the more resilient is the overlay to node churn. irlyil the parameten, = [,/ oy, in (12) reflects the likelihood of
that a node will depart before one of its parents will be diseeted: the higher its value, the more likely that the noille w
depart before it gets disconnected. Bgrandug evaluating (17) leads to the well known product form solu{ia5], but we
are not aware of any results for the general case descrilbedf@o — o (12) reduces td/1p, while fora — 0 it converges
to the steady state solution of the mean number of jobs in gsé&rsystem [25]. Based on (12) one can calculate the mean
number of the children of a node as well, if one substituidry the arrival rate of the children as seen by the node £and
the departure rate of the children of the node.

4.6. Overlay structure

Important parameters of the model are the dépt the overlay and the number of nodes per clubtér These can be
estimated for given overlay si2é¢, maximum source degree, number of trees, number of trees in which a node forwards
datas and node parameters, such as input and output capacities.

The number of nodes that forward in levebf a well-maintained tree can be approximated by the renoe® =
Yrex(1—1)d" /s with initial condition Ny = min(N/(t/s),m), whereR® (I — 1) denotes the set of nodes that forward in level
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| — 1. Prioritization schemes affect the probability that reodéth certain properties (e.g., high output capacity) acated
close to the source, and hence they influence the depth ofebg. Without prioritization, one can assume that nodds wit
different parameters are distributed uniformly among gwells. With prioritization, we assume that prioritized asdre as
close as possible to the source. There is a difference bettheeoverlay structure estimated this way and the real ayerl
structure due to node churn and the distributed tree maints but the simulations we present later show that thetefté
these differences are negligible.

4.7. Example

Consider a well-maintained minimum depth overlay in whidi@s are organized m= 3 trees. The outdegree of the
source ism= 2, and an FEC(3,2) code is used for error resilience. Therélar 24 nodes in the overlay ih = 3 levels.
Assume that packet losses between nodes are i.i.d. witlapildip p, and the losses happen on the input links of the nodes,
ie., P,f (i, j) follows a binomial distribution with parametgx Sincen = 1, every node receives one packet of a block of
packets in a tree, and consequently‘ﬂafeare binary random variables. In each tree there are twoetkighe nodes that
forward data in level 1, and the nodes that forward data iell2v

Consider now tree, in which the two clusters a1 andE2. The source possesses all packets, hence weR{eif& =
1) =1, and since there are no losses on the output link of the epure haveP(W(0) = 1) = 1 from (5) and (6). Since
we do not consider node churn in the example, we IRVE! = 1) = P(We(0) = 1) = 1 from (1). Nevertheless, packets
get lost with probabilityp on the input links of the nodes, so thRtYE! = 1) = P(XE! = 1)(1— p) from (2). Nodes that
forward packets in level 1 are in level 3 of the other treeshabthey receive both of the other packets in the FEC blamk fr
their parent nodes in level 2 with probabilB(YE! = 2) = P(XE! = 2)(1— p)? from (1)-(2). A node in level 1 possesses a
packet if it receives it from the source, or if it receives tive other packets in the FEC block in level 3, iR(VEL = 1) =
P(YEL = 1) + (1 P(YE! = 1))P(YE! = 2) from (4). The trees are statistically identical, there iyame cluster per level in
every tree, and there are no losses on the output links ofdties; so that for trele# e we haveP(W,(2) = 1) = P(We(2) =
1) = P(VE? = 1) from (5) and (6). For the same reason we can also omit the sptssdenoting the trees, so that for the
probability that a node in level 1 possesses a packet thiawitld forward we get

P(V!=1) =P(VS"® = 1)(1— p) + [1- P(V*° = 1)(1- p)|P(V2 = 1)2(1— p)? = 1— p+ p(1— p)*P(V2 = 1)?. (20)
Similarly, we can express the probability that a node inll@yeossesses a packet that it should forward,P@/? = 1), as
PV2=1)=P(V'=1)(1-p)+[1-P(V!=1)(1-pP(V? = 1)*(1-p)*. (21)

For this simple example we do not need an iterative solutahwe can substitute (20) into (21), and solve Rgv® = 1)
andP(V? = 1). For example, fop = 0.1 we getP(V! = 1) = 0.9764 andP(V?2 = 1) = 0.9714. We can use these results to
calculate the distribution a* andz?, and finallyrt

5. Overlay stability

In the following we analyze the stability of a class of ovggaand we establish bounds on the packet possession pitybabi
mtas a function of the loss probability and the depth of the laye¥Ve observe that in all overlays proposed in the litegtu
nodes should be at least as close to the source in the tredsich they forward data as they are in the other trees. We
consider the case= 1, so that the random variablla’é are binary. We consider overlays consisting of homogeneodss
in terms of loss probability and input capacity. We restoiatselves to the case when nodes can receive data in every tre
thus|#f| = 1. A consequence of this assumption is that all trees arestitailly identical, i.e., th#\k(l), 1 < e < T are equal
in distribution. We assume independent packet losses,addbses due to node departures, on the input links and on the
output links can be treated together as independent losst#®ednput links. If we denote the loss probability on thehpat
between two nodes by, then the number of lost packets a block of j packets follows a binomial distribution.
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5.1. Upper bound of the packet possession probability

Using the above simplifying assumptions, from (1)-(6) anel initial conditionE[VS™] = n/t (1 < e < 1) it follows that
EW(1)] is a non-increasing function ¢f Hence, we can give an upper bound EJ[Nef] = P(Vef =1) (Vef is a binary r.v.
becausa = n) by assuming that the parents of the nodes forwarding ineaitrievell are in levell = mirhe}[lg in all trees.
Since nodes are homogeneous, we only have to consider asterahi nodes per level. Furthermore, sih@feis a binary
random variable, (1)-(6) implies that a packet is possebgetinode if it receives it from its parent or if it receives eddt
k packets of the othan— 1 packets of the block from its other parents, at most onegidobm each parent. That is, if we
denote the upper bound of the packet possession probabiléyel | by T(1), then

n-1 _
il +1) =m()(1-p) +(1-T)(1-p)) Ek (n .
£

I

1 . ik
) () (1—m())" ) .Z)P(i, 0

(22)

TheTi(l) can be calculated using the initial conditiofi0) = 1. Similar to (10), the upper bound of the packet possession
probability for an overlay with levels andN(l) nodes in level can be calculated as

5.2. Asymptotic behavior

shLTON()

=
N

(23)

Eqg. (22) defines a non-linear recurrence relatiormfdy, consequently we are interested in the existence of the figads

of (22) on(0, 1].

Theorem 2 (Existence of fixed points)For the i.i.d Bernoulli loss model the number of fixed pointg22) is 0,1 or 2.

For k = 1 a fixed point exists and is asymptotically stable ifcgn—1)/n. For k> 1 the number of fixed points Bif

p> (n—k+1)/n. If there are2 fixed points { and r» (r1 < r») then i, is asymptotically stable and is unstable.

Proof At the fixed point of the discrete dynamic system the mean raurablost packets has to equal the mean number of
reconstructed packets. The mean number of packets thatacaodeconstruct is given by

n n ) )
r(m p,n,k) = wl-m" Y (n-j+2)
£ (7)o mg

j—k

(j> p(1-p)i=
V4

The mean number of lost packetsisp, so that

nrp = r (14 p, n, k).

(24)

(25)

Our goal is to show that the number of intersections of theslimp andr (11, p, n, k) on (0, 1] is no more than two, i.e., there

are at most two fixed points. Fig. 4 illustrates the solutib(28) on four examples.

We start the proof by showing thaefl, p,n,k) < np. We substitutat= 1 into (25)

w
w »

n
4
T

# of lost/reconstructed packets
o

o
5]
T

—r(10.78,4,1)
n---r(m0.78,5,1)

- - 1(m0.1,16,12) o

r(1,0.1,16,14) o JoeA
|| ——4m0.78 - o

- -5m0.78 R )

| v 16m0.1 oo P -

=
T

04 0. 0.8

0.2 6
Packet possession probability) (

1

Fig. 4. Number of lost and reconstructed packetsufsr independent losses.
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np= iiP(Ln) > gjip(i’ﬂ) =r(1,p,nk) (20)

for any loss distribution that satisfigg., .., P(i,n) > 0, e.g., the Bernoulli loss model wih> 0.
Fork =1 we know that (Tt, p,n, 1) is concave orf0, 1], as

r(l)(T[v p, N, 1)‘7'[:0 = n(nf 1)(17 p) > 07
r(Z)(T[? p,n, 1)‘7'[:0 = _nz(n_ 1)(1— p)z < 07

and the second derivative has one nonzero root/ét 4 p) > 1, so that there can be no inflection point @)1]. Due

to the concavity of (11, p,n, 1) on (0,1], the two curves intersect in one point, denotedrpyiff r(0,p,n,1) > np, i.e.,

p < (n—1)/n. If it exists,rz is asymptotically stable and its domain of attractio(0gl]. (E.g., the solid and the dashed lines
in Fig 4.)

For 1< k < n we start by showing that there isté* for which r(1t, p,n,k) is convex for 0< 1t < 1. We know that
r(0,p,n,k) =0, r(l)(o, p,n,k) = 0, and that there g for whichr (1t p,n,k) > 0. Sincer (1t p, n, k) is a continuous function,
r<l)(n7 p,n,k) > 0 for somert> 0 and hence<2)(n, p,n,k) > 0 as well. Thustt™ exists and is the smallest positive inflection
point.

If ™ > 1, that is,r(1t, p,n, k) has no inflection point o0, 1], thenr (T, p, n, k) is convex on(0, 1], so that the number of
intersection points is 0, because of (26) af@ p,n,k) = 0.

Form™ < 1itis enough to show thattt p, n,k) has exactly one inflection point @f, 1], and hence it is the combination of
a convex and a concave curve. For &ny 1, r(z)(n, p,n,k) hasn— k nonzero real rootgt;* = flp of multiplicity n—k—1

andTo* = ﬁ. Both 1;* and 15" are inflection points as® (5%, p,n,k) > 0 andr® (15*, p,n,k) < 0 (i.e., the second

derivatives change sign)/(1— p) > 1, so thatr (11, p,n,k) has an inflection point of0,1] iff p < (n—k+1)/n, and then
" = 15*. Consequently, ifp < (n—k+ 1)/n thenr (1, p,n,k) has one inflection point of0,1] and the number of fixed
points can be 0, 1 or 2. (E.qg., the dotted line in Fig 4.)

If there is 1 fixed point4 thenr<1)(rl, p,n,k) = np, and the fixed point is unstable. If there are two fixed pointandr;

(r1 < r2), thenry is asymptotically stabler (1t p,n, k) > nrp for 1t e (r1,r2), andr (1T, p,n,K) < nmp for 1> rp). Forry the
contrary is true, hence it is unstable. Furthermore, theadorof attraction of is (r1,1]. (E.g., the dash-dotted line in Fig
4) O

A consequence of the proof is that for apyande > 0 there is am, k pair for whichr; exists and, > 1— €. Fig. 5 shows
the number of redundant packets needed in a block of packeisier to achieve various objectives for the asymptogcall
stable fixed point, as a function of the loss probability.

If (22) has an asymptotically stable fixed point @1] thenTi(l) converges to that fixed point, and we say that the overlay
is potentially stablefor the given loss probability and FEC parameters therstgxn overlay structure for which a lower
bound onmt (the stable fixed point of (22)) can be given independent@bterlay’s size. This overlay is a minimum breadth
overlay 6=T1) in which the nodes are in the same level in all trees. Othe{l ) converges to 0, and the overlayuisstable
for the given loss probability and FEC parameters there isvarlay structure for which a lower bound orcan be given
independent of the overlay’s size.

Fig. 6 shows the theoretical upper bound of the packet psisseprobability as a function of the loss probability. The
bound is obtained by combinirg) from (22) with the node distributioN(I) of a minimum depth overlays= 1) with N
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nodes. The upper bound of the performance of an unstabléagwbgcreases as the overlay’s size increases, while tlat of
potentially stable overlay is insensitive to the overlasize. For large overlays\(= ) the upper bound is approximately
equal to the stable fixed point of (22) if that exists, and ist®owise.

5.3. Sufficient condition for stability

We call an overlaystableif it is potentially stable and for given overlay size, log®Ipability and FEC parameters the
packet possession probability is no less than the asyroptigtistable fixed point of (22). We can get a sufficient caodit
for the overlay to be stable using similar reasoning as usettain the necessary conditions.

Theorem 3 (Sufficient condition for stability) For k= 1if p < (n—1)/nthen the overlay is stable. Fork1, if the number
of fixed points of (22) i€ and (1 — p)- > ry then the overlay is stable.

Proof Let us denote the lower bound of the packet possession fligpablevel | by (). If there is no FEC reconstruction,
thenri(l) = (1— p)-. Using FEC, ifk = 1 then according to Theorem 2 fpr< (n— 1) /n there exists an asymptotically stable
fixed pointr; of (22) with domain of attractiori0, 1]. Hence, after successive iterations of the madel > (L) > r». For
k> 1, if the number of fixed points of (22) is 2 aftl— p)- > r; then after successive iterations of the maué) > (L) >rp,
the stable fixed point of (22). O

Consequently, the deeper the overlay, the smaller the i@friges probabilities for which an overlay with arbitrarpstture
is stable.

5.4. Examples

Example 1Consider that an FEC(3,2) code is used to distribute dataaiealculate the fixed points of (22) analytically
on (0,1]. The mean number of packets that can be reconstructedj424),

r(mp,3,2) = 3(1-1[(1- p)? + [3p(1~ p)?]. 27)

In order to find the fixed points of (22) we solve the equatiop 3- r (1T, p, 3, 2), which yields
_1-p—/1-6p+5p? o 1-p++/1-6p+5p?
- 2(1-p)? 2 21-p?2
In order for two fixed points to exist we need-Bp+5p> > 0, i.e.,p < 0.2. Consequently, fop < 0.2 one can construct an
overlay of arbitrary size such that> 1_p+2— W. For p > 0.2 this is however not possible.

Example 2:Consider a minimum depth overlay in which nodes are orgdniize = 3 trees. The outdegree of the source
ism= 2, and an FEC(3,2) code is used for error resilience. Thea®&lar 24 nodes in the overlay, so that if the overlay

is well-maintained theih = 3, and the sufficient condition for stability {& — p)3 > 1_p_2— W, i.e.,,p<0.1957. The
same condition for an overlay with = 10°, L = 10 would bep < 0.137.

ri

6. Simulation methodology

Before presenting numerical results, we briefly describestmulation environment we used to validate the resultsd&ve
veloped a packet level event-driven simulator to validaternodel. We used the GT-ITM topology generator [26] to gateer
atransit-stub network with fhodes and average node degré® @/e placed each node of the overlay at random at one of the
10* nodes of the topology and used the one way delays given byethergtor between the nodes. The delay between overlay
nodes residing on the same node of the topology was set to Wenassume that the interarrival times between the nodes are
exponentially distributed, this assumption is supportgddveral measurement studies [27,28]. We consider twalilist
tions for the session holding timé4: the log-normal distribution [27] with CDFy (x) = 0.5+ 0.5er f((In(x) —a) /(bv/2))),
a=4.93,b=1.26; and the shifted Pareto distribution [28] with CBff(x) = 1— (1+x/b) "3, b= 612,a= 3. In both cases
the mean lifetime i€[M] = 3065 [27].

Tree maintenance:We assume that a distributed algorithm, such as gossip ladgedthms, is used by the nodes to learn
about other nodes. We do not simulate the information diss#ion, but assume that it provides random knowledge of the
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overlay such as in [29]. Since our focus is not on the strectiithe resulting overlays, this assumption does not inflaen
our conclusions.

When a node wants to join the overlay, it contacts the sourdehtains a random list @f = 100 members of every tree.
The source tells to the arriving node in which trees it shdaidvard data: in the ones with the least amount of forwarding
capacity. The arriving node then uses the following parelgcsion procedure to find a parent.

To select a parent in a tree, the node sortsgtheembers it is aware of into increasing order according to thistances
from the source, and looks for the first node that has availe@pacity or has a child that can be preempted, i.e., whish ha
lower priority. We describe the considered priority scherelow. If the node has to preempt a child, but itself hadaiviai
capacity, then the preempted child can immediately becoodd of the preempting node. Otherwise, the preemptedichil
has to follow the parent selection procedure just like thitdatodes of a departed node. As opposed to [29,30], we do not
force all nodes in the subtree of a departed node to recoimmdicidually. We believe that forcing all nodes in a subttee
disconnect in a large overlay creates large control overhed can lead to scalability issues.

Node priority: We consider two node preemption strategies. For simphegyrepresent a node’s priority as an unsigned
32 bit integerb consisting of 4 byteby (MSB) tobgz (LSB). Higherb means higher priority. In the following we specify how
these bytes are set to reflect the priority of a node, whichdegrend both on the tree and on the level where it looks for a
parent.

In the non-prioritized preemption strategy the only pregamiis when nodes that forward data in a tree can preemptsnode
that do not forward data in that tree. This is necessary tt postributing nodes close to the source and non-contriguiti
nodes to the last levels of the treds.is 1 if the node forwards data in thieee and it is O otherwise. This strategy was
proposed in [3], and we will refer to it as NP.

The second preemption strategy is specific to some perfarenareasure, such as the packet reception probability, the
maximum outdegree of a node or the input capacity of the nddesetby proportional to the performance measure of the
node in thetreg, by is the forwarding capacity of the node in ttreg by is proportional to the performance measure of the
node in theoverlay, andbs is thetotal forwarding capacity of the node. For example, if we want fontize nodes according
to the packet loss probabilities they experience, wégéd [2551 — p)]. Another example for a strategy that fits into this
framework is the one proposed in [5], in which prioritizatiis based on the maximum forwarding capacities of the peers.
We will refer to this strategy bip.

Data distribution: We consider the streaming of a 112.8 kbps data stream. Tlieydar choice of the bitrate does not
affect the validity of our conclusions, as we express thislicapacities relative to the bitrate. The packet size K0lldytes.
Nodes have a playout buffer capable of holding 140 packdtg;hacorresponds to 14 s delay with the given parameters.
Every node has an input and an output buffer of 80 packets taahsorb the bursts of incoming and outgoing packets.
Apart from packet losses due to the overflow of the input anguilbuffers and due to late arriving packets, we simulate
packet losses on the input and the output links of the nodesma-state Markovian models, often referred to as the @ilbe
model [31]. For given stationary loss probabilfiyand conditional loss probability (the probability that et is lost given
that the previous packet was logt)., we set the parameters of the model as described in [14].

To obtain the results for a given overlay siewe start the simulation witN nodes in its steady state as described in [32].
We setA = N/E[M] and let nodes join and leave the overlay for 5000 s. The perpbthis warm-up period is to introduce
randomness into the trees’ structure. The measurementsade after the warm-up period for 1000 s and the presented
results are the averages of 10 simulation runs. The resas less than 5 percent margin of error at a 95 percent level of
confidence.

7. Performance evaluation: Packet loss

We start the evaluation by considering the simplest casmolgeneous nodes with independent packet losses. When
considering heterogeneous systems, we follow the “cepatigbus” principle, i.e., we change one property at a time an
keep all other properties equal. Doing so allows us to utdedsand explain the effects of different types of hetereggn
The results we present were obtained with the mathematiodehpresented in Section 4, we show simulation results to
validate the simplifying assumptions of the model when ssagy. Most figures we show are composed of two sub-figures.
The sub-figure on the left shows the behavior of the overlaafiarge interval of the input parameter. The one on the right
is zoomed on values af of practical interest and can show both analytical and sitiwr results.
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7.1. The minimum depth overlay

We start the evaluation with the minimum depth overlay, that= 1, as this is the most common multi-tree-based overlay
structure in the literature [2,3,5,11,29,30]. We begirhveithomogeneous overlay, and in the following subsectionshoes
how heterogeneity influences the overlay’s performancekekp the number of clusters low, when calculating the trees’
structure, we assume that a node is in the same level in efl inewhich it does not forward data, i.e., either the pemalte
or the last level. Thus the nodes that forward data in a lelvifleotree belong to one of two clusters depending on the level
where they are in the trees in which they do not forward dale odes are members of altrees and the outdegree of
each node igl" = 1. We consider independent, homogeneous losses on theylieks, so thaIP,f (i, ) follows a binomial
distribution with parameterf p, andPé(O, j) =1 for all clusters.

Figure 7 shows the packet possession probability as a imofithe level where nodes are in the tree in which they fodwar
data for two loss probabilitiep = 0.1 andp = 0.14. The stability threshold ipmax = 0.129 for the given FEC parameters,
i.e., for p = 0.14 the overlay is unstable. Fpr= 0.1 the analytical results show a perfect match with the sitrariaesults.

For the unstable overlay the analytical results slightlgregtimate the simulation results, because the trees apzida

the simulations than calculated for a well-maintained.tiiédee upper bound of the packet possession probability diyen
(22) is tight for the potentially stable overlay only: in thastable overlay the poor reception in the last level impé#uoe
performance of the uppermost level. The lower bound giveBdation 5.3 is far below in the unstable state, which shows
that FEC reconstruction improvessignificantly in the unstable state as well.

Figure 8 plotstt as a function of the loss probability. Figure 9 shows sinmotaresults for the same scenarios. The
simulations verify that the decomposition approach giveEsieate results even for small overlays. The overlays astable
whereTi() = 0 for the corresponding FEC parameters and number of treghelunstable state drops suddenly. The
drop is faster for larger overlays, hence good results nbthwith a small overlay do not necessarily hold as the nummber
nodes increases. The results are however independent@fehay’s size in the stable state. Comparing results fiberdint
redundancy rates(n) shows that a higher redundancy rate results in a wider megfistability and higher values ot

Figs. 8 and 10 show that increasing the FEC block length, imregg, improves the performance of FEC in accordance
with earlier results on FEC performance [21]. Fig. 8 shoved thcan be increased at a given redundancy rate by increasing
the number of trees and the block lengti. Fig. 10 shows that increasimgcan improvert without having to increase the
number of trees, as long as the overlay is stable and lossemacorrelated.

7.2. Splitting the forwarding capacity

Increasing the number of trees decreases the depth of thiayead, as we have seen, improves the FEC performance.
At the same time it can increase the time it takes to find a pavefess one increases the number of trees where a node
can forward data [16]. Figure 10 showsas a function ofp for cases whes > 1. To decrease the number of clusters, we
assume for the model that a node is in the same level in theimeehich it forwards data. The simulation results in théatig
sub-figure show that this approximation is accurate. As shiovthe figure, for the considered independent losses isitrga
s decreases the stability region. Consequently, to imprd€ performance it looks more favorable to increasgithout
increasingr ands. We will see that under node churn the contrary is true iniSe&.
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The minimum breadth overlayThe minimum breadth overlay, in which nodes forward datdlitrees, is thes= T special
case o> 1 and has been studied earlier in the literature. The nunfbevels and the average number of hops between the
source and the peer nodes in this overla@{8l), so that nodes have to remain in almost the same level ireg tto avoid
large delays between the data arriving in different trefethely do so, the packet possession probability of nodesvadl leof

the overlay approaches the upper bound given in (22). Alddtanalysis of this overlay was presented in [14].

7.3. Overlay size

Figure 11 shows the dependencetafn the number of nodes in the overlay. We conclude that asstatelrlay can become
unstable for two reasons: increased packet losses anagattenumber of levels. It is not the number of nodes that sause
the degradation, but the number of levels needed to accommmdicem. Consequently, an overlay can become unstable for
lower values oN if the tree maintenance algorithm cannot keep the treeg ttowell-maintained.

Surprisingly, fort = n= 4 the overlay is stable in the whole considered intervaliferl6,n=4 and forr =n= 16 itis
however not, even though the overlay is not as deep fon = 16. This result seems counter-intuitive at the first sighina
point-to-point communications longer FEC blocks are uguabre efficient [21]. Nevertheless, in the case of multipées,

FEC reconstruction close to the source requires packeptiecein the trees, in which nodes are located in the lastideve
and consequently are likely not to receive the packets sH&C reconstruction works close to the source. Thus, a tonge
FEC code leads to higher possession probability if the sy&estable, the region of stability is however smaller.

7.4. Limiting the level spread

Our model reveals a significant deficiency of the minimum deperlay. The depth of the overlay influences the probabil-
ity of reconstruction even in nodes close to the source itrdein which they forward, since reconstruction requirasket
reception in the other trees, in which nodes are locatedanetst levels. Motivated by this deficiency, we consider how o
proposal to limit the level spread influences the overlagfgrmance. Limiting the level spread can of course inaehe
number of levels in the overlay, but it makes FEC reconsncnore efficient. Figure 11 shows that limiting the levelesd
does not decrease the performance of a stable overlay,sexpacted, the overlays with limited level spread remaihlst
for larger values oN.

7.5. Sensitivity to correlated losses

One of the major detriments of FEC is its poor performancennbsgses are correlated. In order to evaluate how loss
correlations affect the performance of overlay multicasp®ying FEC we showr for correlated losses on the input links
or on the output links of the nodes in Fig. 12. We used the @ilibedel with a conditional loss probability @, = 0.3 to

calculatePlf(i, j)and PCfJ(i, i), respectively. Correlations on the output links of the reoldave no effect on the performance
if n= 1, since the consecutive packets will be received by diffechild nodes. Correlations on the input links decrease
however the performance compared to the case of indepetuk=a@s forn = 1. A longer FEC block 1§ > 1) increases
the packet possession probability for both kinds of cotimta when the overlay is stable. Based on the model we know
that for correlated losses on the output links andrfor 1 the performance approaches thatnot T as py, increases.
Correlated losses affect the overlay’s performance mastigw loss probabilities as correlations decrease the mearber
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Fig. 12.mtvs pfor 1=4k/n=0.75,m=50,N = 10%, Puwjew = 0.3 correlated
losses on the input or on the output links.

of reconstructed packets. Consequently, correlationsedse the system’s region of stability and its region of ipiidaé
stability. The simulations shown in the right sub-figurewstaogood match with the model for correlated losses on theubutp
links. There is a mismatch in the case of correlations onrtpetilinks, as packets of the same block do not necessarivgar

successively in the simulation (and in real systems), hémeéoss correlation between packets in a block in the sitiaula
is lower thanpy .

7.6. Inhomogeneous losses

Figure 13 compares the performance of an overlay With 10* for four distributions of the loss probability experienced
by nodes and with the Bernoulli loss model. We use homogen@duosses with probabilitp as the reference, and compare
that to the following scenarios: 80 percent of the nodes igapee 075p while the rest p; uniform distribution or{0, 2p]; 50
percent of the nodes experience 0 while the rgstVe used 100 clusters per level to approximate the unifostridution
in the model. Both the model and the simulations showtiigtdecreases as the variance of the losses increases.

To see whether prioritization could help to alleviate thgative effects of loss inhomogeneity, Fig. 14 compares the
average packet possession probability in the overlay far dases: homogeneous losses, for inhomogeneous losbesitvit
any priority scheme (Inhom-NP), for inhomogeneous loss&sifizing nodes with low packet loss probability (InhoR)-
and for inhomogeneous losses and prioritization, alsdilignithe level spread (Inhom-PL) withh = 2. We consider = 4,
andN = 10* of which 50 percent experiencg2and 50 percent experience no losses. Prioritizing nodesibmsthe packet
losses they experience can be difficult in practice, butstilkinteresting if one could improve the system by suchlzesee
at all. Surprisingly, prioritization does not improvein the stable region of the system. Nevertheless, nodesnwitbhsses
experience better performance due to prioritization,timgithe level spread giving slightly larger gain. In the tatde region,
prioritization pays off as the decreaserofecomes much slower.
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Fig. 14.1tvs packet loss probability for inhomogeneous losses andiprio Fig. 15. 1 vs p for inhomogeneous output capacities.

tization.N =10, m=50,t1=n=4,k=3,s=1.

N=10"m=501=n=4k=3
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7.7. Inhomogeneous capacities

We start by showing the effects of inhomogeneous outputaitips. We consider prioritization based on the output ca-
pacities of the nodes. A practical alternative would be tasoder the number of children of a node [11], as that is edsier
estimate, but it would not help high contributor nodes joinihe overlay for the first time.

Fig 15 considers an overlay with= 4, andN = 10%, of which 65 percent are low contributors (LC) with = 2 and 35
percent are high contributors (HC) witth = 8. This ratio of high and low contributors is similar to thatnsidered in [11]
based on a measured trace. The figure shows a scenario wittgkaeous output capacities as reference, the inhomogeneou
case without priority, with priority, and also limiting thevel spread witl\, = 2. Prioritization does not make any difference
for a stable overlay, as the number of levels does not inflaéime performance of the overlay in the stable region. High an
low contributors experience the same performance too. Wethat as the number of levels decreases due to priordizati
based on the output capacities, the stability region migtrelase. For the same reason, prioritization gives supgeidor-
mance in the unstable state of the overlay. The simulatibow @ good match with the model, though for high losses the
model somewhat overestimatesvhich is due to the difference between the number of levetkérsimulation and the one
we calculated with.

Next, we consider inhomogeneous input capacities in Figod6= 4 andN = 10*. 65 percent of the nodes ha\#" | =
2 and the restH"| = 4. Prioritization is based on the input capacities of theesodPrioritization does not improve the
performance of the overlay in the stable state, though itggdo be beneficial in the unstable regime. Neverthelessg us
prioritization, nodes with high input capacity experiesignificantly better performance.

As a next step, we combine the previous two scenarios in Figfdt the low contributors we usgH"| = 2, and for
the high contributors we usgH'| = 4. The results show that the effects of prioritization arailsir to those in Fig. 16,
i.e., prioritization can give incentives to high contribrg but does not improve the overall performance in the ststalte.
Limiting the level spread slightly improves the performaseen by high contributors, as expected.

8. Performance evaluation: Node churn

We start by evaluating the sensitivity of the mean ratio e€dnnected parentS]A] to the node lifetime and the reconnec-
tion time distributions. We consider homogeneous input@utgut capacities anB[=g] = E[=g], that is, the reconnection
times are the same in the different trees. The simplicityhaf scenario allows us to focus on the sensitivity of the ltesu
to the distributions. We simulated two node lifetime ana#reconnection time distributions, and for each comtonatie
considered two scenarios, correspondingg@ndu; with graceful preemptionsi(= 1). We seN = 10*, m= 50. Figs. 18-
20 show that the exponential approximation is accurategars a lower bound for other distributions. Using a heanilet
distribution the proportion of short lived nodes is hight they have fewer children upon their departure, hence timgiact
is lower onE[A].

8.1. Effects on the data distribution

Next we apply the data distribution model to calculate the presence of node churn: for givewe seIP(Dé =0) =E[A].
The simulation results shown fop for the data distribution performance show a similarly gomatch in Fig. 21.

18



+uo,Model

+ur,ModeI

. —I:4,u0
3
J 0.4{ ——T1=16,u,
u - - 7I:4,u1
0.2 _, 71:16,u1
& 0 0
0.01 0.1 0.5 0.01 0.1 0.5 0.01 0.1 0.5
1k 1k 1/k
Fig. 18.E[A] vs 1/k for log-normal lifetime and Fig. 19.E[A] vs 1/k for Pareto lifetime and nor- Fig. 20.E[A] vs 1/k for Pareto lifetime and uni-
deterministic reconnection time distribution. mal reconnection time distribution. form reconnection time distribution.

For packet losses due to network failures increasing theklleEngth without increasing the number of trees does imgprov
the performance in a stable overlay as seen in Section 2Eghows that in the case of node departures this is not regdgss
true. Fort = 4, n = 16 the performance is equal to thattof 4, n = 8, and in fact is equal to that af=n = 4. Increased
block length gives however increased performance if thebarrof trees and the number of trees in which a node forwards
data increase as well, as shown in the figuresforl. The simulations were performed using the Pareto lifetime& normal
reconnection time distributions and show that the appration forn > 1 is accurate.

8.2. Why does preemption improve the performance?

We showed in Section 7 that not even the ideal preemptiotegies can significantly improve the average performance
of an overlay in its stable state in the case of packet lodéegertheless, simulation and measurement studies [Shibly s
that preemption does improve the overlay’s stability. The &re not contradictory.

Fig. 23 showgtas a function of the ratio of the mean reconnection times désadn the trees in which they forward data
(E[=e]) and in the ones in which they do ndE[Eg]). For givenE[=] we setE[=¢] + (t — 1)E[=g] = E[=] and consider two
cases. The best case, graceful preemptigf@4] = E[M],a = 1), and the worst case, non-graceful preemptions occurring
after the departure of every node that forwards d&f@g] = (t — 1) /tE[M],a = 0). The performance significantly improves
as E[=g|/E[=F] increases in both scenarios with a decreasing marginal gainany preemption scheme that decreases
E[=¢] without increasindE[=] is beneficial.

Finally we look at the effects of taxation and contributiaveae parent allocation [11] in Fig. 24. We consider an owerla
with T =n =8, k=6, andN = 10*. 75% of the nodes are low contributors (LC) with maximum egiged” = 4 and the
rest are high contributors (HC) with maximum outdegdée- 16. The sum of all outdegrees is not enough for all nodes to
connect to all trees. Hence, we consider four scenarioxdnasioNP 25% of the nodes connect tatrees, 50% of them
connect tar — 1 trees, and the rest to- 2 trees independent of their contribution. In scenafipfax— P andCA— P nodes
are prioritized based on their maximum outdegrees. In steRahe number of trees the nodes can join is random &Hn
In scenariolTax— P every node connects - 1 trees (taxation). In scenar@A— P HC nodes connect totrees, 67% of
LC nodes connect to— 1 trees, the remaining 33% connecttte 2 trees (contribution-aware parent allocation). We use
E[=g]/E[=F] = 11 for all scenarios, that is, the reconnection time is ghart the trees in which a node forwards data, but
prioritizing HC nodes does not decrease their reconnetitioes. Based on Fig. 23 a further increas&Eg] /E[=¢] would
not significantly influence the results. We do not model theretase o [=H¢] andE[=5C], neither the possible increase of
E[ZEC] andE[=LC]. The effect of such inhomogeneity is like that of decreasiegloss probability seen by HC nodes and
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and simulated lifetime distribution—reconnection time dsttion pairs.
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increasing that seen by LC nodes. Hence, it is equivalefigd@ase of inhomogeneous losses, for which we showed earlier
that prioritization does not improve the overall perforro@im the stable state of the system (Fig. 14).

The best average performance is achieved by'the- P scheme, th€ A— P scheme performs slightly better than the
schemeCA— P achieves the best performance for HC nodes, but the workCfoiodes. Consequently, giving incentives to
HC nodes can contradict to the goal of improving the averag®pnmance of the overlay.

9. Conclusion and practical consequences

In this paper, we presented an analytical model of the datalalition performance of multiple-tree-based overlaytimu
cast architectures. We developed lower and upper boundsdiass of overlays, and showed that the overlay’s perfocaman
shows a phase transition depending on the packet loss plitbaland the size of the overlay. Our findings led us to the
definition of an overlay architecture with limited level spd that shows improved stability and scalability propsrtising
the model, we evaluated the effects of inhomogeneous amelatad losses, heterogeneous input and output capaeitiés
investigated how prioritization can improve the overlgyéformance. We showed that the effects of node churn aes-det
mined by the ratio of the reconnection time and parent diseotion intensity, and are similar in nature to those of pack
losses. Based on our results we can draw a number of practinaequences that can serve as design guidelines for future
systems.

FEC performance in overlay multicast is determined by manyssygiarameters, a number of which (e.g., loss probability,
node churn and overlay size) change dynamically. HenceFE@ block length and the ratio of redundancy have to be
adjusted adaptively in order to maintain the system in alststiate. Albeit FEC can provide arbitrarily good performman
the necessary ratio of redundancy can be high if retrangmisare not used to decrease the packet loss rate betwees. nod

Retransmissions and FE&Ze both needed to define an efficient and scalable overlaitecture. Nodes should maintain a
list of backup parents in order to decrease the losses cayseute departures. Backup parents can be asked occagitnall
retransmit a piece of data, and should be located no deeher free than the parents of the node. Otherwise, if retresson
requests are limited to the parent within the tree, theransmissions do not decrease the loss probability causeleby t
disconnections after node departures.

Prioritization: The primary benefit of prioritization is the decrease ofudisances in the trees in which a node forwards
data. Prioritization does not always significantly imprakie overall system performance, but it gives incentivesades
with good performance.

Stability: If the overlay is stable, the number of levels does not infbeetihe performance significantly. The number of
levels influences however the region of stability, so thathmber of levels has to be kept low, e.g., by prioritizinghhi
contributor nodes. The stability region can be increasedsiyg shorter FEC codes, though shorter FEC codes giveanfer
performance in the case of stability.

Limited level spreadlt is possible to increase the stability region of large s by limiting the spread between the
levels where nodes receive data. Limiting the level sprésaltzelps to decrease the effects of nodes with poor coramecti
on the performance of high contributors. While one can ardpo@iethe fairness of this solution, it definitely gives inttees
to nodes to contribute.

The proposed model can easily be extended, and can be a te#ffdr future system designers. It is an open question
how the model can be applied to pull-based (a.k.a swarmingjlay multicast systems. We believe that there are many
similarities between the two approaches, but we leave thamarea of future work.
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