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Abstract

We propose a new algorithm to compute the topology of a real algebraic space curve. The novelties of this algorithm
are a new technique to achieve the lifting step which recovers points of the space curve in each plane fiber from
several projections and a weaken notion of generic position. As opposed to previous work, our sweep generic position
does not require that x-critical points have different x-coordinates. The complexity of achieving this sweep generic
position is thus no longer a bottleneck in term of complexity. The bit complexity of our algorithm is Õ(d18 + d17τ)
where d and τ bound the degree and the bitsize of the integer coefficients of the defining polynomials of the curve
and polylogarithmic factors are ignored. To the best of our knowledge, this improves upon the best currently known
results at least by a factor of d2.

Keywords: Real algebraic space curve, Topology, Bit complexity.

1. Introduction

Algebraic curves are widely used in computer aided geometric design and geometric modeling. For example,
implicit surface-surface intersection computation is an important topic in computer aided geometric design, which
is strongly related to algebraic space curves. Algebraic curves are also basic research objects in classical algebraic
geometry. One basic task in the study of an algebraic curve is to compute its topology. Computing the topologies of
an algebraic plane curve and an algebraic space curve are fundamental steps to compute the topology of an algebraic
surface [10, 16]. Furthermore, some control problems need implicitly the topology information of algebraic (space)
curves [28].

Previous work. There have been many papers studying the computation of the topology of an algebraic plane curve,
see for instance [1, 3, 5, 8, 9, 13, 18, 19, 22, 23, 26, 31], but only a few studying the topology of an algebraic space
curve [2, 12, 14, 20, 21, 24]. Almost all the existing work [2, 12, 14, 20, 24] computing the topology of an algebraic
space curve require the curve to be in a so-called generic position. Although the definitions of generic positions
vary in the literature, they all include the condition that the x-critical points have different x-coordinates. Checking
whether an algebraic space curve is in generic position is not a trivial task, and finding a shearing of the coordinate
system so that the sheared curve is in generic position is a complexity bottleneck [14, 25]. One can use the CAD
method to compute the topology of algebraic space curve without computing generic position, but the CAD method
requires many real solving of triangular sets in the lifting step, which is a bottleneck of the method, as explained by
Lazard [27].

The complexity for computing the topology of an algebraic plane curve is well studied, the record bound is
Õ(d6 +d5τ) for an input polynomial of degree d and bitsize τ [15, 26]. Only few results are known for the complexity
of computing the topology of an algebraic space curve given by polynomials of degree d and bitsize τ . Diatta et. al [16]
present a bit complexity of Õ(d21τ) under the assumption that the input space curve is in generic position. Cheng
et. al [12] propose a method without a generic position hypothesis with complexity Õ(d37τ). Jin and Cheng [25] give
a bit complexity of Õ(d20 + d19τ) via the computation of a strong generic position [11].
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Contributions. Let the space curve C be defined by {(x, y, z) ∈ R3, f(x, y, z) = g(x, y, z) = 0} with f and g integer
polynomials of total degree at most d. Our algorithm follows a classical projection/lifting method followed by a
sweep plane connection. We denote by h0(x, y) the square-free part of the resultant of f and g with respect to z and

by r(x) the resultant of h0(x, y) and ∂h0(x,y)
∂y with respect to y. The curve {h0(x, y) = 0} is thus the projection of C

on the xy-plane and r(x) encodes its x-critical points.
For the lifting step, we compute the O(d2) space points of C on the fibers {x = α}, where α is a real root of

r(x). Our new lifting algorithm uses the following subroutine (Section 3.3.1): given n points with two coordinates
but providing only the first coordinates and n linear combinations of the coordinates of these points, one can recover
the second coordinates of these n points. To apply this subroutine in a fiber x = α, we consider the linear coordinate
transformations φs : (α, y, z)→ (α, y + sz, z) for d2 different values of s. The d2 linear combinations of the y and z
coordinates, y− sz, are then given by solving the triangular systems {r(x), hs(x, y)}, where hs is the resultant of the
polynomials f ◦ φs and g ◦ φs with respect to the z-variable (Section 3.3.2).

To ease our sweep-plane connection algorithm in the x-direction, we require that the curve C has (a) no asymptote
in the z-direction, (b) a finite number of points on any x-fiber plane {x = α} for α ∈ R. We show how to shear
the coordinate system to achieve this sweep generic position (Section 3.1). It is worth noting that we do not require
that the x-fibers contain only one x-critical point as in classical generic positions. The complexity of achieving this
sweep generic position is thus no longer a bottleneck in term of complexity. The connections between two fibers are
recovered using two different plane projections of C to solve possible ambiguities when two space components project
to the same plane component.

Our method does not need the curve to be reduced, that is, the ideal generated by f and g needs not to be
radical, our only assumption is that f and g are coprime. This is important for computing the topology of a surface
since its polar curve is, in general, not reduced [16].

Based on the state-of-the-art complexity result in [15] for isolating bivariate triangular systems and computing
the topology of algebraic plane curves, we analyze the bit complexity of our algorithm for computing the topology of
an algebraic space curve. The bit complexity of our algorithm is Õ(d18 + d17τ), where d and τ are the degree bound
and the bit size bound of the coefficients of the defining polynomials of the algebraic space curve. To the best of our
knowledge, this improves upon the former results by at least a factor of d2.

2. Notation and preliminaries

Let R and C be the fields of real and complex numbers, and let Z be the ring of integers. For a polynomial P (x)
in R[x] with R a ring, the leading coefficient of P with respect to x is denoted Lcx(P ). Let h(x, y) ∈ Z[x, y], we
denote the algebraic plane curve defined by {h = 0} as Ch. Let p be a point on Ch, we call p an x-critical point
if h(p) = ∂yh(p) = 0 , and a singular point if h(p) = ∂xh(p) = ∂xh(p) = 0, where ∂xh and ∂yh are the partial
derivatives with respect to x and y.

We always use C to denote an algebraic space curve defined by two coprime polynomials f(x, y, z) and g(x, y, z)
in Z[x, y, z], that is C = {(x, y, z) ∈ R3|f(x, y, z) = g(x, y, z) = 0} with gcd(f, g) = 1. We denote by d the maximum
of the total degrees of f and g. We call x-fiber a plane of equation x = α for α ∈ R.

The curve C is called reduced when the ideal generated by f and g is radical. Our algorithm does not require
that C is reduced and does not compute the radical. The singularities of a variety are geometric features so they
are naturally defined from the ideal of the variety. Let the ideal of the curve C be generated by the polynomials
(fi)i=1,...,n and let J be the Jacobian matrix of the fi, that is, its rows are the gradients of the fi. A point P of C is
called regular if J has rank 2 at P . A point of C which is not regular is called a singular point or singularity. A
point P of C is called x-critical if it is either singular or it is regular and the tangent line of C at P is in an x-fiber.
Note that the tangent line is the kernel of the Jacobian matrix. The x-coordinates of the x-critical points give all
the x-fiber planes one may have to consider for a sweep plane algorithm. On the other hand, when projecting the
space curve C to the plane curve π(C), an x-critical point of C may no longer be an x-critical point of π(C), where
the projection map is

π : R3 −→ R2

(x, y, z) −→ (x, y).

To better understand this fact, the geometric characterization of a singularity in terms of intersection of local branches
is useful. Geometrically, a regular point of a space curve is a point where the curve has a well defined tangent line
given by the kernel of the Jacobian matrix J . For a singular point, there are at least 2 (maybe complex) curve
branches passing through the point. An x-critical point of C is called cylindrical if it is not an x-critical point
of the plane curve Ch0

, where h0 = Squarefree(Resz(f, g)). Note that π(C) ⊂ Ch0
and the equality holds when the
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leading coefficients of f and g with respect to z do not vanish simultaneously and one considers the complex points
projecting to real points. A cylindrical singular point P of C occurs when all branches that intersect at P have the
same projection and there is no other branch of C projecting to another branch of Ch0

passing through π(P ), see
Figure 1. A cylindrical regular x-critical point of C occurs when the branch of C passing through P has a tangent line
in the z-direction, and there is no other branch of C projecting to another branch of Ch0 passing through π(P ), see
Figure 2. Lemma 3.3 shows that all x-critical points of C are witnessed either as x-critical points of the projection
Ch0

or as x-critical points of Ch1
, which is the projection of a shearing of C. Our algorithm uses these two plane

curves to identify all the x-critical points of C. We define the shearing function:

φs : R3 −→ R3

(x, y, z) −→ (x, y + sz, z)
(1)

The sheared curve of C by the shear φs is defined by φ−1s (C) = {(x, y, z) | f ◦ φs(x, y, z) = g ◦ φs(x, y, z) = 0} =
{(x, y − sz, z) | (x, y, z) ∈ C} = φ−s(C).

3



Algorithm 1: SGP: Sweep generic position

Input : f, g ∈ Z[x, y, z] coprime defining a curve C.
Output: f̃ , g̃ ∈ Z[x, y, z] coprime defining a curve isotopic to C that has (a) no asymptote in the

z-direction, (b) a finite number of points on any x-fiber plane {x = α} for α ∈ R.

1 Let f =
∑

0≤i+j+k≤d ci,j,kx
iyjzk, evaluate the bivariate polynomial

∑
0≤i+j≤d ci,j,d−i−ju

ivj on the integer
grid {0, . . . , d} × {0, . . . , d}, choose (α, β) that does not vanish it.

2 f̂(x, y, z) = f(x+ αz, y + βz, z), ĝ(x, y, z) = g(x+ αz, y + βz, z).

3 Compute h(x, y) = Resz(f̂(x, y, z), ĝ(x, y, z)) =
∑
i=0,...,2d2 ci(x)yi.

4 if gcd(c0(x), . . . , c2d2(x)) is a constant then
5 γ = 0

6 else
7 Let h(x, y) =

∑
0≤i+j≤d′ ci,jx

iyj with d′ the total degree of h. Evaluate the univariate polynomial∑
0≤i≤d′ ci,d′−is

i at integer values starting from 0 until an integer γ ≤ d′ does not vanish it.

8 return f̃(x, y, z) = f̂(x+ γy, y, z), g̃(x, y, z) = ĝ(x+ γy, y, z).

3. Algorithm

In this section, we detail our deterministic algorithm for computing the topology of the space curve C given by
the coprime polynomials f and g in Z[x, y, z]. Our algorithm follows a classical projection/lifting method followed
by a sweep plane connection:

1. Shear the coordinate system such that the space curve is in a sweep generic position.

2. Projection: Project the space curve C onto the xy-plane and compute the topology of the plane curve Ch0 ,
where h0(x, y) = Squarefree(Resz(f, g)).

3. Lifting: Lift some plane points of Ch0 to obtain the corresponding space points of C.
4. Connection: Connect the space points by line segments to recover the topology of C.

The topology of the curve C is then implicitly encoded by an embedded graph isotopic to C in R3 whose vertices are
the computed space points in the x-fibers, and edges are straight line segments connecting the vertices. We explain
each step in detail in the following sections.

3.1. Sweep generic position

To ease our sweep-plane algorithm in the x-direction, we require that the curve C has (a) no asymptote in the
z-direction, (b) a finite number of points on any x-fiber plane {x = α} for α ∈ R. We show how to achieve these
requirements by applying shearings of the coordinate system as detailed in Algorithm 1. We simply denote the
algorithm as (f̃ , g̃) = SGP(f, g). Since such shearings do not change the topology of the curve, we then compute
the topology of the sheared curve. Note that shearings preserve the fact that the polynomials remain coprime. The
proof of correctness of Algorithm 1 follows from the following lemmas.

Lemma 3.1. The polynomials f̃ and g̃ output by Algorithm 1 are such that (a) the leading coefficient of f̃ with
respect to z is a non-zero constant and (b) the resultant of f̃ and g̃ with respect to z has no factor containing only
the variable x.

Proof. Writing f =
∑

0≤i+j+k≤d ci,j,kx
iyjzk =

∑
0≤i+j≤d ci,j,d−i−jx

iyjzd−i−j +
∑

0≤i+j+k<d ci,j,kx
iyjzk yields that

the leading coefficient of f(x+ uz, y + vz, z) with respect to z is L(u, v) =
∑

0≤i+j≤d ci,j,d−i−ju
ivj , which is not the

null polynomial since there exists one ci,j,d−i−j 6= 0. If for all α ∈ {0, . . . , d}, the univariate polynomial L(α, v) is the
null polynomial, then the polynomial Πα=d

α=0(u−α), which is of degree d+ 1, divides L(u, v). This is in contradiction
with the fact that L has degree at most d in u. Hence there exists α ∈ {0, . . . , d} such that the univariate polynomial
L(α, v) is not the null polynomial, it is of degree at most d in v, so that there exists β ∈ {0, . . . , d} that does not

vanish it. Hence, the choice of (α, β) ensures that Lcz(f̂) is a constant and since the second shear of Line 8 does not
modify this leading, Lcz(f̃) is also a constant.

For point (b), if γ = 0 then f̃ = f̂ and g̃ = ĝ thus h is the resultant of f̃ and g̃ and it has no factor containing
only the variable x according to the condition of Line 4.
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If γ 6= 0 then Line 7 ensures that Lcy(h(x + γy, y)) is a non-zero constant, which implies that h(x + γy, y) =

Resz(f̃(x, y, z), g̃(x, y, z))(x+γy, y) has no factor containing only the variable x. By the specialization property of the

resultant, Resz(f̃(x, y, z), g̃(x, y, z))(x, y) = Resz(f̂(x, y, z), ĝ(x, y, z))(x+ γy, y), thus Resz(f̃(x, y, z), g̃(x, y, z))(x, y)
has no factor containing only the variable x, which is condition (b).

The next lemma shows that the properties of the output of Algorithm 1 established in Lemma 3.1 are sufficient
conditions for the correctness of the algorithm.

Lemma 3.2. If the leading coefficient of f with respect to z is a non-zero constant and the resultant of f and g with
respect to z has no factor containing only the variable x, then C has (a) no asymptote in the z direction and (b) a
finite number of points on any x-fiber.

Proof. An asymptote in the z-direction is a solution to the bivariate system {Lcz(f),Lcz(g)} where Lcz(T ) is the
leading coefficient of T ∈ Z[x, y, z] with respect to z. The assumption that Lcz(f) a non-zero scalar is thus a sufficient
condition to avoid such asymptotes.

For point (b), by contradiction, assume that there exists a fiber x = α which is not finite, that is the system
{f(α, y, z), g(α, y, z)} is not 0-dimensional. In other words f(α, y, z) and g(α, y, z) have a non-constant gcd G(y, z)
in C[y, z]. Let f1 and g1 in C[y, z] be defined such that f(α, y, z) = G(y, z)f1(y, z) and g(α, y, z) = G(y, z)g1(y, z).

If the degree of G with respect to z is 0, then its degree with respect to y is non-zero. Let β be a root of this
G(y), then f(α, β, z) = G(β)f1(β, z) = 0 so that (α, β) is a common solution to all the coefficients of f with respect
to z and in particular its leading term. This is in contradiction with the hypothesis that this leading coefficient
is a constant. One thus has that the degree of G with respect to z is at least 1. The polynomials f(α, y, z) and
g(α, y, z) thus have a common factor depending on z which implies that their resultant with respect to z vanishes.
On the other hand, since α does not vanish the leading coefficient of f with respect to z (which is a constant), the
specialization property of the resultant yields that for a constant c:

Resz(f(x, y, z), g(x, y, z))(α, y) = cResz(f(α, y, z), g(α, y, z))(y) = 0.

The bivariate polynomial Resz(f(x, y, z), g(x, y, z)) ∈ Z[x, y] identically vanishes at α, thus, m(x), the minimal
polynomial of α divides all its coefficients with respect to y. The polynomial m(x) is thus a factor of the resultant
Resz(f(x, y, z), g(x, y, z)). This contradicts the hypothesis and concludes the proof.

3.2. Bivariate triangular system solving and plane curve topology

As subroutines of our algorithm, we solve bivariate triangular systems and compute the topology of plane curves.
There are many algorithms for computing the topology of plane curves, however, most of them shear the coordinate
system which is not desirable for our algorithm. To avoid such a change of coordinates, we use the recent results of
[15] that achieve the best complexity for computing the topology of a plane curve in its original coordinate system.
Also in [15], an algorithm to solve triangular bivariate systems is given with a detailed complexity analysis taking
into account the degrees and bitsizes of both polynomials of the system. This latter complexity is critical for using
amortization in the analysis of our algorithm.

3.3. Lifting: computing the space key points on C
In this step, we compute space points of C on x-fibers {x = α}, from the plane projections of C and shearings of

C, where α is a real roots of r∗(x) defined in (3). We call these space points of C the space key points of C. We
will use d2 plane curves Chm

defined, for the integers (sm)0≤m≤d2 , by the polynomials

hm(x, y) = Squarefree(Resz(f ◦ φsm , g ◦ φsm)) = Squarefree(Resz(f(x, y + smz, z), g(x, y + smz, z))). (2)

In the following, we assume sm = m for 0 ≤ m ≤ d2 but keep the variable sm to emphasize that it is a shear
parameter. With lcm standing for the least common multiple, we define

rt(x) = Resy(ht, ∂yht), for t = 0 or 1, r∗(x) = lcm(r0(x), r1(x)). (3)

Lemma 3.3 shows that all x-critical points of C are witnessed either as x-critical points of the projection Ch0
or as

x-critical points of Ch1
.

Lemma 3.3. Let P be an x-critical point of C, then π(P ) is an x-critical point of Ch0
or π(φ−11 (P )) is an x-critical

point of Ch1
, where h1 = Squarefree(Resz(f ◦ φ1, g ◦ φ1)).
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Proof. Assume π(P ) is not an x-critical point of Ch0 . The point P is thus a cylindrical x-critical point of C.
In the case where P is a cylindrical singular point of C, any two distinct branches passing through P are mapped

on the sheared curve φ−11 (C) on two branches those projections by π only intersect at π(φ−11 (P )), see Figure 1. This
implies that π(φ−11 (P )) is a singular point of Ch1

.
In the other case, P is a cylindrical regular x-critical point, the tangent line to C at P = (Px, Py, Pz) has equation

{x = Px, y = Py}, so that the sheared curve φ−11 (C) has equation {x = Px, y+ z = Py} that projects by π to the line
{x = Px} on the plane, see Figure 2. This line is thus the tangent line to a branch of Ch1 at π(φ−11 (P )). If there is no
other branch of φ−11 (C) that projects to a branch of Ch1

passing through π(φ−11 (P )), this point is a regular x-critical
point of Ch1

. If there are other branches of φ−11 (C) that projects to branches of Ch1
passing through π(φ−11 (P )), this

point is a singular x-critical point of Ch1
.

In both cases, π(φ−11 (P )) is an x-critical point of Ch1 , which concludes the proof.

This lemma thus yields the following corollary.

Corollary 3.4. The x-coordinates of all the x-critical points of C are zeros of r∗.

On the other hand, some zeros of r∗ do not witness x-critical points of C but only x-critical points of Ch0
or

Ch1
. For instance, when two distinct branches of C intersect in projection and thus generate a singular point in the

projection, this point is sometimes called an apparent singularity [14]. All the x-fibers given by zeros of r∗ together
with intermediate fibers are enough to recover the topology of C from the topologies of the two plane curves Ch0 and
Ch1

as explained in Section 3.4.

3.3.1. Recovering points from multiple projections

Our lifting step is based on the following combinatorial observation and its corollary. We use in this section the
function

ϕs : R2 −→ R2

(x, y) −→ (x+ sy, y)

Lemma 3.5. Let P = {(α1, β1,1), . . . , (α1, β1,n1
), (α2, β2,1), . . . , (α2, β2,n2

), . . . , (αl, βl,1), . . . , (αl, βl,nl
)} ⊂ C2 with

cardinality
∑n
i=1 ni = n. For s ∈ C \ 0, define ϕs(P ) = {px + spy| (px, py) ∈ P} and Ts,j = {a−αj

s | a ∈ ϕs(P )}. For
any m > n−min

i
{ni} nonzero distinct s1, . . . , sm ∈ C, one has

m⋂
i=1

Tsi,j = {βj,1, . . . , βj,nj
},∀j ∈ {1, . . . , l}.

Proof. It is enough to prove the case j = 1, that is,
⋂m
i=1 Tsi,1 = {β1,1, . . . , β1,n1

}, since the other cases can be proved
in a similar way.

Denote Y = {β1,1, · · · , β1,n1}. One has ∀t ∈ {1, . . . , n1},∀m ∈ {1, . . . ,m}, α1+siβ1,t ∈ ϕsi(P ), and
(α1+siβ1,t)−α1

s1
=

β1,t ∈ Tsi,1, thus Y ⊂
⋂m
i=1 Tsi,1.

Next, we prove
⋂m
i=1 Tsi,1 ⊂ Y . Assume that

⋂m
i=1 Tsi,1 * Y , then there exists β∗ ∈

⋂m
i=1 Tsi,1 and β∗ /∈ Y .

Therefore we have ∀i ∈ {1, . . . ,m},∃ti ∈ {1, . . . , l}, ki ∈ {1, . . . , ni} s.t.
(αti

+siβti,ki
)−α1

si
= β∗, i.e.,

αti + siβti,ki = α1 + siβ
∗. (4)

We claim that ∀i ∈ {1, . . . ,m}, ti 6= 1. Otherwise, if ti = 1, we can get α1 + siβ1,k1 = α1 + siβ
∗ from (4), i.e.,

β∗ = β1,k1 ∈ Y . It is a contradiction with β∗ /∈ Y . Hence, we have that i ∈ {1, . . . ,m} has m choices and (ti, ki) has
only n−n1 choices. By assumption m > n−n1, thus, there exist two different values si1 6= si2 , 1 ≤ i1 6= i2 ≤ m and
the same values ti∗ , ki∗ , 1 < ti∗ ≤ m, 1 ≤ ki∗ ≤ nti∗ s.t.

αti∗ + si1βti∗ ,ki∗ = α1 + si1β
∗. (5)

αti∗ + si2βti∗ ,ki∗ = α1 + si2β
∗. (6)

Subtracting Equation (6) from Equation (5), we have (si1−si2)βti∗ ,ki∗ = (si1−si2)β∗, i.e., β∗ = βti∗ ,ki∗ . Substituting
β∗ = βti∗ ,ki∗ into Equation (5), we get αti∗ = α1. This results contradicts the condition 1 < ti∗ . Therefore, we have⋂m
i=1 Tsi,1 ⊂ Y .
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Algorithm 2: Space key points

Input : The plane key points on the fiber x = xi of Chm : (xi, y
m
i,j), 1 ≤ j ≤ lmi , 0 ≤ m ≤ d2.

Output: The space key points on the fiber x = xi of C: Pi,j,k(xi, yi,j , zi,j,k), where yi,j = y0i,j ,

1 ≤ j ≤ l0i = li, 1 ≤ k ≤ li,j .
1 Compute tj,m = y0i,j/sm for 1 ≤ j ≤ l0i , 1 ≤ m ≤ d2.

2 Compute Rm = {ymi,j/sm, 1 ≤ j ≤ lmi } for 1 ≤ m ≤ d2.

3 Compute Tsm,j := {tj,m −Rm} = {tj,m − a | ∀a ∈ Rm} for 1 ≤ j ≤ l0i , 1 ≤ m ≤ d2.
4 Compute

⋂
1≤m≤d2

Tsm,j = [zi,j,1, . . . , zi,j,k, . . . , zi,j,li,j ] for 1 ≤ j ≤ l0i .

5 return The point set {Pi,j,k(xi, yi,j , zi,j,k), 1 ≤ j ≤ l0i , 1 ≤ k ≤ li,j}.

Corollary 3.6. Assume that the point set P has at most n distinct points in C2 and that only their first coordinates
are known. If for m (≥ n) given distinct nonzero s1, · · · , sm ∈ C, one knows the sets ϕsi(P ) = {px+sipy| (px, py) ∈ P}
for i = 1 . . .m, then one can recover the second coordinates of all the points in P .

Proof. Using the notation of Lemma 3.5 for the point set P , it is enough to note that m ≥ n > n− 1 ≥ n−mini ni.
The second coordinates are recovered via the construction of the sets Tsi , j.

We give an example to illustrate the theorem and its corollary.

Example 3.7. Assume that P = {(1, 1), (1, 2), (2, 2)} but we know only their first coordinates {1, 2}. We notice that
the total number of points in P is 3, so we set s1 = 1, s2 = 2, s3 = 3 and compute

ϕs1(P ) = {px + s1py | (px, py) ∈ P} = {2, 3, 4},
ϕs2(P ) = {px + s2py | (px, py) ∈ P} = {3, 5, 6},
ϕs3(P ) = {px + s3py | (px, py) ∈ P} = {4, 7, 8}.

Next we begin to recover the second coordinates. We compute

Ts1,1 = {1, 2, 3}, Ts2,1 = {1, 2, 2.5}, Ts3,1 = {1, 2, 7/3} and Ts1,1 ∩ Ts2,1 ∩ Ts3,1 = {1, 2}.

Hence, we get the two points (1, 1), (1, 2) ∈ P with first coordinate 1. Similarly, we compute

Ts1,2 = {0, 1, 2}, Ts2,2 = {0.5, 1.5, 2}, Ts3,2 = {2/3, 5/3, 2} and Ts1,2 ∩ Ts2,2 ∩ Ts3,2 = {2}.

The point with first coordinate 2 of P is thus (2, 2) ∈ P . Hence, we recover the second coordinates of the points in P .

3.3.2. Space key points: Algorithm 2

Based on the above results, we show how to recover the space key points with plane key points on the curves
Chm . The first step is to solve the triangular systems {r∗(x), hm(x, y)} for 0 ≤ m ≤ d2. Let {x1, . . . , xl} denote
the real roots of r∗(x) such that xi < xj for 1 ≤ i < j ≤ l. We call plane key points for a fiber x = xi, all the
solutions of the above triangular systems in this fiber, we denote them by (xi, y

m
i,j), 1 ≤ j ≤ lmi , 0 ≤ m ≤ d2, in

addition we simplify the notation y0i,j as yi,j . Let {Pi,j,k(xi, yi,j , zi,j,k), 1 ≤ j ≤ l0i , 1 ≤ k ≤ li,j} be the space key
points of C. By definitions of hm by Equation (2) and φsm by Equation (1), one has Chm

= π ◦ φsm(C), so the values
ymi,j = y0i,j − smzi,j,k, thus Corollary 3.6 enables to recover the values zi,j,k as detailed in Algorithm 2.

In practical computation, all points in Algorithm 2 are represented by intervals, in order to avoid spurious
additional z points due to over-estimation in interval operations, we need to analyze the width of these intervals. Let
i, j be fixed. A sufficient condition for Algorithm 2 to be correct when working with intervals is to compute intervals
for the values in each Tsm,j such that (c1): two intervals do not intersect if and only if they isolate different values in
∪1≤m≤d2Tsm,j . Let δ be a lower bound on the minimum distance between distinct elements of ∪1≤m≤d2Tsm,j . If the
widths of the isolating intervals of the values in the Tsm,j are smaller than δ/2 then condition (c1) is satisfied. Such
a lower bound δ can be computed as follows. Let Sep(hm) be the separation bound of the solutions of hm(xi, y).
For a set of real numbers E, define the separation of E, denoted Sep(E), as the minimum distance between distinct
elements of E. The elements of Tsm,j are the solutions of hm(xi, y) shifted by the value y0i,j and divided by sm, thus

Sep(Tsm,j) = Sep(hm)/sm ≥ Sep(hm)/d2. The separation of the union ∪1≤m≤d2Tsm,j is thus larger than 1/d2 times
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Figure 3: Connection between the x-critical fiber x = xi and the intermediate fiber x = xi+1.

the minimum distance between two distinct values, one being a root of hm1
and the other a root of hm2

(m1 may be
equal to m2). On the other hand, the minimum distance between two distinct values, one being a root of hm1

and
the other a root of hm2

is at least Sep(hm1
hm2

). One can thus define δ = 1/d2 min1≤m1≤m2≤d2 Sep(hm1
hm2

) as a
lower bound on Sep(∪1≤m≤d2Tsm,j).

It remains to express the condition that the isolating intervals of the values in the Tsm,j are smaller than δ/2
in terms of widths of the intervals of the input of the algorithm which are isolating the solutions ymi,j′ of hm(xi, y)

for 0 ≤ m ≤ d2. Assume that all the solutions ymi,j′ are given by the intervals [ymi,j′ ] of widths smaller than δ/4.

By construction Tsm,j = {(y0i,j − ymi,j′)/sm, 1 ≤ j′ ≤ lmi }, so that the computed intervals are of widths w(([y0i,j ] −
[ymi,j′ ])/sm]) ≤ w([y0i,j ]) + w([ymi,j′ ]) ≤ δ/2.

According to the analysis above, we thus obtain the following result for the interval version of Algorithm 2.

Lemma 3.8. Let δ = 1/d2 min1≤m1≤m2≤d2 Sep(hm1
hm2

), note that δ has the same asymptotic bound as Sep(hm)

and [15, Proposition 25] yields Sep(hm) = 2−Õ(d8+d7τ), also a non-asymptotic bound may be computed following the
proof of [15, Proposition 25]. Assume the input isolating intervals of the values ymi,j have widths smaller than δ/4,
then Algorithm 2 is correct, that is it returns exactly disjoint intervals for the different values zi,j,k.

3.4. Connections between space points of C
In this subsection, we compute the connections between the space key points of C on the fibers x = xi and

x = xi+1 for 1 ≤ i ≤ l − 1, where xi are the roots of r∗ defined in (3). By the definition of r∗ and Corollary 3.4,
between these fibers, there are no x-critical points of C nor Ch0 nor Ch1 . The connections between two x-fibers can
thus be done by straight line segments. These connections can be recovered from the ones in the topology of Ch0

except when several space points project to the same plane point. To separate branches of C that project to the
same branch of Ch0

, we add intermediate fibers defined by the x+i ∈ Q:

x+0 < x1 < x+1 < · · · < xi < x+i < xi+1 < · · · < x+l−1 < xl < x+l (7)

In practice, x+i is chosen as the mid-point between the isolating bounds of the intervals isolating the xi. So connecting
the points between the fibers x = xi and x = xi+1 is decomposed into connecting the points between the fibers x = xi
and x = x+i , and connecting the points between the fibers x = x+i and x = xi+1. By solving the bivariate systems
{f(x+i , y, z), g(x+i , y, z)}, we obtain the space points of C on the intermediate fibers. Together with the space key
points already computed, one has all space points in all fibers.

In order to recover the topology of C we use the topology of the two plane curves Ch0
and Ch1

. We first refine
the topologies of Ch0 and Ch1 by adding all the fibers xi and x+i . Figure 3 illustrates the connections between the
points of C on the fibers x = xi and x = x+i (the connection between the points on the fibers x = x+i and x = xi+1

is similar). For a plane curve segment P̃Q of Ch0
between two fibers, let P be its endpoint on x = xi and Q be its

endpoint on x = x+i . We define the point sets π−1(P ) ∩ C = {P1, . . . , Pu} and π−1(Q) ∩ C = {Q1, . . . , Qv}. Since

the space curve C has no x-critical points in the fiber x = x+i , the number of space curve segments of C over P̃Q
is exactly the number of points in π−1(Q) ∩ C and all these segments end at different Qj . Our aim is to determine
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Algorithm 3: Space curve topology

Input: f, g ∈ Z[x, y, z] coprime defining a curve C.
Output: The topology of C.

0. (f, g) = SGP(f, g) (Algorithm 1).

1. Compute hm(x, y) = Squarefree(Resz(f(x, y + smz, z), g(x, y + smz, z))), for 0 ≤ sm := m ≤ d2.
Compute rt(x) = Resy(ht, ∂yht), t ∈ {0, 1} and the topology of Ch0

and Ch1
.

2. Compute r∗ = lcm(r0(x), r1(x)).
Add the points on the fibers corresponding to the real zeros of r∗

r0
into the topology of Ch0

.

Add the points on the fibers corresponding to the real zeros of r∗

r1
into the topology of Ch1

.

3. Solve the triangular polynomial systems {r∗(x), hm(x, y)}, for 1 ≤ m ≤ d2.

4. Compute the space key points of C on the fiber x = xi ∈ VR(r∗) with Algorithm 2, for 1 ≤ i ≤ l.
5. Compute x+i , 0 ≤ i ≤ l, satisfying Equation (7).

6. Add the points on the fibers of x = x+i , 0 ≤ i ≤ l, into the topology of Ch0 and Ch1 .

7. Solve the bivariate systems {f(x+i , y, z), g(x+i , y, z)}, for 0 ≤ i ≤ l.
8. Connect the points between the fibers (Section 3.4).

which Qj ’s connects to each Pi. Since Pi may be an x-critical point of C it may connect 0, 1 or more Qj ’s. This
information is recovered using the topology of Ch0 and Ch1 as follows.

Lemma 3.9. Let notations be as above. The space points Pi and Qj are connected in C if and only if the plane
points P = π(Pi) and Q = π(Qj) are connected in Ch0

and π(φ−1s1 (Pi)) and π(φ−1s1 (Qj)) are connected in Ch1
.

Proof. “⇒” If Pi connects Qj on C, the connections are preserved by shearing and projection on Ch0 and Ch1 , thus
P connects Q and π(φ−1s1 (Pi)) connects π(φ−1s1 (Qj)).

“⇐” Assume that P connects Q and π(φ−1s1 (Pi)) connects π(φ−1s1 (Qj)). The first condition implies that there

exists at least one space curve segment of C whose projection in Ch0 is P̃Q. Since x+i is not root of r∗, there is
no x-critical point of C in this fiber, thus the points Qj are not x-critical points of C. Thus each Qj connects one
and only one point in π−1(P ). If Pi does not connect Qj , then there must exist one space point Pi′ ∈ C on the
fiber x = xi which connects Qj such that π(Pi′) = P and Pi′ 6= Pi. Since Pi′ connects Qj , π(φ−1s1 (Pi′)) connects
π(φ−1s1 (Qj)) in Ch1

. In addition, since Pi′ and Pi are distinct points in π−1(P ) and s1 = 1 6= 0, their projections on
Ch1 are distinct π(φ−1s1 (Pi′)) 6= π(φ−1s1 (Pi)). By assumption, π(φ−1s1 (Pi)) also connects π(φ−1s1 (Qj)). We conclude that

π(φ−1s1 (Qj)) is an x-critical point of Ch1
, which is a contradiction since the x+i fiber does not contain x-critical point

of Ch1
. We must then have that Pi connects Qj which concludes the proof.

3.5. Main algorithm

We summarize in Algorithm 3 the different steps described in this section for the computation of the topology of
the space curve C.

4. Complexity

In this section, we analyze the bit complexity of our algorithms using the notation Õ(·) to indicate that we omit
poly-logarithmic factors. We first recall complexity results for computations with polynomials. In particular, our
analysis uses the recent results of [15] for solving bivariate triangular systems and computing the topology of an
algebraic plane curve without shearings.

4.1. Basic results for complexity

The bitsize of an integer n is the number of bits needed to represent it, that is blog nc + 1 (log refers to the
logarithm in base 2). For a rational q, its bitsize, L(q), is the maximum bitsize of its numerator and denominator.
A multivariate polynomial is called of magnitude (d, τ) if its total degree is bounded by d, and the bitsize of its
coefficients is bounded by τ .

Lemma 4.1 ([33]). Let F and G be univariate polynomials of magnitudes (d, τ).
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• Computing their gcd or the square-free of F have bit complexity Õ(d2τ), and the gcd or the square-free of F
are of magnitude (d,O(d+ τ)).

• Given a polynomial H ∈ Z[x] that divides F , computing F
H has bit complexity Õ(d(d+ τ)).

• Computing their lcm has bit complexity Õ(d2τ), and the lcm is of magnitude (O(d), O(d+ τ)).

Lemma 4.2 ([4, 30, 34]). Let F be a polynomial in Z[x] of magnitude (d, τ), the separation bound of F , that is the
mininum distance between two complex roots, satisfies

Sep(F ) ≥ d−
d+2
2 (d+ 1)

1−d
2 2τ(1−d) = 2−Õ(dτ).

Lemma 4.3 ([29, Theorem 5]). For a polynomial F of magnitude (d, τ), one can compute isolating intervals for all
its real roots of width less than 2−L using Õ(d3 + d2τ + dL) bit operations. Isolating intervals can be computed such
that the sum of the bitsizes is Õ(dτ).

Lemma 4.4 ([33, Chap. 8]). For two m-variate polynomials of magnitudes (d, τ), the magnitude of their product
polynomial is (O(d), O(τ + log d)) and it is computed in O(dmτ) bit operations.

A recursive Horner scheme yields the following results for multivariate polynomial evaluation.

Lemma 4.5 ([7, Lemma 6]). Let F ∈ Z[x1, . . . , xm] be of magnitude (d, τ), and q1, . . . , qm be rational numbers each
of bitsize σ, then evaluating F (q1, . . . , qm) has a bit complexity of Õ(dm(σ + τ)), and the bitsize of F (q1, . . . , qm) is
O(dσ + τ).

Corollary 4.6 ([6, Lemma 5]). Let F (x, y) ∈ Z[x, y] be of magnitude (d, τ), the bit complexity of computing the
square-free of F is Õ(d5 + d4τ).

Lemma 4.7 ([17]). Let F and G be polynomials in Z[y1, . . . , yk][x] with degx(F ) = p ≥ q = degx(G), degyi(F ) ≤ p
and degyi(G) ≤ q, F has bitsize τ larger than σ, the bitsize of G. The resultant Resx(F,G) can be computed in bit

complexity Õ(q(p+ q)k+1pkτ) and it has magnitude (2pq, Õ(pσ + qτ)).

Theorem 4.8 ([26],[6] Theorem 43). Let F (x, y), G(x, y) in Z[x, y] be of magnitude (d, τ), solving the bivariate
system {F (x, y) = G(x, y) = 0} has bit complexity Õ(d5(d+ τ)).

We use the following result for the complexity of computing the topology of a plane curve in its original coordinate
system, that is identifying the x-fibers of its x-critical points without shearing.

Lemma 4.9 ([15]). Let F ∈ Z[x, y] be a square-free polynomial of magnitude (d, τ). Computing the topology of the
plane curve C(F ) = {(x, y) ∈ R2 |F (x, y) = 0} without shearing has bit complexity Õ(d6 + d5τ).

The following result is used in the analysis of the lifting part of our algorithm.

Lemma 4.10 (Teissier [32]). Let F ∈ Z[x, y], for an x-critical point p = (α, β) of the plane curve CF , it holds that

mult(β, F (α, y)) = mult(p, {F, ∂yF})−mult(p, {∂xF, ∂yF}) + 1,

where mult(β, F (α, y)) denotes the multiplicity of β as a root of F (α, y) ∈ R[y], ∂x and ∂y are the partial derivatives
and mult(p, {G,H}) is the multiplicity of p in the ideal generated by the bivariate polynomials G and H.

4.2. Analysis of Algorithm 3

The proof of our main result, Theorem 4.11, is decomposed in several lemmas.

Theorem 4.11. Let f and g be coprime polynomials in Z[x, y, z] of magnitude (d, τ), Algorithm 3 computes the
topology of the algebraic space curve {(x, y, z) ∈ R3 | f(x, y, z) = g(x, y, z) = 0} in Õ(d18 + d17τ) bit operations.

Lemma 4.12. The bit complexity of Step 0 of Algorithm 3, that is Algorithm 1, is Õ(d7(d + τ)) and the output
polynomials have bitsizes Õ(d+ τ).
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Proof. In Line 1 of Algorithm 1, a bivariate polynomial of magnitude (d, τ) is evaluated at (d + 1)2 points with
a complexity of O(d4(d + τ)) using Lemma 4.5. For Line 2, first consider the computation of f(x + αz, y, z) =∑
i=0,...,d ci(y, z)(x+αz)i. The computation of (x+αz)i can be done with d bivariate multiplications of polynomials

of magnitudes (d, log d), the output bitsize is Õ(d) and it is computed in Õ(d4) according to Lemma 4.4. Then the d
products of trivariate polynomials ci(y, z)(x+ αz)i is computed in Õ(d4(d+ τ)). The second shearing has the same

complexity and finally, the bitsize of f̂ and ĝ is Õ(d+ τ). In Line 3, computing the resultant of f̂ and ĝ with respect
to z has complexity Õ(d(d+ d)3d2(d+ τ)) = Õ(d6(d+ τ)) according to Lemma 4.7. The magnitude of the resultant
h(x, y) is (Õ(d2), Õ(d(d + τ))). In Line 4, the computation of O(d2) gcds of univariate polynomials of magnitudes
(O(d2), Õ(d(d + τ))) costs Õ(d2(d2)2d(d + τ)) = Õ(d7(d + τ)). In Line 7, the Õ(d2) evaluations of the univariate
polynomial of magnitude (Õ(d2),O(d(d + τ))) costs O(d2d2d(d + τ)) = O(d5τ). Finally, the shearing of Line 8 has
the same complexity as the one in Line 2, that is Õ(d4(d+ τ)).

Lemma 4.13. The bit complexity of Steps 1 to 3 of Algorithm 3 is Õ(d13(d+ τ)).

Proof. In Step 1, for 0 ≤ m ≤ d2, the bitsize of sm = m is O(log d), thus the magnitudes of the sheared polynomials
f(x, y+ smz, z) and g(x, y+ smz, z) are (d,O(d log d+ τ)) = (d, Õ(d+ τ)) and they can be computed in Õ(d4(d+ τ))
as in Line 2 of Algorithm 1. By Lemma 4.7, the complexity of computing their resultant is:

Õ(d(d+ d)3 · d2(d+ τ)) = Õ(d7 + d6τ),

and this resultant is of magnitude (O(d2), Õ(d2 + dτ)). According to Corollary 4.6, the square-free computation for
hm has bit complexity

Õ((d2)5 + (d2)4 · (d2 + dτ)) = Õ(d10 + d9τ).

Using again Lemma 4.7, the complexity of computing the resultant rt is

Õ(d2(d2 + d2)2d2(d2 + dτ)) = Õ(d10 + d9τ).

Since m ranges from 0 to d2 and t ranges from 0 to 1, computing all hm(x, y) and rt(x) has bit complexity

(d2 + 1)(Õ(d7 + d6τ) + Õ(d10 + d9τ)) + 2 Õ(d10 + d9τ) = Õ(d12 + d11τ).

The last operation of Step 1 is the computation of the topology of Ch0
(and Ch1

), according to Lemma 4.9, the bit
complexity is Õ((d2)6 + (d2)5(d2 + dτ)) = Õ(d12 + d11τ). Hence, the total complexity of Step 1 is Õ(d12 + d11τ).

In Step 2, the polynomials r0(x) and r1(x) are of magnitudes (d4, Õ(d4 + d3τ)). By Lemma 4.1, computing the
lcm r∗ of r0 and r1 has a bit complexity of Õ((d4)2 · (d4 + d3τ)) = Õ(d11(d+ τ)), and the division of r∗ by r0 costs

Õ((d4) · (d4 + d3τ)) = Õ(d7(d + τ). Adding the fibers of
r∗0
r0

in the topology of Ch0
means solving the triangular

system { r
∗
0

r0
, h0}. The polynomial

r∗0
r0

is of magnitude (O(d4), Õ(d4 + d3τ)) and h0 is of magnitude (d2, Õ(d2 + dτ)).

According to [15, Proposition 27(a.1)], this triangular system solving is in Õ(d12 + d11τ). Adding the points on the
fibers corresponding to the real zeros of r∗

r1
into the topology of Ch1

has the same complexity.

Finally, in Step 3, each of the d2 triangular systems solving {r∗(x), hm(x, y)} costs Õ(d12 + d11τ), thus they can
all be solved in Õ(d14 + d13τ).

Lemma 4.14. The bit complexity of Step 4 of Algorithm 3, that is Algorithm 2, is Õ(d17(d+ τ)).

Proof. First note that with fast arithmetic operations, addition, multiplication or division of rational numbers has
a bit complexity that is softly linear in the bitsize of the input. The bit complexity of comparing two rationals is
upper bounded by twice the smallest bitsize of the two rationals. The complexity of computing the intersection of
two ordered sets is linear in the number of elements, the bit complexity is thus linear in the sum of the bitsizes of
all elements in the sets. To apply Algorithm 2, one has to construct the O(d4 × d2 × d2) sets T ism,j , each with O(d2)
elements. All operations performed by the algorithm, in particular the intersection computations, are softly linear
in the sum of the bitsizes of all the elements of all the sets T ism,j . It is thus enough to compute this sum.

According to Lemma 3.8, for Algorithm 2 to be correct with intervals, it is sufficient to refine the input y

coordinates up to width 1/4d2 min1≤m1≤m2≤d2 Sep(hm1hm2) = 2−Õ(d8+d7τ). There are d10 elements in all the T sets,

thus the total bit size is Õ(d18 + d17τ).
We now analyze the cost of refining all the y-intervals of one triangular system {r∗(x), hm(x, y)} to a bitsize

L = Õ(d8+d7τ). According to [15, Proposition 27(b)], the bit complexity of this refinement is bounded by Õ(L(Nµ+
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n2
∑
µx)), with N = O(d4) is the degree of r∗, n = O(d2) is the degree of hm, for x in the solution set V (r∗) of

r∗, µx = maxy|(x,y)∈V=V (r∗,hm) mult(y, hm(x, .)) and µ = maxx∈V (r∗) µx ≤ n = O(d2). Teissier’s Lemma 4.10 yields
mult(y, hm(x, .)) ≤ mult((x, y), {hm, ∂yhm}) + 1. So that µx ≤ maxy|(x,y)∈V=V (r∗,hm)(mult((x, y), {hm, ∂yhm}) + 1)
and ∑

x∈V (r∗)

µx ≤ #V (r∗/rm) +
∑

x∈V (r∗)∩V (rm)

max
y|(x,y)∈V

(mult((x, y), {hm, ∂yhm}) + 1)

≤ N +
∑

x∈V (r∗)∩V (rm)

max
y|(x,y)∈V

mult((x, y), {hm, ∂yhm})

with rm(x) = Resy(hm, ∂yhm). One the other hand, Bézout bound for the system {hm, ∂yhm} yields∑
x∈V (rm)

∑
y|(x,y)∈V (hm,∂yhm)

mult((x, y), {hm, ∂yhm}) ≤ n2 = O(d4)

Thus
∑
x∈V (r∗)∩V (rm) maxy|(x,y)∈V mult((x, y), {hm, ∂yhm}) is also bounded by O(d4) and

∑
x∈V (r∗) µx = O(d4).

So, the bit complexity of refining all the y-intervals of one triangular system {r∗(x), hm(x, y)} is bounded by
Õ(L(Nµ + n2

∑
µx)) = Õ((d8 + d7τ)(d4d2 + (d2)2d4)) = Õ(d15(d + τ)). Since we have d2 + 1 curves hm, the bit

complexity of Step 4 is Õ(d17(d+ τ)).

Lemma 4.15. The bit complexity of Steps 5 to 8 of Algorithm 3 is Õ(d13(d+ τ)).

Proof. In Step 5, the roots of r∗(x) have already been isolated in Step 3. The rationals x+i computed as the mid-
points between the isolating intervals of the xi have a total bitsize equivalent to the total bitsize of the isolating
intervals of the xi, thus

l∑
i=0

L(x+i ) = Õ(d8 + d7τ)

according to Lemma 4.3.
In Step 6, h0(x, y) and h1(x, y) are of magnitudes (O(d2), Õ(d2+dτ)) and one has to isolate the roots of h0(x+i , y)

and h1(x+i , y). The univariate polynomials h0(x+i , y) and h1(x+i , y) are of magnitude (O(d2), Õ(d2L(x+i ) + dτ) and
they are computed in Õ(d4(L(x+i ) +d2 +dτ)) according to Lemma 4.5. According to Lemma 4.3, the bit complexity
of the real root isolations for all i = 0, . . . , l = Õ(d4), is

Õ(

l∑
i=0

d6 + d4(d2L(x+i ) + dτ)) = Õ(d10 + d9τ) +O(d6)

l∑
i=0

L(x+i ) = O(d6) · Õ(d8 + d7τ) = Õ(d13(d+ τ)).

The complexity of adding the fibers x = x+i into the topology of Ch0
and Ch1

is thus Õ(d13(d+ τ)).
In Step 7, writing f(x, y, z) =

∑
j,k cj,k(x)yjzk, the evaluation at x+i is done via O(d2) evaluations of univariate

polynomials of degree at most d. According to Lemma 4.5, this costs O(d3L(x+i ) + τ) and f(x+i , y, z) and g(x+i , y, z)
are of magnitudes (d, dL(x+i ) + τ). By Theorem 4.8, solving one of these systems has complexity Õ(d5(dL(x+i ) + τ)),
so that the total complexity of solving all these bivariate systems is:

l∑
i=0

Õ(d5(dL(x+i ) + τ)) = Õ(d9τ) + Õ(d6)

l∑
i=0

L(x+i ) = Õ(d14 + d13τ).

Finally, in Step 8, the complexity of the connection, following Lemma 3.9, is bounded by the size of the graphs
encoding the topologies of Ch0

and Ch1
, it is thus in O(d6).
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