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Abstract

Many numerical algorithms for science and engineering applications require
the solution of sparse triangular linear systems (SPTRSV) as their most costly
stage. For this reason, considerable research has been dedicated to produce
efficient implementations for almost all high performance computing plat-
forms. In the case of graphics processing units (GPUs), there are several
strategies to perform this operation, which translate into a handful of differ-
ent routines. In general, it is difficult to establish a priori which is the best
routine for a given problem, and thus, an automatic procedure able to select
the best solver for each matrix can entail large performance benefits.

This work extends a previous effort, in which we relied on machine learn-
ing techniques to predict the best SPTRSV routine for each matrix, by improv-
ing both the accuracy and the speed of the selection procedure. Specifically,
we focus on the most efficient machine learning techniques regarding the
speed of their training and prediction stages; evaluate the artificial gener-
ation of sparse matrices to expand our dataset; and propose heuristics to
compute approximations of some expensive features. The experimental re-
sults show that we can strongly improve the runtime of our procedure without
compromising the quality results.

Keywords: graphics processors; sparse triangular linear systems; high
performance; machine learning.

*Corresponding author
Email address: edufrechou@fing.edu.uy (Ernesto Dufrechou)

Preprint submitted to Journal of Parallel and Distributed Computing June 10, 2021



1. Introduction

The numerical solution of linear systems of equations through direct or
iterative methods often involves the decomposition of the original problem
into triangular factors. Well-known examples of this are the LU factorization,
and the Incomplete LU used as preconditioner in iterative methods |1, 2|. For
this reason, the solution of sparse triangular linear systems (SPTRSV) is one
of the most important building blocks in sparse numerical linear algebra.

Throughout the years, the SPTRSV kernel has been implemented for al-
most all relevant parallel platforms [3, 4, 5, 6, 7|. However, the data depen-
dencies arising in this particular operation complicate the design of efficient
parallel routines. Moreover, as many other sparse kernels, the operation
presents a low computational intensity and irregular data access pattern,
which make it difficult to attain high performance [8, 9]. GPUs are no ex-
ception, and since their adoption as commodity HPC hardware, there have
been numerous efforts to produce high performance implementations of Sp-
TRSV for these platforms. From the review of literature and existing software
libraries, it can be concluded that the most successful of these efforts gener-
ally belong to two main classes, the level-set [10] and the self-scheduled [11]
paradigms.

The performance results reported by different authors indicate that any of
these two paradigms are better suited for some linear systems than for others.
In [12] we took a first step in the direction of identifying matrix properties
that allowed predicting which solver or paradigm offers the smallest execution
time for a given problem. However, the analysis was performed on a small
set of matrices, and the conclusions were limited to the most evident cases.

Later, in [13|, we moved on to study the use of black-box machine learn-
ing models to automatically select among several SPTRSV routines, based
on the characteristics of the sparse matrix. Specifically, we evaluated the
application of the techniques bundled with the Classification Learner App
of MATLAB® [14]. With Krylov subspace solvers in mind, we targeted the
case where one analysis phase (if applicable) and 10 solution phases are per-
formed for each triangular linear system. Furthermore, we explored the effect
of 10 different matrix features on the selected classifiers, studying the qual-
ity of their predictions using different subsets. The experimental evaluation
carried out previously reveals that some procedures are able to attain predic-



tions with values of 80% of accuracy. A similar approach has been recently
followed by other authors [15].

This effort extends [13] in several lines with the purpose of improving
the performance of the whole selection procedure. The main contributions
of this work are:

1.

The extension of the number of SPTRSV realizations addressed in our
study, including two extra methods. Specifically, we added the solvers
bundled with the latest versions of the CUSPARSE library: cuspv2,
is the novel solver based on a domino (or synchronization-free) strat-
egy, and cuspv2 that is a domino-like method enhanced with level set
information.

. A study of the fastest machine learning techniques. In other words, we

select the machine learning strategies that consume less runtime for the
training and prediction stages among those that present an acceptable
level of accuracy.

The inclusion of an additional metric for the experimental evaluation
of the machine learning techniques. In previous work, we used the
accuracy (number of correct predictions over the total number of in-
stances) and the ARE (average relative difference of runtime between
the predicted and the best method). In this work we add the Total
Relative Runtime Error (TRRE), which is the ratio between the aggre-
gated runtimes of the predicted methods and the aggregated runtimes
of the best method in each case. This new metric can be used to detect
when a given model performs badly for large instances.

. Artificial sparse matrix generation (data augmentation). As the spar-

sity pattern completely determines the performance of the different tri-
angular solvers, we aimed to train our models using realistic datasets
(from SuiteSparse collection). However, the number of available sparse
matrices derived from real problems is too small for machine learn-
ing technologies. Thus, to count with a larger training set, we create
new matrices by performing random perturbations of the original ones.
With this approach, we generate larger training sets, while maintaining
some characteristics of the sparsity patterns found on real problems.
Design of heuristics to reduce the runtime related with the computation
of costly matrix features.

. We apply and evaluate our procedure to select the best SPTRSV solver

as a part of a method to address real-world problems. In particu-



lar, as a part of a Preconditioned Conjugate Gradient (PCG) iterative
method, with an incomplete factorization with 0 fill-in (ILUO) as pre-
conditioner.

The rest of the paper is structured as follows. In Section 2 we review
the main aspects of the GPU implementations of the sparse triangular linear
systems. Section 3 revisits our first steps with the use of machine learning,
and its application in the context of our problem. Later, in Section 4, we
detail our experimental evaluation and highlight the most important results.
This is followed by the description of our extensions in Section 5, and the
application of our automatic selection procedure in the context of precondi-
tioned Krylov subspace solvers in Section 6. Finally, Section 7 offers several
concluding remarks and summarizes a few lines of future work.

2. Parallel solution of sparse triangular linear systems

Consider the linear system
Lz =0, (1)

where L € R"™" is a lower-triangular matrix, b € R" is the right-hand side
vector, and z € R" is the sought-after solution. Typically, the sparse matrix
L is stored in some sparse storage format, among which CSR (Compressed
Sparse Row) is the most common [2].

The importance of this computational kernel motivates the development
of efficient routines for the many processor architectures. However, as usual
in sparse linear algebra, reaching high levels of performance in the SPTRSV is
a challenging task due to the combined effect of irregular data access patterns
and low computational intensity [16]. Additionally, data dependencies and
load imbalance due to the triangular structure of the problem [1] makes the
parallelization of the operation quite challenging.

With the widespread adoption of massively parallel processors such as
GPUs by the HPC community, the exploitation of parallelism for SPTRSV
has motivated a considerable number of research efforts [6, 17, 18, 19, 20, 21].
The experimental analysis performed by different authors confirms that any
of these proposals offer high performance for some linear systems but low for
others.

The most successful routines, considering the numerical results presented
in the literature and their integration into widely-used software libraries, be-
long to two main approaches, referred to as level-set 10| and self-scheduled
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methods [11], respectively. A detailed description of both strategies, as
well as the study of some of the most remarkable implementations of each
paradigm for the CSR sparse matrix format, was presented in our previous
work [21]. There, the cuspv! routine [6], which is the most representative im-
plementation of the level-set strategy, is compared with four self-scheduled
variants: sf nan, sf order and sf mr [21].

In this work we include two additional SPTRSV routines. Specifically, we
include the solvers that are bundled with the latest versions of the CuUS-
PARSE library: cuspv2 is a solver based on a domino (or synchronization-
free) strategy that relies on level set information, implemented in routines
csrsv2_analysis and csrsv2_solve with policy USE LEVEL; cuspvZy
results from invoking the same routines with policy NO_LEVEL.

3. Automatic selection

In this effort we continue relying on the Classification Learner App in
MATLAB® in order to obtain the supervised machine learning models that
will be applied to determine the best SPTRSV implementation. This MATLAB®
module includes 5 types of techniques, namely, Decision Tree, Discriminant
Analysis, Support Vector Machines, K-Nearest Neighbor, and Ensemble clas-
sifiers.

Along this line, we revisit our previous work and consider the same 10
features: Arithmetic precision (prec), Matrix dimension (n), Number
of nonzeros (nnz), Maximum number of non-zeros per row (nnz,,4.),
Average number of non-zeros per row (nnz,,), Standard deviation
of non-zeros per row (nnzsg4e,), Average bandwidth (bwg.,,), Num-
ber of level-sets (levels), Locality (locality), and Multirow locality
(locality,,.).

As we stated previously, some of the features are more costly to com-
pute than others. While n, nnz and nnz,,, can be obtained with cost O(1)
from the sparse matrix data structure, computing nnzmaz, NMNZstder,; WWang
and locality has a cost of O(n), where n is the dimension of the matrix. Fur-
thermore, the computation of levels and locality,,,. needs to be performed
during or after the analysis phase of the sf order or sf mr variants, whose
computational cost is similar to that of the solution phase of the linear sys-
tem. Therefore, it is interesting to evaluate the performance of the models
trained only with the features that are cheaper to extract.



After selecting these features, we trained the set of available machine
learning models and performed a 5-fold cross validation to estimate the ac-
curacy of the trained models on unseen data.

As our dataset is imbalanced (see Section 4.2), the accuracy of the models,
which is the percentage of correctly classified instances, is not sufficient to
determine the performance of the classifiers, because it can hide a selection
delivering low performance for the minority classes. However, at this stage
this metric provides some valid insights, as it reveals which type of machine
learning models are best suited for our problem and deserve a more detailed
analysis. Additionally, we also take into account the training and inference
speed of each technique.

The result of this preliminary evaluation, employing the dataset described
in Section 4.2, is shown in Table 1. In general, we note that the Decision
Tree classifiers appear to be the best performing group of classifiers, espe-
cially if the training and prediction speeds of the models are considered.
The K-Nearest Neighbor classifiers present a reasonably accuracy, with Fine
KNN offering an accuracy of 74% but slow prediction speed. In comparison,
Weighted KNN presents the same accuracy with a much faster prediction
speed. Although in both cases, the training time is substantially higher than
that required by Decision Trees, their magnitude is too small to make a
difference in our application.

Some of the Ensemble classifiers included in this analysis also show good
accuracy, though they present slower prediction speeds than Decision Trees
and Weighted KNN classifiers.

On the other side, the Discriminant Analysis classifiers and Support Vec-
tor Machines perform badly in general.

To perform a more exhaustive evaluation, we next focus on the best per-
forming models from the Decision Tree, Weighted KNN, considering a trade
off between accuracy and prediction speed. Specifically, we set a lower bound
of 70% for the accuracy and 10,000 observations per second for the speed,
selecting the Fine Tree and Weighted KNN models. Before advancing to
the experimental evaluation, we provide a small description of the selected
models.

3.1. (Binary) Decision Tree

A binary decision tree is a tree structure where the inner nodes recur-
sively split the dataset into two partitions according to the value of a certain



Table 1: Accuracy, prediction speed, and training time of the models included in the
Classifier Learner App for our dataset, considering all the predictors.
Acc. | Pred. speed | Train time
Model (%) | (obs/sec.) (sec.)
Decision Fine'tree 80.7 13000 5.41
Troes Medium tree 73.2 14000 5.81
Coarse tree 69.6 47000 5.59
Discriminant | Lin. discr. 59.3 19000 6.12
Linear SVM 65.1 15000 9.76
Quadratic 72.3 8200 73.82
VM Cubic 59.9 21000 150.68
Fine Gauss. 69.2 8300 75.24
Medium Gauss. 67.6 9300 76.29
Coarse Gauss. 58.4 9500 77.65
Fine 74.3 1600 78.11
Medium 66.3 21000 78.54
Coarse 60.5 13000 79.04
KNN Cosine 65.2 19000 78.91
Cubic 65.7 3000 80.32
Weighted 74.1 25000 80.75
Boosted Trees 76.6 3700 85.23
Bagged Trees 84.6 3300 88.92
Ensemble Subspace discr. 59.8 3200 91.83
Subspace KNN 79.0 2600 94.79
RUSBoost. Trees | 61.2 3600 98.14




attribute, and the terminal nodes (called leaves) represent the outcome clas-
sification of an observation that complies with the splitting attributes of the
corresponding branch.

During the training of the model the nodes are split using some impurity
measure computed over the subset of the training dataset that corresponds
to the node. The subset is then partitioned accordingly, and the resulting
partition is used as the training dataset for the respective children nodes.

In this work we train a decision tree based on the CART algorithm [22],
which uses the Gini’s diversity index [23] as impurity measure for the split
criterion.

3.2. Weighted K-Nearest Neighbors

K-Nearest Neighbors is a simple yet powerful machine learning technique.
Given some distance function, it maps an observation into the class corre-
sponding to the majority of its k nearest neighbors, where £ is an algorithm
parameter.

A variation of this approach is to assign a heavier weight to nearby ob-
servations, so that they have more influence on the classification than those
that are further away [24].

4. Experimental evaluation

In this section we revisited the initial experiments performed in Section 3
with the aim of evaluating the efficiency of the classification algorithms to
select the best sparse triangular linear system solver.

4.1. Hardware platform

The runtime evaluation of the SPTRSV variants for the linear systems
included in the dataset for the machine learning methods was performed on
a server equipped with an Intel Xeon Gold 6138 CPU (20 cores at 2.00 GHz)
and 128 GB of RAM, connected to a NVIDIA P100 GPU with 12 GB of RAM.
The operating system is CentOS Linux 7 (Core) and the CUDA Toolkit for
the GPU is version 9.2.

We employed MATLAB® 2018a for the classification experiments.



4.2. Initial dataset

In order to perform the experimental evaluation, we selected a set of
square, real matrices, of medium and large dimension, from the SuiteSparse
Matrix Collection! (formerly known as the University of Florida Matrix Col-
lection ~-UFMC-). In particular, we considered the lower triangular part of
a total of 981 sparse square matrices with dimension n between 1,916 and
55,042,369 and up to 113 million nonzeros.

As we stated previously, in addition to the triangular solvers described
in [13] we add two more solvers that are bundled with the latest versions of
the CUSPARSE library, cuspv2 and cuspv2,;.

For those solvers that require an initial analysis phase, we perform ex-
periments replacing the runtimes of the solvers by the runtime taken by the
execution of a single analysis phase plus 10 or 1000 iterations of the solver.
For one-phase solvers, we only consider the time of 10 or 1000 iterations of
the solver. This has the purpose of emulating the application of a Krylov
subspace iterative solver in two different scenarios: one where the cost of the
analysis may have a significant impact; and an alternative where that cost
is completely overshadowed by the cost of 1000 executions of the solution
phase.

We employ the IEEE floating point representations, in double precision
for all the experiments.

4.8. FExperimental Results

In Section 3 we selected the classification methods which offered better
initial results to perform a complete analysis. In particular, we chose two
methods, from the Decision Tree (Tree) and a K-Nearest Neighbor (wKNN)
families, that presented a good compromise between accuracy and speed of
training or prediction.

The Tree model was trained with a maximum depth of 100, and the Gini
diversity index was applied as split criteria. The wKNN was trained using
the Euclidean distance, the squared inverse of the distance as weights, and
10 nearest neighbors.

The cost of the computation of some matrix features, such as the number
of level sets or the maximum number of nonzeros in one row, can be high
in some cases, which can blur the gains obtained by the prediction. It is

thttp:/ /faculty.cse.tamu.edu/davis /suitesparse.html



therefore interesting to consider which features exert a stronger influence
on the accuracy of the machine learning models. To study the impact of
each feature, and assess how to diminish the number of predictors without
affecting the accuracy of the models significantly, we start by removing the
locality, locality,,, and bw,,, predictors. Later, we also discard the number of
levels. Next, we remove the nnzgqe, predictor. Finally, we eliminate nnz,,q.
keeping only those predictors that can be computed with O(1) cost (n, nnz
and nnzgg). The ordering is based on the considerable computational cost
of these predictors. In particular, locality, locality,,, and levels imply the
computation of a costly level-set analysis of the sparse matrix.

Table 2 summarizes the effect of the exclusion of some features in the
attained accuracy of the trained models. The accuracy of these models is
computed using a 5-fold cross validation on the original dataset.

Besides the number of correct predictions over the total number of in-
stances (accuracy), we are interested in analyzing the prediction from the
point of view of our particular problem. In other words, in our application
it may not be relevant to misclassify a solver when the difference in runtime
between the predicted solver and the best routine is small.

For this reason we introduce two more metrics to assess the quality of the
models. We define the Average Runtime Error (ARE) computed as:

1 Tpred - opt(l>
ARE = 5 > ,

=1 opt )

and the Total Relative Runtime Error (TRRE) computed as:

TRRE = Zz 1 red( )
>t Top (i)

where T),.4 is the runtime taken by the predicted method, 7}, is the runtime
required by the best method, and d is the number of observations in the
dataset. The best values for ARE and TRRE are 0 and 1, respectively.

While the ARE aims to reflect the average relative error in the prediction
of each individual instance, it can hide cases where the models perform badly
for large instances, which will have a high impact on TRRE.

The results summarized in Table 2 show that the effect of discarding these
features is not uniform. In some cases, removing a certain feature deteriorates
the results, but in other cases it improves the accuracy of the trained model.
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Table 2: Accuracy and Average Runtime Error (ARE) after performing a 5-fold cross
validation with three of the trained ML models. The effect of excluding features during
training is also displayed. set; includes all features. sety excludes locality, locality,,, and
bwqug. sets excludes the features excluded in sety and levels. sety excludes the features
excluded in set3 and nnzgge,. Sets excludes the features excluded in sety and nnz,,qq.-

’ Iters \ Model \Feat

. ‘ Acec. ‘ ARE ‘ TRRE

set; | 67% | 0.25 1.34

sety | 66% | 0.30 1.42

Tree sets | 62% | 0.45 1.67

sety | 58% | 0.48 1.63

10 sets | 56% | 0.57 1.60
set; | 2% | 0.21 1.28

sety | 66% | 0.38 1.34

wKNN | sets | 63% | 0.43 1.49

sety | 59% | 0.47 1.40

sets | 56% | 0.55 1.56

set; | 69% | 0.27 1.15

sety | 67% | 0.30 1.21

Tree sets | 64% | 0.29 1.27

sety | 66% | 0.26 1.25

sets | 61% | 0.49 1.39

1000 set, | 71% | 0.16 | 107
sety | 72% | 0.12 1.07

wKNN | sets | 70% | 0.16 1.23

sety | 63% | 0.24 1.18

sets | 64% | 0.30 1.23
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However, the levels and nnzy.. /sa features are those that have a stronger
impact on the predictions. This is more evident in the TRRE metric. For the
Tree model, the runtime overhead of using the predicted routines to solve all
the systems in the dataset increases by 19% in the 10-iteration case, and 20%
in the 1000-iteration case, whereas for the wK NN, the corresponding increases
are 28% and 17% when these features are excluded. Moreover, the exclusion
of the nnzpe./sta features seems to have significant impact on ARE, while
the effect that can be observed on TRRE is smaller. This suggests that the
row length is more relevant for the performance of the solvers for matrices of
relatively small size where, even if the relative difference between the runtime
of the predicted and best solver is large, the absolute difference in runtime
is small.

Table 3: ARE and TRRE obtained by solving the entire dataset with each triangular
solver.

10 iters 1000 iters
ARE | TRRE | ARE | TRRE

cuspvl 56.97 | 24.74 | 2.96 3.51
cuspv2 1.18 1.82 | 1.70 2.16
cuspv2y 0.78 1.85 | 2.02 2.36
baseline 1.75 2.97 | 4.16 3.81
sf _man 1.04 220 | 2.83 2.82
sf order | 1.15 1.73 | 0.47 1.49
sf mr 0.98 1.51 | 0.22 1.22

Solver

The TRRE of the best cases, which are obtained with the wKNN model,
indicate that using the predicted solver to process the entire dataset at least
takes 28% more runtime than the optimal using the 10-iteration variant and
7% than using the 1000-iteration one. However, reported in Table 3, using
the same solver for all cases results in considerably worse values of ARE and
TRRE. In fact, using sf mr, which is the best routine in general for this
dataset, results at least, in 51% and 22% larger runtime than optimal for the
10- and 1000-iteration cases respectively.

5. Improvement strategies

In this section, we extend our previous work in two different lines. Specif-
ically, we address the reduction of the runtime needed by the features com-
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putation. In more detail, we employ an heuristic to estimate the feature
that implied O(n) computations. Later, we study the effect of the data set
extension through the use of a procedure for sparse matrix generation.

5.1. Improving the speed of feature detection

As previously mentioned, the aim of this effort is to reduce the total
runtime required by applications that rely in the solution of sparse triangular
linear systems by the automatic selection of the best SPTRSV routine for each
matrix. For this procedure to be effective, it is not enough that the machine
learning models are accurate in their predictions. The prediction itself needs
to add as little overhead as possible to the target application.

In general, as the training stage can be used for a large number of prob-
lems, its cost becomes negligible. The overhead of the procedure is then
composed of two main aspects: the computational cost of the prediction,
and the runtime needed for the computation of the matrix features that
serve as input to the machine learning models.

The first of these two aspects was contemplated by the selection of ma-
chine learning techniques that present a fast inference stage. Regarding the
second, in Section 4 we showed that our methods require some features that
involve a computational cost of O(n). To explore the possibility of reducing
the runtime related to the computation of the features, in this section we
evaluate the impact of substituting the most expensive ones by approximate
values, proposing a number of heuristics to compute those estimations.

5.1.1. Estimating the mazximum and standard deviation of the number of
NONZeros in a row

In order to obtain the maximum number of nonzero elements in a row for
a sparse matrix stored in CSR format, it is necessary to traverse the vector
of row pointers, subtracting each pair of consecutive entries to obtain the
length of the corresponding row. This procedure requires O(n) time.

To compute an approximation of this value, with a reduced computational
cost, we study two heuristics:

e The first one is to partition the vector of row pointers in k partitions of
n/k rows. For each partition, the average number of nonzeros per row
is computed, and the values obtained are reduced, while keeping the
maximum, which is returned as the estimated maximum of nonzeros
in a row. We evaluated the results obtained with three variants of
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this heuristic: one with 1024 partitions (max p1024), one with 128
partitions (maz_p128), and one with the number of partitions equal to
10% of n (mazx_p10%).

e The second heuristic is a recursive binary search that, at each step, di-
vides the rows into two groups and continues the recursion in the group
containing a larger number of nonzero elements. The procedure stops
when the partition has only one row, returning the number of non zero
elements of that row. The algorithm also receives a parameter ¢ that
forces the procedure to explore the two branches of the recursion for
the first ¢ levels of the tree. We evaluated this heuristic for ¢ = 0,2 and
5, which are denoted as max_ 00, max_b2 and max_ b5, respectively.

Although the first procedure implies O(1) and the second O(clogn), if
k = 1024 partitions are considered, the second procedure is faster for ¢ < 6 for
the tested matrices. With ¢ = 5 the binary search algorithm obtains higher
accuracy results, in general, while also outperforming the first procedure in
execution time.

To estimate the standard deviation of nonzeros per row, we follow a
procedure analogous to max_p1024 and maz_p128. We call these variants
std_p1024 and std_p128.

Table 4 shows the accuracy results of the models trained with the fea-
tures of sets (see Table 2), but replacing nnz,., and nnzgge, by the ap-
proximate values computed by the combinations of heuristics that presented
higher accuracy for each model and dataset. The results in this table show
that the use of approximate values does not offer significant differences with
respect to the results obtained for sets in Table 2. Considering the bal-
ance between accuracy and computational cost, the combination of heuris-
tics maz_p128/std_p128 stands out. In fact, this combination achieves
high accuracy results for all the tested cases, at a fraction of the compu-
tational cost than most other combinations. For this reason we employ
max_pl28/std_p128 for the rest of the experiments in this work.

5.2. Improving the prediction accuracy

In the previous experiments, the dataset used for training consisted on
a subset of the sparse matrices from the SuiteSparse Matrix collection. In
general, the sparsity pattern of this kind of matrices completely determines
the performance of the different triangular solvers (the numerical values play
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Table 4: Performance of the models after replacing the features nnz,,q, and nnzsige, by
the approximate values returned by different heuristics.

Iters | Model Heuristics Acc | ARE | TRRE
max_pl28/std_p1024 | 61% | 0.42 1.50
max_pl0%)/std_p1024 | 60% | 0.41 1.64

Tree max_b5/std_p1024 | 61% | 0.43 1.57
mazx_pl128/std_p128 | 60% | 0.45 1.66
maz_p10%)/std_p128 | 60% | 0.37| 157

10 max_b0/std_p128 | 60% | 0.43 1.55
max_p128/std_p1024 | 64% | 0.45 1.58
max_pl0%)/std_p1024 | 64% | 0.42 1.51
maz_b5/std_p1024 | 62% | 0.45 1.57

WRNN s p128/std_p128 | 64% | 0.46 | 1.59
mazx_pl0%/std_p128 | 64% | 0.38 1.56
max_b5/std_p128 | 63% | 0.44 1.46
max_pl0%)/std_p1024 | 65% | 0.32 1.26
maz_b5/std_p1024 | 63% | 0.39 1.28

Tree mazx_b2/std_p1024 | 63% | 0.33 1.22
max_p128/std_p128 | 63% | 0.46 1.29
mazx_pl0%/std_p128 | 64% | 0.31 1.29

1000 max_b2/std_p128 | 62% | 0.31 1.25

max_pl28/std_p1024 | 68% | 0.18 1.20
mazx_b5/std_p1024 | 67% | 0.23 1.18
max_b2/std_p1024 | 68% | 0.28 1.23

WRNN s p128/std_p12s | 69% | 027 | 1.22

max_pl0%)/std_p128 | 68% | 0.26 1.23

max_b0/std_p128 | 68% | 0.28 1.20
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no role in this sense) and, therefore, the purpose was to train our models
with a realistic dataset, assuming that some nonzero patterns are more likely
to appear in real-world scenarios than others.

However, the dimension of the training dataset is a critical point for ma-
chine learning techniques. In this sense, although the SuiteSparse collection
is a comprehensive and widely used benchmark for the traditional validation
of sparse routines, the number of sparse matrices in that collection is rather
small compared to the usual dimension of training sets for machine learning
applications.

To count with a larger training set (data augmentation), the insufficiency
of real-world instances led us towards the generation of random sparse trian-
gular matrices. However, we suspect that a purely random training set needs
to be immensely large for the trained machine learning models to be effective
on realistic nonzero patterns, which is our ultimate goal. For this reason, in-
stead of generating random datasets with millions of instances, in this work
we create new matrices by performing random perturbations of the original
ones. In this way, we intend to generate larger training sets but maintaining
some characteristics of the sparsity patterns found on real problems.

We implemented two matrix generators. The first one takes an integer
seed as input to initialize the random number sequence and then assigns
each non-diagonal nonzero a new column index, which is a random number
between the column index of the previous and next nonzero in the row. The
column indexes of all the elements of each row thus remain in increasing
order. In order to achieve datasets with different degrees of randomness, a
step parameter controls the fraction of the total nonzeros to modify.

Using this generator, we can create datasets where the matrices have
a dimension, total number of nonzeros, and number of nonzeros per row
that can be found in, at least, one instance of the original dataset. Other
properties, such as the number of level sets or the bandwidth, can drastically
vary.

The second generator commences by performing a similar procedure on
the row pointers vector of the CSR structure that holds the matrix, moving
the integer pointer to the beginning of each row to a random position between
the beginning of the previous and subsequent rows. Then it assigns a random
column index to each non-diagonal nonzero of the modified rows, respecting
the increasing order of the indexes and the triangular structure of the matrix.

Besides the matrix features randomized by the first generator, the sec-
ond one varies features such as the maximum and standard deviation of the
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number of nonzeros per row.
Using this two generators, we then created three random datasets:

1. rand_ 1% uses the first generator and modifies the column index of only
1% of the nonzero entries.

2. rand_ 100% uses the first generator and modifies all the nonzero entries.

3. rand_rows uses the second generator and modifies all the rows and
nonzero entries.

Each dataset contains five randomized versions of each matrix in the original
one, using different seeds to initialize the random sequence.

Table 5: Performance of the models using cross validation on different datasets for variant
mazx_pl128/std_p128.

’ Dataset \ Iters. \ Model \ Acec. \ ARE \ TRRE

10 Tree 91% | 0.05 1.03

10 wKNN | 96% | 0.02 1.00

rand_100% 660 Tree | 82% | 0.10] 104
1000 | wKNN | 93% | 0.01 1.01

10 Tree 81% | 0.11 1.07

rand 1% 10 wKNN | 95% | 0.01 1.00
- 1000 | Tree 7% | 0.11 1.10
1000 | wKNN | 93% | 0.02 1.02

10 Tree 91% | 0.01 1.01

rand  Tows 10 wKNN | 93% | 0.01 1.01
- 1000 | Tree 93% | 0.01 1.01
1000 | wKNN | 94% | 0.01 1.00

Table 5 shows the result of performing 5-fold cross validation on each new
dataset, using the wKNN and Tree models, simulating 10 or 1000 iterations
in the execution times of the triangular solvers.

The results in the table show that the models present a remarkably higher
performance on all the extended datasets, with accuracy ratios that exceed
90% in most cases, and negligible ARE and TRRE. However, these results
are largely explained by overfitting. It is possible that the difference in the
features between two random versions of the same matrix is too small to add
significant variety to the dataset. This causes that, when performing cross
validation, the instances in the test sets are too similar to the instances of
the training set.
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Table 6: Performance of the models trained with the extended datasets when predicting
instances of the original dataset.

] Dataset \ Iters. \ Model \ Acc. \ ARE \ TRRE \

10 Tree | 51% | 0.85| 2.06

10 | wKNN|51% | 086 | 2.07
rand_100% 060 T Tree 1 37% | 173 | 2.05
1000 | wKNN | 40% | 1.68| 2.14

10 Tree 69% | 0.33 1.52

vand 19 | 10| wKNN | 76% | 0.22| 139
- 1000 | Tree | 65% | 0.58 | 1.50
1000 | wKNN | 76% | 0.52 | 1.55

10 Tree 31% | 0.89 1.84

vand rows | 10| wKNN | 34% | 0.85| 182
— 1000 | Tree 41% | 1.27 2.02
1000 | wKNN | 41% | 128 | 2.05

To assess the performance of the models trained with the extended datasets
on real problems, Table 6 shows the results using the original dataset as test
for the three random training sets. The performance of the models drops
radically in comparison with the cross validation case, showing worse results
the more random the dataset. A possible improvement of this strategy can
be to create training sets with a much larger number of matrices, combining
different degrees of randomness.

6. Evaluation on real cases

To assess the effectiveness of our approach on real-world applications we
shall use the Preconditioned Conjugate Gradient (PCQG) iterative method,
with an incomplete factorization with 0 fill-in (ILUO) as preconditioner [2].
This implies that two sparse triangular linear systems need to be solved in
each iteration of the PCG. We will analyze the runtime for the entire itera-
tion, obtained for each of the SPTRSV implementations considered previously
in this work, and compare it with the runtime obtained by using the SPTRSV
implementation predicted as optimal by the Weighted-KNN model in each
case.

For this experiment, we selected 25 symmetric positive-definite (SPD)
matrices from the original dataset. To train the machine learning method, we
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used the original dataset, with all but these 25 SPD matrices. We produced
two models, labeling the observations with the SPTRSV implementation that
takes less time to perform one analysis phase (if it is required) plus 10 and
1000 solution phases, respectively.

The features used in the training and prediction phases are the dimen-
sion n, the number of nonzeros (nnz), and the estimation of the maximum
number and standard deviation of nonzeros per row given by max_p128 and
std_p128. The characteristics of these matrices are reported in Table 7.

Table 7: Characteristics of the SPD matrices employed to test our machine learning
approach in the context of a PCG iterative solver.

‘ id ‘ matrix ‘ n ‘ nnz ‘ nnz _avg ‘ nnz _max ‘ nnz_std ‘
1 af shell3 504,855 | 9,046,865 17.92 18 5.26
2 af shell4 504,855 | 9,046,865 17.92 18 5.26
3 af shell7 504,855 | 9,046,865 17.92 18 5.26
4 af shell8 504,855 | 9,046,865 17.92 18 5.26
5 bmw7st 1 141,347 | 3,740,507 26.46 44 14.32
6 hood 220,542 | 5,494,489 24.91 32 11.54
7 ship 003 121,728 | 4,103,881 33.71 49 16.94
8 shipsecl 140,874 | 3,977,139 28.23 39 10.54
9 shipsech 179,860 | 5,146,478 28.61 43 11.12

10 shipsec8 114,919 | 3,384,159 29.45 43 11.15
11 thermal2 | 1,228,045 | 4,904,179 3.99 5 1.77
12 G2 _circuit 150,102 438,388 2.92 3 0.53
13 G3__circuit | 1,585,478 | 4,623,152 2.92 3 0.52
14 apache2 715,176 | 2,766,523 3.87 3 0.34
15 boneS01 127,224 | 3,421,188 26.89 32 11.38
16 Dubcovad 146,689 | 1,891,669 12.90 14 3.54
17 parabolic_fem 525,825 | 2,100,225 3.99 6 2.06
18 ecology?2 999,999 | 2,997,995 3.00 2 0.04
19 2cubes_sphere 101,492 874,378 8.62 10 3.74
20 | thermomech TC 102,158 406,858 3.98 6 2.04
21 | thermomech TK 102,158 406,858 3.98 6 2.04
22 | thermomech dM 204,316 813,716 3.98 6 2.04
23 offshore 259,789 | 2,251,231 8.67 10 3.12
24 Emilia_ 923 923,136 | 20,964,171 22.71 23 4.96
25 Geo_ 1438 | 1,437,960 | 32,297,325 22.46 23 4.44
26 bundle adj 513,351 | 10,360,701 20.18 39 15.74

The implementation of the PCG method is that of the conjugateGradi-
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entPrecond code distributed with NVIDIA CUDA Toolkit 9.2, adapted to use
double precision. The stopping criteria for the iteration is ||r;||/||7o]| < 1078
or a maximum of 5000 iterations, where r; is the norm of the residual at
iteration 1.

Table 8: Runtime (in seconds) of the PCG using each solver to perform the SPTRSV that
correspond to the computation of the preconditioned residual in every iteration. In the
columns Pred 10 and Pred 1000, the triangular solver used is that predicted to be the best
by the wKNN model trained with the runtimes of 10 and 1000 solution phases respectively.

time PCG
Id | Iters | Res. Norm | cuspvl ‘ cu.sp/u?‘ cuspvZpy ‘ baseline ‘ sf nan ‘ sf ov'der‘ sf mr‘ Pred 10 ‘ Pred 1000
1| 1056 | 7.06E-06 50.69 | 31.82 120.87 | 374.38 | 280.22 13.89 | 12.96 31.82 12.96
2 | 1056 | 7.06E-06 50.68 | 31.93 120.92 | 374.87 | 282.55 14.45 | 12.90 31.93 12.90
3| 1056 | 7.00E-06 50.70 | 31.89 121.01 371.18 | 278.76 14.43 | 13.00 31.89 13.00
411056 | 7.00E-06 50.69 32.43 120.90 374.23 279.84 13.87 | 12.96 32.43 12.96
5| 5001 | 8.89E+04 59.00 25.74 42.44 97.25 72.65 14.86 | 14.36 14.36 14.36
6 | 5001 | 1.82E+03 51.17 | 27.78 22.47 54.98 43.98 17.00 | 16.80 16.80 16.80
711739 | 2.92E-06 102.30 | 87.72 27.03 47.23 30.82 27.92 | 26.15 30.82 26.15
81892 | 3.27E-06 27.44 22.29 8.21 15.71 11.00 6.61 6.12 6.12 6.12
9| 764 | 4.18E-06 30.70 24.69 11.09 22.52 15.06 7.7 6.92 6.92 6.92
10 | 1806 | 2.85E-06 71.50 71.05 20.48 36.12 25.61 21.99 | 19.24 19.24 19.24
11 | 2289 | 1.10E-05 40.85 20.50 32.76 56.38 41.14 17.84 | 14.50 20.50 14.50
12 | 542 | 3.81E-06 4.74 1.72 5.41 14.95 11.38 1.37 2.06 11.38 2.06
13 1 906 | 1.25E-05 30.91 11.59 228.16 301.07 232.00 9.76 | 14.89 11.59 14.89
14 | 772 | 7.97E-06 8.10 3.72 36.28 134.35 103.40 3.17 3.33 36.28 3.33
15 | 601 | 3.52E-06 8.65 6.49 6.94 17.08 12.78 2.20 2.04 2.04 2.04
16 | 144 | 3.59E-06 5.88 3.79 1.69 4.57 3.26 1.41 1.69 3.79 1.69
17 | 1132 | 7.07E-06 3.01 3.36 3.11 3.38 2.82 2.94 1.51 3.36 1.51
18 | 1879 | 9.93E-06 4513 | 19.50 | 493.95 | 1.133.15 | 853.89 16.29 | 19.97 19.50 16.29
19 | 10 2.23E-06 1.71 0.89 0.65 0.96 0.71 0.49 0.47 0.89 0.49
20 | 8 3.96E-07 0.26 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02
21 | 5001 | 1.48E+01 14.14 7.61 4.51 5.41 4.41 6.82 3.92 4.41 6.82
22| 8 5.60E-07 0.47 0.02 0.01 0.01 0.01 0.03 0.02 0.01 0.02
23 | 490 | 5.07E-06 20.54 | 12.97 15.91 34.67 25.72 5.50 5.91 12.97 5.91
24 | 454 | 9.33E-06 39.97 | 19.86 24.12 61.32 44.57 9.38 8.69 19.86 8.69
25 | 481 | 1.14E-05 48.95 | 25.96 26.18 66.20 49.10 12.24 | 11.68 25.96 11.68
26 | 5001 | 5.80E+04 46.59 44.08 43.47 39.27 35.87 36.43 | 36.73 44.08 36.73
\ total | 864.77 | 569.44 [ 1.533.61 | 3.641.26 [ 2.741.57 [ 278.68 [ 268.83 | 438.97 | 268.07 |

Table 8 shows the result of this experiment. For the majority of cases,
the iteration count of the PCG was rather large, much closer to 1000 than
to 10 (the instances with 5001 iterations did not converge). This explains
the higher performance of the model trained with the simulation of 1000
solution phases. Moreover, for this particular set of matrices, the sf mr
and sf order routines render similar performance in general, and have lower
execution times than the rest of the variants. The machine learning model
predicts that the best variant will be one of these two, though it often fails to
estimate which of them will be the best. This results in a rather low accuracy
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(62%), but a fair performance, taking slightly less time to compute the whole
set than that of the best method (sf mr), and attaining a significant speedup
regarding the rest of the methods.

For the instances that took a small number of iterations (close to 10)
the prediction of the model trained with the runtimes of 1000-solution-phase
was not considerably worse (in one case it was better) than that of the 10-
solution-phase counterpart. The results obtained for this set of matrices
suggest that the former model can adapt better to the general case than
the latter. However, the results can differ depending on the specific set of
matrices, and a deeper study is in need. Ideally, it would be desirable to
count with an estimation of the iteration count for a certain matrix, based
on the convergence behavior of the iterative method in mind. This is an
interesting line to explore as part of future work.

7. Final remarks and future work

In this work we proposed an automatic procedure to select the best per-
forming GPU implementation of SPTRSV for a given sparse triangular linear
system. Our proposal includes the evaluation of different machine learning
strategies and a careful study of the linear system features considered to
compute the selection.

To address this problem we performed a brief revision of the different
techniques presented in previous efforts for the solution of this operation on
GPUs. Specifically, we identified seven SPTRSV routines for the CSR matrix
format and experimentally evaluate their performance on 981 different sparse
triangular linear systems. To simulate the application of a Krylov subspace
solvers we multiply the runtime of the solution phase by 10 and 1000 fictitious
iterations, creating two initial datasets.

We applied the machine learning techniques bundled with MATLAB® to
later perform a more detailed study on Tree and wKNN, which showed the
best relation between accuracy and prediction speed. For the initial datasets,
applying the solver predicted by the wK NN model for each matrix results in
up to 23% lower runtime than applying always the sf mr solver, which has
the best average performance.

To assess the importance of each feature on these two models, we tested
their performance when progressively removing features from the training
and prediction stages. Here we observed that the most relevant features are
those related with the level sets and the length of the rows. The results
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of this experiment also suggest that the later are particularly important for
sparse matrices of small and medium scale.

The rest of the work aims to improve the performance of the models in
terms of both accuracy and speed. To enhance their accuracy, we constructed
larger datasets by generating additional sparse matrices through random per-
turbations of the original ones. Performing cross validation on the extended
datasets yields accuracy results of up to 96%. However, training the models
with the extended dataset to make predictions on the original one showed
poor results.

To improve the speed of the procedure, we replaced two of the features
which are more costly to compute, by approximate values obtained through
cheaper heuristic procedures. The results showed that the use of these estima-
tions does not significantly degrade the accuracy of the models. Regarding
the heuristics, the maz p128/std_p128 combination obtained remarkably
good accuracy results requiring a smaller computational effort than most
other combinations.

Finally, we tested the automatic selection procedure in the context of a
Krylov subspace solver. We selected 25 SPD matrices from the SuiteSparse
collection and compared the performance of the PCG method using the se-
lected SPTRSV routines, with the performance obtained using the routine
predicted by the wKNN model in each case. For this particular set of matri-
ces, the sf mrand sf orderroutines, in general, present similar performance
and have lower execution times than the rest of the variants. The machine
learning model often fails to predict which routine will be the best, which
results in a rather low accuracy result (62%), but a good result in terms of
performance, taking slightly less time to compute the whole set than that
of the best method (sf mr), and significantly outperforming the rest of the
methods.

In future work we plan to extend this investigation along several lines.
First of all, it is interesting to evaluate or develop new SPTRSV GPU meth-
ods, even relying in sparse storage formats different to the conventional CSR
and CSC. We will explore different strategies to produce more effective ran-
domized datasets that avoid the overfitting problem that arose in this effort.
We also plan to develop heuristics for other costly features, such as the num-
ber of level sets, and evaluate their performance on the machine learning
models. Additionally, we intend to provide parallel implementations of both
the features and the model computations, so that all the procedure (at least
the inference stage) can be performed on the GPU. Finally, it is interesting
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to evaluate the incorporation of analytic or machine learning models that
allow to estimate a priori the iteration count of a Krylov subspace solver, in
order to apply our procedure more effectively.
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