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1 Introduction

Evolutionary game theory offers a principled way to select among multiple Nash equilibria.

For example, the famous 2x2 bimatrix game Hawk-Dove (whose variants are sometimes called

“Chicken” or “Battle of the Sexes”) has two different asymmetric NE in pure strategies as

well as one symmetric NE in mixed strategies. The “mass action” interpretation that Nash

first proposed in his dissertation, later elaborated as evolutionary game theory, makes two

distinctive predictions: (a) the mixed NE will be selected at the population level when each

player interacts with all other players, but (b) one of the pure NE will be selected when row

players and column players belong to disjoint populations.

Experimental tests of the theory have so far been sparse, and for good reason. As we

will see shortly, standard laboratory procedures involve a limited number of synchronous

repetitions of the stage game, while basic evolutionary models involve asynchronous choices

in continuous time. Perhaps more importantly, evolutionary game theory provides long run

predictions, which may not emerge clearly even in 100 standard repetitions of the stage

game.

In this paper we introduce laboratory procedures that mitigate these problems. A new

software package called ConG (for Continuous Games) enables laboratory subjects to make

asynchronous decisions in continuous time, to receive instantaneous feedback, and to alter

their decisions as often as they like. Behavior can thus settle down within a minute or

two, even after covering the gamut of strategic possibilities. Each period in our experiment

lasts 120 seconds, allowing considerable stationary repetition (e.g., several runs of 10 periods

each) and multiple treatments in a single laboratory session. Thus we can observe reasonable

approximations of the “long run” across treatments within a single cohort of subjects.

These procedures enable us to conduct a sharp test of evolutionary selection. Subjects

initially play a Hawk-Dove game under either a one-population or two-population matching

protocol. Halfway into each session (and without informing subjects or altering the payoff

matrix or the feedback display) we switch the matching protocol. This subtle exogenous

treatment variation theoretically destabilizes the mixed equilibrium and stabilizes the pure

equilibria (or vice versa).

Two other design features are worth highlighting. First, we use a bimatrix with highly in-

2



equitable payoffs in the asymmetric pure Nash equilibria, giving half of the subjects in the

two-population protocol a powerful reason to resist convergence to either predicted equi-

librium. Second, by randomly reassigning actions to players at the beginning of each 120

second period, we repeatedly shock the initial conditions, allowing us to address important

questions about dynamic adjustment.

As noted earlier, the relevant previous literature is sparse. Van Huyck et al (1995) study

a 3x3 bimatrix game with a moderately asymmetric Hawk-Dove-like sub-bimatrix. Using

a standard between subjects design with 70 or fewer synchronous repetitions (periods of

simultaneous single choices), they find no evidence of convergence with a one-population

matching protocol and only weak evidence with a two-population protocol. Friedman (1996)

studies a variety of evolutionary games, including two-population Hawk-Dove, each with at

most 20 synchronous repetitions. He finds that mean-matching protocols lead to crisper

convergence than the standard random pairwise matching. More distantly related literature

uses various sorts of evolutionary models to explain persistent departures from Nash equi-

librium in coordination games (e.g., Crawford 1991) and from the subgame perfect Nash

equilibrium in ultimatum games (e.g., Huck and Oechssler 1999, Guth and Yaari 1992, and

Gale, Binmore and Samuelson 1995). A scattering of papers study Hawk-Dove-like games

from non-evolutionary perspectives. For example, Neugebauer et al (2008) show that most

players do not employ social preferences in their games, and Duffy and Feltovich (forthcom-

ing) examine correlated equilibria. An older literature examined the impact of cheap talk

(e.g., Cooper et al. 1989) and forward induction (e.g. Cooper et al. 1993) in such games.

Our presentation begins in the next section with a review of relevant theory. The evolu-

tionary dynamics behind equilibrium selection are often specified via standard replicator

systems of ordinary differential equations. More generally, they can be specified via differ-

ential inclusions that capture the most basic evolutionary principle, that the fittest (highest

payoff) strategy will become more prevalent over time. The theoretical literature on such

sign-preserving dynamics is less accessible and so we offer a self-contained exposition of its

application to the Hawk-Dove game. The section concludes with a list of the testable pre-

dictions arising from both the replicator and sign preserving specifications, and notes how

the predictions might go wrong for behavioral or other reasons.

Section 3 describes ConG, the matching protocols, and other aspects of of our eight labo-
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ratory sessions. The main results are presented in section 4. We observe close convergence

to the mixed NE throughout the 10 one-population periods in each session, despite its in-

efficiency. In 10 two-population periods in the same sessions (with the same subjects and

the same payoff bimatrix), we see clear movement towards an asymmetric pure NE, despite

its extreme inequity. The replicator and the differential inclusion specifications both help

predict which of the two PNE is selected. An examination of the underlying individual be-

havior discloses a degree of specialization among strategically identical players as well as an

interesting interplay between the rates of best response and the incentives to do so.

Following a concluding discussion, Appendix A collects mathematical details and Appendix

B shows the instructions to laboratory subjects.

2 Theoretical Considerations

Payoff Bimatrix NE profile NE payoffs

H

D

�
0, 0 15, 3
3, 15 9, 9

� 2
3H + 1

3D, 2
3H + 1

3D 5,5
H,D 15,3
D,H 3,15

Table 1: The Hawk-Dove Game

We use the symmetric payoff bimatrix shown in Table 1. It is an instance of the Maynard

Smith (1982) Hawk-Dove game with resource value v = 12, cost of conflict c = 18 and

additive constant a = 3. If both players adopt the second strategy (D for Dove), then the

resource is divided equally, and the payoff is a + v/2 = 9 for each player. If both players

adopt the first pure strategy (H for Hawk), then there is a conflict and the (expected) payoff

for each is a + (v − c)/2 = 0. If they adopt different strategies, then the H player gets the

resource and payoff a+ v = 15 while the D player gets only the additive constant a = 3.

As noted in the table, this HD game has two pure asymmetric Nash equilibria, (H,D) and

(D,H), and one symmetric mixed NE, (23H + 1
3D, 2

3H + 1
3D). Evolutionary game theory

selects different equilibria according to whether the matching protocol is one-population or

two-population (e.g., Friedman, 1991; Weibull, 1995, pp. 183-186).
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Figure 1: Payoff advantage ∆w = wH − wD for Hawk players in a one-population HD game.
Arrows indicate evolutionary dynamics of the Hawk share s.

2.1 One-population dynamics

In the one-population protocol, each player in a “large” population receives the expected

payoff when playing a random opponent, or, equivalently, the mean payoff when playing

simultaneously the entire population (or a random subset). To spell this out, let s denote

the current fraction of Hawk players, so 1 − s denotes the fraction of Doves. Then the

payoff (or fitness) for a H player is wH = 0s + 15(1 − s) = 15 − 15s and the payoff for a D

player is wD = 3s+ 9(1− s) = 9− 6s. The payoff difference, the advantage of H over D, is

∆w = wH − wD = 6− 9s.

Solving the interior Nash equilibrium condition ∆w = 0, we obtain the symmetric mixed NE

share s∗ = 2
3 . The corresponding payoffs are w∗

H
= w

∗
D
= 5. The Gini coefficient is zero, since

payoffs are equal across all players. Efficiency (NE payoff sum as a fraction of its maximum)

is 5+5
15+3 = 5

9 .

This symmetric mixed NE is stable under any sign preserving dynamic, i.e., any process in

which the higher payoff strategy increases its share over time. Figure 1 shows why. Whenever

s < s
∗, we have ∆w > 0 so Hawk has the higher payoff and s increases, while s > s

∗ implies

∆w < 0 so Dove has the higher payoff and 1− s increases or s decreases.
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The best known example of sign preserving dynamics is the replicator of Taylor and Jonker

(1978). Replicator dynamics equate the growth rate ṡ/s of Hawk play to the Hawk payoff

wH relative to mean payoff w̄ = swH +(1− s)wD. Thus adjustment is governed by the cubic

ordinary differential equation

ṡ = s(wH − w̄) = s(1− s)∆w(s) = 3s(1− s)(2− 3s). (1)

Note that the sign of ∆w(s) determines the sign of the right hand side of (1), so the general

result on sign preserving dynamics tells us that the interior steady state s
∗ = 2

3 is stable.

The other steady states s = 0, 1 of (1) are easily seen to be unstable.

2.2 Two-population dynamics

In the two-population protocol, there is a large population of row players (call it population

i = 1) and a separate large population of column players (i = 2). Row players play only

column players, and vice-versa.

Let si denote the share of Hawks in population i = 1, 2. Now the payoff functions are

wH1 = 0s2 + 15(1 − s2) and wD1 = 3s2 + 9(1 − s2) in population i = 1, so ∆w1 = 6 − 9s2.

Similarly, in the other population we have ∆w2 = 6 − 9s1. Hence replicator dynamics are

given by the coupled cubic ODEs

ṡ1 = s1(wH1 − w̄1) = s1(1− s1)∆w(s2) = 3s1(1− s1)(2− 3s2), (2)

ṡ2 = s2(wH2 − w̄2) = s2(1− s2)∆w(s1) = 3s2(1− s2)(2− 3s1). (3)

The phase portrait is shown in Panel A of Figure 2. The interior mixed NE now is a

saddle point, hence unstable, while both of the asymmetric pure NE are asymptotically

stable. Efficiency at either PNE is 15+3
9+9 = 1.0, but the very unequal payoffs across the two

populations of equal mass produce a large Gini coefficient of 1/3. The other rest points, at

(s1, s2) = (0, 0) and (1, 1) are unstable. Appendix A verifies the Gini coefficient and uses

standard linearization techniques to verify the stability results.

Replicator dynamics are a handy example. They are canonical for haploid population genet-

ics (e.g., Taylor and Jonker, 1978) and can also arise in social adjustment processes based
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Figure 2: Dynamics for two populations. Phase portrait for replicator dynamics (Panel A), and
differential inclusions for sign-preserving dynamics (Panel B). Shaded rectangles are absorbing while
unshaded rectangles are transient under sign preserving dynamics.

on imitation (e.g., Schlag, 1998; Björnerstedt and Weibull, 1996). Of course, there are many

other plausible adjustment processes for humans that differ markedly from replicator (e.g.,

Friedman, 1991; Sandholm, 2010, Ch. 5-6), including most learning processes.

The advantage of sign preserving dynamics is that they capture a very broad set of plausible

adjustment processes—essentially those for which current material payoffs, as specified here

by the payoff bimatrix, dominate other considerations. But do the replicator stability results

generalize to this broader class?

The answer is affirmative, subject to a few nuances. To demonstrate, we will use differential

inclusions (Aubin and Cellina, 1984; Sandholm, 2010, Ch 6A), previously known as cone

fields (Smale, 1976). The rest of the subsection sketches the main ideas and the geometric

intuition, while Appendix A.1 includes the technical details.

As with a system of ordinary differential equations, the two-population adjustment process

starting from any given initial condition (s1(0), s2(0)) = (s1o, s2o) is described by a continuous

trajectory {(s1(t), s2(t)) : t ∈ [0,∞)}. However, for a differential inclusion, the tangent

vector (ṡ1, ṡ2) along the trajectory is required only to be included in some vector subspace;
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it need not satisfy a particular system of equations. For sign preserving dynamics, that

subspace is the orthant defined by the signs of (∆w1,∆w2).

Panel B of Figure 2 helps us visualize the resulting behavior. The horizontal and vertical

lines through (s∗1, s
∗
2) = (23 ,

2
3) divide the state space into four rectangles. At any point in

the open Southwestern rectangle (or on its outer edges, on the horizontal and vertical axes),

both ∆wi’s are positive, so sign preserving dynamics will produce tangent vectors in the

positive orthant �++. Hence the fraction of Hawks will increase in both populations, and

the trajectory (s1(t), s2(t)) will move Northeast until it exits this rectangle.

If the state exits across the vertical boundary s1 =
2
3 , s2 ∈ [0, 23), then it enters the Southeast-

ern rectangle, where ∆w1 > 0 > ∆w2. Here sign preserving dynamics require that (ṡ1, ṡ2)

lie in the SE orthant �+−, so the trajectory heads southeast and can never leave the South-

eastern rectangle. Either (a) it hits the outer edge s1 = 1, s2 ∈ [0, 23)] from which it must

converge to the pure NE (1, 0) because ṡ1 = 0 and ṡ2 < 0 on this edge, or (b) it hits the outer

edge s1 ∈ (23 , 1], s2 = 0 from which again it must converge to the pure NE (1, 0), because

ṡ1 > 0 = ṡ2 on this edge.

On the other hand, if the state exits the SW rectangle across the horizontal boundary

s1 ∈ [0, 23), s2 =
2
3 , then it enters the Northwestern rectangle. Since ∆w1 < 0 < ∆w2 in this

rectangle, the adjustment orthant is �−+ and the trajectory heads northwest. As before,

the trajectory must hit the outer boundary and then converge to the corner—in this case,

to the pure NE (0, 1).

Trajectories beginning in the NE rectangle are similar to those beginning in the SW. They

must eventually enter the SE or NW rectangles and then converge to one of the pure asym-

metric NE. If a trajectory happens to hit the interior Nash equilibrium point (s∗1, s
∗
2) = (23 ,

2
3),

then the adjustment direction is in �oo = {(0, 0)}, so it is a steady state. This equilibrium

point is dynamically unstable because any of its small open neighborhoods contains points

in the NW and in the SE rectangles and, as we have seen, trajectories from such points move

away from the interior equilibrium and towards a corner equilibrium.

To summarize, sign preserving dynamics for the two-population protocol of the HD game

have two stable equilibria, at the corners of the state space at which one population plays

all Hawk and the other population plays all Dove. The basin of attraction (the set of initial
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states whose trajectories converge to that equilibrium) for each of these asymmetric pure

equilibria includes the neighboring rectangle, and that rectangle is absorbing in the sense

that no trajectories starting in it can leave it. The other two rectangles (actually, squares in

the SW and NE) are transient in that all trajectories starting in them eventually exit.

The geometry of convergence is slightly different for the replicator dynamic. Its basins of

attraction are the triangles separated by the saddle path s1 = s2. (It may be worth noting

that the one-population protocol can be regarded as restriction to this saddle path and,

subject to this restriction, the symmetric interior equilibrium is stable in any sign preserving

dynamic.) Each of these basins contains one of the absorbing rectangles plus half of each

transient rectangle.

2.3 Testable Predictions

Economic applications of evolutionary games deal with finite populations of human players.

Here sampling error and behavioral noise will produce stochastic terms (see Appendix A.2),

so the large population, deterministic theory just reviewed should be used to predict central

tendencies, not exact behavior.

With this caveat in mind, we obtain the following testable predictions for the Hawk-Dove

game played over time in finite human populations.

Prediction 1 . Under a one-population matching protocol, the average fraction of Hawk

play will converge to s
∗ = 2

3 , while in a two-population protocol with equal population sizes,

the overall average fraction will converge to s̄ = 1
2 .

The last part of this prediction is based on the more specific

Prediction 2 . Under a two-population matching protocol, the average fraction of Hawk

play will approach si = 1 in one population and s−i = 0 in the other.

A feature of Hawk-Dove games is that D-D and H-D pairings efficiently split the available

surplus v > 0, while H-H pairings incur an efficiency loss c. The asymmetric pure NE

therefore are more efficient than the mixed interior equilibrium (1 vs. 1− 2
3

2
= 5

9), albeit far

less equitable (15:3 vs. 5:5). Hence we have
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Prediction 3 . A two-population matching protocol will lead to greater efficiency and a

substantially less equitable distribution of earnings than the one-population protocol.

Finally, the replicator basins of attraction are triangular and separated by the diagonal

s1 = s2, while convergence in more general sign-preserving dynamics is governed by the

absorbing rectangles. These alternative approaches lead respectively to versions (a) and (b)

of

Prediction 4 . Assume s1o �= s2o. The population i that more nearly converges to all-H in

a two-population matching protocol is more likely to be the one that (a) has the larger initial

fraction sio of H play, or if possible, (b) satisfies the initial condition sio >
2
3 > s−io.

All of the predictions could fail in the laboratory if the human subjects respond more strongly

to other considerations than to personal material payoff. Idiosyncratic tastes or systematic

errors are always possible. A smaller-than-predicted fraction of H play could be attributed

to risk aversion, since the bimatrix specifies a larger payoff spread for H (0 or 15) than for

D (3 or 9). A more interesting possibility is that human subjects may shun the efficient but

very inequitable equilibrium payoffs of (3, 15), and instead seek the efficient egalitarian D-D

outcome of (9, 9). In this case, the observed fraction of H play would again be smaller than

predicted in both matching protocols, and efficiency would be higher than predicted in the

one-population protocol.

On the other hand, we could observe a larger fraction of Hawk play than predicted if subjects

engage in negative reciprocity. In particular, the two-population game could be seen as a

team contest with the winners gaining a prize five times larger than the losers’ prize. The

result could be an ongoing war of attrition, or vendetta, with very high and persistent levels

of H play in both populations.

3 Experimental Design

To test these predictions, we conducted eight continuous time laboratory sessions with 12 (in

one session 10) subjects in each. In each of 20 two minute periods in each session, subjects

were independently and randomly assigned an initial action and then could change their

actions at any time and as often as they liked. They earned flow payoffs generated by the
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Figure 3: Screenshot of continuous time display.

matrix in Table 1.

This continuous time implementation was enabled by a new software package called ConG.1

A screenshot of the user interface is provided in Figure 3. On the left side of the screen is

a reproduction of the payoff matrix; the row corresponding to the subject’s current action

is highlighted in blue (every subject is framed as the row player). Moreover, blue shading

on the columns becomes darker as more subjects from the opposing population play the

corresponding action.

On the right side of the screen are two time series evolving over the course of the period,

the top representing actions and the bottom payoffs. In each case the subject’s own action

is represented in blue while the mean of the opposing population is represented in red. The

interface also displays the time remaining in the period, period earnings, and cumulative

earnings.

Subjects were assigned (without their knowledge) either to population i = 1 or to population

i = 2 at the beginning of the session. We study two treatments, varied within session. In

the one population treatment, denoted 1P, each player j is matched each period with each

of the n − 1 other players. Her instantaneous payoff when n−jH of the other players are

choosing A (or Hawk) is 15−15n−jH

n−1 if she plays A and is 9−6n−jH

n−1 if she plays B. In the two

1Friedman and Oprea (2010) use ConG in a very different setting. They study pairwise play of prisoner’s
dilemmas in continuous time and find very high rates of cooperation.
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population treatment, denoted 2P, each subject j in population i(j) is matched only with

the n/2 subjects in the other population −i and earns instantaneous payoff 15− 15n−iH

n/2 for

A or 9 − 6n−iH

n/2 for B, where n−iH is the current number of Hawks in the other population

−i.

Instantaneous payoffs are accumulated over each two minute period. For example, if all

players independently spend half their time as Hawks (A), then each player earns 1
2(15−15 ·

1
2) +

1
2(9− 6 · 1

2) = 6.75 points per period.

At the beginning of each period subjects were randomly assigned an initial action. We will

exploit this exogenous variation to study how initial conditions impact convergence.

Instructions mentioned the two matching protocols, but subjects were never told which was

in force, and the interface offered no clues. Subjects observed only mean payoffs and mean

action choices of their counterpart population and because initial actions were shocked to a

random position at the beginning of each period it was impossible to make firm conclusions

about structural changes at the beginning of period 11. This design choice further strength-

ens our test. Because subjects had no opportunity to consciously coordinate on a change

of strategy with the change of treatment, treatment effects can only emerge by the sorts of

adaptive forces specified by the theory.

In sessions 1-4 subjects interacted under treatment 1P for the first 10 periods and 2P for the

second half. In sessions 5-8 this ordering was reversed.2

All sessions were conducted using inexperienced undergraduate subjects at the University of

California, Santa Cruz. Instructions, read aloud to subjects, are reproduced in Appendix C.

Sessions lasted roughly 75 minutes and earnings, including a five dollar show up fee, averaged

$17.

4 Results

We begin with an overview and tests of the first three predictions. Later subsections examine

the fourth prediction and the underlying individual behavior. For tractability, the reported

2Supplementary data analysis, available on request, confirms that the order of treatments has no quali-
tative effect on our main results.
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Figure 4: Mean rates of Hawk play within period.

data are samples from each one-second interval.

4.1 Within Period Behavior

Figure 4 plots, second by second, the mean fraction of Hawk play over all 160 periods of

data. Blue (red) lines denote 1P (2P) periods, and dotted (solid) lines are from the first

five (last five) periods in the treatment. Due to the random assignment of initial actions, all

lines start near 0.5, and all rise quickly. The 1P lines reach the predicted MNE value of 0.67

within a few seconds and remain in that vicinity for the rest of the period. The 2P lines

also jump quickly to 0.67 or above, but then trend downward over the rest of the period,

eventually covering about half the distance to PNE level of 0.5.
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(1) (2) (3) (4)
Hawk Separation Efficiency Gini

Intercept 65.023∗∗∗ 21.701∗∗∗ 59.305∗∗∗ 4.45∗∗∗

(0.900) (0.871) (1.818) (0.295)
P2 0.453 11.350∗∗∗ 2.421 16.76∗∗∗

(0.301) (1.864) (1.923) (1.489)
t 0.027∗∗∗ 0.013 −0.031∗∗∗ −0.007∗∗∗

(0.003) (0.008) (0.007) (0.001)
P2× t −0.086∗∗∗ 0.214∗∗∗ 0.165∗∗∗ 0.06∗∗∗

(0.004) (0.035) (0.032) (0.005)
At t=120 seconds

1P 69.06∗∗∗ 23.26∗∗∗ 54.62∗∗∗ 3.67∗∗∗

2P 57.79∗∗∗ 60.27∗∗∗ 76.80∗∗∗ 27.51∗∗∗

Table 2: Regression results for behavior within period. In all cases, standard errors are robust and
clustered at the session level. Estimates and standard errors are multiplied by 100 for legibility
and can be interpreted as percentages.

To obtain more quantitative evidence, we estimate the following equation:

sHjkt = β0 + β1P2jk + β2t+ β3P2jk × t+ �jkt (4)

where sHjkt is the observed fraction of Hawk play in second t ∈ {1, 2, ..., 120} of period k

of session j, while P2 is an indicator for the two-population treatment and � is assumed

to be Gaussian distributed. Standard errors are clustered at the session level to control for

within-group dependence.

Column (1) of Table 2 collects the coefficient estimates. The entry for t indicates a slight

positive trend in the 1P treatment, but the interaction entry indicates that the trend is

reversed and much stronger in 2P. The last two lines show the estimated rates of Hawk play

at the end of the period. A Wald test (p = 0.000) confirms that these final rates differ

significantly across treatments.

Thus the evidence supports Prediction 1 and can be summarized as follows.

Result 1 Average rates of Hawk play quickly and closely approximate the mixed NE value

of 2/3 in the 1P treatment, and they move decisively towards pure NE value of 1/2 in the

2P treatment.

Recall that Prediction 2 is that, in treatment 2P, the rates of H play in the two populations

14



0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Second

H
aw

k 
P

la
y

1P Early
1P Late
2P Early
2P Late

Figure 5: Mean rates of Hawk play by second within period. Separate series are plotted for the
(weakly) more Hawkish and less Hawkish group to visualize the degree of separation in rates across
groups.

will diverge towards 0 and 1. Of course, in 1P, the rates should not differ systematically

because group identity is meaningless in that matching protocol. However, Appendix A

notes that, given binomial error in the 1P mixed NE, the group with the higher rate should

have on average 0.21 more Hawk play.

Figure 5 gives an overview of the relevant evidence. Using the same coloring and line

weighting schemes as before, it displays separate lines for the group with the higher rate

and the group with the lower rate of Hawk play that period. The lines in the 1P (blue)

treatment bracket the mixed NE value of 2
3 and remain separated by almost exactly the

predicted 0.21.

By contrast, the 2P (red) lines diverge as the Hawkish group on average becomes increasingly

Hawkish and the Dovish group gradually becomes more Dovish. This predicted separation
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is not complete; on average between 1 and 2 players deviate from pure NE in the Dovish

population and 1 player deviates in the Hawkish population. Nonetheless, the increasing

separation across groups confirms Prediction 2. It is particularly striking in view of the

fact that group assignments are constant across the two treatments— the same groups of

individual subjects make similar choices in 1P but make divergent choices in 2P, no matter

which treatment comes first.

More quantitative evidence comes from a regression similar to (4) above. Now the dependent

variable is separation ∆sjkt = s[1](jk)(t) − s[2](jk)(t) ≥ 0, the difference in second t between

the observed fraction of Hawk play in the group [1](jk) with the larger average in period k

of session j and that observed in the other group [2](jk).

∆sjkt = β0 + β1P2jk + β2t+ β3P2jk × t+ �jkt (5)

Column (2) of Table 2 reports the coefficient estimates. The intercept measures the initial

separation in 1P, and its value of 0.21 is precisely as predicted in a mixed NE. The small

and insignificant t coefficient indicates no systematic separation trend in 1P, but the large

positive interaction coefficient indicates a very strong trend in 2P. By the end of the period

in 1P, on average there is about one extra H player (23 percent of the population of 5 or

6 players) in the more Hawkish population, while in 2P the average final difference is at

least three players (60 percent). The difference across treatments is significant at the one

percent level. The evidence thus provides support for Prediction 2, and can be summarized

as follows.

Result 2 The difference in Hawk play between the two groups is small and trendless in 1P,

while in 2P it increases steadily and becomes quite large and significant.

Prediction 3 concerns the impact on absolute and relative welfare. Recall that efficiency

(Eff = total realized payoff as a fraction of the maximum possible) is predicted to be 5
9 in

1P and to be 1.0 in 2P. Panel (a) of Figure 6 shows rates of efficiency on average at each

second for both treatments. Efficiency starts at 75% (because the H-H encounter rate begins

at 25% due to the random assignment of initial actions) but in 1P periods it drops almost

immediately to the predicted level and stays there. It shows a similar immediate drop in

2P periods, but then moves decisively higher and approaches 80 percent by the end of later
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Figure 6: Mean efficiency (Panel a) and inequality (Panel b) within period.

periods (solid red line).

The usual regression, with efficiency as the dependent variable,

Effjkt = β0 + β1P2jk + β2t+ β3P2jk × t+ �jkt, (6)

yields the coefficient estimates shown in column (3) of Table 2. The small but significantly

negative t coefficient probably reflects the impact of the strategy initialization; the final

estimate of 55% is right on target for P1. Average efficiency in 2P reaches a final value of

77% and is trending strongly upward.

These efficiency gains come at a substantial cost to equity. Panel (b) of Figure 6 reports the

Gini coefficient, the standard inequality measure. As predicted, it falls quickly to a very low

level in 1P, but increases immediately in 2P and continues to rise modestly over time and

across periods, eventually reaching 27.5%, not far below the predicted level of 33%.

These impressions are tested in the regression

Ginijkt = β0 + β1P2jk + β2t+ β3P2jk × t+ �jkt, (7)
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with results shown in the last column of Table 2. It confirms that the differences between the

1P and 2P treatments are very large, increasing, significant, and in the predicted direction.

Result 3 The two-population treatment generates substantially greater average inequity and

substantially greater average efficiency than the one-population treatment, and these differ-

ences increase over the course of the period.

4.2 Initial Conditions and Equilibrium Selection

Prediction 4 says that pure Nash equilibrium PNEi is selected in a given 2P period if the

initial conditions (s1o, s2o) lie (a) on same side of the diagonal s1o = s2o as PNEi, or at least

(b) in the absorbing rectangle containing PNEi.

The prediction concerns the final state, and as its empirical counterpart we chose (s1Fjk, s2Fjk)

= average play over the last 10 seconds of period k of session j. As a robustness check, we

also looked at the last 20 seconds and found no substantive difference.

The prediction is contingent on the initial state, and there are two obvious choices for its

empirical counterpart: (i) the initial state determined by the realized randomization that

period, or (ii) the final state reached in the previous period.

The relevant data come from sessions j = 1, ...8, each of which has 9 periods in treatment

2P with a previous 2P period. In 71 of these 72 periods, the final state (s1Fjk, s2Fjk) lies

inside one of the absorbing rectangles, and the exceptional period is a near-miss, so there is

no ambiguity in deciding whether PNE1 or PNE2 is being selected.

In testing the prediction, we focus on the final difference in Hawk shares,Djk = s1Fjk−s2Fjk ∈
[−1, 1]. The value Djk = 1 indicates full convergence to PNE1 (all Hawk in population 1)

in period k of session j, while Djk = −1 indicates full convergence to PNE2 (all Hawk

in population 2). Intermediate positive (negative) values indicate incomplete convergence

to PNE1 (to PNE2). We implement (ii) above as last period’s final difference Djk−1, and

implement (i) as the random initialization difference Dojk = s1ojk − s2ojk ∈ [−1, 1].

For the sake of completeness, we estimate the equation

Djk = β0 + β1P2 + β2Djk−1 + β3Djk−1 × P2 + β4Dojk + β5Dojk × P2 + �jk (8)
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Variable Estimate Standard Error
Intercept −0.006 0.050

P2 0.073 0.059
Do −0.077 0.078

P2×Do 0.436∗∗ 0.167
Dk−1 0.204 0.156

P2×Dk−1 0.395∗ 0.215

Table 3: Coefficient estimates for equation (8). Standard errors are clustered at the session level.
One, two and three asterisks indicate significance at the 10, 5 and 1 percent levels

on the 72 data points in 2P together with the 72 corresponding data points in 1P.

Table 3 collects the results. The intercept and linear terms have insignificant coefficients,

consistent with the evolutionary game theory implication that initial conditions have no

lasting impact in the 1P treatment. The impact of initial conditions in 2P is measured by

the sums Do + P2 × Do = 0.359∗∗ and Dk−1 + P2 × Dk−1 = 0.598∗∗∗. Both impacts are

positive and significant, especially that of (ii), the Hawk difference last period.

Our interpretation is that the random initialization does have some influence on subsequent

behavior in 2P, but that behavior responds somewhat more strongly to the shared experience

of what happened last period. If Hawkishness in group 1 relative to group 2 increased by

some amount x this period then, other things equal, we’d expect about 0.60x more relative

Hawkishness next period. The same increase x in random initial assignments would push

final behavior in the same direction but only by about 0.36x.

The variable Djk−1 captures groups’ lagged behavior and it may partly reflect the fact that

some groups simply have more aggressive players than others. The insignificance of this

variable in 1P suggests that such group composition is not the dominant force even in 2P.3

Thus the data are generally consistent with Prediction 4a, as summarized in

Result 4 . The final state in the previous period has a modest and statistically insignificant

impact on the current final state in 1P but has a substantial and positive effect in 2P. The

same is true (to a slightly lesser extent) of the random initialization.

3Indeed, as a robustness check (available upon request), we estimated a version of (8) using only 2P data
but with the mean value of D from corresponding 1P periods included as an explanatory variable to control
for group differences in intrinsic Hawkishness. Even with this control, Djk−1 remains large and significant,
again suggesting that composition effects are not the main driver of the estimates in Table 3.
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Different Same Total
Absorbing 11/20=0.55 17/19=0.89 28/39=0.72
Transitory 1/11=0.09 6/8=0.75 7/19=0.37

Total 12/31=0.39 23/27=0.85 35/58=0.60

Table 4: Contingency Table. Entries show the number of correct predictions of the final state’s
absorbing rectangle as a fraction of the number of periods in each contingency combination. The
contingencies are whether the random initialization is in an an Absorbing or Transitory rectangle,
and whether it is on the Same or Different side of the diagonal as last period’s final state.

Is it really the distance from the diagonal that matters in 2P (as suggested by the regression

and by replicator dynamics) or is it just the absorbing rectangle (as in Prediction 4b and

sign preserving dynamics)? Variable Djk−1 can’t tell us, because the (last period) final state

virtually always belongs to the absorbing rectangle. So the empirical question becomes: how

much more predictive is the random initialization when it lies in an absorbing rectangle?

A contingency table provides some direct evidence. Of the 72 observations in 2P, we drop the

14 in which the initialization is on the diagonal and thus uninformative. For the remaining

58 observations, Table 4 shows that, when it disagrees with the previous final state, the

current random initialization correctly predicts the selected equilibrium in about half the

observations (11 of 20) when it lies in the absorbing rectangle, but only in 1 of 11 when it

does not. When it agrees with the previous final state, the current random initialization

correctly predicts the selected equilibrium in all but four observations (23 of 27); here it

makes little difference whether or not it lies in an absorbing rectangle.

Our interpretation is that the initialization has no influence unless it is in the absorbing

rectangle and disagrees with the previous final state. In other cases, the previous final state

(which in each of the 58 observations lies in an absorbing rectangle) seems the best predictor.4

Hence the evidence seems entirely consistent with Prediction 4b, and may be encapsulated

as follows.

Result 5 As in sign preserving dynamics, the initial condition has predictive power when it

lies in an absorbing rectangle. We found no evidence of predictive power for initial conditions

that lie in a transitory rectangle.

4A dummy variable regression (available on request) confirms that these observations are statistically
significant.
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4.3 Individual Behavior and Best Response

The theory of evolutionary games is concerned with population distributions and has little to

say about individual behavior. Of course, it is individual decisions that create the population

distributions observed in our experiment, and it is of some independent interest to explore

their nature.

For example, Prediction 1 says, correctly, that in a one-population treatment, the overall

fraction of Hawk play should stabilize at the symmetric MNE value of 2
3 , but it doesn’t say

how. Do all individuals try to employ the same mixed strategy 2
3H + 1

3D, say by choosing

independently from the mix at regular intervals? Or by following a Markov switching process

with a faster transition rate from D than from H? Or do different individuals specialize

differently, with about twice as many consistently playing H as consistently playing D?5

Let us say that a player is a strong specialist if she spends at least 90% of the period in one

of the strategies, and a specialist if the fraction is at least 80%. Figure 7 shows that half the

Hawkish players in 2P are strong specialists and about 2/3 are specialists. Even in 1P, half

the Hawkish players are specialists and about 1/3 are strong specialists. On the other hand,

less than 1/5 of Dovish players are strong specialists in either treatment, and the median

rate of D play among Dovish players is under 65% in 1P and just a bit over 70% in 2P. Since

there are more Hawkish than Dovish players, we conclude that overall about half the players

are specialists.

It is reasonable to suppose that specialists seldom switch strategies, but how about non-

specialists? Panel (a) of Figure 8 shows that on average, about 10 percent of subjects switch

each second throughout the period (after an initial flurry) in both population treatments

and in both early and late periods. Panel (b) shows falling switch rates in 2P—the median

player switches 10 times in the first period, and only 5 times by the last—and a more modest

decline in switch rates in 1P periods. Panel (c) shows the other side of the same coin, the

median proportion of time a subject spends in their more favored action. This rises modestly

over time and, as we have already seen, is a bit higher in 2P. Thus non-specialists switch

fairly often, even in later periods when they become less common.

5Friedman (1996) argues that his subjects in discrete time games mostly do specialize, and that near
interior NE this can be understood as a variant Harsanyi’s (1973) notion of purification.

21



0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion Time Spent in One Action

C
D
F

Figure 7: Cumulative distribution functions of specialization rates over last 5 periods. The dotted
lines (blue for 1P treatment, red for 2P) show the fraction of time in Dove for subjects who played
Dove more than half the time, while solid lines show the fraction of time in Hawk by Hawkish
players.

22



0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) 
 Switches By Second

Second

S
w

itc
h 

R
at

e

1P Early
1P Late
2P Early
2P Late

2 4 6 8 10

0
2

4
6

8
10

12

(b) 
 Switches By Period

Period

M
ed

ia
n 

S
w

itc
he

s

1P
2P

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

(c) 
 Persistence

Period

M
ed

ia
n 

Ti
m

e 
S

ha
re

 in
 O

ne
 A

ct
io

n

Figure 8: Switch rates within (Panel a) and across periods (Panels b and c). Blue (red) indicates
1P periods (2P periods).

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rate of Best Response

Second

B
es

t R
es

po
ns

e 
R

at
e

1P Early
1P Late
2P Early
2P Late

Figure 9: Best response rates within period.

23



0 20 40 60 80 100 120

0
2

4
6

8
10

1P

Second

A
ve

ra
ge

 P
ay

of
f

Dove
Hawk

0 20 40 60 80 100 120
0

2
4

6
8

10

2P

Second

A
ve

ra
ge

 P
ay

of
f

Dove in Dove
Hawk in Dove
Dove in Hawk
Hawk in Hawk

Figure 10: Payoffs by treatment, action and population tendency plotted at each second.

The main conclusions on individual behavior may be summarized as follows.

Result 6 Individual player behavior is inconsistent with symmetric stationary mixing. Switch-

ing becomes less common in later periods periods, and eventually a majority of players spe-

cialize in Dove or (more commonly) Hawk.

Underlying evolutionary dynamics, as we saw earlier, is the principle that players tend to

switch to the higher payoff strategy over time. But there is a countervailing force, at least

in treatment 2P—human players may play H even when it has a lower payoff in order to

hinder the other population and perhaps help their own. In retrospect, some evidence for

this “vendetta hypothesis” can be found in Figure 4: the initial rise in H play is steepest

and highest in later 2P periods.

Figure 9 shows when players actually employ the higher payoff strategy. Perhaps surprisingly,

it shows that only about 60% of players do so in 1P after the first few seconds, and that

there are no apparent trends within or across periods. In 2P, the best response rate also

begins around 50% (as it must, due to random initialization), but it trends upward both
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within period and across periods, and eventually reaches about 80%.

Figure 10 helps resolve the puzzle. It shows that in 1P the two strategies give essentially the

same payoff after the first few seconds, so there is hardly any advantage to best responding.

In 2P, however, the Hawkish population has a clear incentive to best respond, and it increases

over time. This surely helps explain the increase in Hawkish play in this population. The

advantage to playing Dove in the Dovish population is smaller and apparently trendless.

This provides a self-interest explanation of why we see stronger convergence in the Hawk

population than Dove population.

To summarize,

Result 7 In the one-population treatment, players on average are nearly indifferent between

actions and the best response rate is static and not large. In the two-population treatment,

the incentive to best respond, and the rates of best response, increase on average within and

across periods, particularly in the Hawkish populations.

5 Discussion

Evolutionary game theory, like competitive equilibrium theory, predicts outcomes that are

the “result of human action but not ... human design” (Ferguson, 1767). However, due

to conceptual and technical difficulties, there have been few laboratory tests to date of the

distinctive predictions of evolutionary game theory.

In this paper we introduce new laboratory techniques for playing population games in con-

tinuous time, and we obtain some striking results. In the one-population treatment, the

evolutionary game prediction—that the fraction of Hawk play will approximate the sym-

metric mixed NE value of 2/3— turns out to be very accurate after the first few seconds

of our two minute periods. In the two-population treatment, the overall rate of Hawk play

is substantially lower, though not quite as low as predicted. More importantly, we indeed

get divergent rates of Hawk play across the two populations, and the rates move towards

the predicted extremes of the asymmetric pure NE. Moreover, we find that initial conditions

(especially as proxied by final behavior in the previous period, but also by current random

initialization) help predict which of the two pure NE is selected. The differential inclusion
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specification helps identify when initializations will have greatest predictive power.

The experiment also sheds some light on issues neglected by evolutionary game theory. The

underlying individual behavior shows an increasing degree of specialization among strategi-

cally identical players, especially in the two-population treatment and among Hawks. The

dynamics seem to be driven, at least in part, by an interplay between the best response rates

and incentives to best respond. In the one-population treatment, the payoffs quickly equalize

between the two strategies and there is little incentive to best respond. By contrast, in the

two-population treatment, the incentive to best respond increases as the state gets closer to

an asymmetric pure NE, and the state gets closer to that NE as more players respond to the

incentive.

An intriguing aspect of our experiment is that, even in later two-population periods, players

don’t immediately jump to where they left off in the previous period. Instead, they seem

at first to engage in vendettas, as witnessed by the highest overall rates of Hawk play.

Nevertheless, the asymmetry of Hawk play increases steadily throughout the period, and in

the long run (of 120 seconds!) the “rationality” of pure NE prevails, despite its extreme

inequity. Are there treatments that prolong the vendetta epoch? Smaller populations,

perhaps, or devices that evoke an Us vs Them mentality? Can the two populations then

work out a mutual accommodation, e.g., by alternating the two pure NE within or across

periods? Will vendettas would disappear altogether in larger populations? These questions

seem ripe for future research.
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Appendix A: Mathematical Details

Sign preserving dynamics as differential inclusions

A differential inclusion on our state space is defined by a correspondence V : [0, 1]2 ⇒ �2,

s = (s1, s2) �→ V (s) ⊂ �2. A solution to (or trajectory of) the differential inclusion V from

a given initial condition so = (s1o, s2o) is a continuous map T : [0,∞) → [0, 1]2, t �→ s(t) =

(s1(t), s2(t)) such that s(0) = so and, except perhaps for t in a measure zero subset of [0,∞),

the tangent vector ṡ(t) exists and satisfies ṡ(t) ∈ V (s(t)).

For sign preserving dynamics, the set V (s) of allowable tangent vectors is (most of) the

orthant defined by the signs of (∆w1,∆w2). To write it out, use the sign function sgn(x) = −
if x < 0, = + if x > 0, and = o if x = 0, and let �++ = {(x, y) ∈ �2 : x > 0, y > 0} denote

the open positive orthant, �+− = {(x, y) ∈ �2 : x > 0 > y} denote the Southeast orthant,

�o− = {(x, y) ∈ �2 : x = 0 > y} denote the line heading South from the origin, etc. Also,

let || · || denote the usual Euclidean norm, e.g., ||∆w||2 = ∆w
2
1+∆w

2
2. We impose a Lipshitz-

Smale commensurability condition via the ε-annulus, Aε(s) = {(x, y) ∈ �2 : ε−1||∆w(s)|| ≥
||(x, y)|| ≥ ε||∆w(s)||}.

Sign preserving dynamics can now be defined as solutions to a differential inclusion V such

that, for some small ε > 0,

V (s) = A
ε(s) ∩ �(sgn(∆w1(s)),sgn(∆w2(s))) (9)

for all s ∈ (0, 1)2. On the boundaries si = 0, the set V (s) of tangent vectors is the intersection

of the closed half-plane ṡi ≥ 0 with the RHS of (9); this prevents the share of Hawks from

going negative. Likewise, V (s) on the boundaries si = 1 intersects the RHS of (9) with the

half-plane ṡi ≤ 0 to prevent the share from exceeding 1.0.

It is routine (but a bit tedious) to verify that this correspondence V is what Sandholm (2010,

Ch 6A) calls good UHC, and therefore has well-behaved solutions. Of course, the solutions

are not unique—in some sense, that is the point of using differential inclusions rather than

ODEs—but their tangent vectors can vary continuously (or even be constant) on the interior

of regions where ∆w1 and ∆w2 have a given signs, e.g., on the transient and the absorbing

rectangles in the Hawk-Dove game. The trajectory can have a kink, however, when it crosses

29



regions.

The Lipshitz-Smale annulus implies a positive lower bound on the velocity outside any

neighborhood of the equilibrium points (where ||∆w|| = 0) and thus prevents the trajectory

from stagnating in the interior of a rectangle or in the relative interior of an edge. This

allows the intuitive geometric arguments in the text to be made rigorous in a straightforward

manner. Consequently we have the following result.

Proposition 1 . Let {s(t) : t ∈ [0,∞)} be a trajectory with initial condition s(0) = so =

(s1o, s2o) for sign preserving dynamics of the HD game in Table 1. Then

1. There is some t̂ > 0 such that si(t) ≥ 2
3 ≥ s−i(t) ∀t ∈ [t̂,∞) either for i = 1 or for

i = 2.

2. If sio >
2
3 > s−io then si(t) >

2
3 > s−i(t) ∀t ∈ [0,∞).

3. If sio >
2
3 > s−io then limt→∞ si(t) = 1 and limt→∞ s−i(t) = 0.

Part 1 says that the open SW and NE rectangles are transient, and part 2 says that the

open SE and NW rectangles are absorbing. Part 3 says that all trajectories starting in the

SE (or NW) rectangle converge asymptotically to PNE1 (or to PNE2, respectively).

Three further remarks may be in order.

• Replicator dynamics and sign preserving dynamics offer contrasting predictions of what

happens in the HD game near the unstable corners (0, 0) and (1, 1) of the state space.

Replicator dynamics predict very slow adjustment, while sign preserving dynamics

suggest adjustment at least as rapid there as anywhere else in the transient rectangles.

We didn’t test this prediction because our experiment provides almost no relevant

data, and also because the contrast arises not from the basic nature of ODEs versus

differential inclusions, but rather from their implementation in terms of growth rates

(for replicator) versus rates of change (for the differential inclusions).

• Sign preserving dynamics do not always produce such clear predictions, even in 2x2

bimatrix games. For example, in a typical matching pennies type game, sign preserv-

ing dynamics predict only that trajectories will spiral clockwise (or counterclockwise,
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depending on the parametrization). They allow the interior NE to be asymptotically

stable (inward spirals), or neutrally stable (closed loops), or unstable (outward spirals).

They even allow self-intersecting trajectories.

• With more than two alternative strategies available to some populations, sign preserv-

ing dynamics admit many different generalizations. As noted in Weibull (1995), Sand-

holm (2010) and elsewhere, these include payoff-monotone dynamics, payoff-positive

dynamics, best-response dynamics, and many more.

Stability Analysis

Here we use standard linearization techniques (e.g., Hirsch and Smale, 1974) to determine

the stability of the HD steady states under replicator dynamics.

Recall that for the given HD matrix, replicator dynamics are given by the following coupled

pair of ordinary differential equations:

ṡ1 = 3s1(1− s1)(2− 3s2) = 6s1 − 6s21 − 9s1s2 + 9s21s2, (10)

ṡ2 = 3s2(1− s2)(2− 3s1) = 6s2 − 6s22 − 9s1s2 + 9s22s1. (11)

The Jacobian matrix for this system is:

J(s1, s2) =



 6− 12s1 − 9s2 + 18s1s2 −9s1 + 9s21

−9s2 + 9s22 6− 12s2 − 9s1 + 18s1s2



 (12)

Evaluating at the steady state PNE1, where (s1, s2) = (1, 0), we have

J =



 −6 0

0 −3



 (13)

Here the eigenvalues are λ1, λ2 = −6,−3 < 0 and hence we have a sink, i.e., a locally

asymptotically stable hyperbolic critical point.

The eigenvalues for the other asymmetric PNE2, where (s1, s2) = (0, 1), are similarly seen

to be λ1, λ2 = −3,−6 < 0, so PNE2 is another sink.
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At the interior MNE steady state (s1, s2) = (23 ,
2
3),

J =



 0 −2

−2 0



 . (14)

The characteristic equation now is λ2 − 4 = 0 and the eigenvalues are λ1, λ2 = 2,−2. Since

λ1 > 0 > λ2 we have a saddle point.

At the corner (s1, s2) = (0, 0)

J =



 6 0

0 6



 (15)

Here λ1 = λ2 = 6 > 0 which implies (s1, s2) = (0, 0) is a source, i.e., a hyperbolic critical

point for which all trajectories starting nearby exit any small neighborhood.

At the opposite corner(s1, s2) = (1, 1)

J =



 3 0

0 3



 (16)

Therefore λ1 = λ2 = 3 > 0 so here we have another source.

Finite Populations

Here we show that, with finite populations, the equilibrium states are a bit different than

with infinite populations, but the modifications necessary for our experiment turn out to be

quite minor.

To begin, suppose there is single finite population of n players. Then the fraction of Hawk

players is sh = k

n
for some k ∈ {0, 1, ..., n}. The protocol is to match each subject with every

other subject, but not with himself. Hence a Hawk player faces k−1 Hawks among the n−1

matches, and so the relevant state is s = shn−1
n−1 . The indifference condition for a Hawk thus

is 0 = ∆w(s) = 6− 9s or 2
3 = s = shn−1

n−1 . Solving, we see that Hawks are indifferent when

s
∗
h
=

2

3
+

1

3n
(17)
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and that they have no incentive to switch when sh ≤ s
∗
h
.

Similarly, a Dove faces the fraction sdn−1
n−1 of Doves, where sd = n−k

n
= 1 − sh is the overall

fraction, including himself. Solving the indifference condition sdn−1
n−1 = 1

3 yields

s
∗
d
=

1

3
+

2

3n
(18)

as the state at which Doves are indifferent. Again, Doves are optimizing as long as sd ≤ s
∗
d
,

or sh = 1− sd ≥ 1− s
∗
d
.

Thus we have a Nash equilibrium of the finite single population game at any state sh ∈
[1 − s

∗
d
, s

∗
h
]. Of course, in the limit as n → ∞, the NE interval collapses to a single point

s
∗ = 2

3 .

One session in our experiment had n = 10 subjects and the others had n = 12. In the the

10 player case, equations (17-18) yields the NE interval [.6,.7]. Thus any profile with 6 or 7

Hawks is a NE of the 10 player game. In the 12 player case, the NE interval is [.611,.694].

The only NE profiles are those with exactly 8 of the 12 players choosing Hawk, since 7/12

and 9/12 lie outside the NE interval.

Now consider the case of two finite populations of equal size n. Since ech subject is matched

with only subjects in the other population, the asymmetric pure NE are unchanged relative

to the infinite population case. With n = 6 as in most of our two population sessions, the

interior NE also remains unchanged, with 4 Hawks in each population. With n = 5, the

interior NE (s1, s2) = (23 ,
2
3) can not be supported by a pure strategy combination, since

3
5 <

2
3 <

4
5 , but it can be supported if at least one player mixes. For example, in NE each

population could have 3 Hawk players plus 1 Dove player plus 1 player mixing 1/3 Hawk

and 2/3 Dove.

Gini Coefficient

We now calculate the Gini coefficent when two equal-size populations play a PNE. Recall

that the Gini coefficient for the MNE is zero since all subjects receive the same payout.

The Gini coefficent is defined as A

A+B
where is A is defined as the area between the diagonal

and the Lorenz curve and B is defined as the area below the Lorenz Curve. Since A+B = 1
2 ,
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we can write that Gini coefficent is simply 2A.

In the PNE, one population will receive a per capita payoff of 15 (Hawk) while the other

population will receive 3 (Dove). Therefore the total is 3+15=18, with one population

receiving 3
18 = 1

6 and the other 15
18 = 5

6 of the total payoff. Hence the Lorenz curve consists of

the two line segments connecting (0, 0) to (12 ,
1
6) and (12 ,

1
6)to (1, 1). It is now straightforward

to calculate that A = 1
6 , and so the Gini coefficient at a PNE is 2A = 1

3 .
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Appendix B: Experimental Instructions

Instructions (C)

Welcome. This is an experiment in the economics of decision-making. If you pay close

attention to these instructions you may earn a significant amount of money that will be paid

to you in cash at the end of the experiment.

The Basic Idea

In each of several periods, you will be able to choose one of two actions: A or B. Each period

you will be matched with other players. Your earnings depend on the combination of your

action and the other players actions that period.

The earnings possibilities will be represented in a GAME MATRIX like the one above. Your

action will determine the row of the matrix (A or B) and each other players action will

determine a column of the matrix (a or b). The cell corresponding to this combination of

actions will determine your EARNINGS. In each cell are two numbers. The first of the two

numbers (shown in bold) is your earnings from this action combination. The second is the

other player’s earnings. You earn points from each match, and the points are scaled down

by the number of other players.

For example, if there are 7 other players and 4 of them chose A and 3 chose B, then your

payoff would be (4*0 + 3*15)/7 = 45/7 = 6.43 if you chose A, and it would be (4*3 +3*9)/7

= 39/7 = 5.57 if you chose B.

You will not have to do this arithmetic yourself. The computer does the calculations and,

as explained below, the bottom graph on your screen will display your earnings as you go

along.
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How to Play

There will be several periods. Each period will last 120 seconds and a counter at the top

of the screen will show how much time is left. The computer randomly chooses the initial

action, but

you can change your action at any time by clicking the two radio buttons or by using the up

and down arrow keys. The row corresponding to your chosen action be highlighted in blue

as in the figure, and the columns will be shaded in blue according to the number of players

currently choosing that action. You and the other players may change your actions as often

as you like each period.

The numbers in the payoff matrix are the payoffs you would earn if you maintained the same

action throughout the period. For instance if you played B for the entire period and all other

players played b in the example above, then you would earn 9 points and the other players

also would earn 9 points each.

If you played A for the first half of the period and B for the second half while the other

players played b for the entire period, your earnings would be 1
2(15) + 1

2(9) = 12, while

the other players earnings would be 1
2(3) +

1
2(9) = 6. This is because you spent half of the

period in the upper right corner and half in the lower right corner of the payoff matrix.

In general, your payoffs in the period will depend on how much time is spent in each of the
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cells on the payoff matrix. The more time you spend in any one cell, the closer the final

payoffs will be to the payoffs in that cell.

To the right of the screen are two graphs showing outcomes over the course of the period.

The top graph shows your action (in blue) and the average action of all other players (in

red) over the period. The graph is labeled Percentage of A If this now reads 100 it means

that at the moment you chose A. If it is 0 it means at that moment you chose B, and it

switches between 0 and 100 as you switch actions.

The bottom graph shows your earnings over the course of the period in blue. The more area

below your earnings curve, the more you have earned. In other words, the higher the blue

line the more you are currently earning. The red line shows the corresponding average payoff

for the other players.

Earnings

You will be paid at the end of the experiment based on the sum of point earnings throughout

the experiment. These total earnings are displayed as the Total Payoff at the top of the

screen.

Frequently Asked Questions

Q1. Is this some kind of psychology experiment with an agenda you haven’t told us?

Answer. No. It is an economics experiment. If we do anything deceptive or don’t pay you

cash as described then you can complain to the campus Human Subjects Committee and we

will be in serious trouble. These instructions are meant to clarify how you earn money, and

our interest is in seeing how people make decisions.

Q2. If I choose the rows and the other players chooses the columns, does their screen look

different than mine?

Answer. On everyone’s screen, the same choices are shown as rows. For example if another

player chooses row B then it shows up on your screen as a choice of column b. Of course,

the payoff numbers for any choice combination are the same on both screens, but are shown

in a different place.

Q3. Who am I matched with? Everyone else in the room?
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Answer. Sometimes you are matched with all other players in the room. Sometimes we

divide the players into two groups and we match you only with players in the other group.
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