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Alarge number of real world networks exhibit community structure, and different communities may often
possess heterogeneity. In this paper, considering the heterogeneity among communities, we construct
a new community network model in which the communities show significant differences in average
degree. Based on this heterogeneous community network, we propose a novel mathematical epidemic
model for each community and study the epidemic dynamics in this network model. We find that the
location of the initial infection node only affects the spreading velocity and barely influences the epidemic
prevalence. And the epidemic threshold of entire network decreases with the increase of heterogeneity
among communities. Moreover, the epidemic prevalence increases with the increase of heterogeneity
around the epidemic threshold, while the converse situation holds when the infection rate is much greater
than the epidemic threshold.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

With the development of network science, many common
characteristics of real networks have been revealed, where one
of the important characteristics is that a wide range of biologi-
cal and social systems contains community structure [5,9,15,17,
24-26]. Different individuals may form a community because of
the same attributes, such as interest, age, profession and so on.
As the large-scale outbreaks of epidemic diseases have occurred
many times in different regions and different races in history, it
can be said that the history of human history is a history of the
struggle against different epidemic diseases. And with the progress
of science and technology, the convenient transportation has also
promoted the spread of the epidemic diseases to a great extent, for
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example, the severe acute respiratory syndrome (SARS) in 2003,
the HIN1 influenza A virus in 2009, the H7N9 avian influenza
virus in 2013, the Ebola virus in 2014 and the Middle East respi-
ratory syndrome coronavirus (MERS-CoV) in 2015. The problem
of epidemic spreading has gained great attention over the years
and people want to predict the epidemic spread trend and take
effective public health measures with limited vaccine supply. As
the topology properties of networks have a profound impact on
the dynamics of epidemic spreading, it is necessary to consider
the effect of community structure on epidemic spreading. So far, a
lot of results on epidemic dynamics in community networks have
been obtained [12,14,16,29,30].

To simulate the real network, many different kinds of com-
munity network models were constructed based on classical
networks, and some individual behavior characteristics in real
networks (such as random walk, long-range jump and aware-
ness) were also taken into account. Liu and Hu studied the
SIS (susceptible-infected-susceptible) dynamics on a random
community network model with probability p (q) of intra- (inter-)
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community links. They found that the existence of community
makes the degree distribution get broader, and the epidemic
threshold decreases with the increase of community strength
(p/q) [11]. Huang and Li studied the SI dynamics on scale-free net-
work with community structure, they found that the community
structure makes the growth of the infection slow and the epidemic
prevalence reduce [7]. Salathé and Jones investigated the epidemic
spread in empirical and artificial networks with community struc-
ture, and got the similar conclusion: the community structure has
inhibiting effect on epidemic spreading, and the peak value of
epidemic prevalence decreases with the increase of community
strength. Moreover, they found that immunizing bridge nodes is
more effective than simply immunizing highly connected nodes
in networks with strong community structure [20]. To understand
the influences of community structure and clustering coefficient
on SIR (susceptible-infected-removed) dynamical processes, Wu
and Liu presented a network model with adjustable clustering
coefficient and adjustable community strength, and found that for
a fixed community strength, the efficiency of epidemic spreading
will decrease with increase of the clustering coefficient [27]. Chu
et al. investigated the epidemic spreading on weighted scale-free
networks with community structure, and found that compared to
the internal weighting exponent, the external weighting exponent
has higher impact on slowing the epidemic spreading [3]. On this
basis, Min et al. further studied the spread of disease on weighted
scale-free community network with two mixing styles [13] : a
dense-weak style and a sparse-strong style. In [2], the authors
studied the epidemic dynamics on a network with overlapping
community structure and found that the epidemic prevalence
increases with the increase of overlapping region. Some scholars
constructed a random network composed of a sparse community
and a dense community, and they studied the phenomenon that
the disease persists throughout the dense community, while the
outbreak and extinction states occur periodically in the sparse
community [18]. Shao et al. studied the epidemic dynamics in
a small-world community structure network with consideration
of a traffic-driven SIS epidemic model [21], and found that the
community structure can accelerate the epidemic spreading in
the traffic-driven model. Stegehuis et al. studied two random
network models that create a network with similar community
structure [4], and found that the community structure can both
enforce as well as inhibit diffusion processes, and the exact internal
structures of communities barely influence the behavior of spread-
ing processes. Based on the SI (susceptible-infected) epidemic
model, Shu et al. numerically studied how weak ties (connect pairs
of nodes belonging to different communities) influence epidemic
dynamics [23]. Some scholars studied the SEAIR (susceptible-
exposed-asymptomatically infected-symptomatically infected-
recovered) [32] and the stochastic SIR [31] epidemic model on
scale-free networks with community structure. Bonaccorsi et al.
analyzed a continuous-time SIS model on a community structure
network in which individuals that belong to different communities
have different infecting probabilities [ 1]. Ren et al. investigated SIS
epidemic spreading processes on a time-varying community struc-
ture network [19]. Xia et al. presented a new epidemic SIS model
to investigate the spreading behavior on community structure
networks with dynamical topology. They found that the epidemic
threshold is only related with the population density within the
community, and the long-range motion will make the original
disease-free community become the endemic state [28].

In most existing community network models, the researchers
often ignored the heterogeneity among different communities.
However, in the real social networks, the physical contacts among
individuals in some communities are more closer than in other
communities, which reflects the heterogeneity among communi-
ties. For example, in real social networks, young students commu-
nity interact with each other more frequently than elderly people

community. Furthermore, studies have suggested that heterogene-
ity in contact patterns among individuals in heterogeneity com-
munities has an important effect on the epidemic spreading [10].
In addition, many scholars are concerned about finding ways to
suppress the spread of the virus, such as looking for more effective
immune strategies and raising awareness of the individuals. While
some scholars hope to find the source of epidemic spreading and
control the epidemic spreading in the early stage of epidemic
spreading [6,8,22,33]. When there exists heterogeneity among the
communities in the network, we are curious about whether the
difference in the location of the source of infection will affect the
spread of the virus, and want to study the transmission rule of
epidemic on the community structure network with heterogeneity
among communities, which is helpful for us to find an effective
control strategy for epidemic spreading.

Mathematical modeling of the dynamics of infectious diseases,
as a quantitative research method, has been widely used in the
field of the epidemic spreading. In this paper, we firstly construct a
new community structure network model with adjustable hetero-
geneity among communities. Then we establish a novel epidemic
spreading model based on this network model and calculate the
epidemic threshold. And we analyze the impacts of heterogene-
ity among different communities and modularity coefficient on
epidemic spreading either. The rest of this paper is organized as
follows. In Section 2, we introduce in detail our network model, and
the network characteristics are discussed either. In Section 3, we
define the epidemic model and introduce the mean field equations.
Then we give some numerical and simulations which support
the theoretical analysis in Section 4. Finally, this paper ends with
concluding remarks in Section 5.

2. Community network model with heterogeneity

The possible mechanisms of constructing a community struc-
ture network have been revealed by many models [2-4,7,11,13,18-
21,27,28], and these network models also take into account dif-
ferent actual features of the real networks, like clustering coeffi-
cient [27] and edge weight [3,13]. Most of the models ignore the
heterogeneity among communities, and how it affects the spread
of epidemic is a practical and meaningful problem. In [10], by
observing the real populations in the populated city Hong Kong,
the researchers find out that the heterogeneity of contact patterns
of individuals within and between different age groups is an im-
portant impacting factor in the transmission of infectious diseases,
so they take into account the age structure of a population and
the different contact patterns among individuals in different age
groups and propose an age-structured model. When the groups
of different ages mentioned in Ref. [10] are regarded as different
communities, the whole population in the city can be viewed as a
community structure network with heterogeneity. In this section,
we construct a new community structure network model with
heterogeneity among communities based on random network, in
which the average degree of each community may be different.

Assuming that there are m different communities, each commu-
nity hasn; (i=1, 2,..., m) individuals. The generating algorithm of
the new community network with heterogeneity can be described
as follows:

(1) Each node is assigned to a single community in accordance
with the communities’ size.

(2) At each time step, each pair of unconnected nodes in i-th
community can be connected with probability p?“. It should be
noted that the inter-community connection probability of each
community (p}“) may be different.

(3) At each time step, randomly chose two nodes which are
not neighbors and belong to different communities, then connect
them with probability p** to create an inter-community link where
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P < min( p::”) , which makes the community network has a strong
community strength.

Through the above process, a community network with het-
erogeneity can be generated, in which the heterogeneity among
communities is manifested in the difference of the average degree
of each community (k;). We can get community networks with
different heterogeneity by adjusting p;". When given a set of dif-
ferent networks, to measure the strength of heterogeneity among
communities for each network, we set a heterogeneity strength
function H and its expression is:

g DGk a
max [D ((ki))]

Assume that these networks all have m communities. In Eq. (1),
the numerator D ({k;)) denotes the variance of the communities’
average degree of a network, it can be expressed as:

Z( ki) — (k))?, (2)

where the sub item (k) in Eq. (2) denotes the average degree of the
entire network. According to Eq. (2), the heterogeneity strength
of a network with the same characteristics among communities
is 0. For a set of community structure networks, the greater the
differences in the communities average degree the larger the vari-
ance of the communities average degree of this network D ((k;)) is,
namely, the range of the variance array [D ({(k;))] is very wide. Thus
we divide the maximum variance of communities average degree
of these networks max [D ((k;))] in Eq. (1).
Suppose that the total number of edges is E, we obtain:

=an p1 +Znnjp (3)
i=1

i#j

As an important measurement for the community strength of
community networks, modularity coefficient [15] is defined as
follows :

Q= Z eii — (Z ei) |, (4)
i j

where e;; denotes the proportion of edges between community i
and j in the entire network. So e; and Z ;i can be described as
follows:

ni(ni — 1)p}"

6ii = T, (5)

1)p n;n;p®™
e TP ©)
J#
where E represents the total edge number, which is the same as
shown in Eq. (3). Thus, the modularity coefficient of our model is:

2
0-— Z ni(n;
i=1

- 1)pi" nnp™
+ Z : ()
J#

Therefore, from Eqs. (3) and (7), we can get the relationship
between the modularity coefficient Q and other parameters, such
as n;, (ki) , pi" and p** . The values of p;" and p** can be adjusted
to get community structure networks with given modularity Q, n;
and (k;) .

(ki) =

3. Epidemic model with heterogeneity among communities

The existence of heterogeneity among communities in the net-
work may lead to a novel phenomenon on the epidemic spreading.

So in this section, different from the previous mathematical model,
we will describe the spreading process by a novel SIR (susceptible-
infected-recovered) mathematical model, which is based on each
community and considers both of the inter- and intra-community
epidemiological processes of all nodes in a community.

In the initial stage of epidemic transmission, there are only a
small number of infected individuals in the network, and the rest
of them are susceptible individuals. At each time step, an suscep-
tible individual can be infected by one of its infected neighbors
with probability A , and an infected individual can be recovered
with probability y . The infection process contains two parts for
each community in general: intra-community infection and inter-
community infection. Let (k;} denote the average degree of
intra-community within communities i , and <kl-j> denote that of
inter-community between community i and j . As pﬁ“ and p* are
the inner-community and inter-community connection rates, thus
(ki) and (k;) can be expressed as follows:

Py (nj— 1) A
(ki) = ————=p" (i — 1), (8)

i

and

(kj) = p™ninj/n; = p™n. 9
Let parameters S, I and R respectively represent the density

of susceptible, infected and recovered individuals in the entire

network. Similarly, S;, I; and R; represent the proportion of healthy,

infected and recovered individuals of the i-th community. Then the

new epidemic model for each community can be constructed as:

il A (ki) Sili — xZ i) ——=Sil
J#
A (ki) 5,11+XZ i) — vl (10)
J#
dRi _
=k

As the communities of the network have different average
degrees, each community has its own epidemic threshold which is
called community threshold in this paper. The following question
naturally arises. What is the relation between community thresh-
olds and entire network threshold? In the following, we will derive
community thresholds and entire network threshold.

Let n? and n} denote the numbers of susceptible and infected
individuals within i-th community, so S; and [; in Eq. (10) equal S; =
n; /N, I; = nj/N . Because of the complex structure of community
network, theoretical analysis of the epidemic threshold is very
difficult. For simplicity, we assume that each community has the
same size n, namely, n; = n(i=1, 2, ..., m). We substitute Eqs.
(8) and (9) into Eq. (10), then the simplified equations are as

follows:
dS
— =]’ <n—1>szz,—xz[ SJJ}
J#i
d—l_kp " (n— 1)511,—1—)»2 SlI _— (1
dt J
J#
R _
a =k

Combining conditions I = Y " L, > i+ R +S = 1
and Eq. (11), we can accurately estimate the threshold. For a com-
munity network, if the modularity coefficient Q is large enough,
the impact of spread through the inter-community edges on the
epidemic prevalence within a community almost can be ignored.
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Fig. 1. Time evolution curves of epidemic prevalence for the network where the
degree is 20 and the degrees of three communities are (k;) = {20, 20, 20},i =
1,2,3.

Thus, we can approximately estimate the epidemic threshold of a
community. The calculation process is as follows. Firstly, the first
and third equations in Eq. (11) can be approximated:

ds; (t) in
~ —Ap; nS; (8) I; (£)
RO _ o
a Vi ,

where the initial condition S; (0) ~ 1/m . From Eq. (12), we can
eliminate the term of [; (t) , namely,

1 dS;(t) _ —inp dR; (1)

(13)
S;(t) dt r dt
Then compute the integral:
© 1 dSi(t ®  Anp™ dR; (t
f — l()dt%/ e AR () (14)
o Si(t) dt o rodt

L \2

— n) p.

Thus, we get S;(c0) = e M<p' ) /" When t — oo ,
there will be no infected nodes in the community network, namely,

Si (00) + R; (00) = 1/m . Thus, we get:
] in

Ri (00) = — — e M Rico)/r (15)
m

where R; (00) = 0 is a trivial solution of Eq. (15), and this equa-
tion has other nonzero solutions when d (1/m — e *"i"Ri()/r)

dR; (00) [g;(o0y -0 > 1.Thus, the epidemic threshold of community
iis

A~ r/(pi"n). (16)

It is possible that part/one of the communities in the network
are/is endemic, while the epidemic do not erupt throughout the
network. So the theoretical threshold of the entire network A,
is between the maximum and the minimum of the community
thresholds.

4. Simulations and discussions

In this section, to discuss the influence of various factors on
the dynamics of epidemic spreading, we give a set of simulations
on different kinds of community networks with heterogeneity
among communities and examine how the outbreak of epidemic
is affected by both the heterogeneity among communities and

1
0.8 [
0.6
x
04
—O— seed in community 1
02 —A— seed in community 2 )
' — seed in community 3
(k,)=15, (k,)=20, (k,)=25

0 5 10 15 20 25 30
t
Fig. 2. Time evolution curves of epidemic prevalence for the network where the

degree is 20 and the degrees of three communities are (k;) = {15, 20, 25},i =
1,2,3.
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k. )=10, {k,)=20, (k,)=30
L (K )=10, {k,)=20, (k)
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t

Fig. 3. Time evolution curves of epidemic prevalence for the network where the
degree is 20 and the degrees of three communities are (k;) = {10, 20, 30},i =
1,2,3.

modularity coefficient. In addition, we compare the effects of the
infectious source locations on epidemic spreading either. In the
following simulations, there is a small fraction of infected nodes in
one of the communities initially, while the remaining individuals
of the entire network are susceptible.

4.1. Based on homogeneous community network

Next, we make simulations and comparisons based on the
homogeneous community structure network with heterogeneity
among communities. It is well known that, in real networks, the
outbreak of each epidemic is caused by a small number of infected
individuals of a local area in the network. Since there are differ-
ences among communities, did the location of the initial infection
node/nodes has effect on the epidemic spreading? To obtain a
definitive answer, we do some simulations on three community
structure networks, where each network is constructed based on
ER random network model and has three communities with differ-
ent heterogeneity.

Figs. 1-3 show the time evolution curves of epidemic size
of three different networks, where the average degrees of three
networks are the same, but with different average degrees in each
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Fig. 4. The comparison curves of epidemic thresholds for three networks with
different heterogeneity.

community. The average degrees for three communities are: (k;) =
{10, 20, 30}, (k;) = {15, 20, 25} and (k;) = {20, 20, 20}, where
i =1, 2, 3.In order to facilitate the comparison of the influence of
the seed node locations, we assume that the network models have
the same average degree of the entire network ( (k) = 20 ) and
the community sizes are n; = n, = n3 = 500 . We find that, for
each network, the location of the infection source affects only the
propagation velocity rather than the epidemic prevalence. We also
observe that the time duration to reach the steady state is inversely
proportional to the heterogeneity among communities. In each
simulation, an initial infected node is randomly chosen from a
specified community. And for each network, 5000 simulations
are taken with a randomly chosen seed node initially. The other
simulation parameters are: the infection rate A = 0.1 and the
modularity coefficient Q = 0.6.

Fig. 4 shows the effects of heterogeneity among communities
on epidemic threshold and prevalence. In the simulations, there
are three communities within the network and the communities
sizes are 1y = n, = n3 = 500. We keep the degree of entire
network to be constant at (k) = 20 . The graph contains three sets
of data, which compare the thresholds and prevalence of epidemic
of these community networks. The lines with red dots, black circle
and blue asterisk respectively correspond to the networks with
intra-community degrees (k;) = {10, 20, 30}, (k;) = {15, 20, 25}
and (k;) = {20, 20, 20} . From Fig. 4, we find that the increase of
heterogeneity among communities makes the infectious diseases
easier to break out, namely the heterogeneity among communities
has negative relation with the epidemic threshold. And the epi-
demic prevalence of a network with greater heterogeneity among
communities is larger than others, whereas the converse situation
holds when the infection rate is much greater than the epidemic
threshold.

In Fig. 5, we study the effect of modularity coefficient Q on the
epidemic threshold X in three networks with different modularity
coefficients (equal to 0.4, 0.5 and 0.6 respectively). In the simula-
tions, there are three communities within each network and the
average degrees of three communities are all (k;) = {15, 20, 25}
,i = 1,2,3 . The degrees of these networks are all (k) = 20
and the communities sizes are ny = n, = n3 = 500. It is found
that the epidemic threshold decreases with the increase of the
modularity coefficient of the network, and the epidemic size of
the network with higher modularity coefficient is larger around
the epidemic threshold, while the inverse situation occurs when
the infection rate is far greater than the threshold. It is necessary
to explain that although the threshold values obtained through

08  (k)=1520,25, i=1,2,3

.02 T
0.6

0.4

0.2

0 0.02 0.04 0.06 0.08
A
Fig. 5. The curves of epidemic thresholds for networks with different modularity
and the average degrees of three communities are (k;) = {15, 20, 25},i=1, 2, 3.
0.7 T T T T
0.65 b

H

Fig. 6. The comparison curves of epidemic thresholds for three networks with
different heterogeneity.

simulations cannot completely correspond to the threshold de-
duced theoretically, the relationship between the parameters of
the network (especially the heterogeneity among communities H
and the modularity coefficient Q ) and the propagation threshold is
in accordance with the theoretical deduction.

As the existence of heterogeneity among communities, the
network models with same average degree of the entire network
may show different modularity coefficients, and we cannot be sure
whether the results of above simulations are only affected by the
heterogeneity. So, we firstly investigate the relationship between
heterogeneity and modularity of the community networks that
was used before. In the following simulations, there are three
communities in each network, and the community sizes are the
same. Let the average degree of all networks be (k) = 20. From
Eq. (7), we can get the parameters (inter- and intra-community
linking rate) that were used to construct the network model with
given network configurations. As shown in Fig. 6, the vertical
and horizontal axes in the graph stand for heterogeneity H (see
Section 2) and modularity Q respectively. The curve is obtained
with following network configurations: (k;) = {20, 20, 20}, (k;) =
{18, 20, 22} , (k) = {15,20,25}, (k;) = {14,20,26} (ki) =
{12, 20, 28} and (k;) = {10, 20, 30} , and the modularity Q of
corresponding networks model are 0.6. It shows that the changes
of heterogeneity rarely affect modularity of community networks
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Fig. 7. Time evolution curves of epidemic prevalence for the network where the
degree is 20 and the degrees of three communities are (k;) = {10, 20, 30},i =
1,2,3.
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Fig. 8. Time evolution curves of epidemic prevalence for the network where the
degree is 20 and the degrees of three communities are (k;) = {15, 20, 25},i =
1,2,3.

with heterogeneity. So we can conclude that the results of above
simulations in Figs. 1-5 are only affected by the heterogeneity.

The above simulations aim at the single source of infection.
However, in real life people often move and contact to make virus
appear in many regions at the same time, leading to multiple
sources of infection. In the following, we will do some simula-
tions on how the process of epidemic spreading is affected when
multiple sources of infection are distributed among different com-
munities in the community structure network with heterogeneity.
In Figs. 7-9, we show the time evolution curves of epidemic size
of three different networks, where the average degrees of three
networks are the same, but with different average degrees in
each community. We assume there are two sources of infection
in the network, and that these two seed nodes are located in
two communities. The parameters of the three networks used in
the simulations are consistent with the previous single source of
infection. The other simulation parameters are: the infection rate
A = 0.05 and the modularity coefficient Q = 0.6. For each
network, 2000 simulations are taken with two randomly chosen
seed nodes initially.

From Figs. 7-9, we find that the speed and prevalence of the
epidemic spreading change with the locations of the sources of
infection. Looking at each figure, we can see that the propaga-
tion speed is the fastest and the ultimate prevalence of epidemic

0.5
04
03r
54
02
—%— seeds in communities 2, 3
01 —O— seeds in communities 1, 3 |
’ —— seeds in communities 1, 2
<k1>=20, (k2>=20, (k3>=20
0 10 20 30 40 50
Fig. 9. Time evolution curves of epidemic prevalence for the network where the
degree is 20 and the degrees of three communities are (k;) = {20, 20, 20},i =
1,2,3.

spreading is the largest when two seed nodes are located in the
two communities with largest average degree, and the opposite
situation appears when the two seed nodes are located in the
two communities with minimal average degree. And the larger
the heterogeneity among communities, the greater the difference
between curves. It should be noted that the difference between
the three curves is not so large, which means that the locations of
multiple sources of infection have little influence on the prevalence
of epidemic spreading. Comparing these three figures, we find
that the epidemic prevalence decreases with the increase of the
heterogeneity among communities.

As the small world network is a kind of homogeneous network,
the WS small world community structure network also belongs to
the homogeneous networks homogeneous community networks,
namely, the epidemic spreading mathematical model proposed
before is still applicable to it. What is to be explained here is that
we also do the same simulations in the WS small world community
structure networks, and the simulation results are very similar
to those obtained based on the ER random community structure
networks. Therefore, we will no longer show these simulation
curves here. In the last part of this section, we will compare and
analyze how the epidemic spreading process is influenced by the
topology of three kinds of community structure networks (the
community networks respectively constructed based on the ER
random network, the WS small world network and the BA scale-
free network).

4.2. Based on heterogeneous community network

It is difficult to build an epidemic dynamic model based on the
heterogeneous community networks with heterogeneity among
communities. In the third section, some conclusions are obtained
for homogeneous community network by analyzing the proposed
epidemic dynamics model and verified by some Monte Carlo sim-
ulations. Next, we construct a heterogeneous community network
model considering the heterogeneity among communities, and
do Monte Carlo simulations to analyze the dynamics of epidemic
spreading. In the following simulations, each network contains
three communities, and the community sizes are ny = n, =
n3 = 500. The average degrees for three communities are: (k;) =
{10, 20, 30}, (k;) = {14, 20, 26} and (k;) = {20, 20, 20}, where
i = 1,2,3,, and the global average degree of each network (k)
equals 20.

Figs. 10-12 show the time evolution curves of epidemic size
of three different networks, where the average degrees of three
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Fig. 10. Time evolution curves of epidemic prevalence with single source of
infection for the scale free community structure network where the degree is 20
and the degrees of three communities are (k;) = {30, 10,20} ,i= 1,2, 3.
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Fig. 11. Time evolution curves of epidemic prevalence with single source of
infection for the scale free community structure network where the degree is 20
and the degrees of three communities are (k;) = {14, 26,20} ,i=1, 2, 3.
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Fig. 12. Time evolution curves of epidemic prevalence for the network where the
degree is 20 and the degrees of three communities are (k;) = {20, 20, 20},i =
1,2,3.

networks are the same, but with different average degrees in each
community. And for each network, 5000 simulations are taken
with a randomly chosen seed node initially. The infection rate A =

0.3 T T T T :
—— seed in community 1

025 b —O— seed in community 2
—A— seed in community 3
BA BA BA
0.2 0=0.6, <k1 y=14, (k2 y=20, <k3 )=26
& 0.15

0.1

0.05

0.015 0.02 0.025 0.03

0 0.01 0.02 0.03 0.04

Fig. 14. The comparison curves of epidemic thresholds for three networks with
different heterogeneity.

0.1 and the modularity coefficient Q = 0.6.In order to find out the
impact of the location of infection source on the epidemic spread-
ing process, we randomly chose an initial infected node from a
specified community in each simulation. From these three figures,
we find that the location of the infection source only affects the
propagation velocity. The average degrees for three communities
are shown in each figure. From Fig. 10 to Fig. 12, the heterogeneity
among communities decreases, while the corresponding epidemic
prevalence increases. This is because with the increase of the het-
erogeneity among communities, the links between nodes become
closer in some communities, while the edges of the nodes in other
communities are thinning which is analogous to the situation that
deleting the inner edges of most communities and adding edges
only in a small number of communities, so the epidemic will be
suppressed when the virus spreads to the sparse community.

Fig. 13 shows the curves of epidemic threshold for each commu-
nity in a heterogeneous community networks with heterogeneity
among communities where the average degrees for three commu-
nities are (k;) = {14,26,20},i = 1,2, 3, and the community
coefficient Q = 0.6. Communities with larger average degree of
intra-community have smaller epidemic threshold. From Fig. 14,
we can get the global epidemic threshold, and its value indeed
between the maximum and the minimum of the communities’
thresholds.

Fig. 14 shows the curves of epidemic thresholds for three net-
works with different heterogeneity. And Fig. 15 shows the curves
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Fig. 15. The curves of epidemic thresholds for networks with different modularity
and the average degrees of three communities are (k;) = {14, 26,20} ,i=1, 2, 3.
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Fig. 16. Time evolution curves of epidemic prevalence with single source of
infection for the mixing style network (communities 1, 2 are random networks and
community 3 is a scale-free network) where the degree of entire network is 20 and
the degrees of three communities are (k;) = {20, 20,20} ,i=1, 2, 3.

of epidemic thresholds for networks with different modularity
with a given heterogeneity ((k;) = {14,26,20},i = 1,2,3,)
among communities. From Fig. 14, we find that the heterogene-
ity among communities has negative relation with the epidemic
threshold, namely, the infectious diseases become easier to break
out with the increase of heterogeneity among communities. And
the epidemic prevalence of a network with greater heterogeneity
among communities is larger than others, whereas the converse
situation holds when the infection rate is much greater than the
epidemic threshold. From Fig. 15, we find that the epidemic thresh-
old decreases with the increase of the modularity coefficient of
the network, and the epidemic size of the network with higher
modularity coefficient is larger around the epidemic threshold,
while the inverse situation occurs when the infection rate is far
greater than the threshold. These conclusions are consistent with
those obtained from homogeneous community networks with het-
erogeneity among communities.

4.3. Based on mixing style community network
The networks in real life is more complex, for example, the

internal topology of some groups in the network tends to the scale-
free network, and some groups are closer to the small world or

143
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Fig. 17. The thresholds of each community of the mixing style network (com-
munities 1, 2 are random networks and community 3 is a scale-free network)
where the degree of entire network is 20 and the degrees of three communities
are (k;) = {20,20,20},i=1,2,3.
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Fig. 18. The entire network threshold of the mixing style network (communities
1, 2 are random networks and community 3 is a scale-free network) where the
degree of entire network is 20 and the degrees of three communities are (k;) =
{20, 20,20},i=1,2,3.

random networks, that is, several mixing style groups form a large
network, we called it the mixing style community network. It is
another kind of community network with heterogeneity among
communities, which is more consistent with the actual network.
However, its mathematical epidemic spreading dynamics model
is more difficult to build. Next, we construct the mixing style
community structure network based on scale-free network and
random network, and analyze the epidemiology through Monte
Carlo simulations.

We first try to see whether the location of the infection source
of the mixed mode community structure network will have an
impact on the propagation speed and the final transmission scale.
Let the average degree in each community be the same, namely,
(ki) = {14,26,20},i = 1,2, 3. From Fig. 16, we find that, only
the speed of epidemic spreading is affected by the location of the
infection source.

From Figs. 17 and 18, we find that the value of the global
epidemic threshold is indeed between the maximum and the min-
imum of the communities thresholds. We mainly verify the formal
conclusions, and more in-depth studies will be carried out later.
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Fig. 19. Time evolution curves of epidemic prevalence for three kinds of community
structure network with (k;) = {10, 20,30} ,i=1, 2, 3.
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Fig. 20. Time evolution curves of epidemic prevalence for three kinds of community
structure network with (k;) = {14, 20,26} ,i=1, 2, 3.

4.4. Comparisons of epidemic dynamics between different networks

Next, according to ER random network model algorithm, WS
Small World Network model algorithm and BA scale-free network
model algorithm, we generate three kinds of community struc-
ture networks with different community heterogeneity among
communities. Using the SIR propagation dynamics model, the
epidemic spreading dynamics of infectious diseases in different
network topologies are analyzed and compared by simulations.
The network and related network parameters in simulation are as
follows. There are three communities within each network and the
communities sizes are ny = n, = n3 = 500, the node degree of the
entire network (k) is constant at 20. The graph contains three sets
of data, which compare the thresholds and prevalence of epidemic
of these community networks. Let the intra-community average
degree (k;) respectively be 10, 20 and 30 to generate community
networks with larger heterogeneity among communities, and let
(k;) respectively be 14, 20 and 26 to generate community networks
with smaller heterogeneity among communities.

Figs. 19 and 20 show the time evolution comparison curves
of epidemic prevalence with single source of the infection in the
BA scale-free community network, the ER random community
network and WS small world community network, where the
infection rate A = 0.025. Here, the modularity coefficient Q
is set to 0.6 for these three kinds of community networks, and

1 .
—O—BA AETIS==
—A—ER

0.8

0.6

0.4

0.2

0.015  0.02 0.025

0 0.05 0.1 0.15

Fig. 21. The entire network threshold of the mixing style network for three kinds
of community structure network with (k;) = {10, 20, 30},i=1,2,3and Q = 0.6.

the intra-community average degree (k;) = 10, 20, 30 and 14,
20, 26, namely, Fig. 19/20 represents the simulation results in
networks with larger/smaller heterogeneity among communities.
For the propagation velocity of epidemic spreading, from these two
figures, we can find that BA>ER>WS, which is consistent with
the situation in the networks without community structure. And
the peak value of the epidemic prevalence in the BA scale-free
community network is obviously far greater than the other two,
while the other two networks’ peak values are basically the same.
From Fig. 21, we can find that, for these three community struc-
ture network models, the change trend of the epidemic threshold
of the entire network is in order of WS>ER>BA, which is also
consistent with the situation in the networks without community
structure. In addition, when the infection rate is near the critical
value, with the increase of transmission rate, the growth rate
of epidemic prevalence of each network from large to small is
BA>ER>WS, and when the rate of infection increases to a certain
value, the situation reverses. Finally, the ultimate epidemic preva-
lence on the WS small world community network is the largest.

5. Conclusion

To summarize, we have proposed a modified community net-
work model considering the heterogeneity among communities,
which is more close to real networks. Based on this network
with heterogeneity among communities, we have presented a
mathematical epidemic model for each community and studied
the epidemic dynamics in this network model. It has been found
that community networks with different heterogeneities but the
same average degree have different epidemic thresholds, and the
epidemic threshold value of the entire network is between the
maximum and minimum values of communities epidemic thresh-
old. And when there is only one seed node in the network, the
location of the initial infected individuals affects only the propa-
gation velocity rather than the epidemic prevalence, while when
there are multiple sources of infection in the network, the location
of the sources of infection will have some influences on both the
speed and prevalence of the epidemic spreading. In addition, the
epidemic threshold is inversely proportional to the heterogeneity
among communities. The study results are helpful to predict epi-
demic spreading trend more accurately and find useful strategies
for controlling disease spreading.
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