
Khan, M. Ali; Rath, Kali P.; Sun, Yeneng; Yu, Haomiao

Working Paper

On large games with a bio-social typology

Working Paper, No. 585

Provided in Cooperation with:
Department of Economics, The Johns Hopkins University

Suggested Citation: Khan, M. Ali; Rath, Kali P.; Sun, Yeneng; Yu, Haomiao (2011) : On large games
with a bio-social typology, Working Paper, No. 585, The Johns Hopkins University, Department of
Economics, Baltimore, MD

This Version is available at:
https://hdl.handle.net/10419/101365

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/101365
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


On Large Games with a Bio-Social Typology∗

M. Ali Khan†, Kali P. Rath‡, Yeneng Sun§, and Haomiao Yu¶

Abstract: We present a comprehensive theory of large non-anonymous games in which
agents have a name and a determinate social-type and/or biological trait to resolve
the dissonance of a (matching-pennies type) game with an exact pure-strategy Nash
equilibrium with finite agents, but without one when modeled on the Lebesgue unit
interval. We (i) establish saturated player spaces as both necessary and sufficient for
an existence result for Nash equilibrium in pure strategies, (ii) clarify the relationship
between pure, mixed and behavioral strategies via the exact law of large numbers in a
framework of Fubini extension, (iii) illustrate corresponding asymptotic results.

(99 words)

Keywords: Large non-anonymous games, social-type, traits, pure strategy, mixed strategy,
behavioral strategy, saturated probability space, exact law of large numbers, ex-post Nash
equilibrium, asymptotic implementation.

JEL Classification Numbers: C62, D50, D82, G13.

∗Some of the results reported here were presented at the Fall 2005 Meetings of the Midwest Eco-
nomic Theory Group held in Lawrence, Kansas, October 14-16, 2005; at the Far East and South Asian
Meeting of the Econometric Society in Singapore, July 16-18, 2008; at Professor In-Koo Cho’s seminar
on February 18, 2009 at the University of Illinois at Urbana-Champaign; and at the IMS Workshop on
Probabilistic Impulse in Modern Economic Theory on January 11-18, 2011 at the National University of
Singapore. The authors are grateful to David Schmeidler for encouragement and for Footnote 40 below,
and also thank the Departments of Economics at Johns Hopkins and at the NUS for supporting visits
in January (Sun) and June 2010 (Khan).

†Department of Economics, The Johns Hopkins University, Baltimore, MD 21218, USA.
‡Department of Economics, University of Notre Dame, Notre Dame, IN 46556, USA.
§Department of Economics, National University of Singapore, 1 Arts Link, Singapore 117570.
¶Department of Economics, Ryerson University, Toronto, ON M5B2K3, Canada.



1 Introduction

The theory of large games, in both its anonymous and non-anonymous formulations,

is by now well-understood.1 Under the assumption that a player’s payoffs depend, in

addition to her own action, on a statistical summary, be it an average or a distribution,

of the plays of everyone else in the game, the basic thrust of the theory is its focus on

pure strategy equilibria. Indeed, this constitutes the raison d’etre of the theory and is

easily justified by virtue of the fact that pure strategy equilibria do not necessarily exist

in games with a finite set of players.2 The two distinguished, and defining, features of

the theory are a player’s numerical negligibility and her societal interdependence in the

original Nash formulation being substituted by more composite and aggregate measures

of the actions of everyone else in the game. Within such a rubric, results on the existence

of pure strategy equilibria, as well as their asymptotic implementability and invariance

to permutations of names, have been established.3 In addition, issues concerning mea-

surability, purification and symmetrization have been identified and resolved in terms of

decisive counterexamples and attendant theorems. The resulting theory has been shown

to hinge on the cardinality of the underlying action set: if it is a finite,4 or a countably

infinite, set,5 numerical negligibility of an individual player can be successfully formalized

by an arbitrary atomless probability space; if, on the other hand, it is uncountable and

compact, say even the unit interval, an arbitrary probability space does not suffice, and

additional structure has to be put on the formalization of agent multiplicity. Initially,

such a structure was invoked through the consideration of an atomless Loeb probability

space, but recent work has identified a crucial property, namely saturation, and shown

that agent multiplicity formalized by atomless saturated probability spaces, a more gen-

eral class to which atomless Loeb probability spaces belong,6 is not only sufficient but

also necessary for the results to hold. We have thereby a viable and robust theory of

large games.

A technical point of departure for the theory is the fact that the players’ names

do not have a natural “measure of closeness” defined on them, and that therefore the

1For details as to terminology and bibliographic substantiation of all claims in the ensuing paragraph,
except those embodied in the last sentence, see the survey chapter [32] and their references. For saturated
probability spaces mentioned in the last sentence, see [24] and [28]. We have stated two characterizations
for the reader’s convenience as Propositions 1 and 2 below. Other references will be furnished in the
sequel as the need for them arises.

2The matching-pennies game is a canonical, though by no means the only, example in this regard.
3See [31] where the invariance to permutations is labelled as the homogeneity property.
4Various results related to pure strategy Nash equilibria in the case of finite actions follow from a

general purification principle formulated by Dvoretzky-Wald-Wolfowitz in early 1950s; see [29].
5See [50] for the relaxation of the compactness assumption on action sets in [30].
6Other examples are constituted by product spaces of the form {0, 1}κ where {0, 1} has the uniform

measure and κ is an uncountable cardinal; see [24].
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space of such names has to be conceived as an abstract rather than a topological measure

space. It is by now well-appreciated that this space has necessarily to be endowed with an

abstract measurable structure rather than a Borel or Baire structure that is metrically-,

or more generally, topologically-generated. From a substantive point of view however,

this has led to a theory that, in its most basic form, is informationally sparse. It is

sparse in the sense that each agent,7 in taking the distribution of the societal actions as

given, is focussed only on the proportions of agents playing certain actions, and oblivious

to any measurable social-types8 or social or biological traits by which the players could

also be distinguished. This is to say that the theory, as currently formulated, ignores

players’ traits more generally conceived. Thus, in the context of traffic moving through

a bridge or a tunnel, an individual decision-maker deciding on a possible route, again as

conceived by the theory, notes only the proportion of the traffic moving through one of the

two alternative routes, and disregards as irrelevant to her decision all other information

concerning traffic-traits, including the proportion of truck-drivers and the unruliness

of driving patterns. In another illustrative context, in deciding which of two possible

candidates to vote for, an agent, as conceived by the theory, is concerned only with the

proportion of the electorate that votes for either of the candidates, and thereby neglects

all other information relating to a voter’s biological or socioeconomic traits, proxied by

variables that may be continuous and/or discrete. In short, the theory ignores race or

gender as relevant categories for the equilibrium outcome.

To be sure, even the very early extensions of the theory did consider situations

where the space of players’ names could be conceived as being finitely partitioned, and

an agent’s preferences taken to depend on the mean or the distribution of the profile of

societal actions when this profile is restricted to each individual element of this partition.9

Indeed, recent work has shown that the results can be extended to partitions with a

countably infinite set of elements. This is of course important in that in removing the

finiteness assumption, it removes an arbitrary and uniform bound on the grouping of

agents.10 There are sublists of names, finite or countably infinite, according to which a

7In the sequel, and especially in the informal discussion, we shall use “agent” interchangeably with
“player,” and “society” interchangeably with “all the players.”

8Note that we are avoiding the word type on its own, using it always with its hyphenated counterpart.
This is being done to keep away from the notion of Harsanyi types that refers primarily to player beliefs.
As elaborated below, we have the sociological and, older biological, pre-game-theory usage in mind; the
reader can see, for example, the first essay in [25] and track his use of the word type, and note that
we use the word trait in conformity with his pre-Harsanyi notion of type. Hence also the composite
bio-social typology in the title. We defer for future work, once a satisfactory formulation of the theory
with a multiplicity of social-types is available, an integration of beliefs; however, see [47].

9This case of a finite partition goes back to Remark 2 in [42]; for subsequent work, see the references
in [32] and subsequent to that survey, in [50].

10See Chapter 5 in [22], and note that his dissertation presents an extension in the context of both
countable and uncountable compact metric action sets.
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continuum of agents is grouped, and an agent is dependent on society’s plays only to the

extent that she is dependent on the summary statistics pertaining to the individuals in

each of these exogenously classified sublists or subgroups. However, nothing is said as

regards how such sublists are determined, which is to say that the grouping of names is

not tethered to observable and quantitatively measurable bio-social traits of the players.

The players within the same subgroup can be interpreted as having the same social-

type. However, there could be cases where the number of distinct social-types is not

discrete.For example, the payoffs may depend on societal summary statistics that involves

a continuum of socioeconomic traits, possibly income levels in the voting context, or

vehicle-tonnage in the traffic example. For example, markets fail in situations of adverse

selection precisely when a player is unwilling to subsidize agents perceived by him or her

to be ranked “below” her traits. Whether this perception is “objective” or universally

subscribed to by all of the players in the game is hardly relevant; it figures in each

individual’s decision. To pursue the point a little more, rather than a finite or a countable

infinite list of exogenous classifications, one wants to deal with situations when the

particular subset of society whose summary statistics are seen as relevant for an agent’s

decisions, is decided on by the agents’ socioeconomic traits in the group, possibly income

levels in the voting context, or vehicle-tonnage in the traffic example.

Thus, inspite of the useful earlier extensions, the theory remains, what we are

characterizing here as being, informationally sparse. The question then is whether it can

be reformulated and extended to situations where an agent, in deciding on her individual

action, has available to her comprehensive information not only on what players in a

particular sublist are playing, but also on the variety of social-types or biological and

other traits associated with the players in that sublist, as well as some conception of

the social group she belongs to and the type of traits she shares. This is to ask, in

other words, whether the theory can be generalized to take into account the fact that a

player has a name as well as a social-type or trait,11 the former being chosen from an

abstract probability space (I, I, λ), the latter from a separable metric space T, and with

a deterministic (measurable) function α connecting each element of one to the other, a

social-type or trait to an individual name, as one of the essential constituents of the data

of the large game. The essence of the reformulation then is to conceive of the summary of

societal actions as distributions on the product space of actions and traits such that their

marginal distribution on the space of traits is always identical to the given distribution of

traits of the game, this distribution ρ being induced on the trait space T by the function

α. This allows an individual player access to information based on traits as well as on

11As has already been emphasized above in Footnote 8, we are using social-type and trait as synony-
mous terms. As we shall see in the sequel, we use characteristic as a more general term that also covers
a player’s payoffs.
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proportions, and with individual payoffs depending on the action set, on the one hand,

and on an extended space of externalities on the other. One can now formally define

a non-anonymous game and its Nash equilibrium in pure strategies, and proceed with

an investigation of these reformulated objects. It is precisely such an extension that is

being offered in this paper.

However, before getting into the technical difficulties of such an extension, it is

important to note that our basic motivation, coming as it does from the theory of large

games, dovetails into the rich theoretical and econometric work on identity and social

interactions pioneered by Akerlof-Kranton [1].12 They abstract their paper on “economics

and identity” with the following words.

This paper considers how identity, a person’s sense of self, affects economic out-

comes. In the utility function we propose, identity is associated with different

social categories and how people in these categories should behave. We then con-

struct a simple game-theoretic model showing how identity can affect individual

interactions.

The point is that the reformulation that we study lifts the Akerlof-Kranton conception

from the setting of a finite game to that of a large game, and even though there are

important differences between the conception studied in this paper and theirs, there is

an undeniable complementarity.13 This can be most easily seen by considering the utility

function of the ith-player on which their analysis revolves:

Ui = Ui(ai, a−i, Ii), with Ii = Ii(ai, a−i, ci, εi,P),

where ai is the ith-player’s action, a−i the actions of everyone else in the finite game, and

the novel variable Ii which “shows how identity can be brought into economic analysis,

allowing a new view of many economic problems.” This “new type of externality” Ii

depends on the particular social category ci chosen from a set of exogenously-given

categories C, and on how the player’s “own” given trait εi match the ideal of i’s assigned

category indicated by the exogenously-given prescriptions P. In the context of the model

of this paper, this “new type of externality” is given by the inclusion of τ in an individual

player’s utility function

Ui = Ui(a, τ) with τ = λ(α, f)−1 ∈Mρ(T × A),

12The reader can also see the subsequent surveys in [26] and [14], and their rich and diverse bibliogra-
phies.

13There are passages in [1] where their context is clearly that of a “large” society; see, for example,
their “identity model of poverty and social exclusion” in which they conceive of a “a large community,
normalized to size one, of individuals (page 740).” As such, the model reported here can be seen also
be seen as presenting a rigorous formalization of their ideas.
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where τ is a probability measure on actions and traits analogous to the individual iden-

tity variable Ij, and one which is endogenously obtained as a distribution of the Nash

equilibrium f taking names into actions. In keeping with our large-game formulation,

only a summary of societal actions play a role. There is of course more to be said in

terms of a comparison between the two models, and we shall do so in the sequel.

The fact is that the extension of the theory to the model discussed in the above

paragraph is not straightforward, and as shown in Example 1 below, there is no Nash

equilibrium in a large non-anonymous game in which the set of players’ names are for-

malized as an arbitrary, atomless probability space with the unit interval I as the space

of traits even when the cardinality of the common action set is two! In particular, Ex-

ample 1 below considers a large game of matching pennies with balanced players, where

the space of names is modeled as the Lebesgue unit interval and with the ith player

who always tries to balance out those players younger than him or her in the sense that

if there are more younger players who play Heads (Tails), then player i will play Tail

(Head). With this counterexample, it is clear that additional assumptions will have to

be made on the space of players names if the cardinality of the space of players’ traits is

not to be restricted.

It is worth emphasizing that the significance of this example for the theory of large

games does not end with it closing the door to the existence of a pure strategy Nash

equilibrium in situations where players have names as well as traits, and the space of

players’ names is formalized as any abstract probability space; to wit, the Lebesgue unit

interval. It raises an equally interesting issue when discretized and cast in the form of

a sequence of games with a large but finite set of players. It is now well understood

that in general a discretized sequence of finite games has only an approximate equilibria

in pure strategies, with the approximation becoming finer as the number of players

becomes larger.14 What is interesting in the sequence of finite-player games which is

a discrete version of the game in Example 1 is that each of its elements has an exact

Nash equilibrium in pure strategies (see Example 2 below)! Thus, an arbitrary atomless

measure space of players’ names, the Lebesgue unit interval in particular, is doubly

inappropriate. There is no equilibrium for the idealized game even though there is an

exact equilibrium for the elements of a sequence converging to the idealized game. It

is thus clear that additional assumptions will have to be made on the space of players’

names, and the example is decisive in establishing that an arbitrary atomless probability

14This is precisely the question of asymptotic implementability of an idealized limit game; see [32] for a
discussion. If specific speeds of convergence are required, which is to say, the determination of the error
for an arbitrarily given finite game, see [41]. These alternative ways of formalizing a particular kind
of regularity for systems with a continuum of agents are now well-understood; in addition to Khan’s
Palgrave entries, see [16] for a more recent revisiting of this issue, see .

5



space simply will not do.

The point of departure for this paper is this additional assumption in the require-

ment that the space of players’ names not only be atomless but that it satisfy the property

of saturation.15 The property is simple enough that it can be verbally stated even in an

introduction oriented to a general audience: a probability space has the saturation prop-

erty for a measure µ on a product of two complete, separable and metrizable (Polish)

spaces, X and Y , if for any random variable taking values in one of these spaces, say

X, and whose induced measure is the marginal of the given measure on that space, µX ,

there exists another twin random variable in the other space Y such that the induced

measure of the pair of random variables is the given measure µ. An atomless probability

measure is saturated if it has the saturation property for all X, Y and µ. Such a notion

is natural for, and entirely amenable to, the theory of large games. Indeed, an atomless

probability space is saturated if and only if every non-anonymous game based on an

uncountable compact metric action space has a Nash equilibrium.16 It is this property

of a Loeb space that is responsible for the robust viability of the theory of large games

with a compact metric action set;17 and furthermore, it is necessary in the sense that

the results are false without it. The fact that the Lebesgue unit interval does not satisfy

this property then emerges as rather routine anti-climax.

With the assumption of an atomless, saturated probability space, and with the

counterexample thereby bypassed and made irrelevant, one can proceed with a basic

extension of the theory. And with this reformulation in hand, we can now present a

comprehensive extension of the theory along its standard desiderata emphasized more

than a decade ago: a saturated probability space is sufficient for the existence of Nash

equilibrium in pure strategies; that these Nash equilibria translate into their approxi-

mate counterparts for large but finite games, which is to say that the existence result

is asymptotically implementable; and that these equilibria are invariant with respect to

permutations of the players’ names in the game. However, we can do substantially more

on two counts. The first concerns the necessity of saturated probability spaces. The

standard desiderata were put forward and executed in [31] in the context of Loeb prob-

ability spaces, and there was no presumption that these results would not conceivably

hold for other probability spaces.18 In short, there was no question of a Loeb measure

15The saturation property of probability spaces was introduced in [24], and applied to the theory of
large games in [28].

16This is Theorem 4.5 in [28]. Note that the authors avoid the anonymous/non-anonymous classifi-
cation of large games, and use the terminology game/measure-game. Their theorem is reproduced as
Proposition 2 in Section 4 and underscores our use of the word natural in the context of large games.

17We refer here of course to the available theory, one that does not take the reformulation that is
being pursued in this paper, into account. The fact that that the results generalize to include the
reformulation is of course the objective of this paper.

18Also see [32] in connection with the conventional theory.
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space being necessary for the results. We now close this door by showing that saturated

probability spaces are necessary and sufficient for our results on the existence of pure

strategy equilibria.19 These “necessity results,” in emphasizing the irrelevance to the ex-

istence theory of pure strategy Nash equilibria of all probability spaces whose σ-algebras

are countably generated, leave alone Lebesgue spaces, are important and new to this

paper.

As regards the second count, we can go further by considering randomization and

coupling our discussion of Nash equilibria in pure strategies with those in behavioral and

mixed strategies, all for the reformulated large games studied here. Since the relation-

ship between these concepts has not attained a complete resolution even for the standard

theory, we first present the ideas in that set-up. If I is the space of players names, and A

the common action space, a pure strategy profile is simply a measurable function from

I to A, and a behavioral strategy profile a measurable function from I to the distribu-

tions on A, M(A).20 Other than an implicit understanding that the randomizations of

individual agents underlying the distributions in a behavioral strategy are independent

of each other, as befits a theory of non-cooperative games, there has been no explicit

formalization of a second probability space linking these randomizations, and perhaps no

need for a recourse to one. It is a concern with a viable definition of mixed strategies that

one is led to a coupling of the space of players names with a probability space formaliz-

ing the independent randomizations, a concern that meets runs against the wall of the

“measurability problem”. As is by now understood as a result of work done in the last

fifteen years, the resolution of this measurability problem requires an extension of the

product probability space so that the Fubini property holds for the extension, and leads

to an exact law of large numbers (ELLN) for a continuum of random variables that are

essentially pairwise-independent.21 With this conception in hand, an elegant and simple

application to the theory of large games allows one to formulate a mixed strategy profile

simply as an essentially pairwise-independent process from I ×Ω to A that satisfies the

Nash inequalities, and allows an equivalence between behavioral and mixed strategies.

Every behavioral strategy profile can be represented by a mixed strategy, and that a

mixed strategy induces, in the straightforward way, a behavioral strategy profile.

In a section titled “large games with independent idiosyncratic shocks”, [32] consider

an essentially pairwise-independent process f as a Nash equilibrium of a large game with

random payoffs. By the ELLN, the ex-post realization fω forms a pure strategy Nash

19Thus, as long as the player space is non-saturated, there exists a large game with traits that has no
equilibrium in pure strategies.

20Such a strategy profile is also called a measure-valued profile in [38].
21See [44, 46] for a rigorous development of the exact law of large numbers, and for the reference in

[44] to a 1996 announcement in The Bulletin of Symbolic Logic. In particular, [46, Corollary 2.9]) is
what is needed in this paper.
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equilibrium of the corresponding ex-post large game with probability one. When one

considers the special case that the random payoffs are actually deterministic, the process

f is very much like the conception of a mixed strategy equilibrium as mentioned in

the above paragraph. Thus the ELLN implies immediately the ex-post Nash property,

i.e., the ex-post realization of a mixed strategy Nash equilibrium is essentially a pure

strategy Nash equilibrium.22 The conceptual idea goes back to Cremer-McLean [18] in

the context of auctions and mechanism design; also see [35] in the context of expost

Walrasian equilibria.

The rest of the paper is organized as follows. We confine Section 2 to a parsimonious

description of the reformulation of a large game that has been informally described above,

and show how it includes earlier formulations of large games based on an exogenously-

given finite or countably infinite partitions of the space of player’s name. From both the

technical and conceptual points of views, it is the formulation societal dependence, or

externalities in the economic theory jargon, that sets the stage for the entire analysis to

follow. In Section 3, we present an example for the non-existence of Nash equilibrium in

large games, and show in a discretized version pertaining to a finite game, the existence

of exact Nash equilibria in pure strategies. In section 4 we show the existence of a

pure strategy Nash equilibria under the hypothesis that the space of players’ names is a

saturated probability space and the space of traits is a separable metric space, taking care

to emphasize that the assumption of a saturated probability space is necessary. We also

show that the reformulated game has the homogeneity property in that the equilibrium

distributions are invariant to permutations of the game that leave its distribution intact.

In section 5 we spell out the relationships between the three alternative solution concepts

and establish the ex-post Nash property of mixed strategy equilibria. Section 6 turns

to asymptotic implementation of these equilibria and specializes the existence result

to a tight sequence of large but finite economies. Section 7 concludes the paper. In

the Appendix, we collect for the reader’s convenience some relevant results from the

earlier literature, and also relegate to it some rather technical results that are required

in Sections 3 and 4.

2 A Reformulation

It is by now conventional to see a large non-anonymous game as being constituted by

two basic objects: an abstract atomless probability space (I, I, λ) representing the space

22See [38] for an earlier discussion of relevant issues with mixed strategies in a large game setting, and
[27] for an asymptotic version of the ex-post Nash property for large finite games, and following him,
[17].
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of player names, and a compact metric space A representing a common action space.

The common action space is then used to build a space of payoff characteristics, thereby

leading to a definition of a game and its Nash equilibrium. When endowed with its Borel

σ-algebra, the action set leads to the Borel measurable space (A,B(A)) , and through it,

to the space M(A) of all probability measures on A endowed with its weak topology.23

The space M(A) is then also a compact metric space, and it represents the distributions

of possible plays in the game. In terms of the vocabulary used in the introduction, it

represents “externalities” or “society’s plays”. The space of players’ payoffs UA is then

given by the space of all continuous functions on the product space (A×M(A)) , and

based on its sup-norm topology and endowed with its resulting Borel σ-algebra, it can

also be conceived as a measurable space (UA,B(UA)) of players’ characteristics. Note

that the space of players’ names I does not figure in the space of players’ characteristics.

A large non-anonymous game is then a random variable in UA and its Nash equilibrium

a random variable in A. More formally,

Definition 1. A large non-anonymous game is a measurable function G0 from I to UA.

A Nash equilibrium of a game G0 is a measurable function f : I −→ A, such that for

λ-almost all i ∈ I, and with ui abbreviated for G0(i),

ui

(
f(i), λf−1

) ≥ ui

(
a, λf−1

)
for all a ∈ A.

All this is now standard.24

The reformulation of a large non-anonymous game that we study in this paper rests

on four, rather than two, basic objects: in addition to space of players’ names I and the

common action set A, we work with a complete, separable metrizable (Polish) space T

representing a space of possible player traits, and endowed with a probability measure

ρ on the Borel σ-algebra B(T ) induced by the topology on T. The game and its Nash

equilibria are then built up from these four basic objects. The first important element

in the reformulation is that the externalities or society’s plays are now conceived as a

probability measure on the product space (T × A), with the latter endowed with its

product Borel σ-algebra,25 and such that the marginal of the measure on T is identical

to the given measure ρ on T. Formally, let M(T × A) be the space of Borel probability

distributions on T × A, and Mρ(T × A) be the subspace of M(T × A) such that for

any τ ∈ Mρ(T × A), its marginal probability on T , τ
T

= ρ. Note that unlike the space

23We conform to standard usage and forgo referring to this as the weak∗-topology, the formally correct
designation.

24In addition to [32], see [46] and [28].
25Since we are assuming separability everywhere, the product Borel σ-algebra is the same as the Borel

σ-algebra of the product of the spaces T and A.
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M(A), the space M(T × A) is not necessarily compact in the weak topology. However

it is a standard result that the space Mρ(T × A) is indeed compact.

Now, just as in the conventional theory described in the first paragraph of this

section, the space of players’ payoffs V
(A,T,ρ)

is then given by the space of all continuous

functions on the product space (A×Mρ(T × A)), and based on its sup-norm topology

and endowed with its resulting Borel σ-algebra, it can also be conceived as a measurable

space (V
(A,T,ρ)

,B(V
(A,T,ρ)

)) of players’ payoffs. The point to be made here is that in the

generalized setting with socioeconomic traits, this does not exhaust the set of player

characteristics which is now defined as the product T × V
(A,T,ρ)

. Note that here again

the space of players’ names I does not figure in the space of players’ characteristics. We

can now present a reformulation of a large non-anonymous game that again involves a

random variable, but one taking values in a richer target space.

Definition 2. A large non-anonymous game with traits is a measurable function G from

I to T ×V
(A,T,ρ)

such that λG−1
1 = ρ, where Gi is the projection of G on its ith-coordinate,

i = 1, 2. A Nash equilibrium of a game G is a measurable function f : I −→ A, such that

for λ-almost all i ∈ I, and with vi abbreviated for G2(i), and α : I −→ T abbreviated for

G1,

vi

(
f(i), λ(α, f)−1

) ≥ vi

(
a, λ(α, f)−1

)
for all a ∈ A.

On decomposing the target space (T ×V
(A,T,ρ)

), we see that in our reformulation, a large

non-anonymous game, is really a pair of random variables, one a measurable function

α = G1 from I to T associating each player i ∈ I with her traits, or rather an array of

traits α(i) ∈ T, and the other, a measurable function G2 associating each player i ∈ I

with her payoff G2(i) ∈ V(A,T,ρ)
, one that we are also referring to her trait.26

In the context of games with exogenously-given, finite or countably-infinite, parti-

tions of the space of names, the earlier work of [30, 31], and its generalizations in [22], has

already been mentioned in the introduction. We conclude this section by showing how

the reformulation presented above subsumes these efforts as it moves forward. Specifi-

cally, we show how conventional formulations available in the literature are special cases

of Definition 2. The issue revolves around moving back and forth from the conventional

form of a large game where the externalities parameters are based on the Cartesian prod-

uct of probability measures on the action space, the index of the product running across

the index of a countable, possible infinite, partition of the space of names, to one where

it is based on a joint probability measure on the space of actions and traits. Since the

space of names and the common action set are shared by both formulations, this reduces

to moving back and forth between the payoff functions.

26See Footnotes 8 and 11 in this connection.
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Towards this end, let {tk}k∈K be a list of all the elements of T , where K is an

index set which is at most countable.27 We have to relate a function v ∈ V
(A,T,ρ)

to

another function u ∈ UT
A where28 UT

A is the space of real-valued continuous functions on

A×∏
t∈T M(A). Define a function

Φ : Mρ(T × A) −→
∏
t∈T

M(A) such that Φ(τ) = {µt}t∈T ,

where for any t in T,

µt(B) = τ({t} ×B)/ρ(t) for all B ∈ B(A).

Now consider the function

Ψ :
∏
t∈T

M(A) −→Mρ(T × A) such that Ψ({µt}t∈T ) = τ,

where for all C ∈ B(T × A),

τ(C) =
∑
t∈T

ρ(t)µt(Ct), Ct = {a ∈ A : (t, a) ∈ C}.

It is now easy to check that Ψ is the inverse of Φ, and that therefore the latter is a

bijective mapping. And since Φ takes a compact set into a compact set, we can claim

that it is also a homeomorphism if we show that Φ is continuous. We turn to this.

Suppose {τm} weakly converges to τ 0. Denote Φ(τm) by {µm
t }t∈T and Φ(τ 0) by

{µ0
t}t∈T . Now for any k ∈ K, pick any µ0

tk
-continuity set B ∈ B(A). Then it is clear

that ({tk} × B) is a τ 0-continuity set in B(T × A), and hence τm({tk} × B) converges

to τ 0({tk}×B), and hence τm({tk}×B)/ρ(tk) converges τ 0({tk}×B)/ρ(tk), and hence

µm
tk

(B) converges to µ0
tk

(B). The assertion of our claim that Φ is a homeomorphism is

complete.

And now we can define a function Φ̄ : UT
A −→ V

(A,T,ρ)
such that, for all a ∈ A,

v(a, τ) = Φ̄(u)(a, τ) = u (a, Φ(τ)) ,

u(a, {µt}t∈T ) = Φ̄−1(v)(a, {µt}t∈T ) = v (a, Ψ({µt}t∈T )) ,

which allow one to go back and forth from the conventional formulation to the one

27Without loss of generality, assume that ρ({tk}) > 0 for all k ∈ K.
28Note that Definition 1, as presented above deals with the case of T being a singleton; its extension

to the case when T has a finite or a countably infinite set of elements is straightforward; see the end of
this section for the payoffs in this general setting.

11



studied here.

3 Two Examples

In the classical example of a 2-player game of matching pennies, the players try to out-

play each other; one player wants the two pennies to match, while the other does not.

There is no pure-strategy Nash equilibrium for such a game. In this section, we shall first

consider a large game of matching pennies in which the players are balanced and with

a multiplicity of traits. It has no Nash equilibrium in pure-strategies. We then consider

a corresponding discrete version of the game with exact Nash equilibria in finite games

with traits.

Example 1: We consider a large game that is a natural generalization of the matching

pennies with two players. Let the space of players be the Lebesgue unit interval (I, I, λ)

and the space of actions A be the set {H̄, T̄}, representing Head and Tail respectively.

Let the space of traits T be the unit interval I. Assume that the players’ traits are

uniformly distributed on I; and thus let α be the identity mapping on I and ρ = λ.

We can interpret the trait of an individual players as normalized age (or complexion or

income). For concreteness, let us use age.

For any a ∈ A and τ ∈ Mρ(T × A), let vi(a, τ) = − ∫
T×A

1[0,i)×{a}(t, x) dτ for

all i ∈ I, where 1C is the indicator function of set C.29 Let f be a strategy profile

for the game, τ = λ(α, f)−1, τH̄([0, i)) = λ
(
(α, f)−1([0, i)× {H̄})) and τT̄ ([0, i)) =

λ
(
(α, f)−1([0, i)× {T̄})). Namely, τH̄([0, i)) (τT̄ ([0, i))) is the proportion of all players

younger than i who play Heads (Tails). It is easy to see that vi(H̄, τ) = −τH̄([0, i))

and vi(T̄ , τ) = −τT̄ ([0, i)). Hence, player i’s optimal response is respectively Tail if

τH̄([0, i)) > τT̄ ([0, i)), Head if τT̄ ([0, i)) > τH̄([0, i)), and Head or Tail if τH̄([0, i)) =

τT̄ ([0, i)). It means that the ith player always tries to balance out those players younger

than him or her. If there are more younger players who play Heads (Tails), then player

i will play Tail (Head).

Suppose that f ∗ is an equilibrium in pure strategies. Then for every i ∈ I, the

respective sets of younger players who play Heads and Tails must have the same measure.

Let F = f ∗−1({H̄}) be the set of all the players who play Heads. Then the measurable set

F cuts through [0, i) into half for every i ∈ I, which is impossible. The main conclusion

is summarized into the following claim, whose proof is given in the Appendix.

Claim 1. Let G be a function satisfying G(i) = (α(i), vi). Then, (1) G is a measurable

function from I to T ×V
(A,T,ρ)

, thus, a game which falls within the purview of Definition

29This payoff function is motivated by the example in Remark 3 of [42].
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2; (2) there does not exist a Nash equilibrium for the game G.

We now show that the above game can be obtained as the limit of a sequence of

finite-player games, each of which has an exact Nash equilibrium.

Example 2: Fix a positive integer n and let In = {k/2n : k = 0, 1, . . . , 2n}. Let λn

denote the counting measure on In, i.e., λn(i) = 1/(2n + 1) for every i ∈ In. Let A =

{H̄, T̄} be the set of actions. Let Tn = In, αn : In −→ Tn be αn(i) = i and ρn = λnα−1
n =

λn. For any a ∈ A and τn ∈ Mρn(Tn × A), let vn
i (a, τn) = − ∫

Tn×A
1[0,i)×{a}(t, x) dτn.

Notice that when i = 0, vi(·, ·) is identically zero. Define Gn : In −→ Tn × V(A,Tn,ρn) as

Gn(i) = (αn(i), vn
i ) for for all i ∈ In. Given any a ∈ A and any measurable function fn

from In to A,

vn
i

(
a, λn(αn, fn)−1

)
= −

∫

Tn×A

1[0,i)×{a}(t, x) dλn(αn, fn)−1 = −λn

(
[0, i) ∩ f−1

n (a)
)
.

Let f ∗n : In −→ A be f ∗n(k/2n) = H̄ when k is even, and equals T̄ otherwise. We will

show that f ∗n is a Nash equilibrium of Gn. Player 0 is always indifferent between H̄ and

T̄ . So, f ∗n(0) = H̄ is a best response for player 0. For player i = k/2n where k is positive

and even, λn

(
[0, i) ∩ f ∗−1

n (H̄)
)

= λn

(
[0, i) ∩ f ∗−1

n (T̄ )
)
. So, f ∗n(i) = H̄ is a best response

for i. For player i = k/2n where k is odd, λn

(
[0, i) ∩ f−1

n (H̄)
)

> λn

(
[0, i) ∩ f−1

n (T̄ )
)
. So,

T̄ is the best response for i. Hence, f ∗n is a Nash equilibrium of Gn.

We note that the sequence Gn of games is simply a discrete version of the game

G. However, Gn has a Nash equilibrium while the limit game does not have a Nash

equilibrium.

We are now ready to turn to the resolution of the discrepancy between the limiting

and idealized limit cases.

4 Saturated Probability Spaces and Existence The-

orems

We now turn to the issue of an idealized limit game for which there exist Nash equilibria.

We shall show that the relevant condition for the atomless space of players’ names is that

it be a saturated probability space, and that such a requirement is both sufficient and

necessary. We begin with the basic definitions for the convenience of the reader.

The following definition is taken from [24, Definition 5.1] and already discussed in

the introduction.

Definition 3. A probability space (I, I, λ) is said to be saturated if for any two Polish

spaces X and Y , any Borel probability measure τ ∈M(X×Y ) with marginal probability

13



measure τX on X, and any measurable mapping g from (I, I, λ) to X with distribution

τX , there exists a measurable mapping h : (I, I, λ) −→ Y such that the measurable

mapping (g, h) : (I, I, λ) −→ X × Y has distribution τ .

Analytically useful as this definition is, it does not quite address the substantive property

that leads the saturation property to be both necessary and sufficient when dealing with

non-anonymous games with non-denumerable action sets. An equivalent characterization

presented in [24, Corollary 4.5] offers the clarification. First, we need the following

notation for a restricted probability space. Given a probability space (I, I, λ), for any

subset S ∈ I with λ(S) > 0, denote by (S, IS, λS) the probability space restricted to

S. Here IS := {S ∩ S ′ : S ′ ∈ I} and λS is the probability measure re-scaled from

the restriction of λ to IS. A probability space is said to be countably generated if its σ-

algebra can be generated by a countable number of subsets (modulo all the null subsets).

It is not countably generated if the σ-algebra I can not be generated by any countable

number of subsets (modulo all the null subsets).30

Proposition 1. A probability space (I, I, λ) is saturated if and only if it is nowhere

countably generated, i.e., for any subset S ∈ I with λ(S) > 0, the restricted probability

space (S, IS, λS) is not countably generated, modulo all the null subsets.31

This proposition stipulates that a saturated probability space admits as measurable

functions a richer variety of non-cooperative behavior. For example, the Lebesgue unit

interval, i.e., the interval [0, 1] associated with the the σ-algebra of Lebesgue measurable

sets and the Lebesgue measure, is a countably generated probability space; it is thus

not a saturated probability space. In comparison, any atomless Loeb probability space

is saturated. The genesis of the idea goes to Maharam’s work in the forties whose

techniques can be used to show that a probability space is saturated if and only if its

measure algebra is a countable convex combination of measure algebras of uncountable

powers of the Borel σ-algebra on [0, 1]; see [20] for details. In any case, armed with this

intuition, we can present our first principal result.32

Theorem 1. Every large non-anonymous game with traits G : I −→ T × V
(A,T,ρ)

has a

Nash equilibrium if either of the following two (sufficient) conditions hold:

30That is, the least cardinality of the collection of subsets that generates I (modulo all the null
subsets) is greater than the cardinality of all the natural numbers, IN.

31This proposition is available in [24, Corollary 4.5]. Throughout the paper, we refer to results
previously available in the literature as “propositions.” The reader is also warned about the proliferation
of terminology related to the saturation property: the condition is originally called ℵ1-atomless in [24],
and subsequently referred to as nowhere separable, super-atomless and nowhere countably generated;
see [39] and his references.

32Note that we work with the standing hypothesis that the space of players’ names (I, I,λ) is an
atomless probability space, that the common action set A is a compact metric space, and that T is a
Polish space endowed with a probability measure ρ.
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(i) T and A are both countable spaces,

(ii) (I, I,λ) is a saturated probability space.

Proof : Given any τ ∈Mρ(T × A), let the best response set B(i, τ) of player i be

B(i, τ) = argmaxa∈Avi(a, τ),

where vi = G2(i) for all i ∈ I. Since vi is continuous on A × Mρ(T × A), we can

appeal to Berge’s maximum theorem to guarantee that B(i, ·) is upper hemicontinuous.

In particular, for any given (i, τ), B(i, τ) is a closed set. Furthermore, for each τ ∈
Mρ(T × A), since v(·)(·, τ) is a measurable function on I, and a continuous function on

A, we can apply measurable maximum theorem (see, for example, Theorem 18.19 in [3])

to assert that there exists a measurable selection from the correspondence B(·, τ). Let

B̃(i, τ) = {α(i)} × B(i, τ) for all i ∈ I and for all τ ∈ Mρ(T × A) where α(i) = G1(i)

for all i ∈ I. It is easy to see that B̃(i, ·) is also upper hemicontinuous on Mρ(T × A)

for each i and B̃(i, τ) is closed-valued for any given (i, τ). Denote the correspondence

B̃(·, τ) : I −→ T ×A by B̃τ . Now define a correspondence Φ : Mρ(T ×A) −→Mρ(T ×
A) by letting Φ(τ) = DB̃τ

where DB̃τ
= {λf̃−1 : f̃ is a measurable selection of B̃τ}.

We now show that Φ is a nonempty, closed and convex valued, upper hemicontinuous

correspondence from a non-empty convex compact subset of a locally convex space into

itself. For any given τ ∈ Mρ(T × A), there exists a measurable selection f : I −→ A

where f(i) ∈ B(i, τ). Let h(i) = (α(i), f(i)) for all i ∈ I. It is clear that h(i) is a

measurable selection of B̃τ and λh−1 ∈ Mρ(T × A). Thus, Φ is nonempty-valued. If

either (i) or (ii) is satisfied, we can apply Proposition A.P1 in the Appendix to assert

that Φ is convex also. Moreover, because B̃τ is closed-valued, hence, compact-valued,

and B̃(i, ·) is upper hemicontinuous on Mρ(T × A), we can apply Proposition A. P2

and Proposition A. P4 in the Appendix respectively to assert that Φ is closed and upper

hemicontinuous. Thus, we can apply the Fan-Glicksberg fixed-point theorem to assert

that there exists a τ ∗ ∈ Φ(τ ∗), and thus, a measurable selection f ∗ : I −→ A such that

τ ∗ = λ(α, f ∗)−1. It is clear that f ∗ is a Nash equilibrium.

Remark 1: It is clear that the procedure that relates the conventional form of a large

non-anonymous game to the reformulated version studied here, and delineated at the

end of Section 2, can be used to derive as straightforward corollaries the principal results

of [30] and [22]. The interested reader can also check that the compactness of the action

set A can be relaxed with less restrictive assumptions that allow each player to choose

his action from a compact subset of the complete countable metric space, as shown in

[50].
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Remark 2: Examples showing that a large non-anonymous game does not have a Nash

equilibrium if the action set is uncountable are by now well-known; see [32] for refer-

ences. These examples can be used to show that Theorem 1(i) is false if the countability

hypothesis on A is relaxed without any additional assumptions. What is more impor-

tant, of course, is that the result does not extend to the case where the trait space T

is uncountable even with a finite action set. Indeed, the example discussed in the last

section is based on an action set with only two elements.

Next, we turn to the necessity of saturated spaces when Nash equilibria exist in

large non-anonymous games. The relevant benchmark result is due to [28, Theorem 4.7].

Proposition 2. Let (I, I, λ) be an atomless probability space, and A an uncountable

compact metric space. Then (I, I, λ) is saturated if and only if every game G0 in terms

of Definition 1 with player space (I, I, λ) and action space A has a Nash equilibrium.

We can now present our main result on the necessity of saturated spaces then Nash

equilibria exist in our reformulation of large games, namely, large non-anonymous games

with traits.

Theorem 2. An atomless probability space (I, I, λ) is saturated if and only if every large

non-anonymous game with traits G : I −→ T × V
(A,T,ρ)

has a Nash equilibrium provided

one of the following two conditions hold

(i) A is uncountable,

(ii) T is uncountable and ρ is atomless.

Proof : Suppose that (I, I, λ) is saturated. For both (i) and (ii), by Theorem 1, there

exists a Nash equilibrium.

We now prove the necessary parts. First, suppose that condition (i) holds but

(I, I, λ) is not saturated. Thus, by Proposition 2, when A is an uncountable compact

metric space, there must exist a game in terms of Definition 1 with (I, I, λ) as the name

space that does not have any Nash equilibrium. Let this game be G0. Thus, G0 is a

measurable function from I to UA such that there does not exist any measurable function

f : I −→ A that satisfies for λ-almost all i ∈ I, ui(f(i), λf−1) ≥ ui(a, λf−1) for all a ∈ A,

where ui = G0.

Let G be a function from I to T × V
(A,T,ρ)

such that for all i ∈ I, λG−1
1 = ρ and

G2(i) = vi where vi is defined as vi(a, τ) = ui(a, τA) with τA being the marginal of τ on

A for any a ∈ A and any τ ∈ V
(A,T,ρ)

. It is easy to see that G is a non-anonymous game

with traits that satisfies condition (i). Now suppose that any game with the structure

described in Theorem 2 with condition (i) has a Nash equilibrium. Then there must
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exist a Nash equilibrium f ∗ for this constructed game G. That is, there is a measurable

function f ∗ : I −→ A such that for λ-almost all i ∈ I,

vi(f
∗(i), λ(G1, f

∗)−1) ≥ vi(a, λ(G1, f
∗)−1) for all a ∈ A.

Then, by the construction of the game G, the measurable function f ∗ also satisfies, for

λ-almost all i ∈ I,

ui(f
∗(i), λf ∗−1) ≥ ui(a, λf ∗−1) for all a ∈ A.

This is a contradiction. Hence, (I, I, λ) must be saturated if condition (i) holds.

Now suppose condition (ii) holds but (I, I, λ) is not saturated. Suppose that every

game with traits under condition (ii) has a Nash equilibrium. However, Lemma 2 in the

Appendix shows that when T is uncountable, ρ is atomless, and A = {−1, 1}, there is

a large non-anonymous game with traits G : I −→ T × V
(A,T,ρ)

which does not have any

Nash equilibrium. This is a contradiction. Thus, (I, I, λ) must be saturated as well if

condition (ii) holds.

5 Mixed and Behavioral Strategies: A Relationship

So far, we have had no occasion to emphasize the distinction between pure and mixed

strategies of a large non-anonymous game, be it with or without traits. Indeed, as

noted in the introduction, the interest in a large game arises precisely from the fact

that under an attendant externality notion summarizing the state of society’s plays,

such games posses Nash equilibria without any linear structure on the (common) action

set. For games with traits, such existence theorems have been presented in the previous

section based on Definition 2 that simply involves a measurable function from the space

of players’ names (I, I, λ) to the set of actions A. However, in games with complete

information, as are considered in this paper, rationality leads one to investigate strategies

in which players form probability distributions over the actions of other players, and then

take actions in keeping with expectations with respect to such distributions.33 As we

shall see, the basic notions, once formulated correctly, take a particularly satisfactory

form.

For the convenience of the reader, and also given the proliferation of confusing

terminologies, it is easiest to begin with a taxonomy presented in [36] in the context of

finite-player games with incomplete information, one that is heavily influenced by earlier

33For a discussion of Bayesian rationality and its manifestation as a correlated equilibrium in the
context of finite games with incomplete information, see [11].
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work of Aumann’s. In the context of such games, they write:

Each player i observes an informational variable (or type ti) whose values lie in some

complete separable metric space Ti. After observing his type, player i selects an

action ai from some compact metric space Ai of feasible actions. The conventional

analysis of games involves three types of strategies: pure, mixed and behavioral.

A pure strategy is a measurable function pi : Ti −→ Ai. This has the interpretation

that when player i learns his type ti, he selects the action pi(ti). Aumann has ob-

served that to define a mixed strategy properly (when Ti is “large”) a randomizing

device must be introduced for each player.34 Thus, let s̃i be uniformly distributed

on [0, 1]. A mixed strategy for player i is a measurable function σ : [0, 1]×Ti −→ Ai.

The interpretation is that when player i observes his type ti and his randomizing

variable si, he selects the action σ(si, ti). Let B(Ai) be the collection of Borel sub-

sets of Ai. A behavioral strategy is a function βi : B(Ai) × Ti −→ [0, 1] with these

two properties: (i) For every B ∈ B(Ai), the function βi(B, ·) : Ti −→ [0, 1] is

measurable, (ii) for every ti ∈ Ti, the function βi(·, ti) : B(Ai) −→ [0, 1] is a prob-

ability measure.35 The interpretation of a behavioral strategy is that when player

i observes ti, he selects an action in Ai according to the measure βi(·, ti).

This extended quotation serves as a point of departure for the development of

analogous notions, and in particular, the following formal complement to Definition 1

above for a large game without traits.

Definition 4. A Nash equilibrium in behavioral strategies of G0 is a measurable function

h∗ : I −→ M(A), with the latter being endowed Borel σ-algebra generated by the weak

topology, such that for λ-almost all i ∈ I,

∫

A

ui

(
a,

∫

I

h∗(j)dλ

)
dh∗i ≥

∫

A

ui

(
a,

∫

I

h∗(j)dλ

)
dν (1)

for all ν ∈M(A).36

However before enlisting the conceptual vocabulary of [36], and its attendant tax-

onomy, to the context of a large non-anonymous game, with or without traits, some

preliminary discussion is warranted. There is a technical similarity in that in the notion

34The relevant paper referred to here is [9] and the relevant passage from this paper is quoted in [36,
p. 624]. Also see the introduction to [10].

35From a technical point of view, this is nothing but a transition probability in standard probability
theory.

36Note that the measurability of the mapping h∗ is equivalent to the measurability of h∗(·)(B) : I −→
[0, 1], for any given B ∈ A; see, for example, Lemma 1 in [23]. The societal aggregate

∫
I
h∗(j)dλ is

well-defined as a probability measure whose measure on any given B ∈ A is
∫

I
h∗(j)(B)dλ.
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of a pure strategy, as used in Definitions 1 and 2, and in that of a behavioral strategy in

Definition 4, one simply substitutes the space of players’ names (I, I, λ) for the finite set

of all the players, and the common action set A for the individual action set Ai. However

it is important to be clear that from an interpretive point of view, which is to say, the

game-theoretic substantive register, the similarity is facile at best, and misleading at

worst. The point is that we investigate a game with complete information in which the

type of a player i is represented simply by his name i in a game without traits, and by

the pair (i, α(i)) ∈ I × T, and, in either case, is completely known. To be more specific,

whereas Milgrom and Weber deal with the strategy of an individual player, be they pure,

mixed or behavioral, our transcribing of these notions37 in the forms of Definitions 1, 2

and 4 concern strategy profiles, which is to say that they pertain to the society at large

rather than to an individual player. Since there has been some confounding of this issue,

a further elucidation is useful.

The interesting issue here relates to the externality notion that is involved. Each

player chooses a probability distribution on the common action space, and randomizes

over his payoff with respect to such a distribution taking as given the “aggregate” of the

distributions of all the other players in the game.

This notion of a Nash equilibrium in behavioral strategies was used by Schmeidler in

the context of large games but without the attendant externality notion. In a setting with

a finite number of actions embedded in the unit-simplex of a finite-dimensional Euclidean

space, Schmeidler investigated Nash equilibria of large games where individual payoffs

depend on the elements of the simplex and the entire profile of actions. He referred to

these equilibria as equilibria in mixed strategies, and used a “purification” argument to

show the existence of a Nash equilibrium as in Definition 1 above.38 Invoking [10], [38]

argued as follows:

The failure of the law of large numbers for a continuum of independent randomiza-

tions implies that Schmeidler’s (1973) concept of a measure-valued profile function

in equilibrium might not coincide with the concept of a mixed strategies equilib-

rium of a nonatomic game. It casts some doubt on the significance of Schmeidler’s

concept of equilibrium for a nonatomic game.39

In this connection it is important to note that Schmeidler’s primary interest was in

showing the existence of a Nash equilibrium in pure strategies, and his use of the concept

37This is of course not to suggest that this transcription in the context of a large game without traits,
as is conventional treated and surveyed in [32], either necessarily follows [36] or is novel to this paper.

38Rath’s direct proof that circumvents this procedure is by now well-known; see [32] for details and
discussion.

39See the abstract and the first paragraph of the introduction in [38]; also [37].
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of a Nash equilibria in behavioral strategies was simply a technical device to accomplish

this.40 As such, one does not quite know what to make of the suggestion relating to

significance. To repeat, the point is that in the game formulated by Schmeidler, and

in games with more general action sets, as reported in [32], a mixed strategy is very

much in the classical footsteps of Nash and Fan-Glicksberg, with the notion of a mixed

strategy profile simply extending from a finite-player setting to one with a continuum of

players.41 [38] and his followers take the Bayesian notion of a mixed strategy, as defined

by Aumann and others for games with incomplete information, and apply it to such

games of complete information, and conceive of a so-called problem of consistency and

reconciliation that is not a problem to begin with.

The issue then is an appropriate definition of the notion of a mixed strategy Nash

equilibrium for a large non-anonymous game, one that accommodates a continuum of

independent randomizations and joint measurability. It is especially here that we break

new ground, but before turning to it, we return to Milgrom and Weber.

These conventional characterizations of strategies are not well suited to our pur-

poses. Instead we define a distributional strategy for player i as a probability

measure on B(Ti) ⊗ B(Ai) for which the marginal distribution on Ti is the given

probability distribution. In the case where T1 is uncountable, it was observed by

Aumann that a mixed strategy cannot be acceptably defined as a measure on the

set of pure strategies. Our approach of defining a (distributional) strategy as a

measure on Ti ×Ai providing another way of avoiding measurability problems.

And so the question is: “what is this measurability problem”? In the notation being

followed here, [9, pp. 507-508] writes:

A mixed strategy, then, should be a probability measure on ATi
i , [the space of

measurable functions from Ti to Ai] the latter having been endowed with an ap-

propriate measurable structure R. But as we have shown elsewhere there is no

structure R for which this is so; no structure on ATi
i , is “appropriate”! 42

As brought out in the first quote from Milgrom and Weber, a mixed strategy for

player i is a function of two variables: the realization of the randomizing variable si and

the player’s type ti. In other words, a process, defined over [0, 1]× Ti. There is no reason

for Milgrom and Weber to work with a mixed strategy: their equilibrium notion requires

40In private correspondence, David Schmeidler has observed to the authors that his reference to the
“combination of strategies as a T-strategy, and not as a mixed strategy” was a considered one given
Aumann’s earlier usage.

41See [32] and their references.
42This point is exposited in [8], having been announced in [6] and detailed in [7].
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that only the distribution of the players’ actions enter as arguments in the payoffs of

each individual player, and therefore allows them to work with a distributional strategy

for each player, represent it as a disintegrated behavioral strategy, and then with the

assumption of a finite action space, purify this distintegration to a pure strategy. Indeed,

[40] make no use of distributional strategies, and neither do [30, 31] for an identical game-

theoretic situation.43

It is in the context of a large non-anonymous game, with or without traits, that

the “measurability problem” arises in the notion of a mixed strategy profile. This is a

process defined over a sample space that consolidates all the independent randomizations

into one “large” space Ω and takes this space and the space of players’ names into the

space of common actions. In short, to construct a sample space (Ω,F , P ) such that a

mixed strategy profile can be conceived as a measurable function F : I × Ω −→ A such

that for any realization ω ∈ Ω, we obtain a pure strategy F (ω, ·) : I −→ A, and for any

two players’ i and j in I, the random variables F (·, i) and F (·, j) are independent. It is

this independence that goes to the heart of non-cooperative game theory – the players

are not coordinating their randomizations and acting “out of concert” so to speak. It is

this that causes the “measurability problem,” a difficulty whose sharpest articulation is

furnished by a result that we develop next.

For any two probability spaces (I, I, λ) and (Ω,F , P ), we write I ⊗ F as the usual

product σ-algebra (including all the null subsets) generated by {S × T : S ∈ I, T ∈ F},
and write λ ⊗ P as the product probability measure on I ⊗ F . Given any mapping F

from I × Ω to a Polish space X, for any i ∈ I and ω ∈ Ω, let Fi denote the marginal

mapping F (i, ·) on Ω, and Fω the marginal mapping F (·, ω) on I. The following concept

is from [44, 46].

Definition 5. A process F is said to be essentially pairwise independent if for λ-almost

all i ∈ I, Fi and Fi′ are independent for λ-almost all i′ ∈ I.44

We shall construct an essentially pairwise independent process as follows. Let [0, 1]

be the unit interval endowed with the Borel σ-algebra B[0,1] and the uniform distribution.

For an atomless probability space (I, I, λ), let Ω = [0, 1]I represent the space of all

functions from I to the unit interval [0, 1]. By the Kolmogorov’s extension theorem, we

can consider the continuum product probability space (Ω,F ′, P ′), where F ′ is the σ-

algebra generated by cylinders of the form {ω ∈ Ω : ω(i) ∈ B} for all B ∈ B[0,1], and P ′

43All this is now routine with the clarification in [29] and its further extensions by Loeb-Sun; also see
[34, Remark 4]. Distintegrations in this context seem to have been first emphasized in a 1989 paper of
Khan’s, see [32].

44Given that (I, I, λ) is an atomless probability space, essential pairwise independence is more general
than the usual pairwise and mutual independence.
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is the continuum product probability measure on (Ω,F ′). Next define π to be a process

from I × Ω to [0, 1] by letting π(i, ω) := ω(i) for all (i, ω) ∈ I × Ω. Here the marginal

function πi is the i-th coordinate function on (Ω,F ′, P ′). It is clear that πi induces the

uniform distribution on [0, 1] for any i ∈ [0, 1], and πi, πj are independent for i 6= j.

Accordingly, the process π is an essentially pairwise independent process. However, it

is well-known that this process π is not I ⊗ F ′-measurable.45 Indeed, as shown in the

following proposition, the essential pairwise independence and the joint measurability of

a process with respect to the usual product σ-algebra are never compatible with each

other except for the trivial case that almost all random variables are essentially constant.

Proposition 3. Let f be a function from I × Ω to a Polish space X. If f is jointly

measurable on the product probability space (I ×Ω, I ⊗F , λ⊗P ), and if f is essentially

pairwise independent, then, for λ-almost all i ∈ I, fi is a constant random variable.46

And so, with this result, we have a precise and clear articulation of the “measura-

bility problem”: the usual continuum product guaranteed by Kolomogorov construction

will simply not work.47 But this does not imply that that we need to relinquish the con-

ceptual vocabulary; it simply necessitates extending the usual product space. In other

words, to overcome the above non-compatibility problem of measurability and indepen-

dence, we need to work with the framework of Fubini extension. It is an enrichment

of the usual product probability space on which the Fubini property is retained. The

following definition is taken from [46, Definitions 2.2 and 5.1].

Definition 6. A probability space (I × Ω,W , Q) is said to be a Fubini extension of the

usual product probability space (I × Ω, I ⊗ F , λ ⊗ P ) if for any real-valued Q-integrable

function F on (I × Ω,W),

(i) Fi is P -integrable on (Ω,F , P ) for λ-almost all i ∈ I, and Fω is λ-integrable on

(I, I, λ) for P -almost all ω ∈ Ω;

(ii)
∫
Ω

Fi dP and
∫

I
Fω dλ are integrable on (I, I, λ) and (Ω,F , P ) respectively, in ad-

dition,
∫

I×Ω
F dQ =

∫
I

(∫
Ω

Fi dP
)
dλ =

∫
Ω

(∫
I
Fω dλ

)
dP .

A Fubini extension (I × Ω,W , Q) is said to be rich if there is a W-measurable process

G from I × Ω to the interval [0, 1], such that G is essentially pairwise independent, and

45See [44, 48] for references to Doob’s consideration of the special case that (I, I, λ) is the Lebesgue
unit interval.

46See [46, Proposition 2.1]. The result is valid even when λ has atoms since the essential pairwise
independence condition implies the essential constancy of the random variables fi for λ-almost all i ∈ A,
and therefore on the atom.

47For an extended discussion that also includes difficulties of working with finitely-additive measures,
see [46, Section 6].
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Gi induces the uniform distribution on [0, 1] for λ-almost all i ∈ I. We say that such a

rich Fubini extension is based on (I, I, λ), and the process G witnesses the richness of

the Fubini extension.48

In a Fubini extension (I×Ω,W , Q), note that the marginal probability measures of

Q on (I, I) and (Ω,F) are λ and P respectively. To reflect this property, we follow the

attendant literature and denote the Fubini extension (I×Ω,W , Q) by (I×Ω, I £ F , λ£
P ).

Next, we connect the existence of a rich Fubini extension to the saturation property

of a probability space which is formalized in Definition 3, and with which we have been

working so far. The following result is from [46, Proposition 5.6] and [39, Theorem 1]

and summarized as [49, Corollary 1].

Proposition 4. The probability space (I, I, λ) is saturated if and only if there is a rich

Fubini extension based on it.

Note that this result is phrased in terms of the single probability space (I, I, λ),

and whereas this is no impediment for the sufficiency part of the result, the requisite

sample space has to be constructed for the necessity part. And so the necessity claim,

when elaborated, comes down to asserting the existence of a probability space (Ω,F , P )

extending (Ω,F ′, P ′), as defined after Definition 5 above, such that there exists a rich

Fubini extension (I ×Ω, I £ F , λ £ P ) on which the process of coordinate functions π is

I £ F -measurable and witnesses the richness of the Fubini extension.49 Finally, we also

record a convenient universality property of a rich Fubini extension based on a saturated

probability space. A rich Fubini extension satisfies the universality property in the sense

that one can construct processes on it with essentially pairwise independent random

variables that have any given variety of distributions on a general Polish space. The

following result is available in [46, Proposition 5.3].

Proposition 5. Let (I × Ω, I £ F , λ £ P ) be a rich Fubini extension, X be a Polish

space, and f a measurable mapping from (I, I, λ) to M(X). Then there exists an I £ F-

measurable process F : I × Ω → X such that the process F is essentially pairwise

independent and f(i) is the induced distribution by Fi, for λ-almost all i ∈ I.

This now formalizes the fact that, unlike the Lebesgue unit interval, saturated

probability spaces are hospitable to independence and measurability, and that too in a

48For the existence of a rich Fubini extension, see Theorem 6.2 of [44], Theorem 5.6 of [46], Theorem
1 of [48] and of [39].

49This is precisely the content of [49, Lemma 1] who then use it, in conjunction with their Lemma 4
to prove their Corollary 1, reported as Lemma 1 here.
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strong sense that they admit processes whose random variables have a full and arbitrarily-

given variety of distributions.50

The next result is taken from Corollary 2.9 of [46], which provides a version of the

ELLN in the framework of Fubini extension.

Proposition 6. Assume that (I × Ω, I £ F , λ £ P ) is a Fubini extension. If F is an

essentially pairwise independent and I £ F-measurable process, then the sample distri-

bution λF−1
ω is the same as the distribution (λ £ P ) F−1 for P -almost all ω ∈ Ω.

Having seen the technical necessity of moving from a single probability space to a

product, we now turn to the game-theoretic substance. First, consider any large non-

anonymous game G0 : I −→ UA that fits Definition 1. From now on, let (I × Ω, I £
F , λ £ P ) be a rich Fubini extension of the product space (I ×Ω, I ⊗F , λ⊗P ). For the

first time in this paper in terms of the formalities, we shift from the nomenclature of a

strategy to that of a strategy profile.51

Definition 7. A mixed strategy profile of a game G0 is a I £ F-measurable function

g : I × Ω −→ A where the process g is assumed to be essentially pairwise independent.52

A Nash equilibrium in mixed strategies of G0 is a mixed strategy profile g∗, such that for

λ-almost all i ∈ I,

∫

Ω

ui(g
∗
i (ω), λg∗−1

ω )dP ≥
∫

Ω

ui(η(ω), λg∗−1
ω )dP (2)

for all random variables η : Ω −→ A.

And now that we have developed the necessary background to inquire into the rela-

tionship between a Nash equilibrium in mixed strategies and one in behavioral strategies,

we can present the following result whose proof is natural and straightforward.53

Theorem 3. The following equivalence holds for a large non-anonymous game G0.

(i) Every Nash equilibrium in mixed strategies induces a Nash equilibrium in behavio-

rial strategies, and

50This arbitrary nature is only modulated by the fact that the distributions are stitched together by
a measurable function; the function f in Proposition 5.

51The attentive reader has surely noted that we could have been explicitly mentioned the notion of
a pure strategy profile in Definitions 1 and 2, and a behavioral strategy profile in Definition 4 but chose
not to do so.

52Though the Lebesgue unit interval itself cannot be the player space, it is shown in [48] that some
rich extension of it can the player space.

53In the statement of the theorem, we have not formally defined the words induce and lift: we feel it
would be pedantic to do so given that their meaning is clear from the context, and especially from the
rather straightforward proof.
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(ii) every Nash equilibrium in behavioral strategies can be lifted to a Nash equilibrium

in mixed strategies.

Proof : (i) Suppose g∗ is a Nash equilibrium in mixed strategies of a game G0. Let

h∗(i) = Pg∗−1
i for all i ∈ I. By the ELLN in Proposition 6, we have

∫

I

h∗(i)dλ =

∫

I

Pg∗−1
i dλ = λg∗−1

ω . (3)

Because g∗ is a Nash equilibrium in mixed strategies, (2) holds for g∗. It is clear that

for any random variable η : Ω −→ A, Pη−1 ∈ M(A). Moreover, given that (I × Ω, I £
F , λ £ P ) is rich, P is atomless. Hence, for any ν ∈ M(A), there exists a random

variable η : Ω −→ A such that ν = Pη−1. Thus, by (3) and the change of variable

theorem, (2) is equivalent to (1) for h∗ where h∗(i) = Pg∗−1
i for all i ∈ I. By Definition

4, the measurable function h∗ is a Nash equilibrium in behavioral strategies for the game

G0.

(ii) Now suppose h∗ is a Nash equilibrium in behavioral strategies of a game G0.

That is, h∗ is a measurable function from I to M(A) that satisfies (1). Given that

(I × Ω, I £ F , λ £ P ) is a rich Fubini extension, by Proposition 5, there is a I £ F -

measurable process g∗ from I×Ω to A such that g∗ is an essentially pairwise independent

process, and the distribution Pg∗−1
i is the given distribution h∗(i) for λ-almost all i ∈ I.

By the ELLN, (3) holds for such a g∗ and h∗. Thus, this I £ F -measurable process g∗

from I ×Ω to A also satisfies (2) by (1) and the change of variables theorem. Hence, g∗

is a Nash equilibrium in mixed strategies for the same game G0.

The remainder of this section is an elaboration of these concepts to the setting of

a large non-anonymous game with traits. In this context, we have a richer notion of

externalities, one that embodies distributions over actions as well as over traits. We

begin with definitions analogous to these of Definition 4 and Definition 7.

Definition 8. A behavioral strategy profile of a large non-anonymous game with traits G
is a measurable function h : I −→M(A), with the latter being endowed Borel σ-algebra

generated by the weak topology. A Nash equilibrium in behavioral strategies of G is a

behavioral strategy profile h∗ : I −→M(A) such that for λ-almost all i ∈ I,

∫

A

vi(a,

∫

I

δα(j) ⊗ h∗(j)dλ)dh∗i ≥
∫

A

vi(a,

∫

I

δα(j) ⊗ h∗(j)dλ)dν (4)

for all ν ∈M(A), where δt is the distribution on T with mass one on some t ∈ T .

Definition 9. A mixed strategy profile of a large non-anonymous game with traits G is a

I £ F-measurable function g : I ×Ω −→ A, where g is essentially pairwise independent.
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A Nash equilibrium in mixed strategies of G is a mixed strategy profile, such that λ-almost

all i, ∫

Ω

vi(g
∗
i (ω), λ(α, g∗ω)−1)dP ≥

∫

Ω

vi(η(ω), λ(α, g∗ω)−1)dP (5)

for all random variables η : Ω −→ A.

We are now ready to show the relationship between a Nash equilibrium in mixed

strategies and one in behavioral strategies for games with traits.

Theorem 4. Theorem 3 holds for G, a large non-anonymous game with traits.

Proof : Suppose g∗ is a mixed strategy Nash equilibrium of a large non-anonymous game

with traits G. (5) holds for such a g∗ of the game G. Let h∗i = Pg∗−1
i for all i ∈ I. As

the random variables g∗i are essentially pairwise independent, it is clear that the random

variables (α(i), g∗i (ω)) are essentially pairwise independent. Thus we can appeal to the

ELLN to assert that, for P -almost all ω ∈ Ω,

λ(α, g∗ω)−1 =

∫

I

P (α(i), g∗i )
−1dλ =

∫

I

δα(i) ⊗ Pg∗i
−1dλ, (6)

which shows that (4) holds for the profile h∗ in which h∗i = Pg∗−1
i for all i ∈ I by the

change of variables theorem and the fact that P is atomless. Hence, by Definition 8, h

is a Nash equilibrium in behavioral strategies for the game G.

Now suppose h∗ is a Nash equilibrium in behavioral strategies of G. That is to

say, (4) holds for h∗. By arguments similar to (ii) in the proof of Theorem 3, together

with (6) and (4), we can then lift h∗ to an essentially pairwise independent process g∗

where Pg∗−1 = h∗(i) for λ-almost all i ∈ I such that g∗ is a Nash equilibrium in mixed

strategies of G.

6 Mixed and Pure Strategies: An Ex-Post Relation-

ship

In a section titled “large games with independent idiosyncratic shocks”, [32] observed

that the notion of externalities in the form of a distribution of the actions of all players –

a distinguishing characteristic of the theory of large games – allows one to make a rather

novel claim: this is the assertion that in a setting of idiosyncratic shocks, “in equilibrium,

societal responses do not depend on a particular sample realization, and each player is

justified in ignoring other players’ risks.”54 We begin this section by transcribing Theorem

54See Section 11 in [32]. The quote is taken from Section 11.3 on page 1792 where we substitute
“player” for “agent.” In this connection, also see Assumption C and its discussion in Cremer and
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7 in [32] in the vocabulary of a rich Fubini extension developed in [46] and used essentially

in this paper. We begin with the following definition.

Definition 10. A large non-anonymous game with idiosyncratic uncertainty is a mea-

surable function GU from (I×Ω, I£F , λ£P ) to UA such that GU is essentially pairwise

independent.

We can now present

Proposition 7. Let GU be a large non-anonymous game with idiosyncratic uncertainty.

Then there is a process f : I × Ω −→ A such that f is a Nash equilibrium of the game

GU , such that the random strategies f(i, ·) are essentially pairwise independent, and for

P -almost all ω ∈ Ω, f(·, ω) is an equilibrium of the large game GU(·, ω) with constant

societal distribution (λ £ P )f−1.

A two-line proof of this proposition is furnished in [32]. The basic idea is straightforward.

One can regard the game GU as a large non-anonymous game modeled on the space of

players’ names to be the joint space I×Ω, and given joint measurability on such a space,

deduce the existence of a Nash equilibrium g : T × Ω −→ A from the standard result.

This is to assert that there exists a measurable function such that

GU
(i,ω)(g(i, ω), (λ £ P )g−1) ≥ GU

(i,ω)(a, (λ £ P )g−1) for all a ∈ A.

The point is that this measurable function is a selection from the set-valued process

(t, ω) −→ F (t, ω) = argmaxa∈AGU
(t,ω)(a, (λ £ P )g−1).

And we can now finish the proof by appealing to the following proposition (which is

Theorem 2 of [45]) and to the ELLN as stated in Proposition 6.

Proposition 8. Let F be a set-valued process from I×Ω to a complete separable metric

space A. Assume that F (i, ·) are essentially pairwise independent. Let g be a selection of

F with distribution µ. Then there is another selection f of F such that the distribution

of f is µ, and f(t, ·) is essentially pairwise independent.

And so rather than the proof, it is the interpretation of the theorem that is of

interest. The context is one of exogenous uncertainty whereby the individual payoffs, as

well as the individual randomized strategies, are independent, and the theorem rigorously

develops the intuition that once uncertainty is resolved, a player has no incentive to

depart ex-post from her optimal strategy taken in the ex-ante game when she finds

Mclean (1985, p. 346); also Footnote 48 below.
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herself in the realized ex-post game. In this connection, but in the context of a large but

finite games, [27, p. 1632] writes:

A particular modeling difficulty of noncooperative game theory is the sensitivity of

Nash equilibrium to the rules of the game, e.g., the order of the players’ moves and

the information structure. Since such details are often not available to the modeler

or even to the players of the game, equilibrium prediction may be unreliable. For

this purpose, we define a Nash equilibrium of a game to be extensively robust55 if

it remains a Nash equilibrium in all extensive versions of the simultaneous-move

game. Extensive robustness means in particular that an equilibrium must be ex-

post Nash. Even with perfect hindsight knowledge of the types and selected actions

of all of his opponents, no player regrets, or has an incentive to revise, his own

selected action.

One can look on the dependence of the payoffs on the space Ω in Proposition 7 as the

proxy for the variety of phenomena emphasized by Kalai and not explicitly modeled.56

To be sure, what makes Proposition 7 work is the existence of a rich Fubini ex-

tension and the ELLN. But the point can be sharpened still if rather than work with

a large game with idiosyncratic uncertainty GU , one works with a deterministic non-

anonymous large game as in Definition 1. In this case, the uncertainty underlying a

mixed strategy arises only from the uncertainty regarding the moves, randomized or

otherwise, of everyone else’ plays. To put the matter another way, a natural question

concerns the possibility of such a claim in situations when there is no exogenous para-

metric uncertainty, but one introduced as a result of players’ playing mixed strategies

based on independent randomizations, as befits a non-cooperative game setting. If all

these independent randomizations can be consolidated in “one large” space Ω with the

mixed strategy profile again being a process from I × Ω to the space of actions, we are

back in the situation considered in [32], but with the underlying space of uncertainty be-

ing generated only from the independent randomized strategies of the players. One can

then again ask whether each player is justified in ignoring other players’ risks and has no

incentive to depart ex-post from her optimal strategy taken in the ex-ante game when all

the randomizations of each player have been individually realized. In other words, this

is to ask, in the terminology adopted by [27], whether a mixed strategy equilibrium has

55[27, p. 1632] emphasizes, “This is a new notion of robustness, different from other robustness notions
used in economics or game theory. While of course accepting the validity of this statement, one can
usefully connect it to [18, p. 347] who write “Then we utilize an equilibrium concept, called ex-post
Nash equilibrium, which states that, after seeing the bids of others, buyers will not want to revise their
bids.”

56Referring to extensive versions of the simultaneous-move game, Kalai refers to “wide flexibility in
the order of players’ moves, as well as information leakage, commitment and revision possibilities, cheap
talk, and more.”
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an ex-post purification. Taking this terminology, and Kalai’s approximate result as their

point of departure, [17] investigate approximate existence issues concerning a “Bayesian

equilibrium in pure strategies that is also expost stable.” Since the question is being

posed in a deterministic large non-anonymous game, an affirmative answer is even easier

to obtain than in the situation considered in Proposition 7 above. The definition of the

ex-post property of a mixed strategy profile of a game, with or without traits, is provided

as follows.

Definition 11. A mixed strategy profile g∗ of a game is said to have the ex-post Nash

property if for P -almost all ω ∈ Ω, g∗ω is a pure strategy Nash equilibrium for the same

game with the empirical action distribution λg∗−1
ω .

And now we can present the following benchmark result for games without traits

G0.

Theorem 5. A mixed strategy profile of G0 is a Nash equilibrium in mixed strategies if

and only if it has ex-post Nash property.

Proof : Suppose g∗ is a Nash equilibrium in mixed strategies. We shall show that g∗

has ex-post Nash property. Towards this end, first note that by the ELLN as stated in

Proposition 6, given any mixed strategy profile g, we have, for P -almost all ω,

λg−1
ω (·) =

∫

I

Pg−1
i (·)dλ. (7)

Let ξ =
∫

I
Pg∗−1

i (·)dλ. Because g∗ is a Nash equilibrium in mixed strategies, (2) holds.

By (7), (2) can be rewritten as, for λ-almost all i ∈ I,

∫

Ω

ui (g
∗
i (ω), ξ) dP ≥

∫

Ω

ui (η(ω), ξ) dP for all random variables η : Ω −→ A,

which implies, for λ-almost all i ∈ I, for P -almost all ω ∈ Ω,

ui(g
∗
i (ω), ξ) = max

a∈A
ui(a, ξ).

By the Fubini property of a Fubini extension, we have, for P -almost all ω ∈ Ω, λ-almost

all i ∈ I,

ui (g
∗
ω(i), ξ) = max

a∈A
ui(a, ξ).

By the ELLN again, hence, for P -almost all ω ∈ Ω, λ-almost all i ∈ I,

ui

(
g∗ω(i), λg∗−1

ω

)
= max

a∈A
ui

(
a, λg∗−1

ω

)
.
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This means, for P -almost all ω ∈ Ω, g∗ω is a pure strategy Nash equilibrium, and therefore,

g∗ has the ex-post Nash property.

Now, suppose that a mixed strategy profile g has ex-post Nash property, which is

to say, for P -almost all ω ∈ Ω, λ-almost all i ∈ I,

ui

(
gω(i), λg−1

ω

)
= max

a∈A
ui(a, λg−1

ω ).

By (7) and the Fubini property of a Fubini extension, we have, for λ-almost all i ∈ I,

P -almost all ω ∈ Ω,

ui

(
gi(ω), λg−1

ω

)
= max

a∈A
ui

(
a, λg−1

ω

)
.

Hence, for any random variable η : Ω −→ A, we have, for λ-almost all i ∈ I, P -almost

all ω ∈ Ω,

ui

(
gi(ω), λg−1

ω

) ≥ ui

(
η(ω), λg−1

ω

)
,

which implies that for λ-almost all i ∈ I,

∫

Ω

ui

(
gi(ω), λg−1

ω

)
dP ≥

∫

Ω

ui

(
η(ω), λg−1

ω

)
dP, for any random variable η : Ω −→ A.

This verifies that g is a Nash equilibrium in mixed strategies.

As mentioned above, Kalai works with an increasing sequence of large but finite

games and emphasizes an approximate ex-post Nash notion and an equicontinuity prop-

erty of payoffs that plays no role in the result presented here. However, his discussion of

the property itself is illuminating.57

An immediate consequence of the ex-post Nash property is a purification property

in large games. First, for normal-form games the ex-post Nash property provides

stronger conclusions than Schmeidler’s (1973) on the role of pure strategy equilibria

in large anonymous games. Working in the limit with a continuum of players,

Schmeidler shows that every “mixed strategy” equilibrium may be “purified.” This

means that for any mixed strategy equilibrium one can construct a pure strategy

equilibrium with the same individual payoffs. The ex-post Nash theorem ... shows

(asymptotically) that in large semi-anonymous games there is no need to purify

since it is done for us automatically by the laws of large numbers.58 So every mixed

strategy may be thought of as a “self-purifying device.”

The point is that these words go with, and underscore, Proposition 7. The technical

vocabulary which constitutes Theorem 5 presented above, and which delivers what needs

57See, for example, [27, Lemma 6.1] and related discussion.
58[27] has no asymptotic analog of the equivalence result as stated in Theorem 5.
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to be substantively delivered, was simply not available to [38] and to [27].59

We now turn to large non-anonymous games with traits G.

Theorem 6. Theorem 5 holds for G, a large non-anonymous game with traits.

Proof : For any given mixed strategy profile g of G, let G : I × Ω −→ T × A be a

function satisfying G(i, ω) = (α(i), gi(ω)). It is easy to see that G is an essentially

pairwise independent process. By the ELLN, we have, for P -almost all ω ∈ Ω,

λG−1
ω = λ(α, gω)−1 =

∫

I

P (α(i), gi)
−1dλ.

Hence, for P -almost all ω ∈ Ω,

λG−1
ω =

∫

I

δα(i) ⊗ Pg−1
i dλ. (8)

Suppose g∗ is a Nash equilibrium in mixed strategies for G. That is, (5) holds for

g∗. Let ξ′ =
∫

I
δα(i) ⊗ Pg∗−1

i dλ. Thus, by (8), (5) can be written as, for λ-almost all

i ∈ I,

∫

Ω

vi(g
∗
i (ω), ξ′)dP =

∫

Ω

vi(η(ω), ξ′)dP for all random variable η : Ω −→ A.

Hence, for λ-almost all i ∈ I, P -almost all ω ∈ Ω, vi(g
∗
i (ω), ξ′) = maxa∈A vi(a, ξ′). By

the Fubini property of a Fubini extension, for P -almost all ω ∈ Ω, λ-almost all i ∈ I,

vi(g
∗
ω(i), ξ′) = maxa∈A vi(a, ξ′). Therefore, by the ELLN, for P -almost all ω ∈ Ω, for

λ-almost all i ∈ I,

vi(g
∗
ω(i), λG∗−1

ω ) = max
a∈A

vi(a, λG∗−1
ω ).

This means for P -almost all ω ∈ Ω, g∗ω is a pure strategy Nash equilibrium, which ensures

that g∗ has the ex-post Nash property.

Now, suppose that there is a mixed strategy profile g of G has ex-post Nash property.

By arguments similar to the second paragraph in the proof of Theorem 5 and the above

argument, it is easy to check that g is a Nash equilibrium in mixed strategies of the same

game G.

59In this connection, [27, Footnote 11] is confusing. This states, “As Schmeidler points out in his
paper, it is difficult to define a “real mixed strategy” equilibrium due to failings of law of large numbers
in the case of continuously many random variables.” As discussed above, the problem in Schmeidler’s
paper is simply of nomenclature: he refers to what we (and [36]) are calling a behavioral strategy as a
mixed strategy. In particular he has no reference to the law of large numbers or to the independence
condition. In fact his statement that “in many real gamelike situations a mixed strategy has no meaning”
refers to difficulties in reality rather than those for modeling.
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7 An Illustrative Result for Large but Finite Games

Theorems 1 to 6 presented above all concern an idealized limit game based on a saturated

probability space interpreted as a space of player’s names (the thrust of the word non-

anonymous in the various definitions). A traditional question in economic theory, dating

at least to the late sixties, is the relevance of these results to a finite-agent setting, in

the first instance, and to a large but finite set-up in the second. In short, this is to ask

for the asymptotic implementation, with or without speeds of convergence, of the limit

results.60 The answer to this is clear once one appreciates that the saturation property

of a probability space, as formalized in Definition 3 above, is shared by atomless Loeb

probability spaces, and therefore, by Loeb counting spaces.61 However, once the results

are pushed down to a setting where a Loeb counting space renders service as a space

of player’s names instead of a general saturated probability space, the methodological

procedures are well-laid out and well-understood since the comprehensive surveys of [4],

and essentially go back to Brown-Robinson (see [4]: one pushes down the Loeb space

results to a result for a nonstandard internal game, and then, under the “tightness”

hypothesis, transfers to a setting of large but finite games. It would be tedious to

present asymptotic implementations of each of the eight theorems, and we only present

a translation of Theorem 1 (ii) for illustration and the convenience of the reader.

Let In be the set of the first n positive integers and with the counting probability

measure λn on its power set In and V the space of all continuous functions on the product

space A ×M(T × A) based on its sup-norm topology and endowed with its resulting

Borel σ-algebra. We shall need the following definition.

Definition 12. Let {gn}n∈IN be a sequence of measurable mappings from a probability

space (Y,Y , µ
Y
) to a Polish space X equipped with its Borel σ-algebra B(X). It is said

to be tight if for any ε > 0, there exists a compact subset Kε of X such that for all n ∈
IN, µ

Y
(g−1

n (Kε)) > 1− ε.

Theorem 7. For each n ≥ 1, let a finite game Gn be a mapping from In into T ×V with

αn(i) ≡ Gn
1 (i) and vn

i ≡ Gn
2 (i) for each i ∈ In. Assume that the sequence of finite games

is tight. Then for any ε > 0, there exists N ∈ IN such that for all n ≥ N , there exists

60This is one of the three criteria for a viable name space that [31] adduce in favor of Loeb spaces.
61Indeed this was one of the points of entry for such a property as is evident in [24], and the subsequent

text of [20].
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fn : In −→ A and In
ε ⊆ In with λn(In

ε ) > 1− ε, such that for all i ∈ In
ε , for all a ∈ A,62

vn
i (fn(i), λn(αn, fn)−1) ≥ vn

i (a, λn(αn, fn)−1)− ε.

Proof : Fix any real number ε > 0. We transfer the sequence of finite games to the

nonstandard universe to obtain a sequence {Gn}n∈∗IN of internal games on the associated

sequence of {(In, In, λn)}n∈∗IN of internal probability spaces. The tightness assumption

on the original sequence {Gn}n∈IN implies that for each n ∈ ∗IN∞, Gn is near standard in

the sense that for λ-almost all i ∈ I and Gn(i) has a standard part ◦(Gn(i)) in T × V .

Fix any n ∈ ∗IN∞. Let (I, I, λ) be the corresponding Loeb space of (In, In, λn).63

For i ∈ I, let α(i) = ◦(αn(i)), vi = ◦(vn
i ), and G(i) = (α(i), vi). Since (I, I, λ) is a

saturated probability space, it follows from Theorem 1 (ii) that there exists a measurable

function f : I −→ A such that for λ-almost all i ∈ I,

vi(f(i), λ(α, f)−1) ≥ vi(a, λ(α, f)−1) for all a ∈ A.

By Theorem 5.2.4 in [33], we can obtain an internal lifting fn : In −→ ∗A of f such that

for λ-almost all i ∈ I, ◦(fn(i)) = f(i). Thus, for λ-almost all i ∈ I, we have,

vn
i (fn(i), λn(αn, fn)−1) ' vi(f(i), λ(α, f)−1).

On the other hand, for any ∗a ∈ ∗A and i ∈ I,

vn
i (∗a, λn(αn, fn)−1) ' vi(

◦∗a, λ(α, f)−1).

Comparing the above two equations with the first equation in this proof, we can assert

that there exists a In
ε ∈ In with λn(In

ε ) > 1− ε, such that for all i ∈ In
ε , for all ∗a ∈∗ A,

vn
i (fn(i), λn(αn, fn)−1) ≥ vn

i (∗a, λn(αn, fn)−1)− ε.

Since the above equation holds for all n ∈ ∗N∞, the conclusion follows the spill-over

principle; for the latter, see Theorem 2.8.11 in [33].

62Here we note that there is a trivial correction to be made to each of the statements of Theorems 6
and 7 in [31]. One needs to use “for all t ∈ Tn

ε with λn(Tn
ε ) > 1 − ε” instead of “for all t ∈ T”, where

λn is the counting probability on Tn. Similarly, one needs to replace “for all t ∈ T” in the statements
of Theorems 9 and 10 by “for almost all t ∈ T”.

63We abbreviate an entire procedure here, and the interested reader can see [33] and the specific
details to a game-theoretic context in [31].
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8 Conclusion

In this paper, the standard theory of large non-anonymous games, as surveyed in [32],

and the subject of several recent extensions and applications,64 is given an alternative

cast that allows a treatment of large games in which individual players have names as

well as traits, and a player’s dependence on society is formulated as a joint probability

measure on the space of actions and traits. The key property of saturation, originally due

to [24], and discussed in the context of the conventional formulation of the space of names

in the theory of large games, is identified, and shown to be sufficient and necessary for a

reformulated and comprehensive theory. It addresses the, by now well-known, difficulty

that there is, in general, no Nash equilibrium if one works with a large game with the

Lebesgue unit interval as the space of players’ names and the interval [-1, 1] as the action

space. To be sure, [31] established that this difficulty can be resolved if one works with

an appropriate player space that captures the asymptotic properties of a sequence of

large finite games, the Loeb counting space, it took the suggestion of [28, Theorem 4.6]

that if one works with an uncountable action space, it is a necessary and sufficient for

a robust theory that the player space be saturated. This suggestion is now developed

and now placed in a broader rubric of the seven theorems presented in this paper. It is

hoped that the analytically rigorous and rich formalization of traits that they shape will

be more relevant in terms of applications.

We end this paper with two open questions, one possibly straightforward given the

arguments and results reported above, but the other certainly not so. The first con-

cerns the exploration of our reformulation from an non-anonymous to an anonymous

formulation, as formulated by [34]. To be more specific, what we have in mind is an

identification of the role of the saturation property to the theory of large anonymous

games with uncountable compact metric action sets. As is well-understood, this is a

setting in which the space of players’ names plays no part, and a large game and its

Nash equilibria are probability measures on the space of characteristics represented by

the space of payoffs, and this space is “built up” solely out of the action space A. It is this

simplicity of conception that makes possible the equivalence theorems presented in [28].

However, as we have seen in Section 2, in the reformulation studied in this paper, the

space of characteristics represented by the space of payoffs involves the triple (T, A, ρ),

and it is natural to ask whether the theory delineated here extends to probability mea-

sures on this space, and in particular, the equivalence theorems of [28] extend to this

richer setting.

The second question asks whether the reformulation reported here can be pursued

64For the extensions of the theory, see, for example, [16], [22] and [50]; for applications, in addition
to [1, 2], [15] and [19], see [5] and their references.
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in a stochastic setting in that the function α from the the space of players’ names to

the space of traits is conceived of as Young measure, which is to say, a function to the

probabilities on the space of traits rather a (deterministic and identifiable) point in the

space. From a substantive game-theoretic point of view, this asks whether the theory

can be generalized to situations where only a player’s names is known with certainty,

but her individual trait is random, and thereby moving from a large game of complete

information to one with incomplete information. Even a cursory perusal of both applied

and theoretical work identifies this as an important question; see [5] and their references

for the rich variety of applications, and the discussion of Bayesian rationality in a finite-

player setting in [12].65 We hope to return to both questions in subsequent work.

9 Appendix

We begin this Appendix by collecting recent results on the distributions of correspon-

dences; we present a composite result culled from the theorems in [30] and [28].

Proposition A. Let X be a compact metric space and (Ω,A, P ) an atomless probability

space. Then the following results are valid if, in addition, (i) X is a countable, or (ii)

(Ω,A, P ) is a saturated probability space.

P1: For any correspondence F from (Ω,A, P ) to X, DF = {Pf−1 : f is a measur-

able selection of F} is convex.

P2: For any closed-valued correspondence F from (Ω,A, P ) to X, DF is closed.

P3: For any compact-valued correspondence F from (Ω,A, P ) to X, DF is compact.

P4: Let F be a compact-valued correspondence from (Ω,A, P ) to X. Suppose that

Y is a metric space and G is a closed-valued correspondence from Ω×Y to X such that:

(a) For all (ω, y) ∈ Ω× Y , G(ω, y) ⊆ F (ω).

(b) For each fixed y ∈ Y , G(·, y) (denoted by Gy) is a measurable correspondence

from (Ω,A, P ) to X.

(c) For each fixed ω ∈ Ω, G(ω, ·) is upper hemicontinuous from Y to X.

Then the correspondence H(y) = DGy is upper hemicontinuous from Y to M(X).

Proof of Claim 1: (1) We first show that for any given i, vi(·, ·) is a continuous

function. Since A has only two points, it is enough to verify the continuity with respect

to τ . Suppose {τn} converges weakly to τ in Mρ(T × A), where τn ∈ Mρ(T × A) for

each n. Let Dc be the set of discontinuity of the function 1[0,i)×{a}(t, x). It is clear that

65For a preliminary exploration based on a process rather than a conditional probability, see [47].
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τ(Dc) = 0. By Theorem 25.8 in [13], limn→∞ vi(a, τn) = vi(a, τ) for any given i and a,

and the proof of the claim is complete.66

Next, notice that when i = 0, vi(·, ·) is identically zero. We show that vi(·, ·) is a

continuous function of i. vi(a, τ) = − ∫
T×A

1[0,i)×{a}(t, x) dτ . Assume that j > i. Then

vi(a, τ)− vj(a, τ) =

∫

T×A

1[0,j)×{a}(t, x) dτ −
∫

T×A

1[0,i)×{a}(t, x) dτ

=

∫

T×A

1[i,j)×{a}(t, x) dτ

= τ ([i, j)× {a})
≤ j − i.

Therefore, for any i and j in I, |vi(·, ·) − vj(·, ·)| ≤ |j − i|, which shows that vi(·, ·) is a

continuous function of i. Hence, G is a measurable function from I to T × V
(A,T,ρ)

.

(2) Assume that f ∗ is a Nash equilibrium of the game G. We first show that

for all i > 0, vi

(
H̄, λ(α, f ∗)−1

)
= vi

(
T̄ , λ(α, f ∗)−1

)
. Suppose that for some i > 0,

vi

(
H̄, λ(α, f ∗)−1

)
< vi

(
T̄ , λ(α, f ∗)−1

)
. For this fixed i, let

S =
{
r ∈ [0, i) : vr

(
H̄, λ(α, f ∗)−1

)
= vr

(
T̄ , λ(α, f ∗)−1

)}
.

S is nonempty since it contains 0, so s∗ = sup S exists. The continuity of vr(·, ·) in r

implies that vs∗
(
H̄, λ(α, f ∗)−1

)
= vs∗

(
T̄ , λ(α, f ∗)−1

)
. Note that given any a ∈ A and

any measurable function f from I to A,

vi

(
a, λ(α, f)−1

)
= −

∫

T×A

1[0,i)×{a}(t, x) dλ(α, f)−1 = −λ
(
[0, i) ∩ f−1(a)

)
.

Thus, we have, λ([0, s∗)∩ f ∗−1(H̄)) = λ([0, s∗)∩ f ∗−1(T̄ )). Furthermore, s∗ < i. For any

y ∈ (s∗, i), vy(H̄, λ(α, f ∗)−1) < vy(T̄ , λ(α, f ∗)−1) by the continuity of vy(·, ·) in y. Since

f ∗ is a Nash equilibrium, we know f ∗(y) = T̄ for all y ∈ (s∗, i). Therefore,

λ
(
[0, i) ∩ f ∗−1(T̄ )

)
= λ

(
[0, s∗) ∩ f ∗−1(T̄ )

)
+ λ

(
[s∗, i) ∩ f ∗−1(T̄ )

)
> λ

(
[0, s∗) ∩ f ∗−1(T̄ )

)

and

λ
(
[0, i) ∩ f ∗−1(H̄)

)
= λ

(
[0, s∗) ∩ f ∗−1(H̄)

)
+λ

(
[s∗, i) ∩ f ∗−1(H̄)

)
= λ

(
[0, s∗) ∩ f ∗−1(H̄)

)
.

66The reader is warned that rather than the statement of the theorem in [13], we appeal to a statement
in its proof.
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Thus, we have

vi

(
H̄, λ(α, f ∗)−1

)
= −λ

(
[0, i) ∩ f ∗−1(H̄)

)
> −λ

(
[0, i) ∩ f ∗−1(T̄ )

)
= vi

(
T̄ , λ(α, f ∗)−1

)
,

a contradiction. Similarly, for any i > 0, vi

(
H̄, λ(α, f ∗)−1

)
< vi

(
T̄ , λ(α, f ∗)−1

)
cannot

hold. Therefore, for every i > 0,

vi

(
H̄, λ(α, f ∗)−1

)
= vi

(
T̄ , λ(α, f ∗)−1

)
,

which is equivalent to

λ
(
[0, i) ∩ f ∗−1(H̄)

)
= λ

(
[0, i) ∩ f ∗−1(T̄ )

)
.

Furthermore, since λ
(
[0, i) ∩ f ∗−1(H̄)

)
+ λ

(
[0, i) ∩ f ∗−1(T̄ )

)
= λ ([0, i)) = i, we know

that

λ
(
[0, i) ∩ f ∗−1(H̄)

)
= λ

(
[0, i) ∩ f ∗−1(T̄ )

)
= i/2.

Let F =
{
i ∈ I : f ∗(i) = H̄

}
. Let g(i) = i on F , g(i) = −i on I \ F . Then for any

c ∈ (0, 1], λg−1 ([0, c]) = λg−1 ([−c, 0]) = c/2. So, λg−1 is the uniform distribution on

[−1, 1]. We will show that this itself is a contradiction. Clearly, λ(F ) > 0. Since F is a

subset of [0, 1], λg−1(F ) = (1/2)λ(F ). On the other hand, g is the identity on F , and

so, λg−1(F ) = λ(F ). Thus, 0 6= (1/2)λ(F ) = λ(F ). This contradiction establishes that

the game does not have a Nash equilibrium.

Lemma 1. If an atomless probability space (I, I, λ) is not saturated, then there exists

a large non-anonymous game with traits G : (I, I, λ) −→ T × V
(A,T,ρ)

that does not have

a Nash equilibrium, where A = {−1, 1}, T = [0, b] for some b > 1 and ρ = λG−1
1 , a

uniform distribution on [0, b].

Proof : First, let (Î , Î, λ̂) be the Lebesgue unit interval, T̂ be [0, 1] and α̂ be a func-

tion from Î to T̂ satisfying α̂(j) = j for each j ∈ Î. For all j ∈ Î, let v̂j(a, τ̂) =

− ∫
T̂×A

1[0,j)×{a}(t, x)dτ̂ for all a ∈ A and for all τ̂ ∈Mλ̂α̂−1
(T × A). Let Ĝ be a function

satisfying Ĝ(j) = (α̂(j), v̂j) for all j ∈ Î. As we only replace the action set {H̄, T̄} in

Example 1 of Section 3 with {−1, 1}, it is easy to see that Ĝ is a large non-anonymous

game without any Nash equilibrium. That is to say, there is no measurable function

ĝ : Î −→ A, such that for λ̂-almost all j ∈ Î, v̂j(ĝ(j), λ̂(α̂, ĝ)−1) ≥ v̂j(a, λ̂(α̂, ĝ)−1) for all

a ∈ A.

Now, suppose that (I, I, λ) is not saturated. By Proposition 1, we know that

there is a set C ∈ I with λ(C) = β, 0 < β < 1 such that (C, IC , λC) is countably

generated, where IC = {E ∈ I, E ⊆ C} and λC(E) = λ(E)/β for all E ∈ IC . By
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Maharam’s theorem (see [21, 20], we know that any two countably generated atomless

measure algebras are isomorphic. Thus, since the Lebesgue unit interval is countable

generated, there exists an isomorphism from the measure algebra of (C, IC , λC) to the

measure algebra of the Lebesgue unit interval. By [21, Theorem 4.12], there exists a

measurable mapping h : C −→ [0, 1] such that h induces such an isomorphism. Let

b = 2−β and T = [0, b]. Note that λ(I \C) = 1−β. There exists a measurable function

α0 : I \C −→ (1, b], such that for any Borel set B in (1, b], λ(α0)−1(B) = λ̂(B); here we

continue to use λ̂ to denote the Lebesgue measure on (1, b]. Construct a function α from

I to T as follows:

α(i) =





h(i) for i ∈ C

α0(i) for i ∈ I \ C.

It is clear that α is measurable. Let ρ = λα−1. By construction, ρ is a uniform distribu-

tion on [0, b]. Now, for all a ∈ A and for all τ ∈Mρ(T × A), let

vi(a, τ) =




− ∫

T×A
1[0,h(i))×{a}(t, x)dτ for i ∈ C

a for i ∈ I \ C.

By the proof of Claim 1, it is now easy to see that vi ∈ V(A,T,ρ) for any i ∈ I. Let

G(i) = (α(i), vi) for all i ∈ I. By construction, G is a measurable function from I to

T × V(A,T,ρ), and thus, a large non-anonymous game with traits.

We now show that G does not have a Nash equilibrium. Suppose that G has a

Nash equilibrium f ∗ : I −→ A. It is obvious that f ∗(i) = 1, for i /∈ C. For i ∈ C, we

first show that there exists a Borel measurable function g such that f ∗(i) = g(h(i)) for

λ-almost all i ∈ C. Let C1 = {i ∈ C : f ∗(i) = 1}. Since h induces an isomorphism from

the measure algebra of (C, IC , λC) to the measure algebra of the Lebesgue unit interval,

there exists a Borel set B1 ⊆ [0, 1], such that, λC (C1∆h−1(B1)) = 0, where ∆ is the

symmetry difference on IC , and hence, λ (C1∆h−1(B1)) = 0. Thus, g can be constructed

as g(i) = 1 for i ∈ B1 and g(i) = −1 for i ∈ [0, 1] \ B1. Now we show that there will be

a contradiction. Since f ∗ is an equilibrium, thus, for λ-almost all i ∈ C,

vi

(
f ∗(i), λ(α, f ∗)−1

) ≥ vi

(
a, λ(α, f ∗)−1

)
for all a ∈ A,

which is to say, for λ-almost all i ∈ C,

−
∫

T×A

1[0,h(i))×{f∗(i)}(t, x)dλ(α, f ∗)−1 ≥ −
∫

T×A

1[0,h(i))×{a}(t, x)dλ(α, f ∗)−1 for all a ∈ A.
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Because 1[0,h(i))×{f∗(i)} is zero on (1, b]× A, the above equation can be written as

−
∫

[0,1]×A

1[0,h(i))×{f∗(i)}(t, x)dλ(α, f ∗)−1 ≥ −
∫

[0,1]×A

1[0,h(i))×{a}(t, x)dλ(α, f ∗)−1 for all a ∈ A.

Dividing both sides of the above equation by β and thus, normalizing, we have for λ-

almost all i ∈ C,

vh(i)

(
g (h(i)) , λC (h, g (h(i)))−1) ≥ vh(i)

(
a, λC (h, g (h(i)))−1) for all a ∈ A.

Hence, for λ-almost all j ∈ Î, the measurable function g satisfies

v̂j

(
g(j), λ̂ (α̂, g)−1

)
≥ v̂j

(
a, λ̂ (α̂, g)−1

)
for all a ∈ A.

This is a contradiction to the first paragraph in the proof. Hence, the constructed game

G does not have a Nash equilibrium.

Lemma 2. If an atomless probability space (I, I, λ) is not saturated and T ′ is uncountable

complete separable metric space with a atomless probability measure ρ′, there exists a large

non-anonymous game with traits G ′ : I −→ T ′ × V(A,T ′,ρ′) that has no Nash equilibrium

where A = {−1, 1}.

Proof : Throughout this proof, we reserve the notation (T, ρ) for the space of traits,

(I, I, λ) for the space of players, A for the action set, G = (α, v) for the game, respectively,

as in the proof of Lemma 1.

Consider any given uncountable complete separable metric space T ′ endowed with

an atomless probability measure ρ′ on the Borel σ-algebra B(T ′) induced by the topology

on T ′. By Theorem 1 in [43], there exists a Borel measurable bijection F : T ′ −→ T

such that F is measure preserving between (T ′,B(T ′), ρ′) and (T,B(T ), ρ), and con-

tinuous ρ′-almost everywhere, and F−1 is continuous ρ-almost everywhere. Now con-

sider a mapping G ′ = (α′, v′) which satisfies that α′ = F−1(α) and for each i ∈ I,

v′i(a, τ ′) = vi(a, τ ′(F, idA)−1) for all a ∈ A and τ ′ ∈ Mρ′(T ′ × A), where idA stands for

the identity map on A. In order to show G ′ is a well-defined large non-anonymous game

with traits, we need to show that for any given a ∈ A, v′i(a, ·) is continuous for any i.

Suppose that a sequence {τ ′n} in Mρ′(T ′ × A) converges weakly to τ ′0 ∈ Mρ′(T ′ × A).

Since F is continuous ρ′-almost everywhere, (F, idA) is continuous τ ′0-almost every-

where. Hence, {τ ′n(F, idA)−1} converges weakly to τ ′0(F, idA)−1 as well. Therefore, for

any a ∈ A, the continuity of vi(a, ·) implies v′i(a, ·) is continuous for any i. Thus, G ′ is a

large non-anonymous game with traits.

We now show that the game G ′ does not have an equilibrium. Suppose it does have
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an equilibrium, say, f ′. Then, for λ-almost all i,

v′i
(
f ′(i), λ(α′, f ′)−1

) ≥ v′i
(
a, λ(α′, f ′)−1

)
for all a ∈ A,

which is to say,

v′i
(
f ′(i), λ(F−1(α), f ′)−1

) ≥ v′i
(
a, λ(F−1(α), f ′)−1

)
for all a ∈ A.

Hence, we have for λ-almost all i,

vi

(
f ′(i), λ(α, f ′)−1

) ≥ vi

(
a, λ(α, f ′)−1

)
for all a ∈ A,

which shows that f ′ is a Nash equilibrium of G, the game which is constructed in Lemma

1. This is a contradiction. Therefore, the constructed game G ′ does not have any

equilibrium.
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[37] M.R. Páscoa, Approximate equilibrium in pure strategies for non-atomic games”,
Journal of Mathematical Economics 22 (1993), 223–241.
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