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Abstract

In this article, the energy stability of two high-order L2 schemes for time-fractional phase-
field equations is established. We propose a reformulation of the L2 operator and also some new
properties on it. We prove the energy boundedness (by initial energy) of an L2 scalar auxiliary
variable scheme for any phase-field equation and the fractional energy law of an implicit-explicit
L2 Adams–Bashforth scheme for the Allen–Cahn equation. The stability analysis is based on
a new Cholesky decomposition proposed recently by some of us.
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1 Introduction
Phase-field models have been widely-used in many areas, such as material sciences, multiphase
flows, biology, and image processing, etc. One important feature of phase-field model is that its
energy admits a dissipation law with respect to time. In particular, this property has become a
criterion for designing numerical schemes for phase-field equations in the past decade.

From the numerical point of view, the resolution of phase-field equation is interesting and chal-
lenging due to the existence of nonlinearity. Moreover, it is usually expected that the maximum
principle and the energy dissipation could be preserved for a numerical scheme of phase-field equa-
tion. So far, there have been different energy stable schemes including the convex-splitting scheme
[1, 2], the stabilization scheme [3, 4], and the scalar auxiliary variable (SAV) scheme [5].

In this article, we study the energy dissipation property of high order schemes for phase-field
models with Caputo time-derivative. The time-fractional phase-field equation can be written in the
general form of

∂αt u = Gµ, (1.1)
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where α ∈ (0, 1), G is a nonpositive operator depending on the phase-field model, µ = δuE is the
functional derivative of some energy E, and ∂αt is the Caputo derivative [6] defined by

∂αt u(t) :=
1

Γ(1− α)

∫ t

0

u′(s)

(t− s)α
ds, t ∈ (0, T ), (1.2)

with Γ(·) the gamma function. Taking different functional G and µ, (1.1) becomes different phase-
field equation, such as the Allen–Cahn (AC) model [7], the Cahn–Hilliard (CH) model [8] and the
molecular beam epitaxy (MBE) model [9]. For the sake of simplicity, we consider the periodic
boundary condition for the time-fractional phase-field equation (1.1).

Straightforward computation of the derivative of energy with respect to time gives

d

dt
E(u) =

∫
Ω

∂tu
(
G−1∂αt u

)
dx. (1.3)

It is known that when α = 1, i.e., the conventional case, the phase-field models are gradient flows.
So the energy associated with these models decays with time, that is the so-called energy dissipation
law. However, it is still unknown if such energy dissipation property holds in the general case of
0 < α < 1.

In [10], the authors demonstrated that the classical energy of (1.1) is bounded from above by
the initial energy. Later, it is observed numerically in [11] and then proved theoretically in [12] that
the time-fractional derivative of energy is always nonpositive, i.e., the so-called fractional energy
law,

∂αt E(t) ≤ 0, ∀ 0 < t < T. (1.4)

Moreover, discrete fractional energy law has been obtained in [13] for first and 2−α order schemes.
For example, for first-order L1 schemes, the discrete fractional energy law is satisfied

∂
α

nE :=

n∑
k=1

bn−kDkE ≤ 0 ∀n ≥ 1, (1.5)

where

bj =
∆t1−α

Γ(2− α)

[
(j + 1)1−α − j1−α] and Dju :=

uj − uj−1

∆t
, j ≥ 0. (1.6)

See for example [14, 15] for the deviation and analysis of L1 coefficients bj . In addition, there
are some other interesting works on time-fractional gradient flows. For example, Li and Salgado
develop the theory of fractional gradient flows that minimize a convex l.s.c. energy in [16]; Fritz,
Khristenko, and Wohlmuth propose the equivalence between a time-fractional and a integer-order
gradient flow in [17] where a dissipation-preserving augmented energy is introduced.

It is natural to generalize the energy stability analysis to higher-order schemes. In this work, we
consider two L2 schemes [18]: one is a second order L2 SAV scheme for any phase field equation and
the other is a 3 − α order implicit-explicit L2 Adams–Bashforth (AB) scheme for the Allen–Cahn
equation. We prove that the energy of the L2 SAV scheme for any phase-field equation is bounded
by initial energy. Moreover, the implicit-explicit L2 AB scheme satisfied the fractional energy law,
i.e., the fractional derivative of energy is nonpositive. In fact, the analysis is based on two new
properties of the L2 operator Lαk :

n∑
k=1

〈Lαku, 3Dku−Dk−1u〉 ≥ 0, (1.7)
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and
n∑
k=1

dn−k+1 〈Lαku,Dku〉 ≥ 0, (1.8)

where the definitions of Lαk and dj are given in Section 2.
This article is organized as follows. In Section 2, we propose a reformulation of L2 approximation

and then prove the aforementioned properties of L2 operator. In Section 3, we study the energy
stability of an implicit-explicit L2 AB scheme and an L2 SAV scheme. Some numerical tests are
given in Section 4. Finally, we give a brief conclusion in the last section.

2 Analysis of L2 approximation
In this section, we prove some useful properties of the L2 operator Lαn.

Let ∆t = T/N be the time step size and tk = k∆t, 0 ≤ k ≤ N . The L2 approximation [18] of
time fractional derivative (1.2) is written as

Lα1u =
1

Γ(2− α)∆tα
(
u1 − u0

)
, k = 1,

Lαku =
1

Γ(3− α)∆tα

{
k−1∑
j=1

(
aju

k−j−1 + bju
k−j + cju

k−j+1
)

+
α

2
uk−2 − 2uk−1 +

4− α
2

uk

}
, k ≥ 2,

(2.1)

where
aj = −3

2
(2− α)(j + 1)1−α +

1

2
(2− α)j1−α + (j + 1)2−α − j2−α,

bj = 2(2− α)(j + 1)1−α − 2(j + 1)2−α + 2j2−α,

cj = −1

2
(2− α)

(
(j + 1)1−α + j1−α)+ (j + 1)2−α − j2−α.

(2.2)

Note that the relationship aj + bj + cj = 0 holds.

2.1 Reformulation of L2 operator
Why shall we reformulate the L2 coefficients in (2.1)? The reason is that bj is not monotonic w.r.t.
j, which leads to the difficulty when analyzing the positive-definiteness property of L2 operator.

We propose to reformulate (2.1) as

Lα1u =
∆t1−α

Γ(3− α)

{
r1D1u+ d1D1u

}
, k = 1,

Lαku =
∆t1−α

Γ(3− α)

ß
3α

2
Dku−

α

2
Dk−1u+

k∑
j=1

djDk−j+1u− ckD1u

™
, k ≥ 2,

(2.3)

where Dju is defined in (1.6),

r1 = 2− α− d1 = 2 +
1

2
α−

(α
2

+ 1
)

21−α >
3

4
α, α ∈ (0, 1), (2.4)
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and

dj =

®
c1 + 2− 2α, j = 1,

cj − aj−1, j = 2, . . . , k.
(2.5)

To be precise, we can write dj as

d1 =
(

1 +
α

2

)
21−α − 3

2
α, j = 1,

dj =
(

1− α

2

) [
−(j + 1)1−α + 2j1−α − (j − 1)1−α]+

[
(j + 1)2−α − 2j2−α + (j − 1)2−α]

= −
(

1− α

2

)
κ(j, 1− α) + κ(j, 2− α), j ≥ 2,

(2.6)

where
κ(j, β) := (j + 1)β − 2jβ + (j − 1)β . (2.7)

Now we propose the following properties of aj , cj , and dj that will be useful in our later energy
analysis.

Lemma 2.1 (Properties of L2 operator). For any α ∈ (0, 1), the following properties on the L2
coefficients aj , cj , dj hold:

(1) aj < 0, aj − aj+1 < 0, and 3aj − 4aj+1 + aj+2 < 0 increase w.r.t j;

(2) cj > 0, cj − cj+1 > 0, and 3cj − 4cj+1 + cj+2 > 0 decrease w.r.t. j;

(3) dj > 0, dj − dj+1 > 0, and 3dj − 4dj+1 + dj+2 > 0 decrease w.r.t. j;

(4) 4dj+1 ≥ dj.

Proof. We prove the above properties one by one. We treat the index j ≥ 1 as a continuous variable
so that the derivatives w.r.t. j can be computed.

(1) From [18, Eq. (2.3)] and variable transformation, aj can be written in the integral form of

aj =
(2− α)(1− α)∆tα

2∆t2

∫ ∆t

0

2s− 3∆t

(j∆t+ ∆t− s)α
ds < 0. (2.8)

It is easy to find that
∂jaj > 0 and ∂jjaj < 0, (2.9)

implying aj < 0 and aj − aj+1 < 0 increases. Furthermore, we have

3aj − 4aj+1 + aj+2 =
(2− α)(1− α)∆tα

2∆t2

∫ ∆t

0

(2s− 3∆t)ρ(j, s) ds < 0 (2.10)

with

ρ(j, s) = 3(j∆t+ ∆t− s)−α − 4((j + 1)∆t+ ∆t− s)−α + ((j + 2)∆t+ ∆t− s)−α. (2.11)

It is not difficult to verify ρ(j, s) > 0 and ∂jρ(j, s) < 0, which yields that

∂j (3aj − 4aj+1 + aj+2) > 0. (2.12)
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(2) Similarly, cj can be written in the integral form of

cj =
(2− α)(1− α)∆tα

2∆t2

∫ ∆t

0

2s−∆t

(j∆t+ ∆t− s)α
ds > 0. (2.13)

Then we have
∂jcj < 0 and ∂jjcj > 0, (2.14)

implying cj > 0 and cj − cj+1 > 0 decreases. Furthermore, we have

3cj − 4cj+1 + cj+2 =
(2− α)(1− α)∆tα

2∆t2

∫ ∆t

0

(2s−∆t)ρ(j, s) ds < 0 (2.15)

with ρ(j, s) > 0 given by (2.11) satisfying ∂jρ(j, s) < 0 and ∂sρ(j, s) > 0. As a consequence, we
have

∂j (3cj − 4cj+1 + cj+2) < 0. (2.16)

(3) According to the above properties of aj and cj , dj > 0, dj−dj+1 > 0, and 3dj−4dj+1+dj+2 >
0 decrease w.r.t. j when j ≥ 2. Moreover, when j = 1, straight computation gives

d1 − d2 = (c1 − c2) + a1 + 2− 2α > 0,

d1 − d2 − (d2 − d3) = c1 − 2c2 + c3 + 2a1 − a2 + 2− 2α > 0,

3d1 − 4d2 + d3 − (3d2 − 4d3 + d4) > 0.

(2.17)

(4) In the case of j = 1, we can obtain

4d2 − d1 = 4(c2 − a1)− c1 − 2 + 2α = 2(4 + α)31−α − 9

2
(2 + α) 21−α +

7

2
α > 0. (2.18)

In the case 2 ≤ j ≤ n− 1,

dj = −
(

1− α

2

)
κ(j, 1− α) + κ(j, 2− α), (2.19)

where
κ(j, β) := (j + 1)β − 2jβ + (j − 1)β . (2.20)

Due to the concavity of j1−α and the convexity of j2−α, it is easy to see

κ(j, 1− α) < 0 and κ(j, 2− α) > 0. (2.21)

According to the Jensen’s inequality, the following inequality holds

−4κ(j + 1, 1− α) + κ(j, 1− α) = −4(j + 2)1−α + 9(j + 1)1−α − 6j1−α + (j − 1)1−α

≥ −j1−α + (j − 1)1−α.
(2.22)

Similarly, we also have

4κ(j + 1, 2− α)− κ(j, 2− α) ≥ j2−α − (j − 1)2−α ≥ j1−α − (j − 1)1−α. (2.23)

Combining (2.19), (2.22), and (2.23), we obtain

4dj+1 − dj ≥ 0, ∀2 ≤ j ≤ n− 1. (2.24)

In summary, we conclude that 4dj+1 ≥ dj , ∀1 ≤ j ≤ n− 1.

5
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2.2 Positive definiteness
Based on Lemma 2.1, we first state and prove the following theorem on the discrete operator Lαt
given by (2.3).

Lemma 2.2. For any function u ∈ C ([0, T ];L2(Ω)), the following inequality on the operator Lαk
holds:

n∑
k=1

〈Lαku, 3Dku−Dk−1u〉 ≥
α∆t1−α

2Γ(3− α)

n∑
k=1

‖Dku‖2 ≥ 0. (2.25)

Proof. According to the formula (2.1) of Lαku, we can write the left-hand side of (2.25) in the
following matrix form:

n∑
k=1

〈Lαku, 3Dku−Dk−1u〉 =
∆t1−α

Γ(3− α)

∫
Ω

ψ (A + B + C)ψT dx, (2.26)

with

ψ = [D1u,D2u, · · · , Dnu] ,

A =



1
2 (3d1 + a2)
−3a2 + a3

1
2 (3d1 − d2)

−3a3 + a4 3d2 − d3
1
2 (3d1 − d2)

...
...

...
. . .

−3an−1 + an 3dn−2 − dn−1 3dn−3 − dn−2 · · · 1
2 (3d1 − d2)

−3an 3dn−1 3dn−2 · · · 3d2
5
2d1

 ,

B =


1
2 (3d1 + a2)
−d1

1
2 (3d1 − d2)

. . . . . .
−d1

1
2 (3d1 − d2)
−d1

1
2d1

 ,

C =


r1

− 1
2α

3
2α
. . . . . .

− 1
2α

3
2α
− 1

2α
3
2α

 .

(2.27)

Here we make a split of the associated matrix which will facilitate the proof.
On the right-hand side of (2.26), we actually split the essential matrix into three matrices A, B,

andC. It is not difficult to see thatB is positive definite since 1
2 (3d1+a2) > d1 and 1

2 (3d1−d2) > d1,
and C is also positive definite due to r1 >

3
4α. Further, C satisfies

ψCψT ≥ α

2
ψψT. (2.28)

As a consequence, to derive (2.25), the remaining work is to prove that A is definite positive, which
is equivalent to prove that M = A + AT is positive definite.

6
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To prove the positive definiteness of M, we split it into

M = A + AT =

ï
Mn−1 bT

b 5d1

ò
, (2.29)

where Mn−1 is the leading principle minor of M of size (n− 1)× (n− 1). Note that 0 < −aj < dj
holds true and M is a symmetric matrix composed of positive elements. According to Lemma 2.1,
Mn−1 satisfies the three conditions in [12, Lemma 2.1]: for the lower triangular part of Mn−1,

(i) [Mn−1]i−1,j ≥ [Mn−1]i,j ;

(ii) [Mn−1]i,j−1 < [Mn−1]i,j ;

(iii) [Mn−1]i−1,j−1 − [Mn−1]i,j−1 ≤ [Mn−1]i−1,j − [Mn−1]i,j .

(2.30)

Therefore it has a Cholesky decomposition

Mn−1 = Ln−1L
T
n−1, (2.31)

where the lower triangular part of Ln−1 is composed of positive elements decreasing along each
column. Further, based on Lemma 2.1, we can find the following matrix

M̃ =

ï
Mn−1

2
3b

T

2
3b 2d1

ò
(2.32)

also satisfies the three conditions in [12, Lemma 2.1] and can be decomposed as

M̃ =

ï
Ln−1

l lnn

ò ï
LT
n−1 lT

lnn

ò
, (2.33)

where the lower triangular matrix on the right-hand side satisfies the properties in [12, Lemma 2.1].
The following inequality holds:

l lT = 2d1 − l2nn < 2d1. (2.34)

Therefore, we can derive

M =

ï
Mn−1 bT

b 5d1

ò
=

ï
Ln−1

3
2 l lnn

ò ï
LT
n−1

3
2 l

T

lnn

ò
. (2.35)

Note that
l2nn = 5d1 −

9

4
l lT > 5d1 −

9

2
d1 =

1

2
d1 > 0. (2.36)

This implies that the above decomposition is feasible and one can take lnn > 0. We have proven that
M is positive definite and so is A. In summary, A, B, and C are all positive definite. Combining
(2.26) and (2.28), we then have (2.25). The proof is completed.

Furthermore, we state and prove the following theorem on the discrete operator Lαt given by
(2.3).

Lemma 2.3. For any function u ∈ C ([0, T ];L2(Ω)), the following inequality on the operator Lαk
holds:

n∑
k=1

dn−k+1 〈Lαku,Dku〉 ≥
5α∆t1−α

12Γ(3− α)

n∑
k=1

dn−k+1 ‖Dku‖2 ≥ 0. (2.37)

7
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Proof. According to the formula of Lαt uk, we have
n∑
k=1

dn−k+1 〈Lαku,Dku〉 =
∆t1−α

Γ(3− α)

∫
Ω

ψ (A + B)ψT dx, (2.38)

with
ψ = [D1u,D2u, · · · , Dnu] , (2.39)

A =


dn

dn−1

. . .
d2

d1




d1

−a1 d1

...
...

. . .
−an−2 dn−2 · · · d1

−an−1 dn−1 · · · d2 d1

 , (2.40)

and

B =


dn

dn−1

. . .
d2

d1




r1

− 1
2α

3
2α
. . . . . .

− 1
2α

3
2α
− 1

2α
3
2α

 . (2.41)

We first prove that B is strictly positive definite. It is not difficult to verify that r1 >
3
4α as

pointed out in (2.4). In Lemma 2.1, we have proven that dj ≥ 1
4dj−1. As a consequence, we have

ψBψT = r1dnψ
2
1 +

n∑
j=2

Å
3α

2
dn−j+1ψ

2
j −

α

2
dn−j+1ψj−1ψj

ã
≥ 3α

4
dnψ

2
1 + α

n∑
j=2

Å
3

2
dn−j+1ψ

2
j −

1

2
dn−j+1ψj−1ψj

ã
≥ 5α

12
dnψ

2
1 + α

n∑
j=2

dn−j+1

Å
1

12
ψ2
j−1 +

7

6
ψ2
j −

1

2
ψj−1ψj

ã
=

5α

12
dnψ

2
1 + α

n∑
j=2

dn−j+1

Å
1

12
(ψj−1 − 3ψj)

2 +
5

12
ψ2
j

ã
≥ 5α

12

n∑
j=1

dn−j+1ψ
2
j .

(2.42)

Next, we prove that A is positive definite, which is equivalent to prove that A+AT is positive
definite. We consider the following conjugate transformation of A + AT:

S = P
(
A + AT

)
PT, (2.43)

where P is an anti-diagonal matrix

P =


d−1

1

d−1
2

. ..

d−1
n


n×n

. (2.44)

8
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As a consequence, the lower triangular part of S can be written in the form of

Sij =


2d1d

−1
i if i = j,

di−j+1d
−1
i if j < i < n,

− an−jd−1
n if j < i = n.

(2.45)

Note that 0 < −ai < di holds true and S is a symmetric matrix composed of positive elements.
We show that the lower triangular part of S satisfies the following properties:

(i) Si−1,j ≥ Si,j ;

(ii) Si,j−1 < Si,j ;

(iii) Si−1,j−1 − Si,j−1 ≤ Si−1,j − Si,j .

(2.46)

From Lemma 2.1, it is easy to see that if i ≥ j, Sij increases w.r.t. j. The second property in
(2.46) is satisfied. In the following proof, we treat i and j as variable. We want to prove that for
all i > j ≥ 1,

∂i
(
di−j+1d

−1
i

)
= d−2

i (di ∂idi−j+1 − di−j+1 ∂idi) ≤ 0, (2.47)

and
∂ij
(
di−j+1d

−1
i

)
= d−2

i (−di ∂iidi−j+1 + ∂idi ∂idi−j+1) ≤ 0. (2.48)

When j = 1, it is clear that ∂i
(
di−j+1d

−1
i

)
= 0, which indicates that (2.48) can lead to (2.47). So,

we only need to prove (2.48). Note that

di = −1

2
(2− α)κ(i, 1− α) + κ(i, 2− α),

∂idi = −1

2
(2− α)(1− α)κ(i,−α) + (2− α)κ(i, 1− α),

∂iidi =
α

2
(2− α)(1− α)κ(i,−α− 1) + (2− α)(1− α)κ(i,−α),

(2.49)

where κ(·, ·) is given by (2.20). We then have

− di ∂iidi−j+1 + ∂idi ∂idi−j+1

= (2− α)(1− α)

ï
1

2
(2− α)κ(i, 1− α)− κ(i, 2− α)

ò [α
2
κ(i− j + 1,−α− 1) + κ(i− j + 1,−α)

]
+ (2− α)2

ï
1

2
(1− α)κ(i,−α)− κ(i, 1− α)

ò ï
1

2
(1− α)κ(i− j + 1,−α)− κ(i− j + 1, 1− α)

ò
= −1

2
(2− α)2(1− α)Q1 +

1

2
(2− α)2(1− α)Q2 + (2− α)Q3,

(2.50)
where

Q1 =
α

2
κ(i, 2− α)κ(i− j + 1,−α− 1) + κ(i,−α)κ(i− j + 1, 1− α),

Q2 =
α

2
κ(i, 1− α)κ(i− j + 1,−α− 1) +

1

2
(1− α)κ(i,−α)κ(i− j + 1,−α),

Q3 = −(1− α)κ(i, 2− α)κ(i− j + 1,−α) + (2− α)κ(i, 1− α)κ(i− j + 1, 1− α).

(2.51)

9



C. QUAN AND B. WANG Energy Stability of L2 Schemes

In Appendix A, we prove that Q1 ≥ 0, Q2 ≤ 0, and Q3 ≤ 0, which is very technical (see Figure 1
for numerical verification). Now we can say that (2.47) and (2.48) holds true, which implies that
the three properties (2.46) are satisfied when i < n. When i = n, using the fact that cn−jd−1

n

increases w.r.t. j as well as (2.47) and (2.48), one can verify that the three properties (2.46) are
still satisfied. Therefore, S is positive definite.

Figure 1: Signs of Q1, Q2, Q3 for α = 0.1 and 0.9.

In summary, A is also positive definite. As a consequence, by combining (2.38) and (2.42), the
inequality (2.37) is true.

3 Energy stable L2 schemes
In this section, we propose second order and 3 − α order schemes for time-fractional phase-field
equations and establish the corresponding energy stability based on the analysis of L2 operators.

10
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3.1 L2 SAV scheme
We propose a second order semi-discrete scheme for the , using the L2 approximation for the
fractional derivative and the SAV technique [19] for the nonlinear term:

Lαnu = G
ñ
Lun +

rn√
E1(un)

δuE1(un)

ô
,

3rn − 4rn−1 + rn−2 =
1

2
√
E1(un)

〈
δuE1(un), 3un − 4un−1 + un−2

〉
,

(3.1)

with un = 2un−1 − un−2. Then, we can state the energy boundedness for the scheme (3.1).

Theorem 3.1 (Energy boundedness). For the second order L2 scheme (3.1), the following energy
boundedness holds: ∀1 ≤ n ≤ N, ‹En ≤ ‹E0, (3.2)

where ‹En =
1

4

(
〈un,Lun〉+

〈
2un − un−1,L(2un − un−1)

〉)
+

1

2

(
(rn)2 + (2rn − rn−1)2

)
. (3.3)

Proof. Take the inner products of the first two equations in (3.1) respectively with 3un − 4un−1 +
un−2 and rn. Then, multiply the third equation in (3.1) with 2rn. Combining the derived three
equations, we have〈
G−1Lαnu, 3u

n − 4un−1 + un−2
〉

=
〈
Lun, 3un − 4un−1 + un−2

〉
+ 2rn

(
3rn − 4rn−1 − rn−2

)
. (3.4)

As a consequence, we can derive‹En − ‹En−1 ≤ 1

2

〈
G−1Lαnu, 3u

n − 4un−1 + un−2
〉
. (3.5)

According to Lemma 2.2, we then have‹En − ‹E0 ≤ 1

2

n∑
k=1

〈
G−1Lαku, 3u

k − 4uk−1 + uk−2
〉
≤ 0. (3.6)

3.2 3− α order implicit-explicit L2 scheme
We consider the following 3−α order implicit-explicit L2 scheme for the time-fractional Allen–Cahn
equation with G = −1, L = −ε2∆:

Lαn+1u = ε2∆un+1 − 3f(un) + 3f(un−1)− f(un−2), (3.7)

where f(u) = u3 − u. Then, we state the following fractional energy law for scheme (3.7) under a
mild restriction on ∆t.

11



C. QUAN AND B. WANG Energy Stability of L2 Schemes

Theorem 3.2 (Fractional energy law). For the numerical scheme (3.7), assume that there exists
a constant L0 ≥ 1 s.t.

‖un‖∞ ≤ L0, ∀n ≥ 1. (3.8)

If

∆tα ≤ 5α

168Γ(3− α)(3L0 − 1)
, (3.9)

then the following time-fractional energy law holds for all n:

n∑
k=1

dn−k+1DkE ≤ 0, (3.10)

where dj > 0 is given by (2.5).

Proof. Rewrite (3.7) as

Lαku = ε2∆uk − 3f(uk−1) + 3f(uk−2)− f(uk−3), ∀k = 1, · · · , n. (3.11)

Multiplying equation by uk−uk−1 and integrating the resultant equation over Ω. We compute each
term in the equation as follows

〈ε2∆uk, uk − uk−1〉 = −ε
2

2

(
‖∇uk‖2 − ‖∇uk−1‖2 + ‖∇uk −∇uk−1‖2

)
,

− 〈f(uk−1), uk − uk−1〉 = −〈F (uk)− F (uk−1), 1〉+
1

2
〈f ′(ξ1)(uk − uk−1), uk − uk−1〉,

− 2〈f(uk−1)− f(uk−2), uk − uk−1〉 = −2〈f ′(ξ2)(uk−1 − uk−2), uk − uk−1〉,
〈f(uk−2)− f(uk−3), uk − uk−1〉 = 〈f ′(ξ3)(uk−2 − uk−3), uk − uk−1〉.

(3.12)

where ξi is between uk−i and uk−i+1, i = 1, 2, 3. Summing up all equations and using |f ′(ξi)| ≤
L = 3L0 − 1, we arrive at

〈Lαku, uk − uk−1〉 ≤ −(Ek − Ek−1) + 2L‖uk − uk−1‖2 + L‖uk−1 − uk−2‖2 +
L

2
‖uk−2 − uk−3‖2.

(3.13)

Recall that in Lemma 2.3, we have proved

n∑
k=1

dn−k+1 〈Lαku,Dku〉 ≥
5α∆t1−α

12Γ(3− α)

n∑
k=1

dn−k+1 ‖Dku‖2 . (3.14)

We then have
n∑
k=1

dn−k+1DkE ≤ −∆t

n∑
k=1

dn−k+1

Å
5α

12Γ(3− α)∆tα
− 2L

ã
‖Dku‖2

+ ∆t

n−1∑
k=1

dn−kL ‖Dku‖2 + ∆t

n−2∑
k=1

dn−k−1
L

2
‖Dku‖2 .

(3.15)

12
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Note that 4dj+1 > dj according to Lemma 2.1. When

∆tα ≤ 5α

168Γ(3− α)L
, (3.16)

we then have
n∑
k=1

dn−k+1DkE ≤ 0. (3.17)

Theorem 3.2 gives a time-fractional energy law, which yields directly the following energy bound-
edness result for the L2 scheme (3.7) due to the decrease of dj :

Corollary 3.1 (Energy boundedness). For the 3−α order L2 scheme (3.7) with the same conditions
in Theorem 3.2, the following energy boundedness holds:

En ≤ E0, ∀1 ≤ n ≤ N. (3.18)

Proof. This theorem can be proved easily by mathematical induction. When n = 1, (3.10) is

d1(E1 − E0) ≤ 0, (3.19)

which indicates that E1 ≤ E0. Assuming that Ek ≤ E0 for 1 ≤ k ≤ n− 1 and rewritting (3.10) as

d1E
n ≤ dnE0 +

n−1∑
k=1

(−dn−k+1 + dn−k)Ek. (3.20)

Recalling that dj > 0 decreases w.r.t j, we have En ≤ E0.

Remark 3.1. One can also prove Corollary 3.1 directly using Lemma 2.2 and obtain a better
restriction on ∆t. We leave this prove to readers.

4 Numerical tests
In this section, we test the proposed L2 schemes for time-fractional phase-field models, in order to
verify the convergence rate and the energy stability. More specifically, we consider the AC model
with G = −1 and the CH model with G = ∆. The energy of the Allen–Cahn and Cahn–Hilliard
equations is

E(u) =

∫
Ω

Å
ε2

2
|∇u|2 + F (u)

ã
dx, (4.1)

where
F (u) =

1

4

(
1− u2

)2
. (4.2)

Example 4.1. Consider the 2D fractional Allen-Cahn equation

∂αt u = ε2∆u+ u− u3 + s on [−π, π]2 × (0, T ], (4.3)

with periodic boundary condition and the source term s(x, y, t) s.t. the exact solution is

u(x, y, t) = 0.2t5 sin(x) cos(y). (4.4)

13
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In this test, we use the Fourier spectral method with 128× 128 modes for spatial discretization.
This number is large enough so that the spatial approximation error is negligible. We take ε = 0.1.
The errors and convergence rates are given in Table 1 and 2 computed respectively by the L2 SAV
scheme (3.1) and the implicit-explicit L2 scheme (3.7). It can be observed that (3.1) is approximately
second order and (3.7) is 3− α order, as expected.

However, we emphasize that the convergence rates can be reached when the exact solution is
regular enough w.r.t. time. If not, graded time mesh might be needed to preserve the correct
convergence order, see for example [20] for some interesting discussions.

Table 1: `2-errors at T = 1 for Example 4.1 for α = 0.1 (top) and 0.9 (bottom) and their convergence
rates, computed by the L2 SAV scheme.

τ 1
40

1
80

1
160

1
320

1
640

1
1280

`2-error 3.4147× 10−2 8.9402× 10−3 2.2826× 10−3 5.7686× 10−4 1.4502× 10−4 3.6357× 10−5

rate – 1.9334 1.9696 1.9844 1.9920 1.9959

τ 1
40

1
80

1
160

1
320

1
640

1
1280

`2-error 4.1677× 10−4 1.6061× 10−4 5.1724× 10−5 1.5388× 10−5 4.3863× 10−6 1.2177× 10−6

rate – 1.3757 1.6346 1.7490 1.8108 1.8488

Table 2: `2-errors at T = 1 for Example 4.1 for α = 0.1 (top) and 0.9 (bottom), and their
convergence rates, computed by the implicit-explicit L2 scheme.

τ 1
40

1
80

1
160

1
320

1
640

1
1280

`2-error 2.1833× 10−3 2.6112× 10−4 3.1957× 10−5 3.9571× 10−6 4.9335× 10−7 6.1750× 10−8

rate – 3.0637 3.0305 3.0136 3.0037 2.9981

τ 1
40

1
80

1
160

1
320

1
640

1
1280

`2-error 1.9656× 10−3 4.9721× 10−4 1.2088× 10−4 2.8802× 10−5 6.7924× 10−6 1.5934× 10−6

rate – 1.9830 2.0402 2.0694 2.0842 2.0918

Example 4.2. Consider the 2D fractional Allen-Cahn equation

∂αt u = ε2∆u+ u− u3 on [0, 2π]2 × (0, T ], (4.5)

with periodic boundary condition and initial condition composed of seven circles with centers and

14
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radii given in Table 3:

u0(x, y) = −1 +

7∑
i=1

f
(»

(x− xi)2 + (y − yi)2 − ri
)
, (4.6)

where

f(s) =

®
2e−ε

2/s2 if s < 0,

0 otherwise.
(4.7)

Table 3: Centers (xi, yi) and radii ri in the initial condition (4.6), which are the same as in [21].

i 1 2 3 4 5 6 7

xi π/2 π/4 π/2 π 3π/2 π 3π/2

yi π/2 3π/4 5π/4 π/4 π/4 π 3π/2

ri π/5 2π/15 2π/15 π/10 π/10 π/4 π/4

We take ε = 0.1, α = 0.9, ∆t = 0.01 and use 128× 128 Fourier modes for spatial discretization.
The numerical solution and energy evolution are illustrated respectively in Figure 2 and 3. In this
case, we can observe that the classical energy decreases w.r.t. time.

Example 4.3. Consider the 2D fractional Cahn–Hilliard equation

∂αt u = −ε2∆2u+ ∆(u− u3) on [0, 2π]2 × (0, T ], (4.8)

with periodic boundary condition and random initial condition distributed uniformly in [−0.5, 0.5].

We take ε = 0.1, α = 0.8, ∆t = 0.001, T = 1, and use 128 × 128 Fourier modes for spatial
discretization. The numerical solution and energy evolution are illustrated respectively in Figure 4
and 5. It can be observed that the modified energy is bounded by initial energy. Note that near
t = 0, the energy dissipation property seems destroyed but the energy boundedness is still satisfied.
Similar situation has also been reported in [22].

5 Conclusion
We have established the energy boundedness of the second order L2 SAV scheme for any phase-
field equation and the time-fractional energy law of the 3 − α order L2 IMEX scheme for the AC
equation. To prove the energy stability, a reformulation of L2 approximation is proposed and several
useful properties have been provided for the L2 operator. Numerical tests are provided to verify
the convergence order (when the exact solution is sufficiently regular w.r.t. time) and the energy
stability.

However, we shall mention that it is still an open question whether the rigorous energy dis-
sipation holds (even on the continuous level), which is challenging due to the existence of both
nonlocality and nonlinearity.
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Figure 2: Numerical solution of Example 4.2 with α = 0.9, ∆t = 0.01 and the number of Fourier
modes 128× 128, computed by the implicit-explicit L2 scheme.

Figure 3: Classical energy w.r.t. time for Example 4.2 with α = 0.9, ∆t = 0.01 and the number of
Fourier modes 128× 128, computed by the implicit-explicit L2 scheme.
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Figure 4: Numerical solution of Example 4.2 with α = 0.8, ∆t = 0.001 and the number of Fourier
modes 128× 128, computed by the implicit-explicit L2 scheme.

Figure 5: Classical energy w.r.t. time for Example 4.2 with α = 0.8, ∆t = 0.001 and the number
of Fourier modes 128× 128, computed by the implicit-explicit L2 scheme.
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A Signs of Q1, Q2, Q3 in (2.51)
For the simplicity, we denote

θ1 =
1

i
and θ2 =

1

i− j + 1
, (A.1)

so that 0 < θ1 ≤ θ2 ≤ 1
2 since i > j ≥ 1. Then, we can rewrite κ define in (2.20)as

κ(i, β) = iβρ(θ1, β),

κ(i− j + 1, β) = (i− j + 1)βρ(θ2, β).
(A.2)

with

ρ(θ, β) := (1 + θ)β − 2 + (1− θ)β = 2

∞∑
m=1

Ç
β

2m

å
θ2m. (A.3)

Firstly, we prove that Q1 ≥ 0 in (2.51). Combining the first equation of (2.51), (A.2), and (A.3),
we have

Q1 =
α

2
κ(i, 2− α)κ(i− j + 1,−α− 1) + κ(i,−α)κ(i− j + 1, 1− α)

≥ 1

2
i−α(i− j + 1)1−α

[
αρ(θ1, 2− α)ρ(θ2,−α− 1) + 2ρ(θ1,−α)ρ(θ2, 1− α)

]
=

1

2
i−α(i− j + 1)1−αH1,

(A.4)

with
H1 = αρ(θ1, 2− α)ρ(θ2,−α− 1) + 2ρ(θ1,−α)ρ(θ2, 1− α). (A.5)

As θ2 ≤ 1
2 , it is not difficult to verify

(α+ 1) ≥
∞∑
m=2

(2m− 3)(α+ 1)θ2m−2
2 ≥

∞∑
m=2

2(2m− 3)

2m+ 1

Ç
−α− 1

2m

å
θ2m−2

2 , (A.6)

due to the fact that

(α+ 1) ≥ 2

2m+ 1

Ç
−α− 1

2m

å
=

2(α+ 1) · · · (α+ 2m)

(2m+ 1)!
. (A.7)

Combining (A.3) and (A.6), we derive

ρ(θ2,−α− 1) = 2

∞∑
m=1

Ç
−α− 1

2m

å
θ2m

2 = (α+ 1)(α+ 2)θ2
2 +

∞∑
m=2

2

Ç
−α− 1

2m

å
θ2m

2

≥ (α+ 1)2θ2
2 + 4

∞∑
m=2

2m− 1

2m+ 1

Ç
−α− 1

2m

å
θ2m

2 .

(A.8)
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As a consequence, we have

H1 ≥ 2α

∞∑
m1=1

Ç
2− α
2m1

å
θ2m1

1

[
(α+ 1)2θ2

2 + 4

∞∑
m2=2

2m2 − 1

2m2 + 1

Ç
−α− 1

2m2

å
θ2m2

2

]

+ 8

∞∑
m1=1

Ç
−α
2m1

å
θ2m1

1

∞∑
m2=1

Ç
1− α
2m2

å
θ2m2

2

= 8

∞∑
m1=1

∞∑
m2=1

cm1,m2θ
2m1
1 θ2m2

2 .

(A.9)

In the case of m1 = m2 = m, we can find that if m = 1,

c1,1 =
α

4
(α+ 1)2

Ç
2− α

2

å
+

Ç
−α
2

åÇ
1− α

2

å
=
α(1− α)2(α+ 1)(α+ 2)

8
≥ 0, (A.10)

while if m ≥ 2,

cm,m =
α(2m− 1)

2m+ 1

Ç
2− α
2m

åÇ
−α− 1

2m

å
+

Ç
−α
2m

åÇ
1− α
2m

å
=

Ç
2− α
2m

åÇ
−α− 1

2m

åï
α(2m− 1)

2m+ 1
− α(2m− 2 + α)

(2− α)(2m+ α)

ò
=

Ç
2− α
2m

åÇ
−α− 1

2m

å
α

ï
1− α
2− α

+
2

2m+ α
− 2

2m+ 1

ò
≥ 0.

(A.11)

In the case of m1 > m2 = 1, we have

cm1,1θ
2m1
1 θ2

2 + c1,m1
θ2

1θ
2m1
2

=

ñ
α

4
(α+ 1)2

Ç
2− α
2m1

å
+

Ç
−α
2m1

åÇ
1− α

2

åô
θ2m1

1 θ2
2

+

ñ
α(2m1 − 1)

2m1 + 1

Ç
2− α

2

åÇ
−α− 1

2m1

å
+

Ç
−α
2

åÇ
1− α
2m1

åô
θ2

1θ
2m1
2

≥ α

4

ï
(α+ 1)2 − 2(2m1 + α− 1)(2m1 + α− 2) +

2(2m1 − 1)

2m1 + 1

Å
2m1

α
+ 1

ã
(2m1 + α− 1)(2m1 + α− 2)− 2(2m1 + α− 2)

òÇ
2− α
2m1

å
θ2m1

1 θ2
2

≥ 0,

(A.12)

where we use the fact θ1 ≤ θ2 and m1 ≥ m2 + 1 = 2. In the case of m1 > m2 ≥ 2, we have

cm1,m2θ
2m1
1 θ2m2

2 + cm2,m1θ
2m2
1 θ2m1

2

=

ñ
α(2m2 − 1)

2m2 + 1

Ç
2− α
2m1

åÇ
−α− 1

2m2

å
+

Ç
−α
2m1

åÇ
1− α
2m2

åô
θ2m1

1 θ2m2
2
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+

ñ
α(2m1 − 1)

2m1 + 1

Ç
2− α
2m2

åÇ
−α− 1

2m1

å
+

Ç
−α
2m2

åÇ
1− α
2m1

åô
θ2m2

1 θ2m1
2

= α

ï
2m2 − 1

2m2 + 1
− (2m1 − 1 + α)(2m1 − 2 + α)

(2− α)(2m2 + α)(2m2 − 1 + α)

òÇ
2− α
2m1

åÇ
−α− 1

2m2

å
θ2m1

1 θ2m2
2

+ α

ï
2m1 − 1

2m1 + 1
− (2m2 − 1 + α)(2m2 − 2 + α)

(2− α)(2m1 + α)(2m1 − 1 + α)

òÇ
2− α
2m2

åÇ
−α− 1

2m1

å
θ2m2

1 θ2m1
2

≥ α
Ç

2− α
2m1

åÇ
−α− 1

2m2

å
θ2m1

1 θ2m2
2

ï
2m2 − 1

2m2 + 1
− (2m1 − 1 + α)(2m1 − 2 + α)

(2− α)(2m2 + α)(2m2 − 1 + α)

+
(2m1 − 1)(2m1 + α)(2m1 − 1 + α)(2m1 − 2 + α)

(2m1 + 1)(2m2 + α)(2m2 − 1 + α)(2m2 − 2 + α)
− 2m1 − 2 + α

(2− α)(2m2 + α)

ò
≥ α
Ç

2− α
2m1

åÇ
−α− 1

2m2

å
θ2m1

1 θ2m2
2

ï
2m2 − 1

2m2 + 1
− 2m1 − 2 + α

(2m2 + α)

+
(2m1 − 1 + α)(2m1 − 2 + α)

(2m2 + α)(2m2 − 1 + α)

Å
(2m1 − 1)(2m1 + α)

(2m1 + 1)(2m2 − 2 + α)
− 1

ãò
≥ α
Ç

2− α
2m1

åÇ
−α− 1

2m2

å
θ2m1

1 θ2m2
2

ï
− 2(m1 −m2)

(2m2 + α)
+

(2m1 − 1)(2m1 + α)

(2m1 + 1)(2m2 − 2 + α)
− 1

ò
≥ 0. (A.13)

Combining (A.9)–(A.13), we then claim H1 ≥ 0, which yields Q1 ≥ 0.
Secondly, we prove that Q2 ≤ 0 in (2.51). Combining the second equation of (2.51), (A.2), and

(A.3), we have

Q2 =
α

2
κ(i, 1− α)κ(i− j + 1,−α− 1) +

1

2
(1− α)κ(i,−α)κ(i− j + 1,−α),

≤ 1

2
i1−α(i− j + 1)−α−1

[
αρ(θ1, 1− α)ρ(θ2,−α− 1) + (1− α)ρ(θ1,−α)ρ(θ2,−α)

]
=

1

2
i1−α(i− j + 1)−α−1H2,

(A.14)

with

H2 = αρ(θ1, 1− α)ρ(θ2,−α− 1) + (1− α)ρ(θ1,−α)ρ(θ2,−α)

= 4α

∞∑
m1=1

Ç
1− α
2m1

å
θ2m1

1

∞∑
m2=1

Ç
−α− 1

2m2

å
θ2m2

2 + 4(1− α)

∞∑
m1=1

Ç
−α
2m1

å
θ2m1

1

∞∑
m2=1

Ç
−α
2m2

å
θ2m2

2

= 4α2(1− α)(1 + α)

ï
−

∞∑
m1=1

1

2m1(2m1 − 1)

Ç
−α− 1

2m1 − 2

å
θ2m1

1

∞∑
m2=1

α+ 2

2m2(2m2 − 1)

Ç
−α− 3

2m2 − 2

å
θ2m2

2

+

∞∑
m1=1

1

2m1(2m1 − 1)

Ç
−α− 2

2m1 − 2

å
θ2m1

1

∞∑
m2=1

α+ 1

2m2(2m2 − 1)

Ç
−α− 2

2m2 − 2

å
θ2m2

2

ò
≤ 0,

(A.15)
where the proof of the last inequality is similar to the previous case of H2. As a consequence, we
can claim that Q2 ≤ 0.

20



C. QUAN AND B. WANG Energy Stability of L2 Schemes

Thirdly, we prove that Q3 ≤ 0 in (2.51). Combining the second equation of (2.51), (A.2), and
(A.3), we have

Q3 = −(1− α)κ(i, 2− α)κ(i− j + 1,−α) + (2− α)κ(i, 1− α)κ(i− j + 1, 1− α),

≤ 1

2
i2−α(i− j + 1)−α

[
− (1− α)ρ(θ1, 2− α)ρ(θ2,−α) + (2− α)ρ(θ1, 1− α)ρ(θ2, 1− α)

]
=

1

2
i2−α(i− j + 1)−αH3,

(A.16)
with

H3 = −(1− α)ρ(θ1, 2− α)ρ(θ2,−α) + (2− α)ρ(θ1, 1− α)ρ(θ2, 1− α)

= −4(1− α)

∞∑
m1=1

Ç
2− α
2m1

å
θ2m1

1

∞∑
m2=1

Ç
−α
2m2

å
θ2m2

2 + 4(2− α)

∞∑
m1=1

Ç
1− α
2m1

å
θ2m1

1

∞∑
m2=1

Ç
1− α
2m2

å
θ2m2

2

= 4α(1− α)2(2− α)

ï
−

∞∑
m1=1

1

2m1(2m1 − 1)

Ç
−α

2m1 − 2

å
θ2m1

1

∞∑
m2=1

α+ 1

2m2(2m2 − 1)

Ç
−α− 2

2m2 − 2

å
θ2m2

2

+

∞∑
m1=1

1

2m1(2m1 − 1)

Ç
−α− 2

2m1 − 2

å
θ2m1

1

∞∑
m2=1

α

2m2(2m2 − 1)

Ç
−α− 1

2m2 − 2

å
θ2m2

2

ò
≤ 0,

(A.17)
where the proof of the last inequality is similar to the previous case of H2. As a consequence, we
can claim that Q3 ≤ 0.
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