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ITRE: Low-light Image Enhancement Based on
Illumination Transmission Ratio Estimation

Yu Wang, Yihong Wang, Tong Liu, Xiubao Sui, Qian Chen

Abstract—Noise, artifacts, and over-exposure are significant
challenges in the field of low-light image enhancement. Existing
methods often struggle to address these issues simultaneously.
In this paper, we propose a novel Retinex-based method, called
ITRE, which suppresses noise and artifacts from the origin of
the model, prevents over-exposure throughout the enhancement
process. Specifically, we assume that there must exist a pixel
which is least disturbed by low light within pixels of same
color. First, clustering the pixels on the RGB color space to
find the Illumination Transmission Ratio (ITR) matrix of the
whole image, which determines that noise is not over-amplified
easily. Next, we consider ITR of the image as the initial illumi-
nation transmission map to construct a base model for refined
transmission map, which prevents artifacts. Additionally, we
design an over-exposure module that captures the fundamental
characteristics of pixel over-exposure and seamlessly integrate
it into the base model. Finally, there is a possibility of weak
enhancement when inter-class distance of pixels with same color
is too small. To counteract this, we design a Robust-Guard
module that safeguards the robustness of the image enhancement
process. Extensive experiments demonstrate the effectiveness of
our approach in suppressing noise, preventing artifacts, and
controlling over-exposure level simultaneously. Our method per-
forms superiority in qualitative and quantitative performance
evaluations by comparing with state-of-the-art methods.

Index Terms—Low-light enhancement, Illumination Transmis-
sion Ratio Estimation, noise suppression, artifacts suppression,
over-exposure suppression.

I. INTRODUCTION

The enhancement of low-light images can be achieved
through hardware devices or software processing techniques.
While hardware-based enhancement methods need to consider
various factors such as noise, human vision, and economic
costs, software-based approaches offer simplicity and flexibil-
ity, which have led many researchers to explore this route [1],
[2]. Low-light images typically exhibit characteristics such as
low illumination, low contrast, and high levels of noise. Nu-
merous methods have been developed to improve the quality
of low-light images, broadly categorized into histogram-based
[3]–[7], Retinex-based [1], [2], [8]–[17], and learning-based
techniques [18]–[24]. Histogram-based methods have evolved
from non-blocked histograms [4] to blocked-based [5], non-
segmented histograms to segmented-based histograms [6], and
without gamma transformation to gamma-based histograms
[7]. These methods largely improve images quality. However,
they are still prone to over-exposure or under-exposure. In
addition, the histogram-based methods are difficult to separate
noise from details [15], [25], leading to noise amplification.
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Retinex-based models have gained considerable attention
in recent years. The physical principle is to consider image
as the product of illumination and reflectance, which obtains
reflectance by estimating illumination, then outputs the re-
flectance as corrected image. Early Retinex-based methods,
such as [8], [9], utiliz reflectance as the enhanced image. More
recent variations of Retinex-based models, including those by
[12], [13], [15], [26], combine reflectance and illumination
to achieve more natural results. However, these methods
often incorporate gamma correction or image decomposition,
introducing artifacts. The LIME method [14] extracts an initial
estimation with structure-awareness from low-light images,
avoiding artifacts. However, LIME fails to fundamentally
address the relationship between noise and low-light images,
leading to noise amplification and over-exposure.

Artificial intelligence methods have been widely studied in
recent years. Supervised-based methods tend to yield better
results, but are prone to overfitting. In fact, paired datasets are
not easily obtained and the robustness of such methods when
applied on different data is challenging due to the limited data
type in training stage. The unsupervised approaches extend
robustness of deep learning models. Zero-DEC++ [19] novelly
defines the problem as curve estimation, which is effective in
improving brightness. But it is vulnerable to be over-exposure
and under-saturation when applied with different datasets. SCI
[21] performs better in terms of noise suppression, but appears
more obvious over-exposure. In general, they both have some
limitations.

Based on the analysis above, the key challenges in low-
light image enhancement lie in the suppression of noise, over-
exposure, and artifacts. Existing Retinex-based methods pri-
marily focus on noise suppression using sparsity constraints of
the reflectance map, neglecting the characteristics of noise in
low-light images. Furthermore, these methods tend to suppress
over-exposure by relying on regularization model decomposi-
tion or synthesis of reflectance map and illumination map. In
addition, model decomposition can introduce artifacts easily.
Therefore, there are some limitations.

In this paper, we follow the conventional approach to
design a low-light enhancement model. Firstly, we assume the
existence of a pixel with maximum illumination for each color
in the input image, representing the least affected pixel by low
illumination. Based on pixel color classification, we derive the
initial Illumination Transmission Ratio (ITR) matrix. We then
present a regularization model with over-exposure suppression
function to obtain a refined illumination transmission map by
using initial ITR. Additionally, we introduce a Robust-Guard
(RG) module to address cases when the inter-class distance
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Fig. 1. Comparison between our method and state-of-the-art methods. The marked regions clearly demonstrate the limitations of the compared methods,
including issues such as over-exposure, noise amplification, artifacts, and low saturation, which significantly degrade the visual quality. In contrast, our method
produces visually appealing results with correct exposure, absence of artifacts, minimal noise (particularly in flat, dark skies), and vibrant color representation.

between pixels of the same color is too close, resulting in
insufficient enhancement. Finally, we conduct ablation exper-
iments and comparisons to demonstrate the effectiveness of
our approach.

In general, the contributions of this paper can be summa-
rized as follows:

• We propose a novel noise suppression method based on
color clustering to derive the illumination transmission
ratio matrix of the ideal image, which is not found in
the existing work on low-light enhancement field. Our
regularization model achieves noise suppression without
integrating specific noise suppression measures, as illus-
trated in Fig. 1.

• We design the over-exposure suppression module from
the most essential cause of the over-exposure phe-
nomenon, and flexibly controlled the exposure level. This
design is not found in previous low-light enhancement
methods.

• We introduce a RG module to address the challenge of
weak enhancement caused by a small inter-class distance
between pixels of the same color.

• Extensive experiments are conducted, evaluating both tra-
ditional and learning-based methods. The results demon-
strate the superiority of our approach in suppressing
noise, over-exposure, and artifacts.

The remainder of the paper is organized as follows. In
Section II, the proposed ITR and base model are demonstrated
in detail. In Section III, the over-exposure suppression method
is described. Section IV describes overall model solver. In
Section V, we introduce a RG module to guard robustness.
Section VI presents extensive experiments and evaluations of
different methods. Section VII demonstrates conclusion and
prospect of our work.

II. METHOD

Color images convey distinct information based on the pixel
color composition, i.e., an RGB image representing a fusion
of various colors. The number of colors in an image is several

orders of magnitude smaller than the number of pixels [27]. In
the field of low-light image enhancement, the Retinex model
serves as basic theory. In this work, we extend upon the
normalized Retinex model, as described below:

S = R ◦T, (1)

where S is the degraded image (i.e., low-light image), R
is reflectance (i.e., clear image), and T is illumination. For
any pixel Si in S , suppose its color clustering belongs to
Wj , then there must exists a pixel in Wj that is minimally
affected by low light. We assume that max

{
Twj

}
= 1, then

corresponding Rwj = max
{
Swj

}
. For all pixels belonging to

the Wj cluster, if we can find the illumination ratio of these
pixel points with respect to max

{
Twj

}
, then we can find the

corresponding R for all pixels in Wj through Eq. 1.
As discussed above, the correction of low-light images can

be achieved by obtaining the relative inter-class illumination
values of all pixels. We denote relative inter-class illumination
as Illumination Transmission Ratio (ITR). The first key to
addressing this challenge lies in color clustering. In color
images, the color characteristics is determined by r, g, b
channels collectively , which are independent of its location
in image. Consequently, pixel classification can be performed
using 3D polar coordinates. However, for large-scale images,
this classification process can be time-consuming. In a previ-
ous study on image dehazing [27], [28], the authors employed
spherical coordinates to cluster pixels into different colors
and utilized k-means clustering with K-D trees for efficient
classification. Inspired by their approach, we have adopted this
method of pixel classification in our work.

Next, we need to find the ITR matrix for all pixels with
different colors. For pixels in Wj , we let

max
{
Twj

}
=

√√√√max

{∑
c

(
Swj

)2
, c ∈ {r, b, g}. (2)
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Fig. 2. Comparison of intermediate results between our method and LIME.

max
{
Twj

}
represents the maximum illumination for Wj

pixels in rgb color space. To prevent anomalies, we use a WLS
filter [29] for refining. Then the ITR of Wj is as follows:

Twj
= Twj

/max
{
Twj

}
. (3)

The ITR of the whole image is obtained by operating Eq.
3 on all pixels. There exists inaccurate case in the estimation
of color. Even if the colors can be distinguished by human
eye, different people are not necessarily giving the exact same
classification. Therefore, we use Tw as the initial illumination
transmission map and refine it by regularization.

Illimination’s property is broad consensus [21]. The struc-
ture of refined T and Tw is similar, and Frobenious is often
used in regularization to constrain the similarity [26]. So we
complete the similarity constraint using

∥∥T−Tw

∥∥2
F

. A good
structure of T is consistent with the structure of input image,
i.e., the gradient of T varies in magnitude with the gradient of
the input image [30], [31]. ℓ1 norm is piecewise smoothness,
we use λ∥∇T∥1 to constraint structure and smoothness of T.
λ is designed as:

λ = e−λsat
2

∗ λg

λgra + eps
, (4)

where λgra corresponds to the gradient of the degraded image
in YUV color space. λsat is the saturation of S. Higher
saturation levels are associated with more vibrant colors,
where typically require richer detail. Thus the saturation is
designed to be negative here. Similarly, when dealing with
larger gradients, the refined illumination component should
also exhibit substantial gradients. To achieve this, we design
here as the reciprocal of the gradient. λ is jointly controlled
by λgra andλsat. λg is tunable scalar and is used to adjust
λ. eps and λg are all set to to 0.001. Based on above, the
objective function is designed as follows:

argmin
T

∥∥T−Tw

∥∥2
F
+ λ∥∇T∥1. (5)

III. OVER-EXPOSURE SUPPRESSION

Since standard value of refined T is between 0 and 1.
In order to prevent anomalous values of S/T, a very small
value is often added to denominator. Here we set eps1 to 0.1.
Nevertheless, there still exists a possibility that S/(T+ eps1)

Fig. 3. Visual results of our model on different over-exposure control factor
(a, b, c) and visual result of the LIME method based on illumination map
estimation (d).

is greater than 1, which increases the risk of over-exposure
of the corrected image. This is not user friendly for the
low brightness image enhancement applications. We design
an exposure adjustment module, complementing model (5) as
follows:

argmin
T

∥∥T−Tw

∥∥2
F

+ λ∥∇T∥1 + αexp

∥∥∥nor ( Sgray

T+eps1 − 1
)∥∥∥2

F
,

(6)
where αexp is over-exposure adjustment factor. Since the
estimated T is single channel, gray image Sgray is more
suitable to represent degraded image here. Sgray

T+eps1 refers to
the reference image of reflectance. If Sgray

T+eps1 − 1 is larger, it
means that the pixels value of reflectance is more likely to be
greater than 1, i.e., the area that is prone to over-exposure. If
Sgray

T+eps1 − 1 is smaller, it means that reflectance pixels’ value
tend to be in the direction of less than 1. To simplify data
processing, normalization is performed by nor.

The larger αexp is, the smaller nor(
Sgray

T+esp1 − 1) is, so
reflectance moves towards ↓1. The smaller αexp is, the larger
nor(

Sgray

T+esp1 − 1) is, then reflectance moves towards ↑1. As
a result, αexp achieves suppression of over-exposure phe-
nomenon and produces better visual perception. As shown
in Fig. 3, the brightness of corrected image is brighter when
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Fig. 4. Comparing lightness variations on whether using RG module.

αexp = 0. As αexp increases, the brightness of corrected image
becomes weaker. For areas with over-exposure, they become
significantly darker after αexp becomes larger (see red arrow).
LIME (Fig. 3 (d)) does not consider the characteristics of the
low bright pixels and the nature of the exposure phenomenon,
which leads to over-boosting of noise at the sky and over-
exposure at several areas. Here, we do detailed experiments to
illustrate the difference between LIME (based on luminance
map estimation) and our model (basd on ITR estimation),
shown in Fig. 2.

IV. MODEL SOLVER

Model (6) contains ℓ1 norm, and such variation functions
tend to obtain optimal solutions by Alternating Direction
Method of Multipliers (ADMM) [14], [26], [27], [32]–[34]
. The solution introduces auxiliary variables to decompose the
original problem into multiple subproblems. Then it is iterated
through frequency domain calculations and parameter updating
up to specified maximum number of iterations. By introducing
auxiliary variables, Formula (6) can be rewritten as:

argmin
T

∥∥T−Tw

∥∥2
F
+ λ∥Q∥1 + (Q−∇T)TY

+
ρ

2
∥Q−∇T∥2F + αexp

∥∥∥∥nor( Sgray

T+ eps1
− 1

)∥∥∥∥2
F

,

s.t. Q = ∇T.

(7)

Where ∇ includes horizontal gradient and vertical gradient
operator. Y is Lagrangian dual variable. The solution of (7)
is decomposed into two subproblems.

T subproblem: By omitting terms not related T, we get

argmin
T

∥∥T−Tw

∥∥2
F

+ (Q−∇T)TY

+
ρ

2
∥Q−∇T∥2F + αexp

∥∥∥∥nor( Sgray

T+ eps1
− 1

)∥∥∥∥2
F

.
(8)

We notice that (8) must includes many mathematical oper-
ations of matrices inversion, which need high computational
cost. The process can be solved by 2D fast Fourier transfor-
mation (FFT). Hence, T(t+1) is iteratively updated by

T(t+1) ← F−1

F
(
Tw + ρ(t)DT

(
Q(t) + Y(t)

ρ(t)

))
+ F(E)

1 + ρ(t)
∑

d∈h,v F
∗
(Dd) ◦ F (Dd)

 .

(9)

Fig. 5. Comparison of stability based MIT-Adobe 5K datasets [35].

Where D is discrete gradient operator in vertical and
horizontal directions. F−1, F and F∗ denote inverse FFT,
Fourier Transform, conjugate Fourier Transform, respectively.
F(E) corresponds to the exposure control items in (6). At
the first iteration, E is initialized to 0. When the number of
iterations is bigger than 1, the over-exposure module detects
the exposure level and participates in the generation of T, and
it will be described in detail latter.
Q subproblem: Dropping terms not related Q, we get

Q(t+1) ← argmin
Q

λ∥Q∥1+(Q−∇T)TY+
ρ

2
∥Q−∇T∥2F,

(10)
the solution can be easily obtained by soft-shrinkage operation
like:

Q(t+1) = Tλ/ρ(t)

(
∇T(t+1) −Y(t)/ρ(t)

)
, (11)
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where Tλ/ρ(t) means soft-shrinkage symbol, Tλ/ρ(t)(x) =

sign(x) ·max
(
|x| − λ/ρ(t), 0

)
. Similar to the above solution,

Y and ρ can be solved by (12) , as follows:

Y(t+1) ← Y(t) + ρ(t)
(
Q(t+1) −∇T(t+1)

)
,

ρ(t+1) ← p · ρ(t), p > 1,
(12)

finally, after completing the above solution, calculate E(t+1) :

E(t+1) ← αexpnor

(
Sgray

T(t+1) + eps1
− 1

)
. (13)

After refined ITR is estimated, we follow Retinex model
(1) to get enhanced image. To understand our model more
intuitively, we present the overall solution in Algorithm 1.

Algorithm 1 Pseudo-Code for Model Framework

ITR Estimation:
Cluster pixels’ colors in spherical coordinates, find the
initial ITR by Eq. 3.
Input S, Sgray, αexp, λ (Eq. 4).
Initialization E(0)=Q(0)=Y(0)=0, t=0, while not converged
do

Update T(t+1) by Eq. 9;
Update Q(t+1) by Eq. 11;
Update Y(t+1) and ρ(t+1) by Eq. 12;
Update E(t+1) by Eq. 13;
t=t+1;

end
Low-light Correction:

Calculate R through Eq. 1.

V. ROBUST-GUARD MODULE SETTING

For input image, Twj
tends to 1 if the pixels in the Wj

cluster are too close, this case leads to weak illumination
boost, as shown in Fig. 4(e). Therefore, the adjustment of
Tw is needed. We design a Robust-Guard (RG) module after
ITR estimation. The v-channel of HSV color space has light
invariance, so our design in the v-channel. Neighborhood
maximum extraction is performed on the v-channel image
Shsv−v , as follows:

Ttmp(x, y) = max {Shsv−v(p, q)} , (14)

where (p, q) is the neighborhood of the pixel (x, y). The pixels
in neighborhood can be roughly considered as same color, so
Ttmp can be regarded as rough illumination map. Similarly,
here use a WLS filter for refining. Since Ttmp is extracted
directly from original image, so the hue of it is darker than
Tw. We use histogram matching [3], [36] by Eq. 15 between
Ttmp and Tw, the hue of Tw is adjusted closer to Ttmp.

T
′
w = Hmatch(Tw,Ttmp). (15)

The histogram matching has been integrated into existing
matlab software. Then replace Tw with T

′
w in Eq. 7. Fig.

4(e) and (f) show the difference between w/ and w/o RG

module. However, for images where the pixels’ color are not
dense enough (Fig. 4(a)), the RG module does not affect
illumination strength (Fig.4(b) and (c)). When the image has
few color varieties and pixels values with same color have
small variance, there exist weak enhancement (Fig. 4(e)).
But the RG module guards the enhancement (Fig. 4(f)). The
experiment shows that the RG module guards illumination
enhancement. It is worth noting that for normal low light
scenes (not extreme darkness), without RG module can also
ensures sufficient illumination enhancement capability.

Fig. 8. More results by our method. All the results are with RG module.

VI. EXPERIMENT

In this section, some important setting and results are
demonstrated. We first describe the configurations of all mod-
els. Second, we compare them in terms of stability and noise.
Then, we compare the subjective results and perform objective
metrics tests.

A. Implementation details

We compare with 5 traditional methods and 2 recently
proposed artificial intelligence methods. 5 traditional methods
are NPE [12], MF [15], SRIE [13], LIME [14] and RRM [2]
respectively. 2 artificial intelligence methods are Zero-DEC++
[19] and SCI [21]. The codes of all compared algorithms
are available on the web. All experiments are performed in
MATLAB R2019a with 32 GB RAM and 12th Gen Intel(R)
Core(TM) i7-12700K.

For the objective metric tests (Table I), the parameters of
proposed models and comparison models are kept constant.
Too many parameters are cumbersome to adjust, which sig-
nificantly influence the model are αexp and RG module. In our
tests, we mainly adjust αexp and RG module, getting desired
results. For the subjective test, w/o RG module, αexp = 0.25
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Fig. 6. Visual comparison between ours and competitors on typical low-light dataset. All the results are without RG module.

are set in Fig. 5. Fig. 6 and 7 are w/o RG module. In
order to highlight the over-exposure suppression module more

intuitively, αexp are set to 0.1, 0, 0.3, 0.2, 0, 0 from the 1st
to 6th images in Fig. 6 and 7.
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Fig. 7. Visual comparison between ours and competitors on typical low-light dataset. All the results are without RG module.

B. Comparisons
Stability. In Fig. 4, results for once-run and twice-run

of all models are compared. When models are run once,
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TABLE I
OBJECTIVE EVALUATION ON LOW-LIGHT DATASETS DICM, LIME, NPE AND MF.

Method NPE MF SRIE LIME RRM Zero-DEC++ SCI Ours

DICM

EME↑ 88.9402 86.2982 87.1266 90.3609 27.6694 65.4914 85.7028 87.6519

DE↑ 6.678 6.6214 6.6828 6.8141 6.7782 7.016 6.1749 6.8013

NIQE↓ 3.4304 3.2324 3.092 3.559 3.3186 2.6509 3.1745 3.3004

PIQE↓ 36.2486 31.8063 34.6276 38.6683 42.5862 26.6375 29.307 33.9231

LIME

EME↑ 74.4371 75.3797 74.5778 78.0302 29.5823 73.6806 75.5075 76.4803

DE↑ 6.7427 6.6906 6.7031 7.0865 6.8055 7.0063 6.2974 6.9861

NIQE↓ 3.84 3.5976 3.463 4.2076 4.0646 3.8881 4.1382 3.8767

PIQE↓ 36.4812 35.2572 34.7532 39.4609 44.5976 37.3695 38.6532 36.5375

NPE

EME↑ 47.9715 48.2989 48.4597 49.0242 19.285 31.513 48.3958 48.6956

DE↑ 7.2588 7.0503 7.224 7.1762 7.0895 7.2032 6.9817 7.3391

NIQE↓ 3.3042 3.2754 3.1225 3.6026 4.6142 3.2919 3.3631 3.4121

PIQE↓ 33.0718 31.8361 34.5226 37.4361 61.051 37.101 35.1166 35.0092

MF

EME↑ 46.5234 46.7645 46.4599 47.7578 20.8585 32.5819 45.667 47.0558

DE↑ 6.5953 6.575 6.6033 6.9724 6.6317 6.8889 5.8124 6.8871

NIQE↓ 3.3503 3.3339 3.1109 3.4125 3.7104 3.4412 3.5558 3.32

PIQE↓ 41.7006 40.6526 43.1725 43.639 49.6911 46.57 46.6144 42.059

LIME has high illumination permeability but with local over-
exposure. The saturation of Zero-DEC++ and SCI is low. The
proposed method and the remaining comparison algorithms
exist no over-exposure. When models are run twice, our model
further increases the illumination while suppressing local over-
exposure. This is because the over-exposure pixels are adjusted
in each iteration of Eq. 6. NPE, MF, and SRIE do not change
significantly, while the rest of the models increase the over-
exposure strength. The difference is that Zero-DEC++ tends to
global over-exposure and the other three models tend to local
over-exposure. It can be seen that our model suppresses over-
exposure while enhancing illumination. This demonstrates
high stability of the proposed model.

Noise. Low-light images are enhanced with inevitable am-
plification of noise. The 1st, 2nd, and 3rd images in Figure
6 are from the DARK FACE dataset taken at night [37].
Obviously, the proposed method and SRIE have the weakest
amplification of noise. However, SRIE produces significant
artifacts, and our method avoids artifacts due to designing
from independent pixels perspective. In general, the areas
in low-light image include more noise where they are more
darker. We achieve the denoising results without using filtering
and without constraining the sparsity of the reflectance map,
simply by controlling the proportion of noise enhancement

Overall comparison. All low-light images which are tested
in this paper can be found in [12], [14], [15], [38], [35],
[37]. Fig. 6 and 7 shows the corresponding results. LIME
tends to have high brightness but gets over-exposure in details,
while Zero-DEC++ and SCI also suffer from over-exposure.

The difference is that LIME and SCI tend to be locally over-
exposed, while Zero-DEC++ tends to be more globally over-
exposed. In terms of noise, noise amplification is inevitable,
but the proposed method exhibits low noise amplification and
the correction results have high saturation. In terms of edge
artifacts, NPE, MF, SRIE, and RRM all produce artifacts, and
our method does not produce artifacts. Thus, for subjective
evaluation, our algorithm outperforms the comparison algo-
rithms. Fig. 8 provides more results for classic pictures by
proposed method.

We choose four non-reference metrics, EME [39], DE
[40], NIQE [41] and PIQE [42]. The larger the EME, the
higher contrast the image is. The larger the DE, the more
information the image is. Smaller NIQE and PIQE represent
that the image has higher naturalness and it is closer to
human perception, respectively. Table I shows the metrics of
all models tested in the public datasets which downloaded
from websites, including 44 images in DICM [38], 10 images
in LIME, 64 images in NPE, and 14 images in MF, for a
total of 132 images. Multiple metrics are closer to the real
effectiveness of models than single metric. We record the four
metrics corresponding to all models in all datasets and count
the number of ranking top three for all models. According to
Fig. 9 and Tab. I, our model ranks first. As shown above, our
model obtains more friendly visual results and better metrics
compared with state-of-art methods.

VII. CONCLUSION

In conclusion, existing low-light image enhancement meth-
ods often struggle to address the issues of noise, artifacts,
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Fig. 9. The times of different methods rank in top three on EME, DE, NIQE
and PIQE.

and over-exposure simultaneously. In contrast, our proposed
method effectively tackles these challenges in a unified frame-
work. We consider the strongest illumination value among
pixels of the same color as the reference. This strategy enables
us to control the enhancement ratio of similar color pixels,
resulting in effective noise suppression, particularly in low
illumination regions. The initial ITR is pixel-based and with
structural awareness, so it is not prone to appear artifacts
when building a model based on it. Moreover, we design
an over-exposure module that effectively controls the level
of over-exposure by addressing the fundamental phenomenon
underlying pixel over-exposure. Additionally, our RG module
ensures the robustness of image enhancement, even in sce-
narios where the image contains few pixel color types or the
variance of pixel values with the same color is small. Extensive
comparisons with state-of-the-art conventional and artificial
intelligence methods demonstrate the superiority of our ap-
proach in terms of noise suppression, artifact prevention, and
over-exposure control. While our proposed method represents
a significant advancement in low-light image enhancement,
further research is warranted to develop more intelligent and
robust algorithms that can achieve best results across diverse
datasets under the same parameter configuration.
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