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Abstract

Conservative symmetric second-order one-step integrators are derived using the Discrete
Multiplier Method for a family of vortex-blob models approximating the incompressible
Euler’s equations on the plane. Conservative properties and second order convergence are
proved. A rational function approximation was used to approximate the exponential in-
tegral that appears in the Hamiltonian. Numerical experiments are shown to verify the
conservative property of these integrators, their second-order accuracy, and as well as the
resulting spatial and temporal accuracy of the vortex blob method. Moreover, the derived
implicit conservative integrators are shown to be better at preserving conserved quantities
than standard higher-order explicit integrators on comparable computation times.
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1. Introduction

In recent years, structure preservation has become an important property to consider
when devising numerical methods for differential equations. The main idea is to design
discretizations which preserve important underlying structures of the continuous problem at
the discrete level. For ordinary differential equations (ODEs), geometric integrators, such
as energy-momentum method [1, 2], symplectic integrators [3, 4], variational integrators [5],
Lie group methods [6, 7], and the method of invariantization [8, 9, 10] are examples of dis-
cretizations which can preserve symplectic structure, first integrals, phase space volume, or
symmetries at the discrete level. Conservative integrators are structure-preserving numerical
schemes which preserve the first integrals, invariants, or equivalently, conserved quantities
of the ODEs up to machine precision. One main motivation behind such integrators is
their intrinsic long-term stability properties [11] making them favourable in the long-term
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study of dynamical systems, such as in population dynamics, celestial mechanics, molecular
dynamics, and fluid mechanics [12].

The purpose of this paper is to present conservative integrators for the higher-order
vortex methods introduced by [13] for the inviscid, incompressible Euler’s equations in the
plane. Vortex methods are a class of numerical methods that approximates the vorticity
field associated with the solution of the inviscid, incompressible Euler equations. In contrast
to point-vortex method [14] where the vorticity field is approximated by a finite number of
Dirac distributions, vortex blob methods regularizes the Dirac distributions with a finite
superposition of smooth localized vorticity fields, referred to as vortex blobs. The resulting
vorticity field associated with each vortex resembles a smooth blob with a width δ that
scales with the size of the discretization. As δ tends to zero, these blobs converge to the
Dirac distribution and one recovers the exact solution to the invicid, incompressible Euler’s
equations in the plane [15]. For invicid, incompressible flows, Hald [16] showed that as
the number of vortices increases for a special class of blob functions, solution of the vortex
methods converges to the solution of Euler’s equations with second order accuracy for an
arbitrarily long time interval. Later, Beale and Majda [17, 18] showed that vortex methods
could be chosen so that they converge with higher-order accuracy. Moreover, in [13], Beale
and Majda obtained higher-order vortex methods in two and three dimensions through
superposition of vorticity fields involving Gaussians with different scalings and products of
even polynomials with Gaussians. Vortex methods have found applications in many fields
from computational aerodynamics [19, 20, 21] to combustion [22, 23]. A brief survey of
different vortex methods in the literature can be found in [24]. Also, a more recent vortex
method based on a new singular vortex theory for regularized Euler fluid equations of ideal
incompressible flow in the plane can be found in [25].

In essence, vortex methods leads a system of ordinary differential equations (ODEs),
known as the vortex-blob equations, describing the evolution of interacting vortices approx-
imating the vorticity field. Traditionally, standard integrators are used to obtain numerical
solutions to the vortex-blob equations, such as Runge-Kutta methods in [13]. In contrast,
we construct conservative integrators for this ODEs using the Discrete Multiplier Method
(DMM) introduced by Wan et al. in [26]. The main idea of DMM is to discretize the so-
called characteristics [27] and conservation law multipliers [28] for ODEs so that the discrete
multiplier conditions hold. In [12], such framework was used to derive conservative integra-
tors for various many-body systems, including n–species Lotka–Volterra system, the n–body
problem with radially symmetric potential, and the n–point vortex models on the plane and
the unit sphere. In this paper, we will extend the results on the planar point-vortex method
of [12] by deriving conservative integrators for planar vortex blob methods.

This paper is organized as follows. In Section 1, we briefly review the higher-order vortex
methods given in [13] and introduce some common notations used throughout the paper.
In Section 2, we introduce additional notations and conventions used throughout the paper,
along with a quick review of DMM. Specifically, we state differential relations between con-
served quantities and conservation law multipliers, and the discretized versions in order to
construct a conservative integrator. Moreover, we review a known result regarding symmet-
ric schemes having even order of accuracy. In Section 3, we derive conservative discretiza-
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tions for the vortex-blob equations with 2nd, 4th, and 6th order velocity kernels. Section
4 is then devoted to numerical results. First, we verify that the DMM-based conservative
integrators preserve all the conserved quantities up to machine precision, in constrast to
standard integrators such as the implicit midpoint method, Ralston’s second-order method,
and Ralston’s fourth-order method. Second, we demonstrate that the conservative schemes
yield conserved quantities of vortex-blob equations that converge to the original conserved
integrals of Euler’s equations, as the number of vortices increases. Third, we illustrate that
the long-term vortex trajectories from the conservative schemes are qualitatively closer to
the exact trajectories than standard integrators. We then show numerically that the conser-
vative integrators are second-order accurate in time and verify that the vortex blob method
using the conservative integrator converges to the theoretical orders previously reported by
Beale and Majda using Runge-Kutta integrators. Lastly, we compare computation times of
the conservative integrators versus standard integrators and show that the derived schemes
are better at preserving conserved quantities on comparable computation times. Finally, in
the Section 5, we give several concluding remarks and discuss interesting avenues for further
exploration.

1.1. Brief review of the Vortex Blob Method

In this subsection, we review the derivation of the vortex-blob model and its associ-
ated conserved quantities, along with introducing common notations which will be used
throughout this paper. Readers familiar with this background may skip to the next section.

In the absence of body forces, the planar inviscid, incompressible Euler’s equations for a
fluid with constant density ρ is given by,

∂v

∂t
+ v ·∇v = −1

ρ
∇P, (1)

∇ · v = 0,

where v (z, t) denotes the velocity vector field and P (z, t) denotes the scalar pressure field
of the fluid at a point z = [x, y]T and time t. Recalling the vorticity is the scalar field
ω (z, t) satisfying ωk̂ = ∇× v, applying the curl on both sides of (1) yields the vorticity
equation [29],

Dω

Dt
=
∂ω

∂t
+ v ·∇ω = 0. (2)

Equation (2) implies that, in the Lagrangian description of the fluid, the vorticity of a fluid
particle is conserved along its trajectory. The problem we wish to solve is the vorticity-
velocity formulation given by,

Dω

Dt
= 0, (3a)

ω (z, 0) = ω0 on Ω0, (3b)

∇ · v = 0, (3c)
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∇× v = ω, (3d)

‖v (z, t) ‖2 → 0 as ‖z‖2 →∞, (3e)

where ω0 (z, t) is assumed to be compactly supported on Ω0. Equations (3c)-(3e) can be
combined to give the velocity in terms of vorticity through the Biot-Savart law yielding,

v (z, t) =

∫∫
Ω(t)

K
(
z − z′

)
ω
(
z′, t

)
dz′. (4)

Here K (z) = 1

2π‖z‖22
[−y, x]T is the velocity kernel [29] and Ω(t) is the domain with non-zero

ω at time t. Thus, the problem posed by (3a)-(3e) reduces to (3a), (3b), and (4) and it
follows from equations (3a)-(3e) that the following integrals are conserved for all time [30]:

1. The total vorticity in Ω(t), or in other words the circulation around ∂Ω(t), given by,

Γ := Γ [ω] (t) =

∫∫
Ω(t)

ω (z, t) dz. (5)

2. The x and y components of the total fluid impulse (or momentum) that must be applied
to the fluid in Ω(t) to generate the motion governed by the stream function Φ (z, t) from
rest, where Φ (z, t) := Ψ (z, t) + Γ

2π
log ‖z‖2 with ∇× (Ψk̂) = v. These components are,

Px := Px [ω] (t) = ρ

∫∫
Ω(t)

yω (z, t) dz, Py := Py [ω] (t) = −ρ
∫∫

Ω(t)

xω (z, t) dz.

(6)

3. The total moment (or angular momentum) about the origin of the force impulse required
to generate the motion determined by Φ (x, t) in Ω(t), which is given by,

L := L [ω] (t) = −ρ
2

∫∫
Ω(t)

‖z‖2
2 ω (z, t) dz. (7)

4. The kinetic energy of the fluid associated with the fixed amount of total vorticity being
distributed given by,

H := H [ω] (t) = − ρ

8π

∫∫
Ω(t)

′

∫∫
Ω(t)

ω (z, t)ω
(
z′, t

)
log ‖z − z′‖2

2 dz dz
′. (8)

Vortex methods arise from approximating the vorticity field ω via a system of ODEs as
follows. First, the domain Ω0 is discretized using a uniform square grid of size h and point
vortices are introduced at the center of each h by h square cell so that the i-th vortex
initially has vorticity ω0(zhi (0)), where zhi (t) is the position of the i-th vortex at time t and
its vorticity remains constant by equation (3a). Moreover, equation (5) implies that Ω(t)
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contains the same vortices as Ω0 for all time. Thus, we can discretize (4) to formulate ODEs
describing the trajectories of M vortices contained in Ω(t),

żhi =
M∑
j=1
j 6=i

K
(
zhi − zhj

)
ωjh

2, zhi (0) = [i1h, i2h] , i ∈ {1 . . .M}, i1, i2 ∈ Z, (9)

where we denoted ωi = ω0(zhi (0)) and velocity field v can be approximated by vh,

vh (z, t) =
M∑
j=1

K
(
z − zhj (t)

)
ωjh

2. (10)

SinceK(zhi −zhj ) becomes singular as two vortices approach each other,K can be regularized

by a mollification Kδ. The choice of of mollification determines the accuracy of the vortex
method and in [13], Beale and Majda chose the family of kernels,

Kδ,(m) (z) =
[−y, x]T

2π‖z‖2
2

[
1−Q(m)

(
‖z‖2

2

δ2

)
exp

(
−
‖z‖2

2

δ2

)]
. (11)

Here δ is a smoothing parameter, m denotes the order of the vortex method, and Q(m)(r) is
the m

2
− 1 order Laguerre polynomial normalized with unit constant term:

Q(2)(r) = 1, Q(4)(r) = 1− r, Q(6)(r) = 1− 2r +
r2

2
. . .

Without mollification, the approximate vorticity field vh of (10) leads to the point-vortex
method corresponding to a linear combination of Dirac distributions for point vortices. With
mollification, the approximate vorticity field vh correspond to a linear combination of lo-
calized vortex densities resembling smooth “blobs”, leading to the vortex blob method given
by (9) with Kδ,(m). For the family of mollified kernels of equation (11), the approximate
vorticity field corresponding to vh is given by,

ωh (z, t) =
M∑
i=1

ωih
2ζδ,(m)

(
z − zhi (t)

)
, (12)

where ζδ,(m) (z) = P (m)
(
‖z‖2

2

/
δ2
)

exp
(
‖z‖2

2

/
δ2
) /
δ2, with the first few even orders given by,

P (2) (r) =
1

π
, P (4) (r) =

1

π
(2− r) , P (6) (r) =

1

2π

(
6− 6r + r2

)
.
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For the rest of the paper, we will refer the ODEs of (9) with K replaced by Kδ,(m) the
vortex-blob equations of order m in the plane given by,

F (x,y, ẋ, ẏ) :=



[
ẋi +

h2

2π

M∑
j=1,j 6=i

ωj
yij

r2
ij

(
1−Q(m)

(
r2
ij

δ2

)
exp

(
−
r2
ij

δ2

))]
1≤i≤M[

ẏi −
h2

2π

M∑
j=1,j 6=i

ωj
xij

r2
ij

(
1−Q(m)

(
r2
ij

δ2

)
exp

(
−
r2
ij

δ2

))]
1≤i≤M


= 0,

(13)
where x = (x1, . . . , xM)T , y = (y1, . . . , yM)T , and (xi, yi) is the position of the ith vortex blob.

Furthermore, we used the abbreviations, xij = xi − xj, yij = yi − yj, and rij =
√
x2
ij + y2

ij.

Beale and Majda showed in [17, 18] that the solution to the mth order vortex-blob equations
converge to the solution of (3a)-(3e) provided that δ = hq, with 0 < q < 1. Moreover, it was
shown that the error is of the order δm = hqm.

Evidently, the ODEs (13) exhibits a Hamiltonian structure,

ωih
2ẏi = −∂H

h,(m)

∂xi
, ωih

2ẋi =
∂Hh,(m)

∂yi
,

where Hh,(m) (x,y) is the associated Hamiltonian. By Noether’s theorem, the translational
and rotational symmetry of the Hamiltonian yield the three other conserved quantities, in
addition to the Hamiltonian, which are the linear impulse P and angular impulse L. For
the m = 2 case, the conserved quantities are given by,

Ph (x,y) :=

 h2
M∑
i=1

ωiyi

−h2
M∑
i=1

ωixi

 , Lh (x,y) := −h
2

2

M∑
i=1

ωi
(
x2
i + y2

i

)
,

Hh,(2) (x,y) :=−
h4

4π

∑
1≤i<j≤M

ωiωj

[
log
∣∣r2
ij

∣∣+ E1

(
r2
ij

δ2

)]
.

For higher-order vortex-blob equations, the expressions for Ph and Lh remain the same,
only the expression for Hh,(m) changes. Specifically, the Hamiltonians for m = 4, 6 are,

Hh,(4) (x,y) := −
h4

4π

∑
1≤i<j≤M

ωiωj

[
log
∣∣r2
ij

∣∣+ E1

(
r2
ij

δ2

)
− exp

(
−
r2
ij

δ2

)]
,

Hh,(6) (x,y) := −
h4

4π

∑
1≤i<j≤M

ωiωj

[
log
∣∣r2
ij

∣∣+ E1

(
r2
ij

δ2

)
+

(
−

3

2
+

1

2

r2
ij

δ2

)
exp

(
−
r2
ij

δ2

)]
.

Here, E1 (x) denotes the exponential integral and its efficient evaluation up to machine
precision will be discussed at the end of Section 3.
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2. Discrete Multiplier Method

Before discussing the theory of multiplier method presented in [26], we first fix some
notations which will be used throughout the paper.

2.1. Notations and conventions

Let U ⊂ Rd and V ⊂ Rd
′

be open subsets where here and in the following d, d′, p ∈ N.
f ∈ Cp(U → V ) means f is a p-times continuously differentiable function with domain
in U and range in V . We often use boldface to indicate a vectorial quantity f . If f ∈
C1(U → V ), ∂xf :=

[
∂fi
∂xj

]
denotes the Jacobian matrix. Let I ⊂ R be an open interval

and let x ∈ C1(I → U), ẋ denotes the derivative with respect to time t ∈ I. Also if

x ∈ Cp(I → U), x(q) denotes the q-th time derivative of x for 1 ≤ q ≤ p. For brevity,
the explicit dependence of x on t is often omitted with the understanding that x is to be
evaluated at t. If ψ ∈ C1(I × U → V ), Dtψ denotes the total derivative with respect to
t, and ∂tψ denotes the partial derivative with respect to t. Md

′×d(R) denotes the set of all
d′ × d matrices with real entries.

2.2. Conserved quantities of quasilinear first order ODEs

Consider a quasilinear first–order system of ODEs,

ẋ(t) = f(t,x), (14)

x(t0) = x0.

where t ∈ I, x = (x1(t), . . . , xn(t)) ∈ U . For 1 ≤ p ∈ N, if f ∈ Cp−1(I × U → Rn) and is
Lipschitz continuous in U , then standard ODE theory implies there exists an unique solution
x ∈ Cp(I → U) to the first–order system (14) in a neighborhood of (t0,x0) ∈ I × U .

Definition 1. Let d′ ∈ N with 1 ≤ d′ ≤ d. A vector-valued function ψ ∈ C1(I × U → Rd
′
)

is a vector of conserved quantities1 (or equivalently first integrals) if

Dtψ(t,x) = 0, for any t ∈ I and C1(I → U) solution x of (14). (15)

In other words, ψ(t,x) is constant on any C1(I → U) solution x of (14).

A generalization of integrating factors is known as characteristics by [31] or equivalently,
conservation law multipliers by [28]. We will adopt the terminology of conversation law
multiplier or just multiplier when the context is clear.

Definition 2. Let d′ ∈ N with 1 ≤ d′ ≤ d and U (1) be an open subset of Rd. A conservation
law multiplier of F is a matrix-valued function Λ ∈ C(I × U × U (1) →Md

′×d(R)) such that

there exists a function ψ ∈ C1(I × U → R) satisfying,

Λ(t,x, ẋ)(ẋ(t)− f(t,x)) = Dtψ(t,x), for t ∈ I, x ∈ C1(I → U). (16)

1By quasilinearity of (14), it suffices to consider conserved quantities depending only on t,x, see [26].
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Here, we emphasize that condition (16) is satisfied as an identity for arbitrary C1 functions
x; in particular x need not be a solution of (14). It follows from the definition of con-
servation law multiplier that existence of multipliers implies existence of conservation laws.
Conversely, given a known vector of conserved quantities ψ, there can be many conservation
law multipliers which correspond to ψ. It was shown in [26] that it suffices to consider mul-
tipliers of the form Λ(t,x) where a one-to-one correspondence exists between conservation
law multipliers and conserved quantities of (14).

Theorem 1 (Theorem 4 of [26]). Let ψ ∈ C1(I ×U → Rd
′
). Then there exists a unique

conservation law multiplier of (14) of the form Λ ∈ C(I × U → Md
′×d(R)) associated with

the function ψ if and only if ψ is a conserved quantity of (14). And if so, Λ is unique and
satisfies for any t ∈ I and x ∈ C1(I → U),

Λ(t,x) = ∂xψ(t,x), (17a)

Λ(t,x)f(t,x) = −∂tψ(t,x). (17b)

To construct conservative methods for (14) with conserved quantities (15), we shall discretize
the time interval I by a uniform time size τ ∈ R, i.e. tk+1 = tk + τ for k ∈ N, and focus on
one–step conservative methods2. First, we recall some definitions from [26].

Definition 3. Let W be a normed vector space, such as Rd
′

with the Euclidean norm or
Md

′×d(R) with the operator norm. A function gτ : I × U × U → W is called a one–step

function if gτ depends only on tk ∈ I and the discrete approximations xk+1,xk ∈ U .

Definition 4. A sufficiently smooth one–step function gτ : I×U×U → W is consistent to a
sufficiently smooth g : I×U×U (1) → W if for any x ∈ C2(I → U), there is a constant C > 0

independent of τ so that
∥∥∥g(tk,x(tk), ẋ(tk))− gτ (tk,x(tk+1),x(tk))

∥∥∥
W
≤ C‖x‖

C
2
([t

k
,t
k+1

])
τ,

where ‖x‖
C

2
([t

k
,t
k+1

])
:= max

0≤i≤2

∥∥∥x(i)
∥∥∥
L
∞

([t
k
,t
k+1

])
. If so, we write gτ = g +O(τ).

We shall be considering the following consistent one–step functions for ẋ, Dtψ, ∂tψ:

Dτ
t x(tk,xk+1,xk) :=

xk+1 − xk

τ
= ẋ+O(τ), (18)

Dτ
tψ(tk,xk+1,xk) :=

ψ(tk+1,xk+1)−ψ(tk,xk)

τ
= Dtψ +O(τ), (19)

∂τt ψ(tk,xk+1,xk) :=
ψ(tk+1,xk)−ψ(tk,xk)

τ
= ∂tψ +O(τ). (20)

2Analogous results hold for variable time step sizes and multi-step methods, see [26, 11] for more details.
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Definition 5. Let f τ be a consistent 1-step function to f . We say that the 1-step method,

Dτ
t x(tk,xk+1,xk) = f τ (tk,xk+1,xk) (21)

is conservative in ψ, if ψ(tk+1,xk+1) = ψ(tk,xk) on any solution xk+1 of (21) and k ∈ N.

We now state two key conditions from [26] for constructing conservative 1-step methods,
which can be seen as a discrete analog of (17a) and (17b).

Theorem 2 (Theorem 17 of [26]). Let Dτ
t x, D

τ
tψ, ∂

τ
t ψ be as defined in (18)-(20). And

let Λ be the conservation law multiplier of (14) associated with a conserved quantity ψ. If
f τ and Λτ are consistent 1-step functions to f ,Λ satisfying

ΛτDτ
t x = Dτ

tψ − ∂τt ψ, (22a)

Λτf τ = −∂τt ψ, (22b)

then the 1-step method defined by (21) is conservative in ψ.

In [26], condition (22a) was solved by the use of divided difference calculus and (22b)
was solved using a local matrix inversion formula. For the vortex-blob equations (13), we
follow the approach employed by [12] and directly verify (22a) and (22b) for specific choices
of f τ and Λτ . Before we end this section, we mention a well-known result for even order of
accuracy for symmetric schemes. For more details, one can see Chapter II.3 of [4].

Definition 6 (Symmetric schemes [4]). Let Φτ be the discrete flow of a one-step nu-
merical method for system (14) with time step τ . The associated adjoint method (Φτ )∗ of
the one-step method Φτ is the inverse of the original method with reversed time step −τ , i.e.

(Φτ )∗ =
(
Φ−τ

)−1
. A method is symmetric if (Φτ )∗ = Φτ .

Theorem 3 (Theorem II-3.2 of [4]). A symmetric method is of even order.

3. Construction of exactly conservative integrators via DMM

In [12], conservative schemes for the point-vortex equations in the plane were derived
using DMM preserving the four analogous conserved quantities. Here, we will extend their
results and derive conservative schemes for the vortex-blob equations of order 2, 4, and 6
from Equation (13).

Before deriving the schemes, we first verify that Ph, Lh, Hh,(m) are indeed the conserved
quantities of (13) using Theorem 1. Let us define the vector of conserved quantities ψh as,

ψh (x,y) :=

 Ph (x,y)

Lh (x,y)

Hh,(m) (x,y)

 .

Using condition (17a), this yields the 4× (2M) multiplier matrix Λ given by,
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Λ (x,y) :=



[0]T1≤i≤M
[
h2ωi

]T
1≤i≤M[

−h2ωi
]T

1≤i≤M [0]T1≤i≤M[
−h2ωixi

]T
1≤i≤M

[
−h2ωiyi

]T
1≤i≤M[

−
h4

2π
ωi

M∑
j=1,j 6=i

ωjxij
C

(m)
ij

r2
ij

]T
1≤i≤M

[
−
h4

2π
ωi

M∑
j=1,j 6=i

ωjyij
C

(m)
ij

r2
ij

]T
1≤i≤M


,

where C
(m)
ij := C(m)

(
r2
ij

)
= 1−Q(m)

(
r2
ij

δ2

)
exp

(
−
r2
ij

δ2

)
.

We showed the details on how condition (17b) is satisfied in Appendix 6.1, which verifies
that ψh is indeed conserved quantities by Theorem 1. Next, we propose consistent choices
of Dτ

t x, D
τ
tψ

h, ∂τt ψ
h, Λτ , and f τ , then verify that conditions (22a) and (22b) are satisfied.

Specifically, we define,

Dτ
t x :=

1

τ

(
∆x
∆y

)
, Dτ

tψ
h :=

1

τ

 ∆Ph (x,y)

∆Lh (x,y)

∆Hh,(m) (x,y)

 , ∂τt ψ
h := 0.

As well, we define the discrete multiplier matrix Λτ and the discrete right hand side f τ as,

Λτ
(
xk+1,yk+1,xk,yk

)
:=

[0]T1≤i≤M
[
h2ωi

]T
1≤i≤M[

−h2ωi
]T

1≤i≤M [0]T1≤i≤M[
−h2ωixi

]T
1≤i≤M

[
−h2ωiyi

]T
1≤i≤M−h4

2π
ωi

M∑
j=1,j 6=i

ωj
xij(
rkij

)2 C
τ,(m)
ij


T

1≤i≤M

−h4

2π
ωi

M∑
j=1,j 6=i

ωj
yij(
rkij

)2 C
τ,(m)
ij


T

1≤i≤M


,

f τ
(
xk+1,yk+1,xk,yk

)
:=



−h2

2π

M∑
j=1,j 6=i

ωj
yij(
rkij

)2 C
τ,(m)
ij


1≤i≤Mh2

2π

M∑
j=1,j 6=i

ωj
xij(
rkij

)2 C
τ,(m)
ij


1≤i≤M


,
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where xi := (xk+1
i + xki )/2, yi := (yk+1

i + yki )/2, xij := (xk+1
ij + xkij)/2, yij := (yk+1

ij + ykij)/2,

C
τ,(2)
ij =

1

ξk+1
ij

ξkij
− 1

[
log

∣∣∣∣∣ξk+1
ij

ξkij

∣∣∣∣∣+ E1

(
ξk+1
ij

)
− E1

(
ξkij

)]
,

C
τ,(4)
ij =

1

ξk+1
ij

ξkij
− 1

[
log

∣∣∣∣∣ξk+1
ij

ξkij

∣∣∣∣∣+ E1

(
ξk+1
ij

)
− E1

(
ξkij

)
− e−ξ

k
ij

(
e−∆ξij − 1

)]
,

C
τ,(6)
ij =

1

ξk+1
ij

ξkij
− 1

[
log

∣∣∣∣∣ξk+1
ij

ξkij

∣∣∣∣∣+ E1

(
ξk+1
ij

)
− E1

(
ξkij

)
+

e−ξ
k
ij

(
e−∆ξij − 1

)(
−3

2
+

1

2
ξkij

)]
+

1

2
ξkije

−ξk+1
ij ,

and ξkij := (rkij
/
δ)2. As before, we verify that conditions (22a) and (22b) hold in Appendix

6.2 and 6.3. Thus, we have derived the conservative discretization for (13) which exactly
preserves ψ given by,

F τ
(
xk+1,yk+1,xk,yk

)
:=



xk+1
i − xki
τ

+
h2

2π

M∑
j=1,j 6=i

ωj
yij(
rkij

)2C
τ,(m)
ij


1≤i≤Myk+1

i − yki
τ

−
h2

2π

M∑
j=1,j 6=i

ωj
xij(
rkij

)2C
τ,(m)
ij


1≤i≤M


= 0. (23)

Moreover, we show that the above scheme is symmetric in Appendix 6.4, which is consistent
with 2nd order accuracy shown later in Section 4. It is important to mention that, when any
two vortices i and j move in such a way that rkij = rk+1

ij , the numerator and denominator

of C
τ,(m)
ij may tend to zero, potentially leading to large round-off errors. Thus, in our

implementation, we replace the expressions for C
τ,(m)
ij by their truncated Taylor expansions

when |(rk+1
ij /rkij)

2 − 1| ≤ ε, where ε = 10−4. Specifically, the Taylor expansions of C
τ,(m)
ij

with m = 2, 4, 6 are respectively given by,

C
τ,(2)
ij =

(
1− e−ξ

k
ij

)
+

(
zij − 1

)
2

(
−1 +

(
1 + ξkij

)
e−ξ

k
ij

)
+(

zij − 1
)2

6

(
2 +

(
−2− 2ξkij −

(
ξkij

)2
)
e−ξ

k
ij

)
+ . . . ,

C
τ,(4)
ij =

(
1 +

(
−1 + ξkij

)
e−ξ

k
ij

)
+

(
zij − 1

)
2

(
−1 +

(
1 + ξkij −

(
ξkij

)2
)
e−ξ

k
ij

)
+

11



(
zij − 1

)2

6

(
2 +

(
−2− 2ξkij −

(
ξkij

)2

+
(
ξkij

)3
)
e−ξ

k
ij

)
+ . . . ,

C
τ,(6)
ij =

(
1 +

(
−1 + 2ξkij +

1

2

(
ξkij

)2
)
e−ξ

k
ij

)
+(

zij − 1
)

2

(
−2 +

(
2 + 2ξkij − 5

(
ξkij

)2

+
(
ξkij

)3
)
e−ξ

k
ij

)
+(

zij − 1
)2

6

(
4 +

(
−4− 4ξkij − 2

(
ξkij

)2

+ 6
(
ξkij

)3

−
(
ξkij

)4
)
e−ξ

k
ij

)
+ . . . ,

where zij = (rk+1
ij /rkij)

2 = ξk+1
ij /ξkij. From these expansions, it can be seen that both Λτ and

f τ are consistent because, as τ → 0 we have xij → xij and yij → yij, along with zij → 1

which results in C
τ,(2)
ij → C

(2)
ij , C

τ,(4)
ij → C

(4)
ij , and C

τ,(6)
ij → C

(6)
ij . As discussed above on our

implementations, we truncate the Taylor series expansions of C
τ,(2)
ij , C

τ,(4)
ij , and C

τ,(6)
ij at 3rd

term (2nd order). In Appendix 6.5, we further verify the accuracy of our Taylor expansions,
and demonstrate how round-off errors appear as (rk+1

ij

/
rkij)

2 → 1 justifying our choice of ε.
Finally, in order to implement the conservative schemes given by (23), one must be able

to evaluate the exponential integral

E1(x) =

∫ ∞
x

e−t

t
dt, x > 0,

up to machine precision in an efficient manner. Various methods of evaluating the exponen-
tial integral exist, such as Taylor series expansion, asymptotic expansion, continued fraction
expansion, and piece-wise rational function approximation [32, 33]. We want to be able
to evaluate E1(x) for a wide range of input arguments. This is due to the possibility that
the argument x can be very small when vortices converge to a particular point in space,
and can be very large when vortices diverge to infinity from a particular point in space, or
when we let δ → 0. It is known that for x > 34, we have |E1(x)| < 10−16 which suggests
that we want to look for a fast and accurate algorithm for evaluating E1(x) in the range
10−16 < x < 34. As the rate of convergence and the accuracy of evaluating the exponential
integral vary with the input argument, after numerical testing, we have chosen to use the
rational function approximation [33] to evaluate E1(x) when implementing the conservative
discretizations. The rational function approach provides a inexpensive and accurate means
of evaluating E1(x) over the desired range of input arguments.

4. Numerical results

Before presenting numerical results in detail, we first mention that we conducted all our
experiments in C using a 1.6GHz Intel Core i5 dual-core processor. We did not optimize our
codes for parallel computing, as we wished to focus on verifying specific properties about
the conservative schemes.
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Since the scheme in (23) is nonlinear and implicit, we used fixed-point iterations to solve
for xk+1 and yk+1 given xk and yk in our implementations. We let the initial guess for our
fixed point iterations to be the result of taking an RK4 step from (xk,yk).

All our numerical experiments will be based on solving (3a)-(3e) with initial vorticity
field given by,

ω0(r) =

{(
1− r2

)3
r ≤ 1

0 r > 1.
(24)

We define our domain Ω to be the square described by (x, y) ∈ [−1, 1]×[−1, 1]. We discretize
Ω with a uniform grid with size h = 2

/√
M , where M is the number of vortices. Then, we

introduce a vortex at the center of each square such that ith vortex has vorticity ωi = ω0 (ri).
Figure (4.1) depicts the discretization of Ω with 36 vortices. On the left, we have 36 vortices
placed on Ω as described, where the vorticity field on Ω is given by ω0(r) at any point. On
the right, we have the same vortices placed on Ω, yet the vorticity field on Ω is given by
ωh0 (r).

Figure 4.1: The discretization of Ω and ω0 with M = 36 vortices. Black stars show the location of vortices,
dashed lines form the grid, the black circle is the boundary ∂Ω, and the colour of a point together with the
colorbar represents the intensity of the vorticity field at that point. On the left, we have the exact vorticity
field before introducing the vortices. While on the right, we have the approximate vorticity field given by
(12) for m = 4 after introducing the vortices.

We discretize the vortex-blob equations resulting from applying the vortex blob method
to (3a)-(3e) using (23). In doing so, we set m = 4 and δ = hq with q = 0.75. We let {tk}Mk=0

be the temporal grid points and T = tN be the final time, where N is the total number of
time steps our integrator will take. Later in this section, we will verify the temporal order
of convergence of the conservative integrators and the spatial order of convergence of the
vortex blob method. To perform such verification efficiently, we will need the analytical
solution to (3a)-(3e) with the ωh0 (r) given in (24). We can obtain the analytical solution by
exploiting the rotational symmetry of the initial vorticity field. Since the Laplacian ∇2 is
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rotationally invariant, the velocity field satisfying (3a)-(3e) is also be rotationally symmetric
and is given by,

v (z) =
1

r2 [−y, x]T
∫ r

0

sω(s) ds = [−y, x]T
1−

(
1− r2

)4

8r2 . (25)

Thus, we expect vortex trajectories to form concentric circles.

4.1. Verification and comparison of conservative properties

We start by comparing the error over time in conserved quantities of Ph,Lh, and Hh,(m)

for the DMM-based discretization in (23) with discretizations of (13) obtained via Ralston’s
2nd and 4th order method (RM2, RM4), and the implicit midpoint method (IMM).

Figure 4.2: Error over time in conserved quantities Phx (top-left), Phy (top-right), Lh (bottom-left), and

Hh,(m) (bottom-right) for mth order vortex method. Here, (13) was solved with m = 4, M = 100, T = 105,
and τ = 1.0 using RM2, RM4, IMM, and DMM.

In our comparisons, we use Ralston’s methods due to their minimal truncation error bounds
of Lotkin type [34, 35]. Figure (4.2) shows how the drift (i.e., |ψh,k − ψh,0|) in all four con-
served quantities evolve with time. It can be observed that all integrators preserve linear
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impulses at the discrete level. On the other hand, we see that only DMM and implicit mid-
point method conserve angular momentum. This is not surprising as DMM is conservative
by construction and the implicit midpoint method preserved all quadratic invariants [4]. As
expected, the only integrator that conserves Hamiltonian up to machine precision, and as a
result all four conserved quantities, is DMM. Although IMM does not exactly preserve the
Hamiltonian, we see that its Hamiltonian error remains bounded below 10−4. This is ex-
pected, as it is well known that for an rth order symplectic method, the error in Hamiltonian
is O(τ r) over an exponentially long time time [4].

4.1.1. Convergence analysis of conserved quantities to conserved integrals

In this subsection, we will show that conservative property of the derived schemes has two
important theoretical implications. First is that the error between the conserved quantities
of the vortex-blob equations (13) and the conserved integrals of Euler’s equations (3a)-(3e)
remains bounded for an arbitrarily long time. Secondly, the conserved quantities of (13)
converge to the conserved integrals of (3a)-(3e) as M →∞.

Let ψ be the exact value of the conserved integral ψ [ω] (t) of (3a)-(3e) (e.g., Px, Py,
L, or H(m)) with the corresponding discretized conserved quantity ψh of (13). For fixed
τ and T , we expect the conserved quantity ψh,N to converge to ψ as h → 0. We will
demonstrate that this is indeed the case when we employ the DMM-based discretizations
(23). Specifically, recall that ψh (x(t),y(t)) is the conserved quantity evaluated on the
exact solution of (13) that satisfies the initial conditions x(0) = x0 and y(0) = y0. Then,
ψh(x(tN),y(tN)) = ψh

(
x0,y0

)
= ψh,0, and from triangle inequality we have,∣∣∣ψh,N − ψ∣∣∣ ≤ ∣∣∣ψh,0 − ψ∣∣∣+

∣∣∣ψh,N − ψh,0∣∣∣
≤
∣∣∣ψh,0 − ψ∣∣∣+

∣∣∣ψh,N − ψh (x(tN),y(tN)
)∣∣∣

≤
∣∣∣ψh,0 − ψ∣∣∣︸ ︷︷ ︸

1

+L
ψ
h

∥∥∥∥[xNyN
]
−
[
x(tN)

y(tN)

]∥∥∥∥︸ ︷︷ ︸
2

,

where the third line follows from assuming that ψh(x,y) is Lipschitz continuous with Lips-
chitz constant Lψ. Observe that,

1 is simply the error between ψ and the midpoint rule approximation of ψ [ω] (t) if
ψh = Phx , Phy , or Lh. Therefore, when ψ represents Px, Py, or L, |ψh,0 − ψ| is O

(
h2
)
.

Hh,(m),0 is also the midpoint sum approximating H when m = 0 (point-vortex case),

but this is not true for all m. This is because, unlike H[ω](t), Hh,(m) contains an
exponential integral term and exponential terms. Nonetheless, it is easy to show3 that

3Conserved quantities Ph and Lh are the discrete and per unit mass versions of the conserved integrals

(6) and (7). Likewise, Hh,(m) are the discrete and per unit mass versions of (8) up to a difference term

that decays like O
(
δ2 exp

(
−r2ij

/
δ2
))

, O
(

exp
(
−r2ij

/
δ2
))

, and O
((

1
/
δ2
)

exp
(
−r2ij

/
δ2
))

as δ → 0 when

m = 2, 4, 6 respectively.
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these extra terms decay exponentially as h→ 0, implying that |ψh,0−ψ| is still O
(
h2
)

when ψh is Hh,(m) with m = 2, 4, 6.

2 is the error between the numerical solution and the exact solution of (13) at t = tN = T .
For an rth order integrator it is O (τ r).

Therefore, we have, ∣∣∣ψh,N − ψ∣∣∣ ≤ C1h
2 + C2Lψτ

r (26)

for ψ is Px, Py, L, or H with C1 and C2 as some positive constants. When the conservative

integrators are employed, |ψh,N − ψh,0| is analytically nil, and practically of the same order
as machine epsilon (εM). Therefore, for conservative integrators of (23), we have a tighter
bound than (26) which is independent of τ and given by,∣∣∣ψh,N − ψ∣∣∣ ≤ C1h

2 + g (εM , N) .

Here, g (εM , N) can be viewed as a unknown random variable that models the accumulation
of round-off/truncation errors due to finite-precision arithmetic when using (23). Thus, ψh,N

should converge to ψ with second order accuracy as h→ 0 for all N > 0 when we integrate
(13) using (23). On the other hand, if we use a non-conservative integrator like RM2, RM4,
or IMM, ψh,N should stop converging to ψ as h → 0 for all N > 0 because τ r term will
dominate over h2 term for sufficiently small h. We demonstrate this behaviour numerically
in Figure (4.3).

Figure 4.3: Convergence of Lh,N to L (left), and the convergence of Hh,(m),N to H (right) as h → 0 when
(13) is solved with m = 4, T = 10, and τ = 1.0 using RM2, RM4, IMM, and DMM.

From Figure 4.3, it can be seen that the errors |Lh,N −L| of RM2 and RM4 plateau, as h
tends to zero. As expected, since IMM and DMM preserve angular momentum, their errors
|Lh,N − L| decrease monotonically. Although (26) implies that we should also see plateaus
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in the errors of |Hh,(m),N − H| for RM2, RM4, and IMM, we observe plateaus only in the
curves of RM2 and RM4 of Figure 4.3. If h were to be decreased further, we expect to see
the plateau for IMM also. However, we did not pursue this further due to costly simulation,
due the spatial dominance in the error.

According to (26), the angular momentum error |Lh,N − L| and the Hamiltonian error

|Hh,(m),N −H| should be of second order as h→ 0. While we see from Figure (4.3) that the

slope of the DMM curve in the |Hh,(m),N −H| versus h plot is around two as expected, we
see that its slope in the |Lh,N −L| versus h plot exceeds two. Such superconvergence in the
angular momentum error when using midpoint quadrature is attributed to the Laplacian of
the integrand vanishing at r = 1. In general, we expect the angular momentum error to be
of second order, similarly to the Hamiltonian error.

4.1.2. Long-term behaviour of the error between conserved integrals and discretized conserved
quantities

In a realistic fluid simulation, we also want the error between the conserved integrals of
(3a)-(3e) and conserved quantities of (13) to remain bounded for all time. Otherwise, our
numerical approximation will become less relevant physically as time proceeds. We show
numerically below that this is true when (13) is solved via DMM-based integrators in (23).

Figure (4.4) shows that the error between L and Lh,k grows with time when (13) is solved

via RM2 or RM4. We see that the error between H and Hh,(m),k also grows with time when
(13) is solved via RM2 and RM4. In Figure (4.5) we see that, though the error |Hh,(m),N−H|
does not grow in time when (13) is solved via IMM, we can see that it fluctuates with time.
In contrast, only the DMM methods yields in a numerical solution with almost constant
|L − Lh,k| and |H −Hh,(m),k|.

0 2 4 6 8 10

104

10-5

10-4

10-3

10-2

10-1

100

0 2 4 6 8 10

104

0.002

0.01

Figure 4.4: Long-term behavior of |Lh,N − L| (left) and |Hh,(m),N − H| (right) when (13) is solved with
m = 4, T = 105, and τ = 1.0 using RM2, RM4, IMM, and DMM. The stars/circles/squares/triangles

represent the error between the conserved integral and conserved quantity at tk ∈ {1, 3, 10, 3 × 101, 1 ×
102, 3× 102, 1× 103, 3× 103, 1× 104, 3× 104, 1× 105}.
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3.19
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3.22

3.23

3.24
10-3

Figure 4.5: Long-term behavior of |Hh,(m),N − H| (right) when (13) is solved with m = 4, T = 105, and
τ = 1.0 using IMM and DMM. The stars/circles/squares/triangles represent the error between the conserved

integral and conserved quantity at tk ∈ {1, 3, 10, 3× 101, 1× 102, 3× 102, 1× 103, 3× 103, 1× 104, 3×
104, 1× 105}.

4.2. Comparison of vortex trajectories

We will now show that the long-term numerical solution of (3a)-(3e) obtained through
DMM is qualitatively closer to the exact solution of (3a)-(3e) than the numerical solutions
obtained through IMM, RM2, and RM4.

Figure 4.6: Numerical path of a single vortex which is initially located at (−1 + h/2,−1 + h/2) when (13)
is solved via RM2 (left), IMM (right) with T = 1650s, τ = 1.0 and N = 25. Stars show the position of the
vortex every 10s.
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Figure 4.7: Numerical path of a single vortex which is initially located at (−1 + h/2,−1 + h/2) when (13)
is solved via RM4 (left) and DMM (right) with T = 1650s, τ = 1.0 and N = 25. Stars show the position of
the vortex every 10s.

Figures 4.6 and 4.7 illustrate the long-term (T = 1650) trajectory of the vortices initially
placed at the center of leftmost, bottommost square (i.e., at (−1 + h/2,−1 + h/2)). It can
be observed that trajectories produced by the 2nd order integrators RM2 and IMM, and even
a 4th order integrator RM4, spiral toward the origin while the numerical trajectory produced
by DMM stays close to the exact trajectory, which is a circle centered at the origin with
radius (1− h/2)

√
2 as discussed earlier in (25).

4.3. Comparison of theoretical and numerical temporal convergence

Next, we verify numerically that the conservative schemes in (7) are 2nd order accurate
in time. In our convergence study we define the error between the exact solution and the
numerical solution of (13) at time T to be,

ετ =

∥∥∥∥∥
[
xM − x (T )

yM − y (T )

]∥∥∥∥∥
2

. (27)

To be able to evaluate ετ we need to have the exact solution of (13) at time T , that is
(x(T ),y(T )). For N = 4 and ω0 is given by (24), the exact solution at time T is given by,

xi(T ) = R cos (αT + iπ/2− π/4) , yi(T ) = R sin (αT + +iπ/2− π/4) , for i = 1, . . . , N,

where R = 1/
√

2 and α = [C(m) (1) + C(m) (2) /2]/ (8π). Figure (4.8) shows that the error
between DMM solution and the exact solution of (13) at time T is O(τ 2), which agrees with
the conclusion of Theorem (3).
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Figure 4.8: Convergence of error (ετ ) to zero as the time step size (τ) decreases when (13) is solved via (23)
with m = 2, 4, 6, T = 10.0, and N = 4. Each circle of a given color (i.e., m) represents a point

(
τ∗, ε∗τ

)
in

the convergence curve that was generated by implementing (23) with τ = τ∗. Each colored solid line is the
best-fit line passing through the points illustrated by the circles of the same color. The dashed black line
has a slope of 2 for reference

.

4.4. Comparison of theoretical and numerical spatial convergence

In this subsection, we will show that the numerical solution of the PDE (3a) − (3e)
obtained via the conservative discretizations (23) with m = 2, 4, 6 converges to the the exact
solution of (3a)− (3e) with the expected rate of convergence as h→ 0. We define the spatial
discretization error between the numerical solution vh (z, t) and the exact solution v (z, t)
of (3a)− (3e) at time T to be

εh =

√∫∫
Ω(T )

∥∥∥vh (z, T )− v (z, T )
∥∥∥2

2
dz. (28)

Here, we evaluate vh (z, t) using (10) after obtaining the final position of each vortex
by solving (13) via the conservative schemes. Also, recall that the exact solution v (z, t)
to (3a) − (3e) is available from (25). We numerically approximate the double integral over
Ω(T ) in (28) via an 8th order Gaussian quadrature in polar coordinates. We used 8th order
quadrature to ensure that the quadrature error does not dominate the spatial discretization
error.
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Figure 4.9: Convergence of spatial error (εs) to zero as the grid size (h) decreases when (13) is solved via
(23) with m = 2, 4, 6, T = 10.0, and N = 10. Each circle is a point on the convergence curve.

T = 0.001, ∆t = 0.001, q = 0.75 m = 2 m = 4 m = 6

Theoretical order 1.50 3.00 4.50

Computed order 1.50 2.96 4.444

Table 4.1: Theoretical [13] and computed spatial convergence orders for vortex blob methods withm = 1, 2, 3.

Both Figure (4.9) and Table (4.1) show that the order of convergence values for vortex
blob methods of all orders implemented using (23) are in good agreement with the theoretical
order of convergence values reported by Beale and Majda in [13].

4The spatial order of convergence when m = 6 was computed using a different ω0 than the one we set in
(24). We changed the exponent in ω0 given in (24) from 3 to 15 because for convergence theory in [18] to
hold when m = 6, 8 with the predicted order, ω0 needs to have 14 bounded derivatives.
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4.5. Comparison of error in conserved quantity versus computation times

In this final subsection of numerical results, we will compare the computational time
taken by the conservative integrators obtained via DMM to the computational time taken
by the aforementioned standard integrators. To this end, we integrate (13) with m = 2 and
N = 3 using DMM, IMM, RM2, and RM4. We set up five different vortex-blob problems by
randomly sampling ωi of the vortices from a uniform distribution on [−1, 1] and their initial
positions from a uniform distribution on [−1, 1] × [−1, 1]. We measure the computation
time (wall-clock time) of all methods through the clock gettime(CLOCK REALTIME, &)
function in time.h C library. The tables below summarize the computation time, as well as
their maximum absolute errors in each conserved quantity, for each method on five different
sample runs. In Table (4.2), we fix the number of time steps N when solving each problem,
while on Table (4.3), we approximately fix the computational time by varying N for each
method when solving the same problems in Table (4.2).

Method
# of time

steps
Computation

time [s]
Impulse-X Impulse-Y

Angular
Impulse

Hamiltonian

DMM 10
6

149.09 3.8272× 10
−17

5.5565× 10
−17

2.0957× 10
−10

3.8861× 10
−11

IMM 10
6

28.05 4.7434× 10
−17

8.1749× 10
−17

3.8307× 10
−10

1.1394× 10
−04

RM2 10
6

1.73 1.5959× 10
−16

1.6062× 10
−16

2.2847× 10
00

6.3812× 10
−02

RM4 10
6

3.19 3.0358× 10
−18

1.1926× 10
−18

4.2929× 10
−01

5.6505× 10
−02

DMM 10
6

41.39 3.8856× 10
−15

1.9076× 10
−15

6.0627× 10
−12

4.2839× 10
−14

IMM 10
6

10.68 1.2423× 10
−15

2.6096× 10
−15

5.7927× 10
−12

1.7762× 10
−05

RM2 10
6

1.74 2.2207× 10
−15

1.5642× 10
−15

2.0692× 10
00

4.5471× 10
−02

RM4 10
6

3.30 1.6378× 10
−15

1.1941× 10
−15

3.8516× 10
−02

2.1360× 10
−03

DMM 10
6

39.27 7.0039× 10
−17

1.2804× 10
−16

4.2695× 10
−11

6.5601× 10
−13

IMM 10
6

9.70 7.4593× 10
−17

1.7228× 10
−16

1.1041× 10
−11

1.0544× 10
−04

RM2 10
6

1.74 4.7271× 10
−17

1.0072× 10
−16

2.2258× 10
−01

1.6727× 10
−02

RM4 10
6

3.24 8.7983× 10
−17

2.1034× 10
−17

4.8051× 10
−01

2.6559× 10
−02

DMM 10
6

38.02 1.8819× 10
−16

4.2071× 10
−16

3.9093× 10
−12

1.3834× 10
−14

IMM 10
6

6.92 1.9037× 10
−16

7.3150× 10
−17

4.0975× 10
−13

4.1658× 10
−08

RM2 10
6

1.55 3.7050× 10
−16

1.8448× 10
−16

4.1857× 10
−03

1.5755× 10
−05

RM4 10
6

2.95 2.5026× 10
−16

2.9584× 10
−16

4.2959× 10
−07

1.4752× 10
−09

DMM 10
6

49.87 5.4183× 10
−17

2.1955× 10
−17

2.7487× 10
−12

3.6479× 10
−13

IMM 10
6

11.58 2.5018× 10
−17

3.5399× 10
−17

2.6657× 10
−12

2.6121× 10
−05

RM2 10
6

1.73 5.1364× 10
−17

9.6169× 10
−17

2.1793× 10
00

4.0292× 10
−02

RM4 10
6

3.11 2.4259× 10
−17

2.6536× 10
−17

2.7556× 10
−01

1.8089× 10
−02

Table 4.2: Computation times for solving (13) using RM2, RM4, IMM, and DMM discretizations with
T = 5 × 106, N = 3, m = 2, τ = 1.0, q = 0.75. Each group of rows separated by double lines correspond
to a specific sample run where ωi, [x0]i, [y0]i ∼ U [−1, 1] for i = 1, . . . , N .

The purpose of the first table is to show that the conservative scheme preserves angular
momentum, and in particular Hamiltonian, much better than the standard integrators when
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all methods are evaluated on the same number of time steps. The purpose of the second
table is to show that, although the implicit conservative integrator is slower than the stan-
dard explicit integrators, it still preserves angular momentum and Hamiltonian better than
standard integrators when all integrators are allowed to take similar computation times.

Specifically, we see from Table (4.2) that the DMM and IMM integrators preserve angular
momentum on average about ten orders of magnitude better than RM2 and RM4. Moreover,
we see that the DMM integrator preserves Hamiltonian on average about eight orders of
magnitude better than IMM, ten order of magnitude better than RM2, and nine orders
of magnitude better than RM4. The computational cost of such excellent conservative
properties is about an increase of one to two orders of magnitude on average over the explicit
schemes. Indeed, we can observe that DMM takes the longest while IMM takes the second
longest amount in computation time, as both integrators are implicit schemes. However,
compared to the overall improvement of eight to ten orders of magnitude in conserved
quantities, this suggests that the derived DMM scheme can be suitable for applications
where high-accuracy in conserved quantities is sought after.

Method
# of time

steps
Computation

time [s]
Impulse-X Impulse-Y

Angular
Impulse

Hamiltonian

DMM 10
6

149.09 3.8272× 10
−17

5.5565× 10
−17

2.0957× 10
−10

3.8861× 10
−11

IMM 17× 10
6

148.73 1.4680× 10
−16

1.0045× 10
−16

3.0382× 10
−10

4.7884× 10
−07

RM2 80× 10
6

145.53 4.4062× 10
−16

1.6279× 10
−16

9.8936× 10
−03

2.9922× 10
−03

RM4 43× 10
6

145.06 2.4698× 10
−16

8.8559× 10
−17

2.9535× 10
−06

7.3229× 10
−07

DMM 10
6

41.39 3.8856× 10
−15

1.9076× 10
−15

6.0627× 10
−12

4.2839× 10
−14

IMM 5× 10
6

40.23 2.4839× 10
−15

5.4754× 10
−15

6.0298× 10
−12

7.1217× 10
−07

RM2 25× 10
6

43.91 5.2460× 10
−15

2.1628× 10
−14

8.1034× 10
−04

3.2301× 10
−05

RM4 13× 10
6

41.71 8.8885× 10
−15

1.0839× 10
−14

8.9068× 10
−08

5.1731× 10
−09

DMM 10
6

39.27 7.0039× 10
−17

1.2804× 10
−16

4.2695× 10
−11

6.5601× 10
−13

IMM 6× 10
6

43.98 2.8796× 10
−16

2.1760× 10
−16

3.0895× 10
−12

2.9561× 10
−06

RM2 25× 10
6

42.06 4.3043× 10
−16

8.3397× 10
−16

2.2287× 10
−03

2.1921× 10
−04

RM4 12× 10
6

39.75 6.6722× 10
−16

5.3484× 10
−16

2.4074× 10
−06

2.7789× 10
−07

DMM 10
6

38.02 1.8819× 10
−16

4.2071× 10
−16

3.9093× 10
−12

1.3834× 10
−14

IMM 7× 10
6

38.60 5.9208× 10
−16

4.1873× 10
−16

8.3213× 10
−13

8.5027× 10
−10

RM2 24× 10
6

39.57 9.1812× 10
−16

1.9575× 10
−15

3.0487× 10
−07

1.1382× 10
−09

RM4 12× 10
6

37.45 4.5671× 10
−16

1.1610× 10
−15

1.7587× 10
−12

6.0769× 10
−15

DMM 10
6

49.87 5.4183× 10
−17

2.1955× 10
−17

2.7487× 10
−12

3.6479× 10
−13

IMM 7× 10
6

51.52 6.1122× 10
−17

9.8012× 10
−17

2.0447× 10
−11

5.2790× 10
−07

RM2 30× 10
6

51.59 8.5896× 10
−17

6.1583× 10
−17

5.0931× 10
−03

1.7794× 10
−04

RM4 16× 10
6

51.50 1.0010× 10
−16

3.1106× 10
−16

5.4385× 10
−07

1.0184× 10
−10

Table 4.3: Computation times for solving (13) using RM2, RM4, IMM, and DMM discretization with
T = 5 × 106, N = 3, m = 2, τ = 1.0, q = 0.75. Each group of rows separated by double lines correspond
to a specific problem where ωi, [x0]i, [y0]i ∼ U [−1, 1] for i = 1, . . . , N

.
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Finally in Table (4.3), we see that the DMM and IMM integrators preserve angular
momentum on average about eight orders of magnitude better than RM2 and RM4, when
all methods are adjusted to take the same amount of computation time but different number
of total time steps. In this comparison, we observed that DMM preserves the Hamiltonian on
average about five orders of magnitude better than IMM, eight orders of magnitude better
than RM2, and three orders of magnitude better than RM4. We note that, on the third
sample run, we did observe that RM4 preserves the Hamiltonian slightly better than DMM
while preserving the angular momentum equally well. We believe this is rare in practice, as
this was the only instance of RM4 preserving Hamiltonian slightly better than DMM.

5. Conclusion

In this paper, we presented conservative integrators for higher-order vortex blob meth-
ods using the framework of DMM. We verified the conservation property of the derived
integrators along with their order of convergence. Specifically, we verified the spatial order
of convergence of higher-order vortex methods in [13] when the vortex-blob equations were
integrated through DMM. We also compared the derived integrators for the vortex-blob
equations to other classical integrators such as implicit midpoint and Ralston’s 4th order
method in terms of computational time versus error in conserved quantities. We observed
that, for the vortex-blob system with m = 4 and an initial configuration of randomly posi-
tioned vortices in [−1, 1]× [−1, 1] each having a uniform random vortex strength in [−1, 1],
the DMM integrator preserves the Hamiltonian many orders of magnitude better than a 4th

order standand integrator and a 2nd order symplectic integrator while taking similar com-
putational time. In addition, when the total number of time steps for each integrator was
fixed, the DMM integrator preserve the Hamiltonian many orders of magnitude better than
the other integrators with comparable total computational time.

In principle, the work presented here can be adapted to other general many-body prob-
lems possessing multiple conserved quantities. However, it remains a general open question
on whether DMM discretizations can preserve the conserved quantities of many-body sys-
tems better than a traditional integrator on similar computational time, especially when the
number of bodies M is large.

We conclude with a brief discussion on current limitations and future research directions.
Specifically, the derived conservative discretizations currently have two main drawbacks. The
first drawback is the fixed point iterations can have slow convergence and we observed that
the convergence rate worsens as the number of vortices increases. Overcoming this drawback
via the use of another nonlinear solver such as Newton’s method or quasi-Newton method
is an interesting future research direction. A second drawback is associated with the fact
that it takes O

(
M2
)

evaluations of the summands in (23). Overcoming this inefficiency is
much more involved, yet may be possible through the use of fast multipole method (FMM)
[36, 37] introduced by Rokhlin and Greengard. We believe that combining DMM with fast
multipole methods for many body problems is an important and fruitful future avenue for
exploration, especially the number of bodies tend to be large for practical applications.
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6. Appendix

6.1. Verification that condition (17b) holds.

Λ (x,y)f (x,y)

=



h4

2π

M∑
i=1

M∑
j=1
j 6=i

ωiωjxij
C

(m)
ij

r2
ij

h4

2π

M∑
i=1

M∑
j=1
j 6=i

ωiωjyij
C

(m)
ij

r2
ij

h4

2π

M∑
i=1

M∑
j=1
j 6=i

ωiωj
(
yijxi − xijyi

) C(m)
ij

r2
ij

h6

4π2

M∑
i=1

ωi
M∑
l=1
l 6=i

M∑
j=1
j 6=i

ωjωl

(
xijyil

C
(m)
ij

r2
ij

C
(m)
il

r2
il

− yijxil
C

(m)
ij

r2
ij

C
(m)
il

r2
il

)



=



h4

2π

∑
1≤i<j≤M

ωiωj

(
xij
C

(m)
ij

r2
ij

+ xji
C

(m)
ji

r2
ji

)
h4

2π

∑
1≤i<j≤M

ωiωj

(
yij
C

(m)
ij

r2
ij

+ yji
C

(m)
ji

r2
ji

)
h4

2π

∑
1≤i<j≤M

ωiωj

[(
yijxi − xijyi

) C(m)
ij

r2
ij

+
(
yjixj − xjiyj

) C(m)
ji

r2
ji

]
h6

4π2

M∑
i=1

ωi

M∑
l=1
l 6=i

M∑
j=1
j 6=i

ωjωl

(
yijxil

C
(m)
ij

r2
ij

C
(m)
il

r2
il

)
−

M∑
l=1
l 6=i

M∑
j=1
j 6=i

ωjωl

(
xilyij

C
(m)
ij

r2
ij

C
(m)
il

r2
il

)


= 0,

where,

rij = rji,

C
(m)
ij = C

(m)
ji ,

xij = − xji,
yij = − yji,

yijxi − xijyi = yixj − yjxi = yixj − yjxi + yjxj − yjxj = −
(
yjixj − xjiyj

)
.

6.2. Verification that condition (22a) holds.

Before we verify that condition (22a) is satisfied we give the following divided difference
calculus identities.
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1 ∆
(
x2
i + y2

i

)
= 2xi∆xi + 2yi∆yi.

2 ∆
(
r2
ij

)
= 2xij∆xij + 2yij∆yij.

3 ∆
(
log
∣∣r2
ij

∣∣) = log
∣∣∣rk+1
ij

∣∣∣2 − log
∣∣∣rkij∣∣∣2 = log

∣∣∣∣∣rk+1
ij

rkij

∣∣∣∣∣
2

= log

∣∣∣∣∣ξk+1
ij

ξkij

∣∣∣∣∣.
4 ∆

E1

(rij
δ

)2
 = E1

(
ξk+1
ij

)
− E1

(
ξkij

)
.

5 ∆

exp

−(rij
δ

)2
 = e−ξ

k
ij

(
e−∆ξ

k
ij − 1

)
.

6 Employing the discrete product rule and identity 5 we have,

∆

(rij
δ

)2

exp

−(rij
δ

)2
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ij ∆ξij + ξkij∆

(
e−ξij

)
= e−ξ
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(
e−∆ξij − 1

)
.

7 Employing the identities 3 , 4 and 2 we have,
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ij(
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8 Employing the identities 3 , 4 , 5 , and 2 we have,
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log
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δ
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9 Employing the identities 3 , 4 , 5 , 6 and 2 we have,
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)
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∆
(
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2
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2
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)
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1
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k+1
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ij

ξkij
− 1

)


=
2
(
xij∆xij + yij∆yij

)(
rkij

)2

 1

ξk+1
ij

ξkij
− 1

(
log

∣∣∣∣∣ξk+1
ij

ξkij

∣∣∣∣∣+ E1

(
ξk+1
ij

)
− E1

(
ξkij

)
+

∆
(
e−ξij

)(
−3

2
+

1

2
ξkij

))
+

1

2

e−ξ
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=
2
(
xij∆xij + yij∆yij

)(
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(
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= 2
(
xij∆xij + yij∆yij

) Cτ,(6)
ij(
rkij

)2.

Then, condition (22a) is satisfied for m = 2, 4, 6 by the linearity of ∆ operator and by the

identities 1 – 9 because,

ΛτDτ
t x =

1

τ



h2
M∑
i=1

ωi∆yi

−h2
M∑
i=1

ωi∆xi

−h2
M∑
i=1

ωi (xi∆xi + yi∆yi)

−
h4

2π

M∑
i=1

M∑
j=1
j 6=i

ωiωj
(
xij∆xi + yij∆yi

) Cτ,(m)
ij(
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)2
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=
1

τ
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∆

(
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M∑
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)
∆

(
−h2

M∑
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ωixi

)
∆

(
−
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2

M∑
i=1

ωi
(
x2
i + y2

i

))

−
h4

4π

∑
1≤i<j≤M

2 ωiωj
(
xij∆xi + yij∆yi + xji∆xj + yji∆yj

) Cτ,(m)
ij(
rkij

)2



=
1

τ


∆P

∆L

∆H(m),h

 = Dτ
tψ − ∂τt ψ,

where the 3rd equality for the 4th row follows from,

xij∆xi + yij∆yi + xji∆xj + yji∆yj = xij∆xij + yij∆yij.
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6.3. Verification that condition (22b) holds.

Λτf τ

=
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=
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2π

∑
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ωiωj

 xij(
rkij

)2C
τ,(m)
ij +

xji(
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)2C
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h4
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ωiωj
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)2C
τ,(m)
ij +

yji(
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)2C
τ,(m)
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∑
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rkij
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ij +

(
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)(
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)2 C
τ,(m)
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h6

4π2

M∑
i=1

ωi

M∑
l=1
l 6=i

M∑
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ωjωl

 yij(
rkij

)2

xil(
rkil

)2C
τ,(m)
ij C

τ,(m)
il

− M∑
l=1
l 6=i

M∑
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j 6=i

ωjωl

 xil(
rkil

)2

yij(
rkij

)2C
τ,(m)
ij C
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



= 0,

where the last equality follows from,

rkij = rkji,

ξkij = ξkji,

xij = − xji,
yij = − yji,

yij xi − xij yi = yi xj − yj xi = yi xj − yj xi + yj xj − yj xj = −
(
yji xj − xji yj

)
.

6.4. Proof that the conservative scheme (23) is symmetric.

We define,
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V
(2)
ij := V

(2)
ij

(
r2
ij

)
= log

∣∣r2
ij

∣∣+ E1

(
r2
ij

δ2

)
,

V
(4)
ij := V

(4)
ij

(
r2
ij

)
= log

∣∣r2
ij

∣∣+ E1

(
r2
ij

δ2

)
− exp

(
−
r2
ij

δ2

)
,

V
(6)
ij := V

(6)
ij

(
r2
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)
= log

∣∣r2
ij
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(
r2
ij

δ2

)
+

(
−

3

2
+

1

2

(
r2
ij

δ2

))
exp

(
−
r2
ij

δ2

)
.

Then, we can express (23) as,

F τ
(
xk+1,yk+1,xk,yk

)
:=


[
xk+1
i − xki
τ

+
h2

2π

N∑
j=1,j 6=i

ωjyij
∆V

(m)
ij

∆
(
r2
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)]
1≤i≤N[
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i − yki
τ

−
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2π

N∑
j=1,j 6=i

ωjxij
∆V

(m)
ij

∆
(
r2
ij

)]
1≤i≤N

 = 0.

Due to their definitions, xij, yij, and ∆V
(m)
ij

/
∆
(
r2
ij

)
are all symmetric under the permutation

k ↔ k + 1. Thus, (23) is symmetric under the permutation k ↔ k + 1.

6.5. Derivation of Taylor series expansions of C
τ,(2)
ij , C

τ,(4)
ij , and C

τ,(6)
ij .

6.5.1. C
τ,(2)
ij

Using the Taylor series expansion of the exponential integral E1 (x) = −γ − log |x| −
∞∑
l=1

(−x)l

l.l!
in [32] where γ is the Euler–Mascheroni constant, and letting zij = ξk+1

ij

/
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have,

C
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∞∑
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By keeping the 2nd order terms we obtain,
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6.5.2. C
τ,(4)
ij

We can represent C
τ,(4)
ij in terms of C

τ,(2)
ij such that,
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6.5.3. C
τ,(6)
ij

Similar to C
τ,(4)
ij , the form of C
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ij allows us to represent it in terms of C
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ij such that,
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6.5.4. Demonstrating the necessity of the Taylor series expansions of Cτ,(2), Cτ,(4), and Cτ,(6)

due to round-off errors.
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Figure 6.1: Plot of the error between C
τ,(m)
ij and its 2nd order Taylor expansion C̃

τ,(m)
ij versus zij − 1 for

m = 2, 4, 6 when ξkij = 1.

Figure (6.1) shows that when C̃
τ,(m)
ij is set to be the 2nd order Taylor expansion of

C
τ,(m)
ij , the error between C̃

τ,(m)
ij and C

τ,(m)
ij converges to zero with 3rd-order accuracy until

zij−1 ≈ 10−4. After zij−1 ≈ 10−4, we see that the error between C̃
τ,(m)
ij and C

τ,(m)
ij increase

markedly due to round-off error emanating from the evaluation of C
τ,(m)
ij . Thus, it is clear

that we need to employ C̃
τ,(2)
ij , C̃

τ,(4)
ij , and C̃

τ,(6)
ij instead of C

τ(2)
ij , C

τ,(4)
ij , and C

τ,(6)
ij respectively

for (23) to be conservative up to machine precision when zij = ξk+1
ij

/
ξkij = (rk+1

ij )2
/

(rkij)
2 is

close to 1. Furthermore, notice that, after zij − 1 ≈ 10−4, the error between C
τ,(m)
ij and

C̃
τ,(m)
ij is almost as small as machine precision for m = 2, 4, 6, suggesting that utilizing the

Taylor expansions should not lead to loss of accuracy.
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