
HAL Id: hal-01778722
https://hal.science/hal-01778722v1

Submitted on 26 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An efficient causal group communication protocol for
P2P hierarchical overlay networks

Grigory Evropeytsev, Eduardo López Domínguez, Saúl Eduardo Pomares
Hernández, Marco Antonio López Trinidad, Jose Roberto Perez Cruz

To cite this version:
Grigory Evropeytsev, Eduardo López Domínguez, Saúl Eduardo Pomares Hernández, Marco Antonio
López Trinidad, Jose Roberto Perez Cruz. An efficient causal group communication protocol for P2P
hierarchical overlay networks. Journal of Parallel and Distributed Computing, 2017, 102, pp.149 -
162. �10.1016/j.jpdc.2016.12.007�. �hal-01778722�

https://hal.science/hal-01778722v1
https://hal.archives-ouvertes.fr

An Efficient Causal Group Communication Protocol for P2P Hierarchical

Overlay Networks

Grigory Evropeytsev

(National Laboratory of Advanced Informatics, Xalapa, Veracruz, Mexico

grigory88@live.com)

Eduardo López Domínguez

(National Laboratory of Advanced Informatics, Xalapa, Veracruz, Mexico

elopez@lania.mx)

Saul E. Pomares Hernandez

(Computer Science Department, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Tonantzintla, Puebla, Mexico

CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, LAAS, F-31400 Toulouse, France

spomares@inaoep.mx)

Marco Antonio López Trinidad

(National Laboratory of Advanced Informatics, Xalapa, Veracruz, Mexico

mlopez@lania.mx)

José Roberto Perez Cruz

(CONACYT - Faculty of Civil Engineering, Universidad Michoacana de San Nicolas de Hidalgo (UMSNH), Morelia,

Michoacan, Mexico

jrperezcr@conacyt.mx)

mailto:grigory88@live.com
mailto:elopez@lania.mx
mailto:spomares@inaoep.mx
mailto:mlopez@lania.mx
mailto:jrperezcr@conacyt.mx

Abstract: Peer-to-peer applications such as multiplayer online games are characterized by considering group communication

among geographically distributed peers. In such environments, causal ordering is an essential property for consistent exchange of

information among peers. Although several works are oriented to ensure message causal order, most of them are not suitable for

hierarchical overlay networks. In this paper, we propose an efficient causal protocol oriented to be used in a hierarchical overlay

network. In our protocol the overhead timestamp per message is based on the number of messages with immediate dependency

relation. By using the information about network architecture and representing message dependencies on a bit level, proposed

protocol ensures causal message ordering without enforcing super peers order to all of the peers in a group. The protocol has

been simulated and the results show that it presents lower overhead than currently existing causal protocols.

Keywords: Causal ordering, peer-to-peer, hierarchical topology

1 Introduction

Multiparty overlay systems like peer-to-peer have been proposed to solve problems related to distribution and

processing of information in many applications, such as, file distribution [1, 2], multiplayer interactive games [3]

and telecommunications [4]. These systems are characterized by considering a group communication among n (≥ 2)

peers that are geographically distributed. To achieve a consistent exchange of information in theses environments,

the messages from the peers have to be causally ordered [5]. The usage of causal ordering in the overlay peer-to-

peer systems provides message synchronization and reduces the indeterminism produced by asynchronous execution

of the peers, or by random and unpredictable delays of the messages within the communication channels.

In the literature several protocols have been proposed to guarantee causal ordering delivery of the messages

(CODM), for a great variety of distributed systems [6-23]. According to the operational network topology for which

they were designed, these protocols can be classified into three categories: plain peer-to-peer, free scale peer-to-peer

and hierarchical networks.

Plain peer-to-peer networks refer to the CODM protocols designed for the theoretical simplest distributed

systems [12, 14]. The main disadvantage of these protocols is that they require an excessive communication

overhead, since they do not consider the network topology to manage the exchanged control information. In the

worst case the size of the control information grows linearly with the number of peers in the network, causing that

the computational effort of each peer increases according to the growth of the neighbourhoods.

Free scale peer-to-peer networks, consider systems in which the peers can be separated in two kinds: peers and

super peers. Super peers are nodes with the higher bandwidth or processing power, while the peers are nodes with

fewer resources and dependent of super peers. This topology was designed to distribute the effort load by reducing

the resources requirements in peers. However, up to date there are no CODM protocols specifically designed for the

generic scheme of such networks. To overcome the lack of dedicated solutions for this networks, some protocols for

plain topology can be adapted by establishing the CODM under each super peer. Nevertheless, besides the problems

related to the uncontrolled overhead growth, these approaches may induce unnecessary inhibition on messages

delivery.

Hierarchical networks include CODM protocols where the network topology is established to disable the direct

communication among peers, allowing only the connections among super peers and between a super peer and each

of its dependent peers. Similar than the generic case of free-scale networks, some protocols proposed for other

topologies can be adapted to hierarchical networks. This is the case of the protocol proposed by Friedman and

Manor [10], which has good characteristics in hierarchical sparse networks where the peers have a low message

sending rate. However, since this protocol has a quadratic traffic cost, in dense networks may cause serious

overloads in super peers’ channels.

Besides this approach, there are some protocols specifically designed for hierarchical networks [13, 17, 18]

which are based on the employment of a global time reference to ensure causal ordering of messages. Unfortunately,

the characteristics of most hierarchical networks make difficult to establish a global time reference, this mainly due

to the absence of shared memory and the lack of perfectly synchronized clocks [24]. In addition to this disadvantage,

these protocols require knowing the maximum delays of the messages in the communication channels, which is not

always feasible [13].

In this paper we propose a CODM protocol, to ensure causal ordering of the messages in the hierarchical

overlay networks, that does not require the establishment of a global time reference and maintains a low overhead in

the communication channels and in the peers. To achieve this, the proposed protocol defines two communication

groups, according to the connection type. The first group, called the internal group, is a collection of peers

connected to a super peer. In the internal group, the protocol messages use a bit vector to represent the causal

dependencies, resulting in a bit level overhead. The second group, called the external group, consists of

interconnected super peers. In this group, the concept of hierarchical clocks [15] is applied to represent message

dependencies.

In the proposed protocol, the message control information, transmitted, stored and processed by each peer node,

is adapted according to the underlying communication channel network (i.e. wired or wireless) and its capacity (i.e.

memory and processing). Through simulations we demonstrate that in both, internal and external groups, the

protocol message overhead is reduced up to two to three times than the reported by the Immediate Dependency

Relation [14] and Dependency Sequences [15] protocols.

This paper is organized as follows. Section 2 contains an overview of the related work about CODM protocols.

Section 3 includes explanations about preliminary concepts. The proposed protocol is presented in section 4. Section

5 contains the simulation results. Finally, conclusions and future work are presented in section 6.

2 Related work

Some protocols have been proposed to implement CODM for peer-to-peer overlay networks. These protocols can be

classified in three main categories according to the network architecture they are designed for: plain peer-to-peer,

free scale peer-to-peer and hierarchical networks. In addition, CODM protocols also can be classified based on

whether they use a global time reference or employ logical references between messages. A general description of

these protocols follows:

2.1 Protocols designed for plain networks

A plain peer-to-peer overlay network consists of several interconnected peers, where each one can communicate

directly with other peers. In a broadcast group each peer sends messages to every one of the other peers in a group.

2.1.1 Plain network protocols based on global time references

All protocols from this category [9, 19, 20, 21] are based on the concept of using a combination of logical and

physical clocks to ensure causal message order. To achieve this, protocols are required to be able to synchronize its

clocks with a time server and have knowledge about minimum and maximum delays of messages in communication

channels and maximum clock drift. These protocols use temporal records, based on a physical clock, to determine

the order of two sent messages m1 and m2. In this way, if the difference between temporal records is greater than the

maximum transmission delay, the messages are temporally ordered. If the difference between temporal records is

smaller than the minimum delay, the messages are considered concurrent. If the temporal order of the messages

cannot be determined, a logical clock is used to perform a causal ordering.

2.1.2 Plain network protocols based on logical references

To ensure causal ordering these protocols use the “happened before” relation defined by Lamport [24].

The Causal Ordering in Deterministic Overlay Network [10] protocol uses the idea to forward each received

message. Thus, this protocol does not require any control information to be sent within a message, however, in the

worst case scenario it produces n-1 copies (where n is the number of peers in the system) of the same message,

which can result in the saturation of the communication channels.

The Critical Causal Order of Events in Distributed Virtual Environment protocol [23] is based on the idea of

reducing causal order violations without completely removing them. To achieve this reduction, the protocol resends

the last received message with the new message, by doubling the average message size. However, the protocol does

not require any control information to be sent alongside the message to ensure causal ordering of messages.

An Efficient Algorithm for Causal Message Ordering [12] extends the idea of vector clock [25] to tackle those

cases where each message is addressed to a different subset of processes. This modification requires more

information storage in comparison to the original Vector clock protocol. In the worst case scenario, this protocol

requires to store one entry for each process in a group, producing an overhead of O(n) (where n is the number of

peers in the system). Furthermore, when a message is sent, all of the stored entries must be included along with the

control information.

Probabilistic Analysis of Causal Message Ordering [22] analyses the probability of violation in causal ordering

of messages. This protocol implies that by introducing the delay before message is send the probability of the causal

order violation is decreased. This method does not require any control information at all, but reduces the

concurrency of the system.

The Immediate Dependency Relation protocol [14] is based on the idea of sending only the identifiers of

immediate predecessors of a message. In this way, the average overhead is reduced in comparison to the vector

clock protocol. However, in the worst case scenario, the overhead in the communication channels can be as high as

the number of peers in the system (O(n), where n is the number of peers in the system). Regarding with the storage

requirements, this protocol stores the vector clock and the message control information, thus the resulting storage

overhead is twice the number of peers in the system.

2.2 Protocols designed for free scale networks

A free scale network consists of a set of peers and super peers (a super peer is a peer node that features higher

processing power and manages wider communication bandwidth). The peers are divided into two groups, based on

their connection types. In this case, some of the peers are only connected to a super peer, while some others are

connected with other peers and super-peers [26].

At the time when we surveyed the state of the art, no protocols were found specifically designed for this type of

networks. Although, the protocols designed for plain networks can be adapted to be used in a free scale network

architecture, however, these protocols do not use information about the network topology and treat peers in different

groups in the same manner. Therefore, the overhead grows in the same proportion with the number of peers in the

system.

2.3 Protocols designed for hierarchical networks

A hierarchical network is a network consisting of peers and super peers where there are only two kind of

connections. A peer is only connected to a super peer while super peers communicate among them [26]. In this kind

of network, the communication between different group members must be performed via the super peers. In this

way, when a peer sends a message to another peer, that is located in a different group, the message transmission is

done through three transactions. Firstly, the source peer sends the message to its local super peer. Then, the local

super peer forwards the message to the corresponding super peer. Finally, the last super peer delivers the message to

the respective receiver.

2.3.1 Hierarchical networks protocols based on global time references

Protocols in this category [13, 17, 18] use a combination of logical and physical clocks to ensure causal message

order, similarly as some protocols designed for plain networks. The main characteristic of those protocols is that the

group is divided into subgroups to reduce the storage and the computational overhead that each peer manages.

2.3.2 Hierarchical networks protocols based on logical references

In this category we describe the protocols that are designed for hierarchical peer-to-peer networks based on the

“happened before” relation [24], or mechanisms that do not involve a global time reference.

Reliable Multicast [6] and Distributed Floor Control protocols [7] use the synchronization mechanisms,

provided by some coordinators, to ensure the causal ordering of events. In this case the protocols do not require any

control information to be exchanged, nonetheless require some kind of infrastructure to support the communication

between peers. These protocols are a special type of server-client protocol where the server ordering is issued to all

clients or peers.

The Domain-Based Causal Ordering Group Communication protocol [11] and the Two-Layered protocol for a

Large-Scale Group of Processes [16] are based on the using of two vector clocks: one to record the causal

dependencies within a subgroup and a second one for the causal dependencies of the entire group. In this manner,

the size of the control information and the storage requirements are reduced, implying that concurrent messages in

one group become causally ordered in another group. In both protocols, the sending of g integers in a subgroup is

necessary where g is the number of peers in the corresponding subgroup and of an l integer in the global group

where l is the number of groups.

An Optimal Causal Broadcast Protocol [8] exchanges only the identifier of a last received or sent message. The

result of this decision is a constant overhead, but can produce cases when the messages are not correctly ordered.

In Dependency Sequences [15] message causal relations are represented as a sequence of message identifiers in

the form of intervals. However, the proposed protocol does not contain any mechanisms to remove unnecessary

dependencies. As a result of this fact, each new message has an overhead that is bigger than the previous message.

Therefore, the protocol overhead grows indefinitely.

In Hierarchical Clocks [15] two different clocks are used to represent causal message relationships. One clock is

used to represent the message dependency on external events (events from other groups) and the second clock

represents message dependency on local events (events from the same group). The problem with this protocol is that

it does not contain mechanisms to reduce clock sizes, and thus the size of the control information will grow

indefinitely. For this fact, similar than Dependency Sequences, Hierarchical Clocks requires additional mechanisms

like checkpointing techniques to control the growth of the overhead. Also the Hierarchical Clocks approach requires

an extensive calculations to be performed to determine the causal order of two events.

3 Preliminaries

This section describes the system model along with the concepts and definitions that are used in the presented work.

3.1 System model

A hierarchical peer-to-peer network consists of peers that are connected only to super peers and interconnected

super peers. In this manner, in a hierarchical peer-to-peer network, two kind of groups can be distinguished [see

Figure 1]:

1. Internal groups (peers that are connected only to a super peer)

2. External group (interconnected super peers)

Peer

Super peerInternal

group

Internal

group

Internal

group

Figure 1. Internal and external groups of a hierarchical P2P network.

Peer in an internal group are also called internal peers. In the proposed protocol, some peers are allowed to

belong to an external group and are called external peers.

In a hierarchical network peers can only belong to one group (internal or external). A super peer is a member

that belongs to both groups at the same time. An internal group can have only one super peer while an external

group consists of several super peers.

A super peer is a special node with higher computer processing power and wider bandwidth capacity compared

to peers. In an internal group peers are considered to have lower processing power or bandwidths compared to

external group peers. In an internal group peers generally can be represented by mobile devices such as: smart

phones and tablets, connected via wireless cellular network to the Internet.

A super peer in an external group can be seen as a meta-process [15] representing all of the events of an internal

group. On the other hand, the super peer can be seen as a meta-process representing all of the events in the external

group for peers in the internal group. Under this concept, peers in the internal group do not require an extensive

knowledge about peers in an external group and vice versa.

The communication channels are considered to be reliable with random but finite delays. Thus, every message

will eventually arrive to its destination process. The channels are also considered to be non FIFO channels,

implicating the messages can be reordered by the communication channel.

3.2 Background and Definitions

Causal ordering was developed to remove inconsistencies in message delivery, which is produced by an

unpredictable delay in the communication channels. Causal order is based on the “happened before” relation defined

by Lamport [24]. This relation is denoted by “→” as follows.

Definition 1. The relation “→” on the set of events of a system is the smallest relation satisfying the following

three conditions:

1. If a and b are events in the same process, and a comes before b, then a → b.

2. If a is the sending of a message by one process and b is the receipt of the same message by another process,

then a → b

3. If a → b and b → c then a → c.

Two distinct events a and b are said to be concurrent a ∥ b if neither a ↛ b nor b ↛ a. This relation can be

extended to messages in the following form: message m → message m’ if and only if send(m) → send(m’) where

send is the message sending event.

3.2.1 The Immediate Dependency Relation (IDR)

The IDR [14] is the propagation threshold of the control information, regarding the messages sent in the causal past

which must be transmitted to ensure a causal delivery. IDR is denoted as “↓” and its formal definition is as follows.

Definition 2. Two messages m and m’ form an IDR m↓m’ if and only if m → m’ and m’’ does not exist, such

that m → m’’ and m’’ → m’.

Thus, a message m directly precedes a message m’, if and only if no other message m’’ exists in a system, such

that m’’ belongs at the same time to the causal future of m, and to the causal past of m’.

This relation is important since if the delivery of messages respects the order of their diffusion for all pairs of

messages in IDR, then the delivery will respect the causal delivery for all messages.

Causal information that includes the messages immediately preceding a given message is sufficient to ensure a

causal delivery of such message [14].

3.2.2 Process and meta-process

Definition 3. A single process is defined to be a totally ordered set of events [24].

In other words a process can be defined as a set of events and for each two events from this set it is possible to

determine which of these events happened before.

Definition 4. A meta-process is defined to be a partially ordered set of events [15]. It can be used to represent a

group of processes.

A meta-process allows for some events to be concurrent, thus condition 1 from Definition 1 cannot be applied to

a meta-process. So if a and b are events in the same meta-process, and a comes before b, this does not mean that

a → b.

4 Protocol composition

4.1 Data structure

In order to define data structures to ensure message causal ordering we need to define additional data types and

structures that will be used throughout this work.

4.1.1 Bit vector

Bit vector is an array of variable size. Each element can take only two values: set (represented by 1) and cleared

(represented by 0). Each bit vector can be extended with zeros to a required size and the trailing zeros can be

trimmed. An empty bit vector is denoted as Ø.

Bits in the bit vector are numbers starting from 1. V[x] represents a bit at position x in vector V. A bit at position

0 is assumed to be always set. Bit vectors support AND (&), OR (|) and NOT () operations that are bitwise i.e. the

operation is applied to bits at position 1, and then bits at position 2, etc.

4.1.2 Extended linear time

Extended Linear Time (LTx) is a data type that can contain only one of the following:

 An integer number.

 A bit vector.

Extended Linear Time cannot contain both an integer and a bit vector. Additionally, it is possible to determine at

any given time whether a given linear time contains an integer or a bit vector.

If this data type contains an integer, it represents a process, and if it contains a bit vector, it represents a meta-

process.

4.1.3 Extended vector time

Extended Vector Time (VTx) is a vector of LTx. Each element does not depend on others. Thus, a vector can have

one element that is an integer and another element that is a bit vector at the same.

4.1.4 Internal peer data structures

Each internal peer maintains the following data:

 idint – identifier of a peer in the internal group. This identifier must be unique in a group.

 SN(p) – an integer representing a sequence number of a message.

 RVint, RVext – bit vectors representing received messages.

 DVint, DVext – bit vectors representing message IDR.

4.1.5 External peer data structures

In an external group, each peer maintains the following variables:

 idext(p) – identifier of a peer in the external group. This identifier must be unique in a group.

 VTx(p) – extended vector time. The size of a vector is G, where G is the number of peers and super peers in an

external group.

 CI – vector of pairs representing message control information. Each pair consists of a process identifier and

LTx. CI[x] is a pair where the process identifier is x.

4.1.6 Super peer data structure

Super peer maintains the following variables:

 idext(sp) – identifier of a super peer in the external group.

 VTx(sp) – extended vector time. Size of a vector is G, where G is the number of peers and super peers in an

external group.

 SN(sp) – an integer representing a sequence number of a message from external group.

 LR – vector of pairs of size L, where L is the number of peers in an internal group of this super peer. Each pair

contains two sequence number names, in and out.

 TT – vector of vectors of pairs. Size of a vector is G. Each pair consists of two message identifiers called in and

out.

4.1.7 Internal group message structure

Messages in an internal group are denoted by mint and have the following structure:

mint = (id, SN, Last, DVint, DVext, Data)

 id – is the identifier of a sending process in the internal group.

 SN – an integer representing a message sequence number.

 Last – an integer identifier of a last message from this peer.

 DVint, DVext – a bit vector representing message dependency.

 Data – application data to be transmitted.

This message structure is used by both peers and super peers in an internal group [see Figure 2].

4.1.8 External group message structure

In an external group messages are denoted by mext and have the following structure:

mext = (id, SN, Last, CI, Data)

 id – is the identifier of a sending process.

 SN – an integer representing a message sequence number.

 Last – an integer identifier of a last message from this peer.

 CI – vector of pairs representing message control information. Each pair consists of a process identifier and

LTx.

 Data – the user data to be transmitted.

This message structure is used by both peers and super peers in an external group [see Figure 2].

Internal peer

Super peer

External

message

External

message

Internal

message

Internal

message

Internal peer

Super peer

Internal

message

Internal

message

Figure 2. Messages in a hierarchical peer-to-peer network.

4.2 Specification of the causal protocol

A message transaction in an internal group begins with a peer running an initialization process setting the fields of

the data structure with the following values:

SN(p) := 0

RVint := RVext := Ø

DVint := DVext := Ø

Listing 1. Internal peer initialization.

On the other hand, an external peer runs an initialization process to set the fields of the data structure with the

following values:

VTx(p)[Z] :=


0 ,if Z is an identifier of a peer

Ø ,if Z is an identifier of a super peer

CI := Ø

Listing 2. External peer initialization.

An initialization process in a super peer sets the fields of the data structure with the following values:

VTx(sp)[Z] :=


0 ,if Z is an identifier of a peer or Z = idext

Ø ,if Z is an identifier of a super peer

SN(sp) := 0

LR := (<0, 0>, <0, 0>, …, <0, 0>)

TT := (Ø, Ø, …, Ø)

Listing 3. Super peer initialization.

Each time an internal peer requires to send a message to a super peer, the peer constructs the message using the

following procedure [Listing 4]. (The detailed example of the protocol functions are present in the section 4.3).

1 SN(p) := SN(p) + 1

2 mi = (idint, SN(p), 0, DVint, DVext, Data)

3 DVint := DVext := Ø

Listing 4. Message sending by internal peer

Each time an internal peer receives a message from a super peer, it verifies the message delivery condition.

First, a FIFO condition is verified to check that a received message has not arrived before a previous message from

the same sender. Then after such verification, the peer checks that it has received all of the messages that form the

immediate dependency relation with the currently received message [see Listing 5].

If the delivery condition is satisfied, the peer updates its data structures [Listing 6] and then delivers the

message to the corresponding application. If the delivery condition is not satisfied, the message should be buffered.

1 If (mi.id ≠ 0 and RVint[mi.Last] = 1) or (mi.id = 0 and RVext[mi.Last] = 1) then // FIFO condition

2 If ((mi.DVint & RVint = mi.DVint) and (mi.DVext & RVext = mi.DVext)) then // Causal condition

3 Deliver(mi)

4 End if

5 End if

Listing 5. Internal peer delivery condition.

An internal peer will always receive its own message returned by a super peer. In this case the peer should only

update its receive vector RV. After a message is delivered, a process should check its buffer. If a message in a buffer

satisfies a delivery condition, it should be delivered using the same algorithm [Listing 6].

1 If (mi.id ≠ 0) then

2 RVint[mi.SN] := 1

3 Else

4 RVext[mi.SN] := 1

5 End if

6 If (mi.id ≠ idint) then

7 DVint := DVint & mi.DVint

8 DVext := DVext & mi.DVext

9 If (mi.id ≠ 0) then

10 DVint[mi.SN] := 1

11 DVint[mi.Last] := 0

12 Else

13 DVext[mi.SN] := 1

14 DVext[mi.Last] := 0

15 End if

16 End if

Listing 6. Message delivery to internal peer.

Since a super peer only can transmit messages from other peers, it does not have a message emission phase.

When a super peer receives a message from an internal peer, the super peer checks for the message delivery

condition. Since an internal peer can only receive messages from a super peer, which means that only a FIFO

dependency requires to be checked. To check the message delivery condition, a super peer executes the following

algorithm [Listing 7].

1 If (mi.SN = LR[mi.id].in + 1) then

2 Deliver(mi)

3 End if

Listing 7. Super peer delivery condition for messages from an internal group.

When a delivery condition is satisfied, the super peer forwards the message to other peers in an internal group.

[Listing 8]. Otherwise, the message should be buffered.

After a message is delivered, the process should check its buffer. If a message in a buffer satisfies a delivery

condition, it should be delivered using the same algorithm [Listing 8]. A message transformation will be discussed

later in this section.

1 mi.Last := LR[mi.id].out

2 VTx[idext] := VTx[idext] + 1

3 LR[mi.id] := <mi.SN, VT[idext]>

4 mi.SN := VTx[idext]

5 Send mi to all peers in the internal group

6 Transform and send message mi to all peers in the external group

Listing 8. Internal message delivery to super peer.

It is noted that the number of bit vector in the internal group is constant and equal to two. It does not depend on

the number of peers nor the number of super peers in the system. Thus, peers joining or leaving does not affect other

peers in the system. The only modifications in data structures are required at super peer’s level. Also for peers

joining the group the initialization process is required so it can receive the messages generated after it have joined

the group. This process consists of setting the first VTx[idext] bits in the RVint and first SN(sp) bits in the RVext

vector.

When an external peer wants to send a message, it constructs it using the algorithm [Listing 9].

1 VTx[idext] := VTx[idext] + 1

2 me = (idext, VTx[idext], VTx[idext] - 1, CI, Data)

3 CI := Ø

Listing 9. Message sending by external peer.

When a message is received by an external peer or a super peer, it should check its delivery condition which

consists of checking FIFO and causal conditions.

If the message FIFO ordering is not violated, then a message causal delivery condition is checked. This

condition consists on checking message identifiers that are inside messages control information [Listing 10]. These

conditions (FIFO and causal) are checked in both external peers and a super peer when it receives a message from

an external group.

1 If


me.Last ≤ VTx[me.id] ,if VTx[me.id] is an integer

VTx[me.id][me.Last] = 1 ,if VTx[me.id] is a bit vector
 then // FIFO

2 // Causal

 If for each <i, dep> (i ≠ idext) in me.CI =>


dep ≤ VTx[i] ,if VTx[i] is an integer

dep & VTx[i] = dep ,if VTx[i] is a bit vector
 then

3 Deliver(me)

4 End if

5 End if

Listing 10. Message delivery condition in external group.

If a delivery condition is satisfied in an external peer, it can deliver a message to an application. To do this a

peer is required to update its data structures to ensure that following messages will be correctly ordered [Listing 11].

This update consists of two parts. First, it needs to update the clock so that messages that depend on this one can be

delivered. The second part is to update control information so that a message sent from this peer will be correctly

ordered by other peers.

1 If VTx[me.id] is an integer then

2 VTx[me.id] := me.SN

3 Else

4 VTx[me.id][me.SN] := 1

5 End if

6 If VTx[me.id] is an integer then

7 If exists <i, dep> in CI that i = me.id then

8 CI := CI \ <i, dep>

9 End if

10 CI := CI ∪ <me.id, me.SN>

11 Else

12 If not exists <i, dep> in CI that i = me.id then

13 CI := CI ∪ <me.id, Ø>

14 End if

15 CI[me.id][me.SN]: = 1

16 End if

17 For each <i, dep> in me.CI

18 If VTx[i] is an integer then

19 CI := CI \ <i, dep>

20 Else

21 CI[i] := CI[i] & dep

22 End if

23 End for

Listing 11. Message delivery to external peer.

If for any pair in CI a bit vector is empty this pair can be removed from CI. If a delivery condition is satisfied in

a super peer it can forward this message to an internal group. To do this a super peer is required to update its data

structures to ensure the delivery of messages that depend on this one. This requires an update of a clock so that

messages that depend on this one can be delivered.

1 If VTx[me.id] is an integer then

2 VTx[me.id] := me.SN

3 Else

4 VTx[me.id][me.SN] := 1

5 End if

6 SN(sp) := SN(sp) + 1

7 Transform and send message me to all peers in the internal group

Listing 12. External message delivery to super peer.

After a message is delivered to a peer or a super peer, a process should check its buffer. If a message in a buffer

satisfies a delivery condition, it should be delivered using the same algorithm [Listing 11 for peer, Listing 12 for

super peer].

As bit vectors RV, DV and VTx grow in size during the execution of a protocol with each message, it is

necessary to use mechanisms to reduce bit vector sizes. Communication channels are considered to be reliable; thus,

every message sent by a super peer will be delivered to an internal group peer. This means that an RV and VTx will

have bits for each message set. Since a super peer numbers messages with consecutive integers after some execution

time, an RV and VTx will start with consecutive set bits. Considering that after a bit is set, it is not changed to a

cleared state at any time. So it is required to store bits between the first cleared bit and the last set bit.

A vector DV is based on the immediate dependency relation. Each bit is set only once and then it is cleared

when a message is sent or a dependent message is received. So it is only required to store bits between the first and

the last set bits.

To be completely functional our protocol requires a mechanism to transform messages from an internal group to

an external group and vice versa. This transformation is performed by a super peer because it participates in both

groups at the same time.

A message that originated from an internal group generally carries dependencies on other messages from the

internal group and dependencies on messages from an external group. The dependencies on messages from an

internal group are represented in a form of bit vector but to be interpreted correctly in an external group they should

be transformed into a vector of pairs (process identifier, message dependency). This transformation can be achieved

by using the algorithm presented below [Listing 13].

1 CI := (<idext, mi.DVint>) // Vector of pairs.

2 For each <id, PT> in TT // PT is a vector of pairs

3 For each <in, out> in PT in reverse order

4 If mi.DVext[out] = 1 then

5 If VTx[id] is an integer then

6 CI := CI ∪ <id, in>

7 Exit For

8 Else

9 If not exists <i, dep> in CI that i = id then

10 CI := CI ∪ <id, Ø>

11 End if

12 CI[id][in] := 1

13 End if

14 End if

15 End for

16 End for

17 me := (idext, mi.SN, mi.Last , CI, mi.Data)

18 Send me to external group

Listing 13. Message transformation from internal to external group.

If a message carries only dependencies on external messages a CI[idext] will be an empty vector. In this case,

this dependency can be removed from CI.

A message received by a super peer that originated from an external group generally carries dependencies on

other messages from an external group as well as dependencies on messages from an internal group. The

dependencies on messages from an external group are represented in a form of pairs (process identifier, message

dependency) but to be interpreted correctly in an internal group they should be transformed to a bit vector form

[Listing 14].

1 DVint := me.CI[idext] or Ø if me.CI does not contain element for idext // Bit vector

2 DVext := Ø

3 For each <id, dep> in me.CI where id ≠ idext

4 If (VTx[id] is an integer)

5 If (exists <in, out> in TT[id] where in = dep) then

6 DVext[out] := 1

7 End if

8 Else

9 For each 1 in dep in position i

10 If exists <in, out> in TT[id] where in = i then

11 DVext[out] := 1

12 End if

13 End for

14 End if

15 End for

16 Last := TT[me.id][in = me.Last] or 0 if not exists

17 mi = (0, SN(sp), Last, DVint, DVext, me.Data)

18 TT[me.id] := TT[me.id] ∪ <me.SN, VTx[idext]>

19 Send mi to internal group

Listing 14. Message transformation from external to internal group.

Also a super peer can receive messages that contain dependencies on messages that are not yet received. To deal

with this, super peer checks the message delivery condition as previously described to ensure that this message can

be delivered to a super peer and only then transforms it to ensure that all of the message dependencies are resolved.

This does not affect the message order in any way. If a super peer does not receive message m, none of the peers in

an internal group have received this message m. So a message m’ that requires m to be delivered before cannot be

delivered to any peer in an internal group.

4.3 Causal protocol description

To demonstrate how our proposed protocol detects causal order violations, we use a scenario [see Figure 3]

composed of a network that consists of the following:

 Two internal groups containing of two peers each. P(i1)1 and P(i1)2 are the peers in the internal group 1 and

P(i2)1 and P(i2)2 are the peers in the internal group 2.

 Two super peer with identifiers 1 and 2. Super peer 1 forms the internal group 1 and super peer 2 forms the

internal group 2.

P(i1)1

P(i1)2

Sp1

Sp2

P(i2)1

m1

m2

m3

m4

m(e)1

m(i1)2

P(i2)2

m(i2)1

m(e)3 m(e)4

m(e)2

m(i2)3 m(i2)4

Figure 3. Scenario example.

This scenario contains 3 types of messages:

 Messages in an external group represented as a solid line.

 Messages in an internal group from peer to super peer represented by a solid line.

 Messages in an internal group from super peer to peers represented by a dotted line.

We mark with the X a message delivery that violates a causal order.

4.3.1 Diffusion of m3 at P(i1)2.

 First, an internal peer increments its sequence number [Listing 4, Line 1]: SN = 2.

 An internal peer generates a message m3 = (2, 2, 0, Ø, 1, Data) [Listing 4, Line 2].

 The DVint and DVext variables are cleared [Listing 4, Line 3].

4.3.2 Reception of m3 at Sp1.

 When a super peer Sp1 receives m3 it checks its delivery condition. The FIFO delivery condition is satisfied

[Listing 7, Line 1]: 2 = 1 + 1 and the message m3 can be delivered.

 m3.Last field is changed to 1 (LR[2].out = 1) [Listing 8, Line 1].

 A clock for this super peer is updated with the new value [Listing 8, Line 2]: VTx(p) = (2, 1) and LR is updated

with the message identifier [Listing 8, Line 3]: LR[2] = <2, 2>.

 m3.SN is updated to 2 and m3 is sent to all peers in an internal group.

4.3.3 Transformation of m3 at Sp1 to external group.

 CI is created with value <1, Ø> [Listing 13, Line 1].

 TT[2] contains <1, 1> and bit m3.DVext[1] is set [Listing 13, Lines 2-4].

 The element <2, 1> is added to CI [Listing 13, Lines 9-12].

 The element <1, Ø> is removed from CI and the message m3 is transformed to an external group:

m(e)3 = (1, 2, 1, <2, 1>, m3.Data) [Listing 13, Line 17].

4.3.4 Reception of m3 at P(i1)1.

 When a peer P(i1)1 receives m3 it checks its delivery condition.

o The FIFO delivery condition is satisfied [Listing 5, Line 1]: RVint[1] = 1

o The causal delivery condition [Listing 5, Line 2] is also satisfied: 1 & 1 = 1.

o Both conditions satisfied and the message m3 can be delivered.

 The receive vector is updated [Listing 6, Line 2]: RVext = 11.

 The message dependency vectors are updated as well [Listing 6, Lines 7-14]: DVint = 01, DVext = Ø.

4.3.5 Diffusion of m4 at P(i1)1.

 First, an internal peer increments its sequence number [Listing 4, Line 1]: SN = 1.

 An internal peer generates a message m4 = (1, 1, 0, 01, Ø, Data) [Listing 4, Line 2].

 The DVint and DVext variables are cleared [Listing 4, Line 3].

4.3.6 Reception of m4 at Sp1.

 When a super peer Sp1 receives m4 it checks its delivery condition. The FIFO delivery condition is satisfied

[Listing 7, Line 1]: 1 = 0 + 1 and the message m4 can be delivered.

 m4.Last field is changed to 0 (LR[1].out = 0) [Listing 8, Line 1].

 A clock for this super peer is updated with the new value [Listing 8, Line 2]: VTx(p) = (3, 1) and LR is updated

with the message identifier [Listing 8, Line 3]: LR[1] = <1, 3>.

 m4.SN is updated to 3 and m4 is sent to all peers in an internal group.

4.3.7 Transformation of m4 at Sp1 to external group.

 CI is created with value <1, 01> [Listing 13, Line 1].

 TT[2] contains <1, 1> and bit m4.DVext[1] is cleared [Listing 13, Lines 2-3].

 CI is not modified [Listing 13, Lines 4].

 The message m4 is transformed to an external group: m(e)4 = (1, 3, 0, <1, 01>, m4.Data) [Listing 13, Line 17].

4.3.8 Reception of m(e)4 at Sp2.

 When a super peer Sp2 receives m(e)4 it checks its delivery condition.

o The FIFO delivery condition is satisfied [Listing 10, Line 1]: VTx[1][0] is set.

o m(e)4.CI contains <1, 01> and this dependency is not satisfied because 01 & 10 = 00 ≠ 01.

o The message m(e)4 should be buffered.

4.3.9 Reception of m(e)3 at Sp2.

 When a super peer Sp2 receives m(e)3 it checks its delivery condition.

o The FIFO delivery condition is satisfied [Listing 10, Line 1]: VTx[1][1] is set.

o m(e)3.CI contains <2, 1> and this dependency is satisfied because idext = 2.

o Both conditions are satisfied and the message m(e)3 can be delivered.

 A clock component for super peer 1 [Listing 12, Line 4] is updated VTx(sp) = (11, 1).

 SN(sp) is incremented to 2 [Listing 12, Line 6].

4.3.10 Transformation of m(e)3 at Sp2 to internal group.

 As m(e)3.CI contains an element for process 2 [Listing 14, Line 1]. DVint is initialized to 1.

 In this case, m(e)3.CI does not contains other dependencies so m(e)3 is transformed to an internal group:

m(i2)3 = (0, 2, 1, 1, Ø, m(e)3.Data). TT[1] contain <1, 1> so Last is set to 1.

 <2, 2> is added to TT[1] [Listing 14, Line 17].: TT[1] contains <1, 1>, <2, 2>.

4.3.11 Delivery of m(e)4 at Sp2.

 Message buffer contains m(e)4 it delivery condition should be revalidated.

o The FIFO delivery condition is satisfied [Listing 10, Line 1]: VTx[1][0] is set.

o m(e)4.CI contains <1, 01> and this dependency is satisfied because 01 & 11 = 01.

o Both conditions are satisfied and the message m(e)4 can be delivered.

 A clock component for super peer 1 [Listing 12, Line 4] is updated VTx(sp) = (111, 1).

 SN(sp) is incremented to 3 [Listing 12, Line 6].

4.3.12 Transformation of m(e)4 at Sp2 to internal group.

 As m(e)4.CI does not contains an element for process 2 [Listing 14, Line 1]. DVint is initialized to Ø.

 m(e)4.CI contains the element <1, 01> and TT[1] contains <2, 2>. DVext is updated to 01.

 m(e)4 is transformed to an internal group: m(i2)4 = (0, 3, 0, Ø, 01, m(e)3.Data).

 <3, 3> is added to TT[1] [Listing 14, Line 17].: TT[1] contains <1, 1>, <2, 2>, <3, 3>.

4.3.13 Reception of m(i2)4 at P(i2)2.

 When a peer P(i2)2 receives m(i2)4 it checks its delivery condition.

o The FIFO delivery condition is satisfied [Listing 5, Line 1]: RVext[0] = 1.

o The causal delivery condition [Listing 5, Line 2] is not satisfied: 01 & 10 = 00 ≠ 01.

o The message m(i2)4 should be buffered.

4.3.14 Reception of m(i2)3 at P(i2)2.

 When a peer P(i2)2 receives m(i2)3 it checks its delivery condition.

o The FIFO delivery condition is satisfied [Listing 5, Line 1]: RVext[1] = 1.

o The causal delivery condition [Listing 5, Line 2] is also satisfied: 1 & 1 = 1.

o Both conditions are satisfied and the message m(i2)3 can be delivered.

 The receive vector is updated [Listing 6, Line 2]: RVext = 11.

 The message dependency vectors are updated as well [Listing 6, Lines 7-11]: DVint = Ø, DVext = 01.

 Message buffer contains m(i2)4 it delivery condition should be revalidated.

o The FIFO delivery condition is satisfied [Listing 5, Line 1]: RVext[0] = 1.

o The causal delivery condition [Listing 5, Line 2] is also satisfied: 01 & 11 = 01.

o Both conditions are satisfied and the message m(i2)4 can be delivered.

 The receive vector is updated [Listing 6, Line 2]: RVext = 111.

 The message dependency vectors are updated as well [Listing 6, Lines 7-11]: DVint = 001, DVext = Ø.

4.4 Overhead Analysis

As the proposed protocol depends on the Immediate Dependency Relation [14], the size of the control information

of message m depends on the number of concurrent messages that form an IDR with m.

In the internal group all of the messages are sequentially numbered. As a message m cannot form an IDR with

more than g internal messages (g is the number of processes in an internal group) its internal dependency vector

cannot contain more than g-1 set bits. Also a message m cannot form an IDR with more than n-g external messages

(n is the number of processes in the system) its external dependency vector cannot contain more than n-g-1 set bits.

But the set bits can be separated by cleared bits. Let m1 be the message with lowest sequence number to form an

IDR with m. Then a bit vector can have no more bits than the number of message concurrent to m1 that exists in a

system. As message delay is finite, then each process can generate a finite number of messages concurrent to m1.

Thus, a total number of messages concurrent to m1 is also finite and is proportional to a number of processes in a

system producing an overhead of O(n) bits (O(g) for internal group + O(n-g) for external group).

In the external group, message dependencies are represented as a combination of dependencies on external

messages and dependencies on internal messages. The number of elements that represent dependencies on external

messages are limited by the number of processes in an external group (peers and super peers), thus limiting a

number of pairs that represent message dependency to O(l) (l is the number of peers and super peers in the external

group).

We notice that in our protocol, as for the minimal causal algorithm in [14], the likelihood that the worst case

will occur approaches zero as the number of participants in the group grows. This is because the likelihood that k

concurrent messages occur decreases inversely proportional to the size of the communication group. This behaviour

has been shown in [14].

5 Simulations

To analyse our protocol we carried out different simulations. The scenario used in these simulations consists of four

internal groups and one external group connected by four super peers. All of the peers in the system were distributed

equally among these four internal groups. Within the simulation, each peer generates a message every 70 – 90

milliseconds. The system was simulated with a different number of peers and with different delays in the

communication channels. The simulations were performed with the OMNeT++ discrete event simulator [27]. All of

the simulation scenarios are listed in Table 1.

All the delays are normally distributed with the mean being the middle of the interval and the variance equal to

one fourth of the interval (for example, message generation time is distributed like N(80, 5) milliseconds). If a

random value is generated outside the interval, the value of the nearest interval end is taken instead. The message

delay is applied individually at each channel (peer – super peer, super peer – super peer, super peer – peer).

Message channel delays Number of peers

0 – 50 milliseconds 10 – 900

50 – 250 milliseconds 10 – 800

50 – 550 milliseconds 10 – 500

Table 1. Number of peers and delays.

The simulation program uses the Immediate Dependency Protocol [14] to compare and validate the protocol

presented in this paper. When a message can be delivered to an application, following our protocol, it is validated

against an IDR to identify the causal order violations which our protocol failed to detect. In addition, the overheads

for IDR and Dependency Sequences (DS) [15] were calculated to be compared with the overhead generated by our

protocol.

The results of simulations are analysed in the following way. Two overheads are mainly analysed: the

communication overhead (amount of control information required to be sent with a message) and storage overhead

(amount of information required to be stored in each peer). As our protocol generates different overheads in internal

and external groups, the maximum overhead in both groups is compared with the generated by IDR and DS

protocols.

As Dependency Sequences [15] stores information only at super peers level, the storage overhead for this

protocol is not analysed.

By considering channel delays from 0 to 50 milliseconds [see Figure 4], the simulation results show that the

overhead of our protocol is lower than the overhead produced by the IDS and DS protocols. For 1000 peers, each

internal peer requires to store on average 140 bytes of information, and the average communication overhead is

around 120 bytes. IDR protocol requires to store on average 5850 bytes on each peer and to send 2250 bytes, while

DS protocol sends on average 950 bytes in the external group.

For these delays the results show that the overhead of our protocol is 18.75 times lower than the overhead of the

IDR and 7.9 times lower than the one of DS protocol, and require storing 41.75 times less information.

Figure 4. Communication and storage overheads in bytes for a system with delays from 0 to 50 milliseconds.

In our work in order to reduce the size of the variable TT, in a super peer, we use the fact that a peer in the

internal group can only receive a message that has been already received and delivered by the corresponding super

peer. If m1 and m2 are messages that have an immediate dependency relationship m1↓m2, and all the peers in the

internal group have received and delivered m2, then the information about m1 can be removed from a super peer.

This can be seen from two different aspects: message reception and message sending:

Message reception: a peer can deliver m2, such that m1↓m2, if and only if m1 has already delivered. If a peer

received a message m3, such that m1↓m3, and m2 has already delivered (which implies delivery of m1), then it can

deliver m3 without any delay. In this way the information about dependency on m1 does not affect the m3 delivery in

any way.

Message sending: if a peer delivered message m2 then no message originated from this peer can carry any

dependency on m1 and the information about m1 in super peer is no longer required.

Therefore, if all peers have delivered m2, such that m1↓m2, then the delivery of messages depending on m1 will

not be affected in the internal group in any way, and a super peer will not receive any message depending on m1

from the internal group. Therefore, the information about m1 can be deleted from variable TT in a super peer.

0

500

1000

1500

2000

2500

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0

0

B
y

te
s

Number of peers

Communication overhead

Proposed protocol IDR DS

0

1000

2000

3000

4000

5000

6000

7000

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0

0

B
y

te
s

Number of peers

Storage overhead

Proposed protocol IDR

Figure 5. Communication and storage overheads in bytes for a system with delays from 50 to 250 milliseconds.

By considering channel delays from 50 to 250 milliseconds [see Figure 5] the results also show that the

overhead of the proposed solution is lower than the overhead produced by the Immediate Dependency Relation and

Dependency Sequences protocols. For 800 peers, each internal peer requires to store on average 480 bytes of

information and the average overhead is around 470 bytes. The IDR protocol requires to store on average 5400 bytes

on each peer and to send 3700 bytes while DS have a communication overhead of 3400 bytes.

The results for delays from 50 to 250 milliseconds show that overhead of our protocol is 7.8 times lower than

the overhead of the IDR, 7.2 times lower that the overhead of DS and require storing 11.25 times less information

for IDR.

Figure 6. Communication and storage overheads in bytes for a system with delays from 50 to 550 milliseconds.

0

500

1000

1500

2000

2500

3000

3500

4000

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

B
y

te
s

Number of peers

Communication overhead

Proposed protocol IDR DS

0

1000

2000

3000

4000

5000

6000

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

B
y

te
s

Number of peers

Storage overhead

Proposed protocol IDR

0

500

1000

1500

2000

2500

3000

3500

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

B
y

te
s

Number of peers

Communication overhead

Proposed protocol IDR DS

0

500

1000

1500

2000

2500

3000

3500

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

B
y

te
s

Number of peers

Storage overhead

Proposed protocol IDR

Moreover, with channel delays from 50 to 550 milliseconds [see Figure 6] and for 500 peers, each internal peer

requires storing on average 650 bytes of information and the average overhead is around 560 bytes. The IDR

protocol requires to store on average 3100 bytes on each peer and to send 1600 bytes while DS requires to send

around 2900 bytes of overhead.

These results shows that the overhead of the proposed protocol is 2.9 times lower than the overhead of the IDR,

5.2 times lower than one of the DS, and require storing 4.7 times less information.

As our protocol adds an extra delay for the messages that arrive out of order, during each simulation, the

delivery time (from sending until delivery) and the induced delay (the time message spend in the buffer) are

calculated. In all simulations, the delivery delay (including the time that message spend in buffers) does not exceed

the maximum delay that can be produced by the communication channels [see Figure 7]. This fact show that the

presented protocol does not introduce any excessive delays for message delivery.

Figure 7. Delivery and induced delays for a system with delays from 0 to 50 milliseconds (a), for a system with

delays from 50 to 250 milliseconds (b), for a system with delays from 50 to 550 milliseconds (c).

We can note that the maximum delay induced by the protocol (the time message spend in the buffer) is lower

than the average delivery delay. When the number of peers is low (fewer messages in the system), the probability of

the maximum delay during message transmission is also low, producing different results for maximum delivery and

induced delays. However, when the number of peers grows (more messages in the system), the probability of the

maximum delay during transmission grows producing the similar results (as at least one message have the maximum

transmission delay).

6 Conclusions and future work

6.1 Conclusions

An Efficient Causal Group Communication Protocol has been presented. The proposed protocol ensures causal

message ordering in a peer-to-peer hierarchical overlay network. The protocol uses a combination of the Immediate

Dependency Relation and the concept of hierarchical clocks to reduce the message overhead. Thus, our protocol is

efficient in terms of the overhead, piggybacked on transmitted messages. The overhead sent per message is

characterized by being dynamically adapted according to the behaviour of the concurrent messages. In addition,

with the use of the information about network architecture, and representing message dependencies on a bit level,

our protocol ensures causal message ordering without enforcing the super peers order to all of the peers in a group.

On the other hand, the presented protocol satisfies the hierarchical peer-to-peer overlay network requirements by

demanding a low computational effort at the peers’ side. This last is achieved performing only binary operations and

simple sums. Moreover, low memory buffer is used since only a structure of bits is stored. The simulations show

that our protocol produces less communication overhead than IDR and DS protocols, and also requires less storage

overhead in peers. Therefore, the low overhead allows a system to include devices with limited computational

capacities.

6.2 Future work

On the other hand, we note that further work is needed in order to consider different network conditions, such as loss

of messages. In our protocol the IDR identifies the necessary and sufficient control information to be piggybacked

on each message, to ensure the causal order in a reliable network. To support the loss of messages, some Forward

Error Correction methods [28] can be applied, such as the redundancy on the transmitted control information. The

purpose of adding redundancy is to increase the probability that causal order delivery will be obtained, even in the

presence of lost messages and significant network delays.

Acknowledgements

Authors would like to thank the National Council of Science and Technology (Consejo Nacional de Ciencia y

Tecnología, CONACYT) for its financial support throughout this research work.

References

[1] S. Tarkoma, Overlay Networks: Toward Information Networking, Auerbach, Boston, 2010.

[2] B. Cohen, The BitTorrent Protocol Specification, Version 11031 (10 January 2008), electronic version available at

http://www.bittorrent.org/beps/bep_0003.html (access date: 07 July 2015).

[3] B. Knutsson, H. Lu, W. Xu, B. Hopkins, Peer-to-peer Support for Massively Multiplayer Games, Proceedings INFOCOM

2004, IEEE Publishing, 2004.

[4] S.A. Baset, H.G. Schulzrinne, An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol, Proceedings INFOCOM

2006 (25th IEEE International Conference on Computer Communications), IEEE Publishing, Barcelona, 2006, 1-11.

[5] R. Schwarz, F. Mattern, Detecting Causal Relationships in Distributed Computations: In Search of the Holy Grail, Distributed

Computing, 7, 3 (1994) 149-174.

[6] G. Anastasi, A. Bartoli, A Reliable Multicast Protocol for Distributed Mobile Systems: Designs and Evaluation, IEEE

Transactions on Parallel and Distributed Systems, 12, 10 (2001) 1009-1022.

[7] S.M. Banik, S. Radhakrishnan, T. Zheng, C.N. Sekharan, Distributed Floor Control Protocols for Computer Collaborative

Applications on Overlay Networks, Proceedings International Conference on Collaborative Computing: Networking,

Applications and Worksharing, IEEE Publishing, San Jose, 2005.

[8] C. Benzaid, N. Badache, An Optimal Causal Broadcast Protocol in Mobile Dynamic Groups, Proceedings International

Symposium on Parallel and Distributed Processing with Applications, IEEE Publishing, Sydney, 2008, 477-484.

[9] D. Doulikun, A. Aikebaier, T. Enokido, M. Takizawa, Experimentation of Group Communication Protocols, Proceedings

16th International Conference on Network-Based Information Systems (NBiS), IEEE Publishing, Gwangju, 2013, 476-481.

[10] R. Friedman, S. Manor, Causal Ordering in Deterministic Overlay Networks, Technical Report, Israel Institute of

Technology, Haifa, Israel, 2004.

[11] C. Hsiao, Y. Liao, Domain-Based Causal Ordering Group Communication in Wireless Hybrid Networks, Proceedings The

5th International Conference on Ubiquitous Information Management and Communication, ACM Publishing, New York, 2011,

131:1-131:6.

[12] A. Maddi, F. Dahamni, An Efficient Algorithm for Causal Messages Ordering, Proceedings The 2001 ACM Symposium on

Applied Computing, ACM Publishing, Las Vegas, 2001, 499-503.

http://www.bittorrent.org/beps/bep_0003.html

[13] T. Nishimura, N. Hayashibara, T. Enokido, M. Takizawa, Causally Ordered Delivery with Global Clock, IEEE, 2005, 560-

564.

[14] S. E. Pomares Hernández, The Minimal Dependency Relation for Causal Event Ordering in Distributed Computing, Applied

Mathematics & Information Sciences, 3, 5 (2015), 57-61.

[15] R. Prakash, M. Singhal, Dependency Sequences and Hierarchical Clocks: Efficient Alternatives to Vector Clocks for Mobile

Computing Systems, Wireless Networks, 3, 5 (1997), 349-360.

[16] K. Taguchi, M. Takizawa, Two-Layered Protocol for a Large-Scale Group of Processes, Proceedings Ninth International

Conference on Parallel and Distributed Systems, IEEE Publishing, 2002, 171-176.

[17] I. Tsuneizumi, A. Aikebaier, T. Enokido, M. Takizawa, A Flexible Group Communication Protocol with Hybrid Clocks,

Proceedings The 7th International Conference on Advances in Mobile Computing and Multimedia, ACM Publishing, New York,

2009, 469-474.

[18] I. Tsuneizumi, A. Aikebaier, M. Ikeda, T. Enokido, M. Takizawa, A Scalable Hybrid Time Protocol for a Heterogeneous

Group, Proceedings International Conference on Broadband, Wireless Computing, Communication and Applications, Fukuoka,

2010, 214-221.

[19] I. Tsuneizumi, A. Aikebaier, T. Enokido, M. Takizawa, A Scalable Peer-to-Peer Group Communication Protocol,

Proceedings 24th IEEE International Conference on Advanced Information Networking and Applications, IEEE Publishing,

Perth, 2010, 268-275.

[20] I. Tsuneizumi, A. Aikebaier, M. Ikeda, T. Enokido, M. Takizawa, S.M. Deen, Hybrid Clock-Based Synchronization in a

Scalable Heterogeneous Group, Proceedings 13th International Conference on Network-Based Information Systems, IEEE

Publishing, Takayama, 2010, 246-253.

[21] I. Tsuneizumi, A. Aikebaier, T. Enokido, M. Takizawa, Reduction of Messages Unnecessarily Ordered in Scalable Group

Communication, Proceedings International Conference on Complex, Intelligent and Software Intensive Systems, IEEE

Publishing, Krakow, 2010, 299-306.

[22] L. Yen, Probabilistic Analysis of Causal Message Ordering, Proceedings Seventh International Conference on Real-Time

Computing Systems and Applications, IEEE Publishing, Cheju Island, 2000, 409-413.

[23] S. Zhou, W. Cai, S.J. Turner, B. Lee, J. Wei, Critical Causal Order of Events in Distributed Virtual Environments, ACM

Transactions on Multimedia Computing, Communications, and Applications, 3, 3 (2007).

[24] Lamport, L.: "Time, Clocks, and the Ordering of Events in a Distributed System", Communication of the ACM, 21, 7

(1978), 558-565.

[25] F. Mattern, Virtual Time and Global States of Distributed Systems, Proceedings Parallel and Distributed Algorithms, North-

Holland Publishing, 1988, 215-226.

[26] B. Yang, H. Garcia-m, Designing a Super-peer Network, Proceedings IEEE International Conference on Data Engineering,

2003.

[27] OMNeT++ Discrete Event Simulator, https://omnetpp.org/. Access date: July 23, 2015.

[28] E. Lopez Dominguez, S. E. Pomares, G. Rodriguez, Maria A. Medina, An Efficient Causal Protocol with Forward Error

Correction for Mobile Distributed Systems, Journal of Computer Science, 6, 7 (2010), 756-768.

https://omnetpp.org/

