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• Introducing Local InFormation Enhancer (LIFE) module to comple-
ment global information with local context in the ViT architecture

• Versatile and Efficient: LIFE module can be easily integrated into
different ViT architectures with minimal computational and memory
costs, including auxiliary tokens.

• Boost Small-Dataset Results: LIFE module boosts the performance of
ViTs on small image classification datasets and dense prediction tasks
like object detection and semantic segmentation.

• Introducing a novel visualization method, Dense Attention Roll-Out,
to visualize attention for dense prediction tasks.
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Abstract

Vision transformers (ViTs) achieve remarkable performance on large datasets,
but tend to perform worse than convolutional neural networks (CNNs) when
trained from scratch on smaller datasets, possibly due to a lack of local induc-
tive bias in the architecture. Recent studies have therefore added locality to
the architecture and demonstrated that it can help ViTs achieve performance
comparable to CNNs in the small-size dataset regime. Existing methods,
however, are architecture-specific or have higher computational and mem-
ory costs. Thus, we propose a module called Local InFormation Enhancer
(LIFE) that extracts patch-level local information and incorporates it into
the embeddings used in the self-attention block of ViTs. Our proposed mod-
ule is memory and computation efficient, as well as flexible enough to process
auxiliary tokens such as the classification and distillation tokens. Empirical
results show that the addition of the LIFE module improves the performance
of ViTs on small image classification datasets. We further demonstrate how
the effect can be extended to downstream tasks, such as object detection
and semantic segmentation. In addition, we introduce a new visualization
method, Dense Attention Roll-Out, specifically designed for dense prediction
tasks, allowing the generation of class-specific attention maps utilizing the
attention maps of all tokens.∗
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1. Introduction

Transformers, a new kind of encoder-decoder model that uses a self-
attention mechanism to process input data [1], were initially proposed for
sequence modeling in the natural language processing (NLP) domain. The
success of transformers in NLP has led to the development of these architec-
tures for a wide range of vision tasks [2, 3, 4]. Vision transformers (ViTs),
when trained or pre-trained on a large dataset, outperform their CNN coun-
terparts. However, for many real-world vision tasks, a large amount of anno-
tated data is either too expensive or not feasible. As a result, the data-hungry
nature of ViTs prevents them from being applied to a number of crucial real-
world problems for which a limited amount of annotated data are available.

In the majority of ViTs, an image is divided into a sequence of non-
overlapping patches, from which the self-attention layer learns the global
context. Information in patches that are spatially adjacent to a given patch
can be used to create its local context. ViTs do not, however, exploit this
information due to a low inductive bias that is only coming from strided
convolution in the patch embedding layer [2]. Convolutional layers, on the
other hand, enable CNN architectures to utilize local information at the pixel
level, thereby enhancing their data efficiency [5, 6]. The local context may
therefore be essential in enabling ViTs to learn vision tasks with fewer data
samples.

Recent studies have improved the use of the local context in ViTs through
architectural modifications [3, 7], token pre-processing [8], or the addition of
convolutional layers [9]. Despite the fact that these findings support the im-
portance of utilizing local information, their design is not adaptable enough
to be annexed to other ViT architectures and/or has a negative impact on
other performance factors such as memory consumption and computational
cost. Therefore, it is advantageous to devise a method to incorporate local
information effectively and modularly into the architecture of ViTs.

The functionality of a transformer architecture depends on its self-attention
layers, which require a sequence of embeddings. These embeddings are typ-
ically generated using a point-wise feedforward layer with a receptive field
consisting of only one patch from the input image or one token from the
previous layer (Figure 1(a)). However, the use of larger receptive fields can
result in embeddings that contain local information from spatially adjacent
patches, as shown in Figure 1(b). We hypothesize that by enriching the em-
beddings with this local context, vision transformer models (ViTs) will be

2



Figure 1: In vision transformers, the input image is divided into N non-overlapping
patches, which are then transformed into embeddings. (a) These patch embeddings are
then passed through a point-wise feedforward layer to generate query (Q), key (K), and
value (V) embeddings. The Q, K, and V embeddings are then inputted to a self-attention
layer. (b) Alternatively, the LIFE module integrates local information from adjacent
patches into the Q, K, and V embeddings using sequentially larger receptive fields. For
example, the standard module uses only the ith patch to generate the ith Q/K/V embed-
ding, while the LIFE module also includes information from adjacent patches (shown in
green and orange).

able to learn the global context with fewer data points and perform better
on smaller datasets.

We propose the LIFE (Local InFormation Enhancer) module to improve
the performance of vision transformers on smaller datasets by creating em-
beddings for self-attention layers with larger receptive fields. The LIFE mod-
ule reshapes the input tokens from the previous layer into an image format
and applies convolution layers with multiple kernel sizes. After the feature
maps from the convolutional layers are transformed back into tokens, they
are sent to the self-attention layers. To add local context to all patch tokens
and any other auxiliary tokens in the ViT architecture, we use depthwise
separable convolutional (DSC) layers [10] in the LIFE module. Unlike a
standard convolution layer, a DSC layer performs the computations in two
steps: a depth-wise convolution layer followed by a point-wise convolution
layer, which is more computationally efficient. Note that auxiliary tokens,
such as classification and distillation tokens, in ViTs, are processed by the
pointwise convolution layer in the DSC.

We evaluate the efficacy and versatility of the LIFE module by integrating
it into different ViT architectures with varying capacities. Using DeiT, T2T,
and Swin transformers as base architectures, we evaluate classification per-
formance on the ImageNet-100, CIFAR10, CIFAR100, and Tiny-ImageNet
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datasets. We also evaluate the addition of LIFE to ViTs on dense predic-
tion tasks using the VOC dataset for object detection and the Cityscapes
dataset for semantic segmentation tasks. Our extensive empirical experi-
ments demonstrate that the LIFE module can be easily integrated into var-
ious ViT architectures and consistently improves performance, regardless of
the task at hand, with negligible memory and computation overhead. In ad-
dition, we qualitatively assess the contribution of the LIFE module to each
task. To visualize the attention for dense prediction tasks, we propose a
dense attention roll-out. Our results further support the notion that LIFE
can enhance local context learning by guiding the network to attend to more
specific regions. The contributions of our work can thus be summarized as
follows;

• Introducing Local InFormation Enhancer (LIFE) module, which com-
plements global information by adding local context to the embeddings
used in ViT.

• Demonstration of the ability of the LIFE module to be easily integrated
into different ViT architectures with minimal memory and computation
costs overhead, even in the architecture that contains auxiliary tokens.

• Employing the LIFE module in different ViTs results in performance
gains on smaller datasets such as ImageNet-100, Tiny-ImageNet, CI-
FAR10, and CIFAR100.

• LIFE module is versatile and also results in a boost in performance for
dense prediction tasks.

• Proposing a novel method, Dense Attention Roll-Out, to visualize at-
tention for dense prediction tasks.

• Qualitative evaluation of the contribution of the LIFE module to each
task using our proposed visualization method.

2. Related Work

Vision Transformers (ViT). have demonstrated competitiveness with con-
volutional neural networks (CNNs) in various vision tasks, such as image
classification [2, 11, 3], object detection [12], and semantic segmentation
[13, 14]. These models utilize self-attention at the early levels to construct
a convolution-free neural network. Following the introduction of the original
ViT model [2], numerous studies have focused on improving classification
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performance through architectural modifications, knowledge distillation, or
advanced data augmentation techniques [11, 15, 8, 16, 17, 3, 18].

Locality. Convolutional neural networks (CNNs) have become a common ar-
chitecture for visual tasks. They typically contain a stack of convolution
layers with small kernel sizes that utilize information from neighboring fea-
ture vectors. This architectural design exploits the spatial correlation in the
natural images, making CNNs more data efficient. Evidence from CNNs
suggests that it is essential to use local information to improve performance
on small-scale datasets [5, 6]. In contrast, the self-attention mechanism in
the transformer block establishes a global relation between tokens, but ig-
nores the locality. To address this, many approaches have been proposed to
introduce locality bias into transformer architectures through architectural
modifications.

Several recent studies have proposed hybrid networks to incorporate lo-
cality bias from convolution operations into transformer architectures. CeiT
[19] uses low-level features from CNNs rather than patches extracted from
raw images, and introduces a depth-wise separable convolution into the feed-
forward network within the transformer block to improve locality. CvT [20]
integrates convolution into token embeddings, allowing a progressively de-
creasing number of tokens while increasing the dimension of the features.
It also uses a depth-wise separable convolution to compute query, key, and
value. Crossformer [21] addresses the lack of multiscale information in trans-
former architectures by processing tokens using short- and long-distance at-
tention and combining multiscale information from neighboring tokens using
multiple convolution layers with different kernel sizes within a pyramid-like
architecture.

Another line of work proposes to incorporate a pyramid structure derived
from CNNs into the transformer architecture in order to induce locality in
the network. This is achieved through various techniques, such as the use of
a gradual shrinking technique in PVT [16, 17], self-attention within windows
in Swin [3, 18], and hierarchical aggregation of transformer blocks in NesT
[22]. All of these approaches involve the gradual combination of neighboring
tokens, enabling the network to consider the local context in its processing.

Other approaches aim to introduce locality while maintaining the pure
transformer architecture. T2T [8] replaces the standard patch embedding
layer with progressive tokenization to combine neighboring tokens; while
TNT [15] divides the input image into large patches called visual sentences
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Figure 2: Architecture of a standard ViT. In order to incorporate local context in the em-
beddings for multi-head self-attention layers, we replace the pointwise feedforward (PFF)
layer with our proposed LIFE module (details in Figure 3), where it generates a multiscale
query, key, and value.

and small patches called visual words. TNT uses a shared sub-transformer
architecture to extract the relation and similarity between the small patches,
and passes the information generated by the sub-transformer to the visual
sentence for further processing by the standard transformer block.

However, the aforementioned approaches are architecture-specific and fo-
cus on designing effective models for large-scale datasets, but may not nec-
essarily perform well on smaller datasets. Liu et al. [23] propose a method
that introduces a self-supervised task to predict the geometric distance be-
tween pairs of output tokens, while Li et al. [24] propose a distillation-based
training mechanism that uses a lightweight pre-training CNN model to distill
its features into a ViT. Although these approaches are flexible and can be
integrated into different architectures, they may also come with additional
memory and computational costs, and may not be as effective when applied
to smaller datasets.

In contrast, the LIFE module is a modular and efficient approach that
uses locality to generate richer embeddings, which is more effective for learn-
ing with less data. It introduces locality in query, key, and value, making it
flexible for integration with any transformer architecture. Unlike CvT, the
LIFE module benefits from multiscale information and is more efficient com-
pared to T2T and Crossformer, as it uses dense concatenation and depthwise
separable convolution. Additionally, unlike previous work, the LIFE module
utilizes multi-scale locality in every block and can be used in conjunction
with training mechanisms for small-scale datasets.
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3. Methodology

In ViTs, an input image is divided into N non-overlapping square patches
[11]. These patches are then flattened and embedded in patch tokens Xpatch

of length C using a linear layer. Positional embeddings are added to the
token patches and an additional classification token Xcls, which is a learnable
embedding of the same length, forming a matrix X:

X = [Xpatch|Xcls] ; X ∈ RC×(N+1), Xpatch ∈ RC×N , Xcls ∈ RC×1 (1)

The resulting matrix is then passed to a series of L transformer blocks (Figure
2), each consisting of a point-wise feedforward layer (PFF), followed by a
multi-head self-attention layer (MHSA) and a multi-layer perceptron (MLP):

Q,K, V ← PFF (X),

Xout = MLP (MHSA(Q,K, V )),
(2)

The final prediction is usually obtained by processing the classification
token at the end of the last transformer block or by using the global average
pooling of the patch tokens. However, standard ViTs lack local inductive
bias; therefore, to introduce local context, we replace the PFF in Eq. 2 with
our proposed LIFE module.

3.1. LIFE Module

To incorporate local information, the LIFE module uses multiple hierar-
chically arranged convolutional layers, as depicted in Figure 3. The first layer
in the hierarchy is always a point-wise convolution with the smallest recep-
tive field, while subsequent layers have progressively larger receptive fields
due to increasing kernel sizes. The output features of these layers represent
local information gleaned from various receptive fields, and are rearranged to
obtain the final query Q, key K, and value V . The kernel sizes and paddings
are configured to maintain constant spatial resolution throughout all layers,
and for similar reasons, the channel size of all convolutional layer output
feature maps is fixed at a constant value C ′.

Except for the first layer, the LIFE module uses depth-wise separable con-
volutions [10] for all other layers, which consist of a depth-wise convolution
followed by a point-wise convolution. This type of convolution is efficient
in terms of memory and computation, allowing the LIFE module to have
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Figure 3: Overview of LIFE module. It consists of a hierarchy of convolutional layers,
with the first layer being a point-wise convolution and the remaining layers being depth-
wise separable convolutions. Both the classification token Xcls and patch tokens Xp′

(arranged in the input image format) are passed through these layers (marked in ↓ and
↓, respectively). Each layer in the hierarchy outputs local information from a relatively
larger receptive field. The information is then divided into query qi, key ki, and value vi
(including the processed class token represented as a gray box). Then, these hierarchical
characteristics are rearranged to form the final query Q, key K, and value V .

minimal overhead compared to the original PFF layer. In addition, point-
wise convolution can be used to process any number of auxiliary tokens, such
as the classification token and the distillation token. The LIFE module is
described in more detail in the following.

Processing Patch Tokens in the LIFE Module.. The patch tokens Xpatch ∈
RC×N are rearranged into an image format of shape Xp′ ∈ RC×H×W , where
N = H ×W . The Xp′ is then passed through a series of convolutional layers
with progressively increasing receptive fields. Here, we use three layers:

Fp1 = Conv1(Xp′); Fp2 = Conv2(Fp1); Fp3 = Conv3(Fp2); (3)

where Fp1 , Fp2 , Fp3 ∈ RC×H×W represent three different scales of local features
obtained from the patch tokens. Each of these features is divided into three
in the channel dimension and rearranged to form embeddings Qp, Kp, Vp ∈
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RC×H×W ;

Qp =
[
F (C/3×H×W )
p1

, F (C/3×H×W )
p2

, F (C/3×H×W )
p2

]T
Kp =

[
F (C/3×H×W )
p1

, F (C/3×H×W )
p2

, F (C/3×H×W )
p2

]T
Vp =

[
F (C/3×H×W )
p1

, F (C/3×H×W )
p2

, F (C/3×H×W )
p2

]T (4)

Processing Auxiliary Tokens in the Proposed Module.. The class token Xcls ∈
RC×1 and any other auxiliary tokens can be processed using point-wise con-
volutions in the LIFE module:

Fc1 = Conv 1(Xcls);

Fc2 = PointConv 2(Fc1);

Fc3 = PointConv 3(Fc2);

(5)

where Fc1 , Fc2 , Fc3 ∈ RC×1 represent different linear projections of the classi-
fication token for different scales. Next, each of the features is divided into
three parts in the channel dimension and rearranged to form embeddings
Qc, Kc, Vc ∈ RC×1:

Qc =
[
F (C/3×1)
c1

, F (C/3×1)
c2

, F (C/3×1)
c2

]T
Kc =

[
F (C/3×1)
c1

, F (C/3×1)
c2

, F (C/3×1)
c2

]T
Vc =

[
F (C/3×1)
c1

, F (C/3×1)
c2

, F (C/3×1)
c2

]T (6)

Subsequently, the features of the patch tokens ∈ RC×H×W are flattened in
spatial dimensions. The embeddings Q, K, and V obtained from the patch
tokens and the auxiliary tokens are concatenated to form the final embed-
dings Q,K, V ∈ RC×(N+1), which contain local features from different scales.
The global information obtained through self-attention is complemented by
the local context information encoded in these embeddings, resulting in im-
proved performance. By combining global and local information, the model
can better understand the context and relationships between different parts
of the input.

4. Experimental Settings

We analyze the LIFE module by integrating it into different state-of-
the-art transformer architectures. The main experiments are conducted on
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small-scale image datasets, as our study focuses primarily on the performance
of the transformer with limited data. We evaluate our model for the image
classification task. However, many real-world applications are based on ob-
ject detection or semantic segmentation, so we also examine how the module
affects downstream dense prediction tasks. We demonstrate the effectiveness
of our module for small datasets with quantitative and qualitative results in
classification, detection, and segmentation tasks.

Datasets. Small-scale datasets used in our experiments include CIFAR-100
[25], CIFAR-10 [25], TinyImageNet [26], and ImageNet-100 [27]. These
datasets contain 50k, 60k, 100k, and 130k training samples, respectively.
ImageNet-100 and TinyImageNet are subsets of the ImageNet-1k dataset
[27], with 200 and 100 classes, respectively. CIFAR-10 and CIFAR-100 have
10 and 100 classes, respectively. Except for the ImageNet-100 datasets, all
other datasets have small image resolutions, either 32×32 or 64×64. The
VOC dataset [28] is used for object detection, and the Cityscapes dataset [29]
is used for semantic segmentation tasks. The VOC and Cityscapes datasets
contain 1,464 and 5000 samples for training, respectively.

Implementation Details. In our experiments, we used the Tiny and Small
variants of the DeiT [11], T2T-ViT-12, and Swin transformers as baseline
models for the classification task. We obtained the LIFE variants of these
models by replacing the linear projection that generates the query, key, and
value with the LIFE module. We employ three scales with kernel sizes of 1,
3, and 5 and zero paddings of sizes of 0, 1, and 2, respectively.

We use the original image size in our experiments. For the Swin trans-
former, we select a window size of 8, and for T2T-ViT-12, we decrease the
token dimension from 255 to 252 in order to process the token in a multiscale
manner in the LIFE module for all datasets. Baseline models were designed
for an input image size of 224×224. Therefore, we keep the network config-
urations the same as the baselines for the ImageNet-100 dataset. Only for
the Swin architecture, we resize the input to 256×256. For other datasets
with small image sizes, we used a patch size of 1 for Swin and 4 for DeiT
architectures. To adapt T2T-ViT-12, we replaced the first unfold operation
with a 3×3 kernel with a stride of 2 and the last unfold operation with a 1×1
kernel.

For detection and segmentation tasks, we use a tiny version of DeiT and
Swin as the backbone. In order to highlight the effect of the LIFE module,
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we employ simple heads for dense prediction tasks. For the object detection
task, we exploit DETR [12] and evaluate different combinations of backbone
and head with and without the LIFE module. For segmentation tasks, we
use simple upsampling after the linear transformation operation as the seg-
mentation head. The input image size for both tasks is 512×512.

For the classification, detection, and segmentation tasks, we followed the
training details in [11], [30], and [13]. We re-train all models from scratch
with random initialization in our framework for a fair comparison. We use
a batch size of 512 for all datasets. For the dense prediction tasks, we also
present results for ImageNet pre-trained initialization, as it is believed that
the initialization can significantly impact the final performance.

Unlike transformer models, we observed that the ResNet [5] architecture
benefited more from simple augmentations for small datasets. We, there-
fore, apply no augmentation other than random crop and random horizontal
flip. ResNet models are trained with SGD with a momentum of 0.9 for 200
epochs. The initial learning rate is set to 0.1 and adjusted with a multi-stage
scheduler, which multiplied the learning rate by 0.2 at epochs 60, 120, and
160.

5. Quantitative Results

In the following, we present the results of the evaluation of the LIFE
module on various tasks and datasets. We first examine the efficacy of the
LIFE module in addressing the performance gap between the transformer
and the CNN counterpart when trained on smaller datasets in the image
classification task. We then evaluate the versatility of the LIFE module
by employing it for dense prediction tasks, including object detection and
semantic segmentation.

5.1. Image Classification

We examine the efficacy of the LIFE module in addressing the perfor-
mance gap between the transformer and the CNN counterpart when trained
on smaller datasets. The LIFE module aims to address this issue by intro-
ducing locality bias into the transformer architecture through the use of con-
volutional layers. We train models on a small image classification dataset and
compare their performance with that of CNNs, such as ResNet, of similar size.
As shown in Table 1, the efficiency of the LIFE module is demonstrated by
integrating it into multiple models with different sizes and architectures. We
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Table 1: Performance comparison of ViTs on small-scale image classification datasets
with and without the addition of the LIFE module. The results include Top-1 accuracy,
number of parameters, and GMAC for DeiT and T2T architectures with an input size of
224×224×3, and for the Swin architecture with an input size of 256×256×3.

#Params GMAC CF-10 CF-100 Tiny-IM IM-100
CNN

Resnet-18 11.23 2.37 94.14 75.10 60.86 80.74
Resnet-50 23.71 5.35 94.32 74.25 63.45 82.70

Transformers
DeiT-T 5.54 1.26 85.65 51.45 54.89 63.56
DeiT-T-LIFE 5.62 1.27 89.28 71.74 60.51 68.32
T2T-ViT-12 6.66 1.74 88.41 52.51 57.89 83.58
T2T-ViT-12-LIFE 6.59 1.71 89.96 54.51 60.52 83.96
DeiT-S 21.70 4.61 87.24 70.39 55.08 80.84
DeiT-S-LIFE 21.85 4.64 90.38 73.97 59.78 81.52
Swinv2-T 27.72 5.95 95.03 76.65 64.78 86.86
Swinv2-T-LIFE 27.88 6.01 95.14 77.48 65.84 86.98

use accuracy as a performance metric for comparison. The results show that
the use of the LIFE module in the transformer architecture improves perfor-
mance on small-scale datasets across different architectures and model sizes.
The improvement is more significant for smaller model sizes; for instance,
the LIFE module improves the performance of the DeiT-Tiny architecture
by approximately 15% and the DeiT-Small architecture by approximately
5% on average of small dataset.

Although the T2T-ViT-12 and Swin transformers already incorporate
some degree of locality through their modified architectural designs (i.e., the
token-to-token module in T2T-ViT-12 processes overlapping windows; and
the Swin has a pyramid architecture that combines neighboring tokens at
each stage), the integration of the LIFE module further improves perfor-
mance by providing multi-scale locality in every block. Overall, the improve-
ment gain is more significant for DeiT, which lacks local information in its
architecture, compared to the T2T and Swin Transformers.

We also report the number of parameters and GMACs required to in-
fer an image size of 224×224 for T2T and DeiT, and 256×256 for the Swin
transformer. The LIFE module has a negligible impact on the number of
parameters and computations. In fact, T2T-ViT-12-LIFE is even more effi-
cient than the baseline, as it has an embedding size of 252 compared to 256
for T2T-ViT-12.
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Overall, these results demonstrate that the addition of the LIFE module
improves the performance of ViTs on various small datasets and architec-
tures. This effect is more prominent when the model is smaller and the
dataset is more complex (with a higher number of classes and fewer sam-
ples per class). Additionally, the LIFE module can be easily integrated into
different architectures with minimal memory and computational overhead.

5.2. Impact and Importance of Multiscale Embeddings

To demonstrate the effectiveness of multiscale information, we considered
a modified version of the LIFE module called LIFE-OneScale, which encodes
information using a single scale with a kernel size of three, similar to CvT. We
evaluated this configuration by integrating it into DeiT-Tiny on the CIFAR-
100 dataset. Using a single scale, we observed over 9% improvement over
the baseline. However, encoding multiscale information with three kernels of
sizes 1, 3, and 5 resulted in over 20% improvement over the baseline. These
results emphasize the advantage of using multi-scale information.

Table 2: Comparison of performance on the CIFAR-100 dataset for models without locality
(DeiT-T), with one-scale locality (DeiT-T-OneScale), and with multi-scale locality (DeiT-
T-LIFE).

Model Deit-T Deit-T-OneScale Deit-T-LIFE
Accuracy 51.45 60.64 71.74

5.3. Object Detection

For the object detection task, we use the DETR architecture [12], which
consists of a feature extractor as the backbone and a transformer encoder-
decoder (EncDec). In the encoder, the features extracted by the backbone
are flattened and used as query Q, key K, and value V in the self-attention
layer of the encoder. In the decoder, the encoder output is used as Q and K.
V is defined as a learnable parameter that is later used to predict the final
details of the object.

To evaluate the effect of the LIFE module, we integrate it into both the
backbone and the encoder-decoder. The DETR encoder-decoder does not
include a linear transformation to generate Q, K, and V . To ensure a fair
comparison, we first add a linear layer to the encoder-decoder just before
self-attention to generate Q, K, and V from the backbone features, which is
denoted as EncDec-Linear. Then, we replace this linear layer with the LIFE
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module, referred to as EncDec-LIFE. We use the encoder-decoder without
any transformation as a baseline, which is referred to as EncDec. We use the
DeiT-T and Swinv2-T architectures and their LIFE variants as the backbone.

Table 3: Evaluation of the effectiveness of adding the LIFE module to ViTs in the object
detection task using the DETR architecture with DeiT-T as the backbone, trained and
tested on the VOC dataset.

Backbone Head # params GMAC mAP F1-Score
Random Initialization

DeiT-T
EncDec 27.20 14.20 27.31 37.52
EncDec-Linear 28.38 14.50 29.76 40.24
EncDec-LIFE 28.19 14.45 31.37 41.80

DeiT-T-LIFE
EncDec 27.27 14.28 27.09 37.49
EncDec-Linear 28.46 14.58 29.22 39.60
EncDec-LIFE 28.26 14.53 32.21 42.52

ImageNet-1k Initialization

DeiT-T
EncDec 27.20 14.20 72.12 79.32
EncDec-Linear 28.38 14.50 73.02 80.12
EncDec-LIFE 28.19 14.45 73.51 80.42

DeiT-T-LIFE
EncDec 27.27 14.28 72.43 79.68
EncDec-Linear 28.46 14.58 73.05 80.16
EncDec-LIFE 28.26 14.53 73.92 80.73

Swinv2-T
EncDec 50.07 27.32 78.21 84.48
EncDec-Linear 51.26 27.62 78.94 85.01
EncDec-LIFE 51.06 27.57 80.57 86.13

Swinv2-T-LIFE
EncDec 50.23 27.57 80.24 85.92
EncDec-Linear 51.41 27.88 81.27 86.73
EncDec-LIFE 51.22 27.83 81.27 86.68

Table 3 shows the mAP and F1 scores for different combinations of the
backbone and encoder-decoder. We observe that adding linear layers to gen-
erate Q, K, and V leads to improvement. Replacing the linear layer with
the LIFE module leads to additional improvement, indicating that the local
information from neighboring patches can aid in more accurate object detec-
tion in a scene. The best results are obtained when the LIFE module is used
in both the backbone and the encoder-decoder.

We also evaluate the performance of the LIFE module with two different
initializations. When models are randomly initialized, the LIFE module
improves performance by ∼+4 mAP. When ImageNet-1k pre-trained weights
are used for initialization, the LIFE module improves performance by ∼+2
mAP. These results suggest that the inclusion of locality bias can be beneficial
when training a model from scratch with a small dataset.
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Table 4: Evaluation of the effectiveness of adding the LIFE module to ViTs on the semantic
segmentation task using the DeiT-T architecture as the backbone, trained and tested
on the Cityscapes dataset. The results include the mean IoU (mIoU), the number of
parameters, and the computation cost (in GMAC).

Model # params GMAC mIoU
Random Initialization

DeiT-T 10.13 10.50 31.89
DeiT-T-LIFE 10.21 10.58 33.73

ImageNet-1k Initialization
DeiT-T 10.13 10.50 58.62
DeiT-T-LIFE 10.21 10.58 59.17
Swinv2-T 32.36 23.95 59.37
Swinv2-T-LIFE 32.52 24.20 60.25

5.4. Semantic Segmentation

For the semantic segmentation task, we use a simple segmentation archi-
tecture to assess the effectiveness of the LIFE module. We use the DeiT-T
and Swinv2-T architectures as the backbone and a simple linear layer fol-
lowed by upscaling to match the dimension of the features to the number of
classes as the segmentation head. DeiT-T-LIFE and Swinv2-T-LIFE refer to
models in which the LIFE module is integrated into all the attention layers
in the backbone.

Table 3 shows the performance in terms of the number of parameters,
GMAC, and mIoU results for both models and two initialization methods.
The LIFE module improves performance in both cases. When the model
is initialized with random weights, the LIFE module improves performance
by ∼2%. If ImageNet-1k pre-trained weights are used for initialization, the
improvement is 0.55%. Similar to the object detection task, we observe a
greater improvement when the model is trained from scratch.

6. Qualitative Results

To understand the decision-making process of a transformer model, we
present the results of qualitative analyses using attention maps derived from
transformer architectures. First, we generate attention visualizations for the
classification task employing the existing Attention Roll-Out method [31].
Then, we propose the Dense Roll-Out method, which generates class-specific
attention maps for dense prediction tasks, and demonstrate the effectiveness
of the LIFE module utilizing our proposed visualization method.
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Figure 4: Comparison of DeiT-T attention maps with and without the LIFE module,
trained on the ImageNet-100 dataset, using the Attention Roll-Out method [31].

6.1. Image Classification

We present a qualitative analysis of attention maps generated from DeiT-
S with and without the LIFE module, trained on the ImageNet-100 dataset.
As shown in Figure 4, the attention of a standard DeiT-T is scattered between
the background and the foreground. However, when the LIFE module is
used, the ViT architecture gains more local information, enabling it to better
identify the foreground object and focus more on it.

6.2. Dense Prediction Tasks

Dense Attention Roll-Out. Attention mechanisms in transformer archi-
tectures allow the model to consider contextual information about the re-
lationships between input tokens within a transformer block. Attention vi-
sualizations, which display the attention weights assigned to different input
tokens, can provide insight into how the model makes its decisions and how
well it can generalize to unseen data. There have been several methods pro-
posed in the literature for generating attention visualizations in classification
tasks, such as Attention Roll-Out [31] and Gradient Attention Roll-Out [32].
These methods have been effective for classification tasks in vision transform-
ers, but there is currently no method proposed for dense prediction tasks,
such as object detection and semantic segmentation.
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Figure 5: Comparison of attention maps of object detection models with and without the
LIFE module using the proposed Dense Roll-Out method.

To address this gap, we propose a new method, Dense Attention Roll-Out,
to generate attention visualizations in dense prediction tasks. This method
is based on the Attention Roll-Out method, which creates a pairwise atten-
tion graph by linearly combining attention from all blocks in a transformer
architecture. However, we modified the method to specifically target dense
prediction tasks. In contrast to the standard method, which only uses the
attention map corresponding to the classification token, our method utilizes
attention maps of all tokens, since all patch tokens are utilized for dense pre-
diction tasks. Additionally, we use simple heads to generate attention maps
using the features of the backbone, where most of the relevant information
for prediction is located.

To generate class-specific attention maps, we use network predictions to
identify relevant tokens for predicting a particular class by aligning the tokens
spatially with the predictions, using either a segmentation map or a bounding
box depending on the task. We then take the average of the attention maps
for these corresponding tokens, remove the global content, and calculate the
final class-specific attention map. The global content is common for all tokens
that contain global information from the input image and is obtained by
taking the average of all tokens.
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Figure 6: Comparison of attention maps of segmentation models with and without the
LIFE module using the proposed Dense Roll-Out method.

Result. In order to demonstrate the effect of the LIFE module, we chose
simple heads for both object detection and segmentation tasks. The use of
simple heads allows us to generate visualizations using the backbone features,
where the information for prediction is primarily located. Figures 5 and
6 show a comparison of models with and without the LIFE module in the
backbone for object detection and segmentation tasks, respectively. The first
three columns depict the input image, prediction, and global attention. The
remaining columns show the class-specific attention maps, with the class
names displayed at the top. The attention maps illustrate that the LIFE
module helps the model focus more on the relevant regions of the input
image, leading to more accurate predictions.

7. Conclusion

We proposed a novel module, Local InFormation Enhancer (LIFE), for
vision transformers (ViTs) that effectively leverages local information from
images to generate more informative embeddings for the self-attention layers

18



in each transformer block. We evaluated the impact of the LIFE module on
models with different sizes (DeiT-Tiny and DeiT-Small) and architectures
(DeiT, T2T, and Swin). The classification results showed that our proposed
method consistently improved performance on small datasets. Additionally,
we found that the improvement was more significant when the model had a
lower capacity, indicating that the model effectively benefits from the locality
bias introduced by the LIFE module. The LIFE module was also effective
in the hierarchical transformer architecture, which inherently utilizes multi-
scale information, suggesting that locality is important even at the window
level. Furthermore, the incorporation of the LIFE module into ViTs for ob-
ject detection and segmentation tasks improved performance, demonstrating
the versatility and effectiveness of the LIFE module in various tasks. We also
observed that initializing the model with parameters learned from the Ima-
geNet dataset led to greater improvement compared to training the model
from scratch, indicating that the local information encoded by the LIFE mod-
ule helps ViTs achieve improved performance with minimal computational
or memory overhead in a range of vision applications, including classifica-
tion, object detection, and semantic segmentation. Finally, we introduced a
new visualization method, Dense Attention Roll-Out, specifically tailored for
dense prediction tasks such as object detection and semantic segmentation.
This method allows for the generation of class-specific attention maps us-
ing attention maps of all tokens, providing insight into the decision-making
process and generalization capabilities of a transformer architecture.

Appendix A. Comparison with Related Works

The design of several architectures, such as ConVit, Crossformer, and
CvT, incorporates locality. This section aims to clarify the novelty of the
LIFE model compared to these existing approaches.

ConViT utilizes a gated positional self-attention mechanism (GPSA) that
integrates a positional self-attention component with a “soft” convolutional
inductive bias. The self-attention block is enhanced by including positional
information to achieve this objective. In contrast, LIFE alters the creation
of query, key, and value embeddings, incorporating various convolutional op-
erations to incorporate multiscale information into these embeddings before
the self-attention operation.

Crossformer proposes two modules, namely the Cross-scale Embedding
Layer (CEL) and the Long-Short Distance Attention (LSDA) modules, to
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incorporate locality into their design. The CEL module integrates vari-
ous patches with different scales into each embedding to provide cross-scale
features to the self-attention module. The LSDA module divides the self-
attention module into short-distance and long-distance components to re-
duce computational load while maintaining small- and large-scale features in
the embeddings. Our LIFE module shares a similar objective to the CEL
module, as both leverage multiscale information. However, the LIFE module
offers a more efficient and adaptable design compared to the CEL module.
Specifically, the LIFE module utilizes depthwise separable convolution, which
provides superior efficiency compared to the CEL module. Additionally, the
LIFE module can handle auxiliary tokens, improving its flexibility for inte-
gration with diverse architectures. On the contrary, the Crossformer design
does not incorporate auxiliary tokens, which prevents the CEL module from
having this functionality.

The introduction of locality in CvT has been accomplished through two
mechanisms: a convolutional patch embedding layer and a convolutional
query, key, and value projection. The convolutional projection layer in CvT
is similar to our own work; however, CvT employs only a single scale with
a kernel size of three. In contrast, our LIFE module encodes multiscale
information utilizing three scales with kernel sizes of 1, 3, and 5.

To perform a comparative analysis of the efficacy of the LIFE module
with state-of-the-art approaches, we evaluated the performance of the CvT-
21 model, which has 30 million parameters, on the CIFAR-100 dataset. Our
results indicate that CvT-21 achieves an accuracy of 76.07%. The Swin
Transformer with the LIFE module achieved an accuracy of 77.48%. This
finding suggests that the LIFE module, in combination with a strong back-
bone, can outperform the CvT-21 model even with fewer parameters.

It is important to note that the objective of our study is to introduce
locality into the transformer architecture in a modular and efficient manner.
To achieve this goal, we proposed a LIFE module that efficiently leverages
multi-scale information and adapts to a variety of architectures. We demon-
strated its successful integration into a diverse set of architectures, includ-
ing the standard transformer architecture (Deit), the pyramid architecture
(Swin), and a modified patch embedding of a standard transformer (T2T).
Our findings indicate that the integration of the LIFE module effectively
incorporates local information and leads to improved performance on small
datasets.
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