
ar
X

iv
:1

21
1.

16
46

v2
 [

ph
ys

ic
s.

co
m

p-
ph

]
23

 A
ug

 2
01

3

Massively parallel Monte Carlo for many-particle simulations on GPUs

Joshua A. Andersona, Eric Jankowskia, Thomas L. Grubbb, Michael Engela, Sharon C. Glotzera,b

aDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
bDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Current trends in parallel processors call for the design ofefficient massively parallel algorithms for scientific computing. Parallel
algorithms for Monte Carlo simulations of thermodynamic ensembles of particles have received little attention because of the
inherent serial nature of the statistical sampling. In thispaper, we present a massively parallel method that obeys detailed balance
and implement it for a system of hard disks on the GPU. We reproduce results of serial high-precision Monte Carlo runs to verify
the method. This is a good test case because the hard disk equation of state over the range where the liquid transforms intothe solid
is particularly sensitive to small deviations away from thebalance conditions. On a Tesla K20, our GPU implementation executes
over one billion trial moves per second, which is 148 times faster than on a single Intel Xeon E5540 CPU core, enables 27 times
better performance per dollar, and cuts energy usage by a factor of 13. With this improved performance we are able to calculate
the equation of state for systems of up to one million hard disks. These large system sizes are required in order to probe the nature
of the melting transition, which has been debated for the last forty years. In this paper we present the details of our computational
method, and discuss the thermodynamics of hard disks separately in a companion paper.

Keywords: Monte Carlo, parallel algorithm, detailed balance, GPGPU,CUDA, hard disk system

1. Introduction

During the last decades computational scientists have en-
joyed a doubling of performance for single-threaded applica-
tions every two years solely from improvements in computer
architecture. This is no longer the case. Current processorde-
signs run into the Power Wall, which limits attainable clock
speeds in a given power budget, and the Instruction Level Par-
allelism (ILP) Wall, which exists because there is only so much
ILP that can be extracted from a typical program [1]. Moore’s
law still holds, for now, and the additional transistors go into
increasing the core counts on each new chip. Consequently, re-
searchers must utilize parallelism to execute larger, longer, or
more demanding calculations and simulations.

As of this publication, a cluster of networked multi-core
CPUs is the most common system architecture. In an alter-
native approach, a single graphics processing unit (GPU) can
execute thousands of instructions at the same time and pro-
vides the performance of a small cluster at a fraction of the
cost [2]. GPUs are becoming popular as desktop ‘personal
supercomputers’ and as coprocessors in heterogeneous clus-
ters. A successful GPU algorithm divides a given computa-
tion into a maximal number of identical, fully independent,and
simple tasks, calledthreads. To fully utilize their potential it
is necessary to design not just parallel, butmassively parallel
algorithms that scale to thousands of threads. Over the last
few years, many problems have successfully been adapted to
GPUs. One example is the molecular dynamics (MD) method
for simulating thermodynamic ensembles of particles, which is
well suited for massive parallelization. Numerous MD soft-
ware packages support GPUs, including HOOMD-blue [3, 4],

LAMMPS [5], AMBER [6, 7], NAMD [8], OpenMM [9], FEN
ZI [10], HALMD [11], the work by Rappaport [12], GRO-
MACS [13] and ACEMD [14].

A case where implementation to GPUs has so far not been
achieved is Monte Carlo (MC) applied to off-lattice many-
particle systems. MC is a statistical, rather than determinis-
tic, sampling method that, appropriately implemented, samples
the microstates of desired thermodynamic ensembles. It is the
method of choice in many situations because it only requires
an interaction potential, not a force field, allowinge.g. the use
of non-differentiable pair potentials. Such potentials are use-
ful in the simulation of hard particles, which interact solely via
excluded volume. MC is also flexible in the sense that a wide
variety of update moves can be applied [15–18]. MC is easy
to implement on serial machines where each step selects a new
microstate at random and accepts or rejects the new microstate
based on the Boltzmann factor. An example trial move involves
translating a single particle in a random direction. Since the
acceptance of a trial move depends on results of prior moves,
subsequent moves usually cannot be performed independently.
A massively parallel algorithm must not only update a large
number of particles at the same time, but also do so in a statis-
tically correct way. This can be achieved by obeying detailed
balance, which is not a trivial task. For these reasons, parallel
MC codes for particle systems have received much less atten-
tion in the literature than parallel MD.

Available parallel MC algorithms fall into several categories.
Most of them rely on domain decomposition schemes to up-
date portions of the problem in parallel. Lattice MC has been
employed for Ising models [19, 20] including GPU implemen-

Preprint submitted to Journal of Computational Physics October 29, 2018

http://arxiv.org/abs/1211.1646v2

x

y

0 1 2 3 4

0

1

2

3

4

Figure 1: In a serial hard disk simulation, each trial move typically consists
of the following: (i) Select a single disk at random, (ii) apply a random dis-
placement to it, and (iii) accept the move if it generates no overlaps. The cell
list enablesO(1) overlap checks by limiting the search space to only nine local
cells. A sweep is defined asN consecutive trial moves, whereN is the number
of disks in the simulation.

tations [21, 22]. Related schemes for particle systems exist [23–
27], but none scale up to thousands of threads. Moreover, the
updating of domains employed in some of those methods can
introduce a sampling bias that precludes the balance conditions.
Asynchronous parallel algorithms [28, 29] are poorly suited for
GPUs because of their extensive inter-thread communication.
Much work has been done on parallelizing Kinetic Monte Carlo
simulations [30, 31], but these do not directly apply to the sys-
tems we are interested in. Hybrid approaches that employ MD
trajectories to create trial configurations [32, 33] can be an ef-
fective way to exploit GPU parallelism, but require substantial
additional programming and are not guaranteed to evolve any
faster than MD alone.

In this paper, we develop an algorithm for massively par-
allel Monte Carlo (MPMC) simulations of many-particle sys-
tems that obeys detailed balance. As a test case, we implement
it on the GPU for a system of hard disks in two dimensions
(Figure 1) and validate it with comparisons to recent large-scale
serial event-chain MC simulations [34]. Our algorithm is not
specific to this system, and it is valid for any MC simulation
with local interactions between particles or lattice siteson any
massively parallel computer architecture.

2. Algorithm

In developing any parallel application, the programmer must
identify the computations that can be executed simultaneously.
As the total work is broken into smaller tasks, opportunities
for scaling to more processors increase. GPUs execute espe-
cially fine grained work loads. In GPU MD applications, one

thread typically acts on a single particle [3, 5, 8, 11, 12]. Such
a decomposition is not directly applicable to traditional MC be-
cause each trial move depends on the state of the neighboring
particles.

In MPMC, we utilize thecell list data structure for parallel
decomposition, as well as overlap checks in the case of hard
particles. A checkerboard decomposition permits many cells
to be updated independently. [19] Although similar to applying
trial moves to particles in a particular sequential order, checker-
board decomposition differs from the serial algorithm in one
key way. Particle positions, not labels (or indices), determine
the order of updates, so the order will change as particles mi-
grate. Consequently, careless choices can lead to erroneous
simulations. We prove that our implementation of MPMC
obeys detailed balance to ensure that no incorrect choices are
made in its design.

2.1. Checkerboard decomposition

The checkerboard domain decomposition scheme [19, 23] di-
vides the simulation volume into sets of square (cubic) cells
(seeFigure 2). Checkerboarding maps well to MC simulations
because it allows parallel updates of each set, comprising one
quarter (one eighth in three dimensions) of the simulation vol-
ume. Thex andy coordinates of the cell (andz in three dimen-
sions) determine its checkerboard setQ ∈ {a, b, c, d, . . .}:

Q =







































a if (x ∈ Even) and (y ∈ Even),
b if (x ∈ Odd) and (y ∈ Even),
c if (x ∈ Even) and (y ∈ Odd),
d if (x ∈ Odd) and (y ∈ Odd),
. ,

(1)

wherea, b, . . . indicate labels of checkerboard sets.
The width of the cellw must be chosen greater than the diam-

eter of the diskσ (generally, the pair interaction cutoff). At the
minimumw = σ, two particles separated by one cell can move
without interacting (seeFigure 2(c)). Thus, the moves available
to particles in a cell are independent from those in other cells of
the same checkerboard set.

Most previous parallel MC simulations with mobile particles
use stripe domain decomposition [24–26], a one-dimensional
version of the checkerboard decomposition, which minimizes
the interface (and therefore communication) between domains.
However, the number of stripes and therefore the number of
trial moves that can be conducted in parallel is low. This means
stripe decomposition is not efficient for parallelization on more
than a few cores.

2.2. Sweep structure

Algorithm 1 outlines the structure of MPMC. It splits each
sweep over cells into sub-sweeps (four in two dimensions, eight
in three dimensions), one handling each checkerboard set. Line
2 shuffles the order of checkerboard sets using Fisher-Yates [35]
to guarantee a random permutation. During a sub-sweep, the
algorithm concurrently processes all of the cells in the active
set (line 4).

2

(a) (b)

(c)

a b

c d

a b

c d

a b

c d

a b

c d

Figure 2: (a) In massively parallel Monte Carlo (MPMC), trial moves are concurrently applied to particles in a subset of the cells. Moves that leave the cell are
rejected. (b) Selected cells are separated by one row or one column of inactive cells. During the evaluation of the acceptance criterion, each active cell reads the
particles in the eight neighboring inactive cells. (c) Simultaneous trial moves do not interact when the cell width is greater than the interaction rangeσ.

Algorithm 1 Monte Carlo sweep
1: C ← {a, b, c, d, . . .}
2: rng.shuffle(C)
3: for Q ∈ C do ⊲ Loop over sub-sweeps
4: for c ∈ cells(Q), in parallel do ⊲ Loop over cells
5: rng.shuffle(c.particles)
6: for s ∈ [0 . . .nM) do
7: p← c.particles[mod(s, len(c.particles))]
8: Generate trial move
9: if p remains in celland move acceptedthen

10: Move p
11: end if
12: end for
13: end for
14: end for
15: d ← rng.uniform(0,w/2)
16: ~f ← rng.choose(−x,+x,−y,+y, . . .)
17: shift cells(~f , d)

Each concurrent cell update shuffles and then loops overnM

trial moves (lines 5,6). Line 7 selects the particle from thecell,
repeating from the start of the list whennM > n, wheren is
the number of particles in the cell. Fixing the number of moves
in all cells to the same number distributes computational effort
most evenly among GPU cores [36]. Line 8 generates a trial
move for each particle. Line 9 accepts the move if it passes
the normal Metropolis acceptance criterion [37] and the particle
center remains in the cell [24]. Lines 15-17 maintain ergodicity
by performing a cell shift, which redraws the cell boundaries in
a randomly chosen location.

2.3. Detailed balance

A MC simulation obeys detailed balance if, for every inter-
nal process evolving the system there exists a reverse process
occurring at the same rate. This ensures that a sequence of con-
figurations converges to the correct equilibrium distribution, re-
gardless of the initial condition. Markov-chain MC generates
a sequence of configurations where the probabilityx j(t + 1) of
observing the system in statej at stept + 1 is determined only
by the previous statei at stept. This can be expressed by

x j(t + 1) = xi(t)Pi j, (2)

wherex(t) = {x1(t), x2(t), ..., xn(t)} is the probability distribution
at stept. The elementsPi j of the transition matrix represent the
probabilities that the system will transition from statei to state
j. If there exists an equilibrium distribution of statesx∗ for
which x∗ = x∗P, thenx(t) is guaranteed to converge tox∗ as
t → ∞ whenP satisfies detailed balance:

x∗i Pi j = x∗j P ji. (3)

Although detailed balance of a Markov chain is a suffi-
cient condition to ensure convergence, it is not necessary.
Manousiouthakis and Deem show that an irreducible transition
matrix that enforces regular sampling (∃m : (Pm)i j > 0∀i, j)
and obeys balance (x∗ = x∗P) is both necessary and sufficient
for convergence to the correct equilibrium distribution [38]. In
this work we choose to enforce detailed balance.

The MPMC algorithm constructs a Markov chain and obeys
detailed balance on the level of a MC sweep. This follows di-
rectly from the observation that for each sweep there is exactly
one inverse sweep, which can be seen as follows. Take a partic-
ular sequence of sub-sweeps and a sequence ofnM moves (ei-
ther accepted or rejected) within each cell. The reverse sweep

3

consists of the reverse sequence of sub-sweeps and the reverse
sequence of moves within each cell, with each move following
the negative of the original vector. For example, withnM = 6
trial moves per cell andn = 4 particles in the cell, the original
sequence would be [0, 1, 2, 3, 0, 1]. There is exactly one par-
ticle shuffling, [1, 0, 3, 2], that generates the reverse sequence
[1, 0, 3, 2, 1, 0]. Since each sequence is chosen randomly from
all possible permutations, the forward and reverse sequences
occur with equal probability, and thus detailed balance holds.

2.4. Pitfalls leading to incorrect statistical sampling

Detailed balance is ensured when the following three steps
are in place.

1. The particle center must not leave the cell. [24] If particles
are allowed to leave their cells during a sub-sweep, the re-
verse sequence of moves cannot be generated and detailed
balance is not ensured. When we skip this restriction in
the hard disk system, it always develops order in the same
orientation and at a lower than expected density.

2. Shuffling the particles in each cell. Particles entering a cell
are added at the end of the cell list and cell lists are par-
tially maintained during a cell shift. When we skip particle
shuffling, a temporal memory of previous states builds up
over many sweeps, violating the Markov property.

3. Shuffling the checkerboard set. Without shuffling of the
checkerboard set, the reverse sweep cannot be generated,
which violates the condition of detailed balance.

To increase the number of accepted moves per sweep one
might be tempted to allow particles to leave the cell, compen-
sating the violation of step (1) by ensuring that each particle
moves exactly once per sweep. However, this procedure does
not guarantee balance. Cell updates with moves that leave a cell
in the ‘middle’ of the cell update (i.e. not the first or last suc-
cessful move of the sub-sweep into a given neighboring cell)
are not reversible and generate an incorrect probability distri-
bution. When we apply this scheme in the hard disk system,
the pressure is shifted slightly away from the correct valueand
the magnitude of shift depends on the maximum trial move dis-
tance.

The particle shuffling step (2) is often explicitly omitted in
favor of sequential updating [20, 22, 25, 26]. As a justifica-
tion, these authors refer to the analysis of Manousiouthakis and
Deem [38], who showed that shuffling is not necessary for the
Ising lattice model away from infinite temperature. However,
their analysis cannot be transferred to systems of mobile parti-
cles if the sequence of particles is determined dynamically. Our
simulations for hard disks confirm (Table 1) that skipping the
particle shuffling step alters the pressure close to the melting
transition. In contrast, the checkerboard set shuffling step (3) is
not necessary for correct sampling.

3. Implementation

We implement MPMC for hard disks using the NVIDIA
CUDA programming model and execute benchmarks on a Tesla

Shuffling P∗ in the hard disk system at
P. CB. φ = 0.698 φ = 0.708 φ = 0.716

Yes Yes 9.17079(5) 9.18214(6) 9.1774(2)
Yes No 9.1707(1) 9.1821(2) 9.1775(3)
No Yes 9.1716(1) 9.1876(2) 9.1831(3)
No No 9.1715(1) 9.1873(1) 9.1823(2)

Table 1: Simulations ofN = 2562 hard disks with particle (P.) and checkerboard
(CB.) shuffling enabled or disabled. The comparison of equilibrium pressures
P∗ for runs at three different packing fractionsφ demonstrates the necessity
to shuffle particles. Checkerboard shuffling is not required to obtain correct
results.

K20 graphics processor. CUDA is an established parallel pro-
gramming language; details may be found in the CUDA pro-
gramming guide [39], text books [40–42] or in other publica-
tions, Refs. [2, 3] for example. The pseudocode presented in
this paper is general enough that it could be adapted to any data-
parallel language (e.g. OpenCL or OpenMP).

3.1. Data Structures

The proper choice of data structures can make or break an
implementation’s performance. We keep all of the architecture
details of NVIDIA GPUs in mind when designing our imple-
mentation. MD codes store particles in a flat array withN ele-
ments, and auxiliary data structures indirectly referencethis list
by index [3, 5, 11, 12]. Such a data structure is not appropriate
for MC as it would be expensive to rebuild the cell list every
sweep.

Instead, we store the particle positions directly in the cell list.
That data is a sparse flat array,disk[x, y, i], with storage form ·
m ·nmax particle positions, wherem is the number of cells on the
side of the simulation box andnmax is the maximum number of
particles allowed in a cell. The auxiliary array,n[x, y] stores the
number of particles in each cell, where the particles are placed
in elementsi ∈ [0 . . .n).

We minimize the number of overlap checks and maximize
parallelism by setting the cell widthw small, but not so small
that a large fraction of moves will cross the cell boundaries. The
size must also be chosen so thatnmax is known.Figure 3shows
that the largest cell that can fit no more than four particles has
a widthw <

√
2σ. Furthermore, we avoid expensive boundary

condition checks by choosingm as a multiple of 2 times the
block size, because each thread handles every other cell. For
the 32-thread blocks used here, we setm = ⌊L/(

√
2σ)⌋ and

then round up to the nearest multiple of 64.
Each cell has a local coordinate system to mitigate floating

point cancellation errors that would otherwise occur for large
absolute coordinate values. Whenever difference vectors are
computed a coordinate system transformation is needed. The
components of the translation vector are either+w, −w, or 0
depending on the relative location of the neighboring cell.

3.2. Kernel

Algorithm 2 implements the MPMC sub-sweep (lines 4–13
of Algorithm 1) update in a CUDA kernel. One thread is

4

Algorithm 2 Sub-sweep GPU kernel
Require: gdim is (m/bdim.x/2,m/bdim.y/2)
Require: (off.x, off.y) is the offset to the lower-leftmost ac-

tive cell in the sub sweep
Require: seed is a random number seed chosen by the user

and fixed for the duration of a run
Require: sweep is the index of the current sweep
Require: ~Dsh[p] is stored in shared memory such that each

thread indexes unique elements in memory forp ∈
[0 . . .nmax)

1: x← 2(bidx.x · bdim.x + tidx.x) + off.x
2: y← 2(bidx.y · bdim.y + tidx.y) + off.y
3: rng← Saru(mx + y, step, seed)
4: n⇐ n[x, y]
5: if n == 0 then
6: return
7: end if
8: ~Dsh[i] ⇐ disk[x, y, i] ∀i ∈ [0 . . .nmax)
9: rng.shuffle(~Dsh[0 . . .n])

10: i← 0
11: for s ∈ [0 . . .nM) do
12: ~Dmove← ~Dsh[i] + rng.inCircle(d)
13: overlap← False
14: for (xneigh, yneigh) ∈ neighborhood of cell (x, y) do
15: ~s←vector pointing to current neighbor
16: for j ∈ [0 . . .nmax) do
17: continue when (xneigh, yneigh) = (x, y) ∧ i = j
18: ~D⇐ disk[xneigh, yneigh, j]

19: if
∣

∣

∣

∣

~Dmove− (~D + ~s)
∣

∣

∣

∣
< σ then

20: overlap← True
21: end if
22: end for
23: end for
24: if ¬overlap then
25: if ~Dmove ∈ cell (x, y) then
26: ~Dsh[i] ← ~Dmove

27: end if
28: end if
29: i← i + 1
30: if i ≥ n then
31: i← 0
32: end if
33: end for
34: ~Dsh[i] ⇒ disk[x, y, i] ∀i ∈ [0 . . .nmax)

w5

2σ

Figure 3: Four disks of diameterσ are placed on the corners of the cell and
a fifth in the center. The smallest cell that can contain five disk centers has a
diagonal of 2σ and an edge length ofw5 =

√
2σ. Thus, the largest cell that can

contain a maximum of four disk centers has a widthw <
√

2σ.

Algorithm 3 Index cell data
1: procedure cell index(x, y, i)
2: if x ∈ Oddthen
3: q← (x + m)/2
4: else
5: q← x/2
6: end if
7: return (i · m + y) · m + q
8: end procedure

launched for each cell in the active checkerboard set. Lines1
and 2 compute the (x, y) index of the cell to which the thread is
assigned. Rows in a thread block handle rows in the cell data.
For example, threads withx ids 0,1,2,3 are assigned to cells
with x coordinates 0,2,4,6 relative to some offset. Similarly,
each row in a thread block is assigned to alternatingy rows in
the cell data.

Each thread initializes its own random number stream (line
3). We use the Saru PRNG, developed by Steve Worley[43],
to create uncorrelated random number streams from a hash of
the thread index, current step index and a user chosen seed.
NVIDIA’s CURAND library is an alternative, but requires read-
ing and writing a large state in each thread, which slows perfor-
mance by 30%. See Ref. [44] for more details on the tradeoffs
of various parallel PRNG schemes.

Lines 4–9 read the assigned cell into shared memory and
shuffle the particles. Line 11 starts a loop overnM trial moves.
For each selected particlei in sequence, line 12 generates the
trial move and lines 13–23 check for any overlaps with parti-
cles in the neighboring cells. Lines 24-28 update the particle to
its new position if the move generates no overlaps and remains
in the cell. Lines 39–32 wrapi back to the start of the cell when
the end is reached.

When checking overlaps, each thread reads the eight neigh-
boring cells. Typical GPU kernels with this memory access
pattern use shared memory as a managed cache to avoid multi-
ple reads from the same cell. In our case, the data size per cell
is large and would occupy a substantial fraction of the avail-
able shared memory, limiting parallelism. Instead, we readonly
the current cell into shared memory (line 8) and use hardware
cached reads for the neighbor accesses (line 18).

A 128-byte wide cache line in K20 fits four full cells in a row.

5

Algorithm 4 Cell shift GPU kernel
Require: gdim is (m/bdim.x,m/bdim.y)
Require: ~Dsh[p] is stored in shared memory such that each

thread indexes unique elements in memory forp ∈
[0 . . .nmax)

1: procedure shift cells(~f , d)
2: x← (bidx.x · bdim.x)
3: y← (bidx.y · bdim.y)
4: ncurrent⇐ n[x, y]
5: ~Dsh[i] ← (−10,−10)∀i ∈ [0 . . .nmax)
6: nnew← 0
7: for i ∈ [0 . . .ncurrent) do
8: ~D⇐ disk[x, y, i]
9: ~D← ~D − ~f · d

10: if D.x > 0∧ D.y > 0∧ D.x ≤ w ∧ D.y ≤ w then
11: ~Dsh[nnew] ← ~D
12: nnew← nnew+ 1
13: end if
14: end for
15: (xneigh, yneigh)← cell in direction of~f
16: ~s← vector pointing to neighbor
17: nneigh⇐ n[xneigh, yneigh]
18: for i ∈ [0 . . .nneigh) do
19: ~D⇐ disk[xneigh, yneigh, i]
20: ~D← ~D − ~f · d
21: if D.x > 0∧ D.y > 0∧ D.x ≤ w ∧ D.y ≤ w then
22: ⊲ Particle stays in neighbor cell, do nothing
23: else
24: ~D← ~D + ~s
25: ~Dsh[nnew] ← ~D
26: nnew← nnew+ 1
27: end if
28: end for
29: ~Dsh[i] ⇒ disk dbl[x, y, i] ∀i ∈ [0 . . .nmax)
30: nnew⇒ n dbl[x, y]
31: end procedure

However, a row-major assignment of [x, y, i] to a linear index is
not ideal. Only one particle would be read at a time from alter-
nating cells in a row, using 8 out of the 128 bytes in a delivered
cache line. A carefully chosen mapping from [x, y, i] indices to
linear memory addresses leads to full utilization.Algorithm 3
implements that mapping. First,i is the slowest index so that
memory instructions in loops overi in the kernel read contigu-
ous data. The next fastest index isy which is handled in the
traditional manner. Thex index is the fastest, but it is rear-
ranged so that all the odd, and similarly even,x values are con-
tiguous in the linear space. We achieve further performance
improvements by using texture reads (tex1Dfetch) in place of
all global memory loads. On K20, the texture cache provides
the most throughput for reused read-only data.

Thanks to these efforts, we achieve excellent utilization of the
available memory bandwidth. Benchmarks with the NVIDIA
visual profiler show a sustained bandwidth of∼ 200 GB/s out
of the texture cache. Achieving high occupancy and limiting
divergence are just as important. For example, selecting the
16k/48k (L1/shared) mode increases occupancy and boosts per-
formance by 50% compared to the 48k/16k mode. The loop on
line 16 goes from 0 tonmax to boost performance by reduc-
ing divergent branches compared to looping over the number of
particles currently in the cell. We set the values of the empty
particle slots to (−10,−10) so that they do not result in false
overlaps. Early exit conditions upon finding the first overlap
(not shown) cause additional divergent branches, but removing
these checks reduces performance due to the increase in com-
putations and memory accesses.

Kernel performance varies with block size [3]. Short bench-
marks show that (32, 4) is the fastest, and we use it for all pro-
duction runs. It outperforms the slowest by 55%, demonstrating
the importance of performing this test.

Algorithm 4 implements the cell shift step on the GPU by
equivalently translating the particles in the opposite direction.
One thread per cell gathers all of the particles that belong in the
new cell and builds the list in shared memory. It then writes out
the cell to a separate memory area,disk dbl andn dbl, so that
other running threads do not read updated data. After the ker-
nel completes, the double buffered data structures are swapped.
Since the shift direction is one of either+x, −x, +y, or−y, only
two old cells contribute particles to the new cell: the cell with
the same index, and one neighbor. Lines 7–14 loop over the
current cell, read in each particle, shift the cell, and if that par-
ticle is still within the cell boundaries it is added to the new
list. Lines 18–28 perform the same operations on the neighbor
cell, with the addition of a coordinate system transformation.
These rely on the following logic: if the particle left its host
cell, it must have entered this cell. In this manner, each parti-
cle is checked for inclusion by two threads and at two separate
points in the code.

The floating point operations by both of these threadsmust
be identical. Consider if line 20 were to perform the coordinate
system translation~D− ~f · d+ ~s and then check for particles that
enter the current cell. Floating point round-off errors may result
in both this check and the correspondingcheck on line 10 to fail,

6

losing the particle. In a test simulation configured with 10242

particles, several hundred were lost after 106 sweeps. When im-
plemented as shown inAlgorithm 4, no particles are lost even
after 109 sweeps.

3.3. Parameter tuning

The maximum move radiusd and the number of trial moves
performed in each cell updatenM are free parameters. At fixed
nM, we testd ∈ [0.06, 0.08, . . .0.20] and at fixedd, we testnM ∈
[1 . . .8]. Each test measures the autocorrelation of the average
orientational order parameter[45] over a long run of 109 sweeps
for N = 5122. We find thatd = 0.16 andnM = 4 minimize the
autocorrelation timeτ when measured in wall clock seconds.

4. Results

The hard disk system is a standard model system in statistical
mechanics and the one which was originally used to pioneer the
Monte Carlo computer simulation method [37]. Its phase be-
havior is completely determined by the equation of state, which
is the relation between internal pressureP and packing fraction
φ = ρπ(σ/2)2. Here,ρ = N/V is density andV the volume
of the simulation box. At packing fractions betweenφ = 0.7
to 0.72 the system undergoes a first-order phase transition from
the liquid phase to the hexatic phase, followed by a continu-
ous transition to the solid phase [34]. In their paper, Bernard
and Krauth showed with an event-chain simulation method [18]
that only very large simulations (N > 2562) have minimal finite
size effects, and long equilibration times are necessary. This
demonstrates the need for high performance MC code and ex-
plains why previous simulation studies of the hard disk sys-
tem [46–51] have been unable to provide conclusive evidence
for a first-order phase transition or the existence of an interme-
diate hexatic phase.

Phase transitions are extremely sensitive to the slightestpro-
gramming error or inadvertent correlation of trial moves due
to the appearance of (quasi-)long-range spatial correlations and
long equilibration times. Structural fluctuations are moreim-
portant in two dimensions than in three dimensions, and they
are particularly large for the hard disk system. These proper-
ties, together with the availability of high-precision serial data
to compare with, make hard disks a good system to test our
algorithm.

In principal, computing the pressure for hard disks is simple:
Estimate the radial distribution functiong(r) in the limit asr ap-
proaches the disk diameterσ from the right, and calculate [37]

P∗ =
Pσ2

kBT
= σ2ρ

(

1+
π

2
σ2ρ lim

r→σ+
g(r)
)

, (4)

where we introduce the dimensionless pressureP∗. In practice,
obtaining an unbiased estimate requires special care. We esti-
mate pressure using the following procedure. For each sampled
configuration, a histogram of particle pair distances is com-
puted over allN particles.n[ri] counts the number of particle

pairs betweenri andri + δr. The pair distribution functiong(r)
is evaluated by the equation

g(Ri) =
n[ri]

Nρ δA
=

n[ri]
Nρ2πRi δr

(5)

at the sampling pointsr = Ri, where

Ri =
2
3

ri+1
3 − ri

3

ri+1
2 − ri

2
. (6)

The formula forRi is derived assuming a linear dependence of
n(r) with r, which we observe to be valid close toσ. The min-
imum positionR0 is greater thanσ, so direct evaluation of the
limit is not possible. We fitg(Ri) to a polynomial of degreed
in the ranger ∈ (σ, σ + c] and extrapolate tor = σ. Extensive
testing with a model distribution (n(r) = 30e−30r) tunes the pa-
rameters to ensure that there is no systematic bias. We choose
parameters in the middle of the flat region with systematic er-
rors less than 10−5. They areδr = 10−4σ, c = 0.02σ, andd = 5.

Table 2shows the averageP∗ data obtained by simulations
with MPMC. Independent runs ofN = 2562, N = 5122, and
N = 10242 particles are performed at packing fractions between
φ = 0.698 andφ = 0.718, which comprises the transformation
from liquid to solid. Each run starts with a randomly gener-
ated configuration at low density and is quickly compressed to
the target. The run then continues at constant density for 109

sweeps, which only takes 4 days forN = 2562 (15 days for
N = 5122) to complete on a Tesla M2070 GPU. The pressure
is averaged every 200 sweeps in each run after an equilibration
period of 3· 108 sweeps.

Our data confirms the equation of state reported in Ref. [34].
All values overlap within error bars. We do not analyze posi-
tional order or orientation order in the dense phase emerging
from the phase transition. Such an analysis would be neces-
sary to distinguish a hexatic phase from a solid phase and is left
for a separate work [45]. We refer to Ref. [45] for an in-depth
comparison of the phase diagram of hard disks obtained with
various algorithms, including MPMC.

5. Performance

We test the performance of the MPMC hard disk code using
CUDA on a single Tesla K20 GPU (Kepler). For comparison,
we also implement the MPMC algorithm on the CPU and run it
on our cluster nodes. The CPU implementation uses OpenMP
to parallelize across all cores on a node. Each thread processes
a single horizontal strip of the simulation domain and the inner-
most loop followsAlgorithm 2. We make no attempt to paral-
lelize across multiple GPUs or multiple CPU nodes using MPI.
All tests are performed using single precision floating point for-
mat to store particle coordinates.Table 3lists complete specifi-
cations of the hardware and software configurations of our test
machines.

5.1. Scaling with number of particles
We perform benchmarks at a fixed packing fractionφ =

0.698 and analyze the performance scaling withN. Figure 4(a)
plots the results andTable 4lists selected numerical values.

7

System Dimensionless pressureP∗ in the hard disk system at packing fraction
size Method φ = 0.698 φ = 0.702 φ = 0.706 φ = 0.710 φ = 0.714 φ = 0.718

N = 2562 MPMC 9.1709(1) 9.1920(2) 9.1854(1) 9.1792(1) 9.1758(1) 9.187(1)
BK 9.1708(4) 9.1924(4) 9.1858(5) 9.1790(4) 9.1758(5) 9.186(1)

Difference 0.0000(5) 0.0004(5) 0.0004(5) 0.0002(4) 0.0000(6)0.001(1)

N = 5122 MPMC 9.1699(5) 9.1900(2) 9.1861(1) 9.1828(1) 9.1800(1) 9.1930(4)
BK 9.1700(2) 9.1899(6) 9.1856(6) 9.1821(5) 9.1803(4) 9.1937(2)

Difference 0.0001(5) 0.0001(6) 0.0004(6) 0.0007(5) 0.0003(4)0.0006(5)

N = 10242 MPMC 9.16934(4) 9.1882(3) 9.1859(3) 9.1842(3) 9.1819(4) 9.1951(4)
BK 9.1693(1) 9.1880(2) 9.1855(2) 9.1843(2) 9.1822(2) 9.1949(3)

Difference 0.0000(1) 0.0002(4) 0.0003(4) 0.0001(4) 0.0002(5)0.0001(5)

Table 2: This table shows data for the equation of stateP∗(φ) over the range where the liquid transforms into the solid. It includes runs by MPMC (this work) and
by Bernard and Krauth (BK) with serial event chain simulation [34]. Error bars are shown at two standard errors of the mean,σ = 2(〈[P∗ − 〈P∗〉]2〉/Nsamples)1/2,
where the number in parentheses is the error in the last digitshown. Our data is averaged over 8 independent runs of 109 sweeps (64 runs forφ = 0.718,N = 2562).
See Ref.[34] for a description of the BK data averaging scheme. Differences in the pressures are shown with propagated error bars (σ2

MPMC + σ
2
BK)1/2.

2532 7602 15202 30402

K20 η 6.23 · 108 9.83 · 108 1.09 · 109 1.09 · 109

η/max(η) 0.567 0.895 1.00 1.00
η/ηserial 83.6 134 148 148

E5540 η 5.77 · 107 5.78 · 107 5.42 · 107 5.26 · 107

(8 cores) η/max(η) 0.900 0.900 0.860 0.820
η/ηserial 7.65 7.88 7.39 7.16

E5540 η 7.54 · 106 7.33 · 106 7.33 · 106 7.35 · 106

(1 core) η/max(η) 0.880 0.855 0.855 0.858

Table 4: Numerical values for selected benchmarks fromFigure 4.

8

(a) (b) (c)

10
7

108

10
9

η
/
(1
/
s)

104 105 106 107

N

K20
E5540 (8 cores)
E5540 (1 core)

0.0

0.2

0.4

0.6

0.8

1.0

η
/
m
a
x
(η
)

104 105 106 107

N

10

100

η
/
η s

e
ri
a
l

104 105 106 107

N

Figure 4: Benchmarks are performed with a varying number of disks,N, at a packing fractionφ = 0.698. Each benchmark runs 100 sweeps to warm up and then
measures the time it takes to run another 100 sweeps as well asthe the number of attempted trial moves to computeη = Nmoves/t. 11 separate runs are performed
and the median result is plotted here. In all cases, the errorbars (one standard deviation) are smaller than the symbol size. Subfigure (a) plots the efficiency of the
computationη vs. N on various hardware configurations. Subfigure (b) plotsη normalized by the maximum obtained on each hardware configuration. Subfigure (c)
plots the speedup obtained over a serial execution. The dashed line marks a speedup of 8.

K20 E5540

Hardware custom built HP DL2x170h
Mainboard ASUS Sabertooth

Chipset AMD 990FX Intel 5520
CPU Athlon II X4 630 2x Intel Xeon E5540

CPU clock 2.8 GHz 2.53GHz
RAM 16GB DDR3 24GB DDR3

RAM clock 1333 MHz 1333 MHz

GPU Tesla K20
Core clock 706 MHz

Memory clock 5200 MHz
DRAM 5 GB GDDR5

ECC off

OS Gentoo RHEL 6
Architecture x8664 x8664

CPU compiler GCC 4.5.3 GCC 4.7.0
flags -O3 -funroll-loops -O3 -funroll-loops

GPU compiler CUDA 5.0
flags default

GPU driver 310.19

Table 3: Benchmark hardware and software configurations.

The algorithm has a running timet ∈ O(N), so the number
of trial moves per unit time,η, should be constant under ideal
circumstances. In practice, there are overheads that causede-
viation from constant efficiency. Figure 4(b) collapses the in-
dividualη plots to a relative efficiency metric for each separate
configuration. When running on a single CPU core, efficiency is
flat with only a slight downward drift for largeN. This is likely
because the largest systems no longer fit in on-chip cache. The
8-core benchmarks show the same behavior at largeN, although
it starts a factor of 2 higher because the same data is now split
over 2 chips’ caches. The 8-core results also have a slight dip
for N < 105 due to the overhead of managing worker threads.
On the GPU, the kernel launch overhead is significant enough
that forN less than 105, efficiency is less than 70%.

Despite this inefficiency, the GPU still outperforms the sin-
gle CPU core runs by a factor of 83 for systems as small as
N = 2532. At peak efficiency, the GPU speedup over a single
core is a factor of 148. We prefer thinking about speedups com-
pared to a single core, but recognize that there are other ways of
evaluating it. On a per socket basis, a single GPU is 37x faster
than a quad core E5540. On a per-node basis, it is still an order
of magnitude (20x) faster. In terms of aggregate performance
per price, an 8-core node with 8 externally attached GPUs (the
configuration we use) is 148x faster than just the host, but only
costs 5.5x as much for a benefit of 27x more sweeps/unit time
given a fixed budget. We do not have power monitoring equip-
ment on our cluster, so we are unable to provide actual measure-
ments of energy savings. Instead, we obtain an estimate using
the manufacturer’s TDP specifications, which report 80W for
the E5540 and 225W for the K20. Based on these numbers and
the per-socket speedup, a CPU simulation would use 13 times
more energy than if it were run for the same number of sweeps
on the GPU.

5.2. Limitations

The number of parallel threads depends on the cell size, inter-
action range, and particle shape. In this work, MPMC executes
one parallel thread per active cell. In terms of theN particles,
the number of active cells isN/(〈n〉2d) where〈n〉 is the aver-

9

age cell population andd is the dimensionality of the system.
It is approximatelyN/8 for hard disks (d = 2) at high density
(〈n〉 = 2). Hard spheres (d = 3) decrease the number of active
cells toN/16 (〈n〉 = 2). Expanding the interaction range to a
truncated and shifted Lennard-Jones potential withrcut = 2.5σ
in three dimensions drops the number toN/144 (〈n〉 = 18 de-
termined by MD simulation). GPUs operate at peak efficiency
only when running more than 10 thousand threads, establishing
minimum practical system sizes of 80 thousand, 160 thousand,
and 1.44 million particles for hard disks, hard spheres, and
Lennard-Jones beads, respectively. Depending on the desired
application, these sizes may be unnecessary or prohibitively
large.

Alternate thread assignment schemes for MPMC can ame-
liorate this problem. One possibility is to execute 3d threads
per active cell, where each computes potential overlaps between
the trial moves in the active cell with particles in one neighbor-
ing cell. This technique greatly increases the number of paral-
lel threads, reducing the theoretical minimum practical system
sizes to 9 thousand, 6 thousand, and 53 thousand for hard disks,
hard spheres, and Lennard-Jones beads, respectively. These
sizes are much more in line with typical simulation sizes in soft
matter research.

Large density fluctuations present in Lennard-Jones systems
should not pose a problem. Thread divergence is not increased
because the loop overnM trial moves in each active cell is iden-
tical across the entire system. The GPU’s fine-grained sched-
uler replaces blocks as soon as they finish executing, so the load
is automatically balanced despite blocks in low density regions
completing sooner than those in high density areas. Memory
is wasted in the sparse cell data structure, but modern GPUs
have large amounts of memory (6GB), enough to store tens of
millions of particles even with wasted space. Alternate data
structures could always be employed.

6. Conclusions

Efficient parallel algorithms are essential for the application
of Monte Carlo particle simulations on current and future com-
puter hardware. Building on prior works utilizing checkerboard
domain decomposition, we detailed an algorithm for massively
parallel MC and implemented it on the GPU and the CPU.
The GPU speedup that we obtain is comparable to what has
been achieved in MD simulations. Our findings demonstrate
that GPUs are well-suited for running large-scale MC simula-
tions. Medium scale simulations could also make good use of
the GPU after some work to increase parallelism in the imple-
mentation.

Future work to parallelize on multiple GPUs using MPI will
enable even larger scale simulations. However, a straightfor-
ward implementation of the MPMC algorithm onto multiple
GPUS poses one major problem. Communication with neigh-
boring MPI ranks is necessary after every sub-sweep update,so
slow PCIe interconnect bandwidths would limit performance.
A second level of parallelization that introduces inactiveregions
between the MPI ranks significantly decreases communication
needs. Such a technique only requires communication at the

end of a sweep when the grid shift is performed. The num-
ber of trial moves attempted per grid cellnM could be further
increased to lessen communication even more.

During the course of this work we learned that it is surpris-
ingly difficult to implement MC in a parallel environment. Ev-
ery slight violation of the balance conditions leads to incorrect
sampling, and with parallel update moves it is not simple to de-
termine which schemes do not obey balance. Sometimes the
effect on our simulations was so small that it would be easy
to miss in a typical complex practical application. It is impor-
tant to test any new parallel algorithm thoroughly in a situa-
tion where reliable results are available from serial simulations.
Hard disks are such a system. We computed to high precision
the hard disk equation of state over the density range where the
liquid transforms into the solid. Our results agree perfectly with
serial event-chain Monte Carlo simulations and are compatible
with the presence of a first-order liquid-hexatic phase transi-
tion [45] – a finding that is scientifically significant by itself.

7. Acknowledgements

We thank Werner Krauth and Etienne Bernard for discussions
during the final stages of this work. We also thank NVIDIA for
providing the Tesla K20 used for the benchmarks in this paper.
J.A.A., M.E. and S.C.G acknowledge support by the Assistant
Secretary of Defense for Research and Engineering, U.S. De-
partment of Defense [DOD/ASD(R&E)](N00244-09-1-0062).
Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and donot
necessarily reflect the views of the DOD/ASD(R&E). E.J. and
S.C.G. received support from the James S. McDonnell Founda-
tion 21st Century Science Research Award/Studying Complex
Systems, grant no. 220020139, and E.J. acknowledges support
from the National Defense Science and Engineering Graduate
(NDSEG) Fellowship, 32 CFR 168a. E.J., T.L.G., and S.C.G.
acknowledge support from the National Science Foundation un-
der Award No. CHE 0624807. Simulations were performed on
a GPU cluster hosted by the University of Michigan’s Center
for Advanced Computing.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, K. A.
Yelick, The landscape of parallel computing research: a view from Berke-
ley, Technical Report UCB/EECS-2006-183, EECS Department, Univer-
sity of California, Berkeley, 2006.

[2] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, K. Schulten, GPU-accelerated
molecular modeling coming of age, Journal of Molecular Graphics &
Modelling 29 (2010) 116–25.

[3] J. A. Anderson, C. D. Lorenz, A. Travesset, General purpose molecular
dynamics simulations fully implemented on graphics processing units,
Journal of Computational Physics 227 (2008) 5342–5359.

[4] HOOMD-blue, http://codeblue.umich.edu/hoomd-blue, 2012.
[5] W. M. Brown, P. Wang, S. J. Plimpton, A. N. Tharrington, Implementing

molecular dynamics on hybrid high performance computers – short range
forces, Computer Physics Communications 182 (2011) 898–911.

[6] A. W. Götz, M. J. Williamson, D. Xu, D. Poole, S. Le Grand,R. C.
Walker, Routine Microsecond Molecular Dynamics Simulations with
AMBER on GPUs. 1. Generalized Born, Journal of Chemical Theory
and Computation 8 (2012) 1542–1555.

10

[7] S. Le Grand, A. W. Götz, R. C. Walker, SPFP: Speed without
compromise—A mixed precision model for GPU accelerated molecular
dynamics simulations, Computer Physics Communications (2012).

[8] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy,L. G. Trabuco,
K. Schulten, Accelerating molecular modeling applications with graphics
processors, Journal of Computational Chemistry 28 (2007) 2618–2640.

[9] P. Eastman, V. S. Pande, Efficient nonbonded interactions for molecu-
lar dynamics on a graphics processing unit, Journal of Computational
Chemistry 31 (2010) 1268–72.

[10] N. Ganesan, B. A. Bauer, T. R. Lucas, S. Patel, M. Taufer,Structural,
dynamic, and electrostatic properties of fully hydrated DMPC bilayers
from molecular dynamics simulations accelerated with graphical process-
ing units (GPUs), Journal of Computational Chemistry 32 (2011) 2958–
2973.

[11] P. H. Colberg, F. Höfling, Highly accelerated simulations of glassy dy-
namics using GPUs: Caveats on limited floating-point precision, Com-
puter Physics Communications 182 (2011) 1120–1129.

[12] D. C. Rapaport, Enhanced molecular dynamics performance with a pro-
grammable graphics processor, Computer Physics Communications 182
(2011) 926–934.

[13] GROMACS, http://www.gromacs.org/, 2013.
[14] ACEMD, http://www.acellera.com/, 2013.
[15] R. Swendsen, J.-s. Wang, Nonuniversal critical dynamics in Monte Carlo

simulations, Physical Review Letters 58 (1987) 86–88.
[16] J. Liu, E. Luijten, Rejection-free geometric cluster algorithm for complex

fluids, Physical Review Letters 92 (2004) 1–4.
[17] S. Whitelam, P. L. Geissler, Avoiding unphysical kinetic traps in Monte

Carlo simulations of strongly attractive particles, Journal of Chemical
Physics 127 (2007) 154101.

[18] E. Bernard, W. Krauth, D. Wilson, Event-chain Monte Carlo algorithms
for hard-sphere systems, Physical Review E 80 (2009) 5–9.

[19] G. Pawley, K. Bowler, R. Kenway, D. Wallace, Concurrency and paral-
lelism in MC and MD simulations in physics, Computer PhysicsCom-
munications 37 (1985) 251–260.

[20] R. Ren, G. Orkoulas, Acceleration of Markov chain MonteCarlo sim-
ulations through sequential updating, Journal of ChemicalPhysics 124
(2006) 64109.

[21] T. Preis, P. Virnau, W. Paul, J. J. Schneider, GPU accelerated Monte
Carlo simulation of the 2D and 3D Ising model, Journal of Computational
Physics 228 (2009) 4468–4477.

[22] T. Levy, G. Cohen, E. Rabani, Simulating lattice spin models on graphics
processing units, Journal of Chemical Theory and Computation 6 (2010)
3293–3301.

[23] G. S. Heffelfinger, M. E. Lewitt, A comparison between two massively
parallel algorithms for Monte Carlo computer simulation: An investiga-
tion in the grand canonical ensemble, Journal of Computational Chem-
istry 17 (1996) 250–265.

[24] A. Uhlherr, S. J. Leak, N. E. Adam, P. E. Nyberg, M. Doxastakis, V. G.
Mavrantzas, D. N. Theodorou, Large scale atomistic polymersimula-
tions using Monte Carlo methods for parallel vector processors, Com-
puter Physics Communications 144 (2002) 1–22.

[25] R. Ren, G. Orkoulas, Parallel Markov chain Monte Carlo simulations,
Journal of Chemical Physics 126 (2007) 211102.

[26] C. J. O’Keeffe, G. Orkoulas, Parallel canonical Monte Carlo simulations
through sequential updating of particles, Journal of Chemical Physics 130
(2009) 134109.

[27] B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinez, L. Zepeda-
Ruiz, Scalable parallel Monte Carlo algorithm for atomistic simulations
of precipitation in alloys, Physical Review B 85 (2012) 1–11.

[28] B. D. Lubachevsky, Efficient parallel simulations of asynchronous cellu-
lar arrays, Complex Systems 1 (1987) 1099–1123.

[29] G. Korniss, M. Novotny, P. Rikvold, Parallelization ofa dynamic Monte
Carlo algorithm: a partially rejection-free conservativeapproach, Journal
of Computational Physics 153 (1999) 488–508.

[30] E. Martı́nez, J. Marian, M. Kalos, J. Perlado, Synchronous parallel ki-
netic Monte Carlo for continuum diffusion-reaction systems, Journal of
Computational Physics 227 (2008) 3804–3823.

[31] G. Arampatzis, M. a. Katsoulakis, P. Plecháč, M. Taufer, L. Xu, Hier-
archical fractional-step approximations and parallel kinetic Monte Carlo
algorithms, Journal of Computational Physics 231 (2012) 7795–7814.

[32] K. Esselink, L. Loyens, B. Smit, Parallel Monte Carlo simulations, Phys-

ical Review E 51 (1995) 1560–1568.
[33] L. Loyens, B. Smit, K. Esselink, Parallel Gibbs-ensemble simulations,

Molecular Physics 86 (1995) 171–183.
[34] E. Bernard, W. Krauth, Two-step melting in two dimensions: first-order

liquid-hexatic transition, Physical Review Letters 107 (2011) 1–4.
[35] R. Durstenfeld, Algorithm 235: random permutation, Communications

of the ACM 7 (1964) 420.
[36] W. Krauth, Personal Communications, 2012.
[37] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.Teller,

E. Teller, Equation of state calculations by fast computingmachines,
Journal of Chemical Physics 21 (1953) 1087.

[38] V. I. Manousiouthakis, M. W. Deem, Strict detailed balance is unneces-
sary in Monte Carlo simulation, Journal of Chemical Physics110 (1999)
2753.

[39] NVIDIA, CUDA C programming guide, v4.2, 2012.
[40] D. B. Kirk, W.-m. W. Hwu, Programming Massively Parallel Processors:

A Hands-on Approach, Morgan Kaufmann, 2010.
[41] R. Farber, CUDA Application Design and Development, Morgan Kauf-

mann, 2011.
[42] J. Sanders, CUDA by Example, Addison-Wesley Professional, 2010.
[43] S. Worley, Saru, Personal Communication, 2008.
[44] C. L. Phillips, J. A. Anderson, S. C. Glotzer, Pseudo-random number

generation for Brownian dynamics and dissipative particledynamics sim-
ulations on GPU devices, Journal of Computational Physics 230 (2011)
7191–7201.

[45] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard,
W. Krauth, Hard-disk equation of state: First-order liquid-hexatic transi-
tion in two dimensions with three simulation methods, Physical Review
E 87 (2013) 042134.

[46] B. Alder, T. Wainwright, Phase Transition in Elastic Disks, Physical
Review 127 (1962) 359–361.

[47] J. Lee, K. Strandburg, First-order melting transitionof the hard-disk sys-
tem., Physical Review B 46 (1992) 11190–11193.

[48] J. Zollweg, G. Chester, Melting in two dimensions., Physical Review B
46 (1992) 11186–11189.

[49] H. Weber, D. Marx, K. Binder, Melting transition in two dimensions:
A finite-size scaling analysis of bond-orientational orderin hard disks,
Physical Review B 51 (1995) 14636–14651.

[50] A. Jaster, Computer simulations of the two-dimensional melting transi-
tion using hard disks, Physical Review E 59 (1999) 2594–2602.

[51] C. Mak, Large-scale simulations of the two-dimensional melting of hard
disks, Physical Review E 73 (2006) 1–4.

11

	1 Introduction
	2 Algorithm
	2.1 Checkerboard decomposition
	2.2 Sweep structure
	2.3 Detailed balance
	2.4 Pitfalls leading to incorrect statistical sampling

	3 Implementation
	3.1 Data Structures
	3.2 Kernel
	3.3 Parameter tuning

	4 Results
	5 Performance
	5.1 Scaling with number of particles
	5.2 Limitations

	6 Conclusions
	7 Acknowledgements

