Massively parallel Monte Carlo for many-particle simubsits on GPUs

Joshua A. AndersénEric Jankowsid, Thomas L. Grub® Michael Engéel, Sharon C. Glotz&P

aDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
bDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

g 2013

Current trends in parallel processors call for the desigetfafient massively parallel algorithms for scientific compgti Parallel

< algorithms for Monte Carlo simulations of thermodynamic@mbles of particles have received little attention bezaighe

inherent serial nature of the statistical sampling. In g@per, we present a massively parallel method that obeggdatebalance

and implement it for a system of hard disks on the GPU. We dpre results of serial high-precision Monte Carlo runs tafye

the method. This is a good test case because the hard disfkoenpiestate over the range where the liquid transformstiméosolid

—— s particularly sensitive to small deviations away from bi@ance conditions. On a Tesla K20, our GPU implementatiecutes
_C over one billion trial moves per second, which is 148 timestdathan on a single Intel Xeon E5540 CPU core, enables 2&tim

O _better performance per dollar, and cuts energy usage bytar faic13. With this improved performance we are able to dalkeu

L the equation of state for systems of up to one million harkdi¥hese large system sizes are required in order to prebestire

E of the melting transition, which has been debated for theftaty years. In this paper we present the details of our agatonal

method, and discuss the thermodynamics of hard disks gefyairaa companion paper.

) Keywords: Monte Carlo, parallel algorithm, detailed balance, GPGRUDA, hard disk system
7p]

&)
= 1. Introduction LAMMPS [5], AMBER [6, 7], NAMD [ 8], OpenMM [9], FEN

n
> During the last decades computational scientists have eré:A[Clg]’[1%A;nhgiééﬂ’[;?leqwork by Rappaportlg], GRO

Cljoyed a doubling of performance for single-threaded ajpplic ) ]
. ~=tions every two years solely from improvements in computer A ¢aseé where implementation to GPUs has so far not been

architecture. This is no longer the case. Current procetisor achieved is Monte Carlo (MC) applied tdfdattice many-
O\l signs run into the Power Wall, which limits attainable clock Particle systems. MC is a statistical, rather than detesnin
= 'speeds in a given power budget, and the Instruction Level PaHC: Sampling method that, appropriately implemented, e
allelism (ILP) Wall, which exists because there is only sccmu  the microstates of desired thermodynamic ensembles. lieis t
ILP that can be extracted from a typical prograth Moore’s metthod of _ch0|ce in many situations because_ it only requires
O aw still holds, for now, and the additional transistors gei a0 interaction potential, not a force field, allowieg. the use
. 'increasing the core counts on each new chip. Consequesttly, rof non—dff_erenu:;_\ble pair potent_lals. Su_ch potentlals are use-
1 searchers must utilize parallelism to execute larger, donor ful in the simulation of hard partlclgs, vyhlch interact dpleia _
more demanding calculations and simulations. exgluded volume. MC is also erX|bIe.|n the sense fchat a wide
As of this publication, a cluster of networked multi-core Variety of update moves can be applieb{18]. MC is easy
—1 CPUs is the most common system architecture. In an a|te,t_o-|mplementon serial machines Where_each step seleqts anew
 native approach, a single graphics processing unit (GPW) camicrostate at random and accepts or rejects t_he new mitzosta
" execute thousands of instructions at the same time and pr@ased on the Boltzmann factor. An example trial move involve
> vides the performance of a small cluster at a fraction of théranslating a single particle in a random direction. Sirfe t
(O cost p]. GPUs are becoming popular as desktop :persona@cceptance of a trial move depends on results of prior moves,
supercomputers’ and as coprocessors in heterogeneous clgsPsequent moves usually cannot be performed indepepdent|
ters. A successful GPU algorithm divides a given computa/r Massively parallel algorithm must not only update a large
tion into a maximal number of identical, fully independearid number of particles at Fhe same time, but also do S0 in astatis
simple tasks, callethreads. To fully utilize their potential it ~ tically correct way. This can be achieved by obeying dethaile
is necessary to design not just parallel, bwaissively parallel balance, which is not a trivial task. For thgse reasons|iphra
algorithms that scale to thousands of threads. Over the la&fC codes for particle systems have received much less atten-
few years, many problems have successfully been adapted 9N in the literature than parallel MD.
GPUs. One example is the molecular dynamics (MD) method Available parallel MC algorithms fall into several cateigs:
for simulating thermodynamic ensembles of particles, Wlisc ~ Most of them rely on domain decomposition schemes to up-
well suited for massive parallelization. Numerous MD soft-date portions of the problem in parallel. Lattice MC has been
ware packages support GPUs, including HOOMD-blsie/], employed for Ising modelslp, 20] including GPU implemen-

Preprint submitted to Journal of Computational Physics October 29, 2018


http://arxiv.org/abs/1211.1646v2

thread typically acts on a single particlg p, 8, 11, 12]. Such

a decomposition is not directly applicable to traditional Me-
cause each trial move depends on the state of the neighboring
particles.

In MPMC, we utilize thecell list data structure for parallel
decomposition, as well as overlap checks in the case of hard
particles. A checkerboard decomposition permits manyscell
to be updated independentlg9 Although similar to applying
trial moves to particles in a particular sequential ordeeaker-
board decomposition ffers from the serial algorithm in one
key way. Particle positions, not labels (or indices), deiae
the order of updates, so the order will change as particles mi
grate. Consequently, careless choices can lead to erreneou
simulations. We prove that our implementation of MPMC
obeys detailed balance to ensure that no incorrect chorees a
made in its design.

QQ@ »,
20

>,
&
1 ©®

O
0
e
O,

OO0

5 2.1. Checkerboard decomposition

The checkerboard domain decomposition schet@e3] di-
Figure 1: In a serial hard disk simulation, each trial movgidglly consists vides .the simulation VOIume_ into sets of square (FUb'C)_Sce”
of the following: (i) Select a single disk at random, (ii) 4pp random dis-  (SeeFigure 3. Checkerboarding maps well to MC simulations
[_)Iacement to it, and (iii) accept the_ move if it generates verlaps. Thg cell  pbecause it allows parallel updates of each set, comprisrileg 0
list enablesO(1) overlap checks by limiting the search space to only mgall - q,arter (one eighth in three dimensions) of the simulatioia v
cells. A sweep is defined &¢ consecutive trial moves, whelis the number . .
of disks in the simulation. ume. Thex andy coordinates of the cell (arxin three dimen-

sions) determine its checkerboard ¢ {a, b, c,d, .. .}:

tations R1, 22]. Related schemes for particle systems eXd8t{

27], but none scale up to thousands of threads. Moreover, the
updating of domains employed in some of those methods can Q=
introduce a sampling bias that precludes the balance ¢onslit
Asynchronous parallel algorithmg8§, 29 are poorly suited for

GPUs because of their extensive inter-thread communitatio

Much work has been done on parallelizing Kinetic Monte Carlowherea, b, ... indicate labels of checkerboard sets.
simulations B0, 31], but these do not directly apply to the sys- ~ The width of the celivmust be chosen greater than the diam-
tems we are interested in. Hybrid approaches that employ M®Bter of the diskr- (generally, the pair interaction cufp At the
trajectories to create trial configuratior82 33] can be an ef- minimumw = o, two particles separated by one cell can move
fective way to exploit GPU parallelism, but require subiin  without interacting (se€igure 4c)). Thus, the moves available
additional programming and are not guaranteed to evolve anip particles in a cell are independent from those in othds cél
faster than MD alone. the same checkerboard set.

In this paper, we develop an algorithm for massively par- Most previous parallel MC simulations with mobile partile
allel Monte Carlo (MPMC) simulations of many-particle sys- use stripe domain decompositio24-26], a one-dimensional
tems that obeys detailed balance. As a test case, we implemeversion of the checkerboard decomposition, which miniize
it on the GPU for a system of hard disks in two dimensionsthe interface (and therefore communication) between dasnai
(Figure 1 and validate it with comparisons to recent large-scaldiowever, the number of stripes and therefore the number of
serial event-chain MC simulation84]. Our algorithm is not  trial moves that can be conducted in parallel is low. Thismsea
specific to this system, and it is valid for any MC simulation stripe decomposition is nofiecient for parallelization on more
with local interactions between particles or lattice sitesany ~ than a few cores.
massively parallel computer architecture.

if (xe Even) and ¥ e Even)
if (xe Odd) and Y€ Even)
if (xe Even) and ye Odd) Q)
if(xeOdd) and ¥e Odd)

e

o0 oTw

2.2. Sweep structure

2. Algorithm Algorithm 1 outlines the structure of MPMC. It splits each
sweep over cells into sub-sweeps (four in two dimensiogitei
In developing any parallel application, the programmertmusin three dimensions), one handling each checkerboard set. L
identify the computations that can be executed simultasigou 2 shufles the order of checkerboard sets using Fisher-Yaggs [
As the total work is broken into smaller tasks, opportusitie to guarantee a random permutation. During a sub-sweep, the
for scaling to more processors increase. GPUs execute espagorithm concurrently processes all of the cells in thevact
cially fine grained work loads. In GPU MD applications, one set (line 4).

2



(@) (b)

|
v
f
!
|
v
T

|
v

— > —— — > < —

?
!
|
v
1

— > —— — > - —

\ ©

OO0
;*

Figure 2: (a) In massively parallel Monte Carlo (MPMC), Itnilaoves are concurrently applied to particles in a subseh@fcells. Moves that leave the cell are
rejected. (b) Selected cells are separated by one row ora@ump of inactive cells. During the evaluation of the aceege criterion, each active cell reads the
particles in the eight neighboring inactive cells. (c) Sltaweous trial moves do not interact when the cell width e&aggr than the interaction range

Algorithm 1 Monte Carlo sweep 2.3. Detailed balance
1: C«{ab,cd,...} A MC simulation obeys detailed balance if, for every inter-
2: rng.shuffie(C) nal process evolving the system there exists a reverse ggoce
3. for Qe C do > Loop over sub-sweeps occurring at the same rate. This ensures that a sequenca-of co
4: for ¢ € cells(@), in parallel do > Loop over cells figurations converges to the correct equilibrium distrid re-
5: rng.shuffle(c. particles) gardless of the initial condition. Markov-chain MC genesat
6: for se[0...ny) do a sequence of configurations where the probabi{y + 1) of
7: p < c.particlesmod(s, len(c. particles))] observing the system in stajeat stept + 1 is determined only
8: Generate trial move by the previous stateat stept. This can be expressed by
o: if premainsin celand move acceptethen

10: Move p Xj(t+1) = x()Pij, (2)

11 end if

wherex(t) = {x1(t), X2(t), ..., Xa(t)} is the probability distribution

125 defnd for at stept. The element®;; of the transition matrix represent the
ﬁ on defrc])r or probabilities that the system will transition from state state

j. If there exists an equilibrium distribution of stat&s for
which x* = x*P, thenx(t) is guaranteed to converge ¥ as
t — co whenP satisfies detailed balance:

15: d « rng.uniform(0, w/2)
16: f < rng.choose(—X, +X, =Y, +V, .. .)
17: shift_cells(f, d)

X Pij = XjPji. (3)

Although detailed balance of a Markov chain is afisu
cient condition to ensure convergence, it iS not necessary.
Each concurrent cell update gfias and then loops oveg, Manousiouthakis and Deem show that an irreducible tramsiti
trial moves (lines 5,6). Line 7 selects the particle fromdk#,  matrix that enforces regular samplingng : (P™);;j > 0Vi, j)
repeating from the start of the list whewy, > n, wherenis  and obeys balance( = x*P) is both necessary andffigient
the number of particles in the cell. Fixing the number of n®ve for convergence to the correct equilibrium distributi@8][ In
in all cells to the same number distributes computatioffale  this work we choose to enforce detailed balance.
most evenly among GPU core3q]. Line 8 generates a trial The MPMC algorithm constructs a Markov chain and obeys
move for each particle. Line 9 accepts the move if it passedetailed balance on the level of a MC sweep. This follows di-
the normal Metropolis acceptance criteri@i[and the particle rectly from the observation that for each sweep there istgxac
center remains in the celfl]. Lines 15-17 maintain ergodicity one inverse sweep, which can be seen as follows. Take a-partic
by performing a cell shift, which redraws the cell boundsiiie  ular sequence of sub-sweeps and a sequenng aofioves (ei-
a randomly chosen location. ther accepted or rejected) within each cell. The reversegwe



consists of the reverse sequence of sub-sweeps and theaever Shuling P* in the hard disk system at
sequence of moves within each cell, with each move following P. CB. $=0698 ¢=0708 ¢=0.716

the negative of the orlgln_al vectqr. qu example, witj = _6 Yes Yes 9.17079(5) 9.18214(6) 9.1774(2)
trial moves per cell and = 4 particles in the cell, the original

: Yes No 9.1707(1) 9.1821(2) 9.1775(3)
sequence would be [@,2,3,0,1]. There is exactly one par- N Vi 9.1716(1 9.1876(2 9.1831(3
ticle shufling, [1,0, 3,2], that generates the reverse sequence NO ’\TS 9'1715(1) 9.1873(1) 9.1823(2)
[1,0,3,2,1,0]. Since each sequence is chosen randomly from 0 ° ° @ : @) : @)
all possible permutations, the forward and reverse seesenc
occur with equal probability, and thus detailed balance ol

Table 1: Simulations dfl = 256 hard disks with particle (P.) and checkerboard
(CB.) shdfling enabled or disabled. The comparison of equilibrium guess
P* for runs at three dierent packing fractiong demonstrates the necessity

2.4. Pitfallsleading to incorrect statistical sampling to shufle particles. Checkerboard ghing is not required to obtain correct
. . . results.
Detailed balance is ensured when the following three steps
are in place.

K20 graphics processor. CUDA is an established parallel pro

1. The particle center must n_otleavethe_cell. [24] If particles gramming language; details may be found in the CUDA pro-
are allowed to leave their cells during a sub-sweep, the re

-gramming guide 39, text books #0-42] or in other publica-
verse sequence of moves cannot be generated and detall%(%s, Refs. 2, 3] for example. The pseudocode presented in

balance iS, not ensure-d. When we skip this rgstriction Nhis paper is general enough that it could be adapted to day da
the hard disk system, it always develops order in the Samﬁarallel languages(g. OpenCL or OpenMP),
orientation and at a lower than expected density.

2. Shufflingthe particlesineach cell. Particles enteringacell 3 1 pata Sructures

are added at the end of the cell list and cell lists are par- h hoi fd K break
tially maintained during a cell shift. When we skip particle . The proper choice of data structures can make or break an

shuffling, a temporal memory of previous states builds UIO|mplementation’s performance. We keep all of the architesct
over many sweeps, violating the Markov property. details of NVIDIA GPUs in mind when designing our imple-

) . : mentation. MD codes store particles in a flat array witlele-
3. Shuffiing the checkerboard set. Without shufling of the mdents, and auxiliary data structures indirectly referehisslist

che.cker_board set, the reverse sweep cannot be generat%y,mdex B, 5, 11, 12]. Such a data structure is not appropriate
which violates the condition of detailed balance. : . : )
for MC as it would be expensive to rebuild the cell list every

To increase the number of accepted moves per sweep oisgveep.
might be tempted to allow particles to leave the cell, compen Instead, we store the particle positions directly in thélis!
sating the violation of step (1) by ensuring that each plartic That data is a sparse flat arraysk[x, y, i], with storage fom-
moves exactly once per sweep. However, this procedure do@s: nmax particle positions, whenais the number of cells on the
not guarantee balance. Cell updates with moves that leasié a cside of the simulation box antay is the maximum number of
in the ‘middle’ of the cell updatei . not the first or last suc- particles allowed in a cell. The auxiliary arrayfx, y] stores the
cessful move of the sub-sweep into a given neighboring cellhumber of particles in each cell, where the particles aregula
are not reversible and generate an incorrect probabilgtridi  in elements € [0...n).
bution. When we apply this scheme in the hard disk system, We minimize the number of overlap checks and maximize
the pressure is shifted slightly away from the correct valngé  parallelism by setting the cell widtw small, but not so small
the magnitude of shift depends on the maximum trial move disthat a large fraction of moves will cross the cell boundariése
tance. size must also be chosen so thgtx is known.Figure 3shows

The particle shfiling step (2) is often explicitly omitted in that the largest cell that can fit no more than four particles h
favor of sequential updatin®, 22, 25, 26]. As a justifica- a widthw < V2o Furthermore, we avoid expensive boundary
tion, these authors refer to the analysis of Manousioughekil  condition checks by choosing as a multiple of 2 times the
Deem [38], who showed that sHiiing is not necessary for the block size, because each thread handles every other cell. Fo
Ising lattice model away from infinite temperature. However the 32-thread blocks used here, we set= |L/(V20)] and
their analysis cannot be transferred to systems of mobii@ pa then round up to the nearest multiple of 64.
cles if the sequence of particles is determined dynamically Each cell has a local coordinate system to mitigate floating
simulations for hard disks confirnTdble ) that skipping the point cancellation errors that would otherwise occur fogéa
particle shiiling step alters the pressure close to the meltingabsolute coordinate values. Whenevdieatence vectors are
transition. In contrast, the checkerboard setfBimg step (3) is computed a coordinate system transformation is needed. The
not necessary for correct sampling. components of the translation vector are eithar, —w, or O

depending on the relative location of the neighboring cell.

3. Implementation 3.2. Kerne

We implement MPMC for hard disks using the NVIDIA  Algorithm 2 implements the MPMC sub-sweep (lines 4-13
CUDA programming model and execute benchmarks on a Teslaf Algorithm 1) update in a CUDA kernel. One thread is

4



Algorithm 2 Sub-sweep GPU kernel

Require: gdimis (m/bdim.x/2, m/bdim.y/2)

Require: (off.x,off.y) is the dfset to the lower-leftmost ac-

tive cell in the sub sweep

49

Ws

Figure 3: Four disks of diameter are placed on the corners of the cell and

Require: seed is a random number seed chosen by the usea fifth in the center. The smallest cell that can contain fisk dienters has a

and fixed for the duration of a run

Require: sweep is the index of the current sweep

Require: 5sh[p] is stored in shared memory such that each
thread indexes unigue elements in memory for €

NNRNDNEP P P PR EPRP P PR
W ERE QO O ® NOOR®NRO

NNN N
©o N oG

w
=

32:
33:
34:

© XN R WwDdR

N

W N
Q0

[0...Nmax)
X« 2(bidx.x-bdim.x + tidx.x) + off.x
Yy « 2(bidx.y - bdimy + tidx.y) + off.y
rng < Saru(mx +y, step, seed)
n < nf[x,Yy]
if n==0then

return
end if
Dsfi] < disk[x,Y,i] Vi €[0... Nmay)
rng.shuffie(Dsi0 . . . n])

i« 0
: for se[0...ny) do

Bmove < Dsp[i] + rng.inCircle(d)
overlap « False
for (Xneigh Yneigh) € neighborhood of cell,y) do
§ «vector pointing to current neighbor
for je[0...nmay) do
continue when Kneign, Yneigh) = (X Y) A i = j
D e diSk[Xneigh Yneigh il
if [Bmove— (B + §)| <o then
overlap « True
end if
end for
end for
if —overlap then
if Dmove € cell (x,y) then
5sh[i] — Ij\move
end if
end if
i—i+1
if i > nthen
i—0
end if
end for
Dsifi] = disk[x,V,i] i €[0...Nma)

diagonal of 2- and an edge length ofs = V2o~ Thus, the largest cell that can
contain a maximum of four disk centers has a widtk V2o

Algorithm 3 Index cell data

1: procedure ceLL_iNDEx(X, Y, i)
2: if x e Oddthen

3 g« (Xx+m)/2

4 else

5: q« x/2

6 end if

7 return(i-m+y)-m+q
8: end procedure

launched for each cell in the active checkerboard set. Lines
and 2 compute thex(y) index of the cell to which the thread is
assigned. Rows in a thread block handle rows in the cell data.
For example, threads witk ids 0,1,2,3 are assigned to cells
with x coordinates 0,2,4,6 relative to somfset. Similarly,
each row in a thread block is assigned to alternagimows in

the cell data.

Each thread initializes its own random number stream (line
3). We use the Saru PRNG, developed by Steve Wot&y[
to create uncorrelated random number streams from a hash of
the thread index, current step index and a user chosen seed.
NVIDIAs CURAND library is an alternative, but requires réta
ing and writing a large state in each thread, which slowsguerf
mance by 30%. See Re#4] for more details on the tradés
of various parallel PRNG schemes.

Lines 4-9 read the assigned cell into shared memory and
shuffle the particles. Line 11 starts a loop owgy trial moves.

For each selected particién sequence, line 12 generates the
trial move and lines 13-23 check for any overlaps with parti-
cles in the neighboring cells. Lines 24-28 update the part

its new position if the move generates no overlaps and resnain
in the cell. Lines 39—-32 wraipback to the start of the cell when
the end is reached.

When checking overlaps, each thread reads the eight neigh-
boring cells. Typical GPU kernels with this memory access
pattern use shared memory as a managed cache to avoid multi-
ple reads from the same cell. In our case, the data size per cel
is large and would occupy a substantial fraction of the avail
able shared memory, limiting parallelism. Instead, we @&y
the current cell into shared memory (line 8) and use hardware
cached reads for the neighbor accesses (line 18).

A 128-byte wide cache line in K20 fits four full cells in a row.



Algorithm 4 Cell shift GPU kernel

Require: gdimis (m/bdim.x, m/bdim.y) _
Require: Dgi[p] is stored in shared memory such that eachall global memory loads. On K20, the texture cache provides
thread indexes unigue elements in memory for €

[0...Nmax)

1: procedur e sHIFT_CELLS( f, d)

X « (bidx.x - bdim.x)

y « (bidx.y - bdim.y)

n_g:urrentC n[xy]

DeHi] « (-10,-10)Vi € [0...Nmax)

e el

NN NN B B R R
WM RE O © 0N O

NN N NN
© 0 NG

30:

=
A

N
ANES

Nnew < 0

foriel0.

.. Neyrreny do

D < disk[xV,i]

BDe«D-

=5

f-d

if DXx>0ADy>0AD.x<wAD.y<wthen
Dsh[Nnew] < D
Nnew <= Mnew + 1

end if
end for

(Xneigh Yneigh) < cell in direction off’
§ « vector pointing to neighbor
Nneigh < N[ Xneigh Yneighl

foriel0.

.. Nneigh) dO

Ij = diSk[Xneigh Yneigh |]
D—D-f-d
if Dx>0ADy>0AD.x<wAD.y<wthen

else

> Particle stays in neighbor cell, do nothing

D—D+8
Dsh[Nnew] < D
Nnew < Mnew + 1

end if
end for

Dsrfi] = disk_dbl[x,y,i] Yi € [0.. . Nma)
Nnew = n_dbl[X,y]
31: end procedure

However, a row-major assignment of §/, i] to a linear index is
not ideal. Only one particle would be read at a time from alter
nating cells in a row, using 8 out of the 128 bytes in a delidere
cache line. A carefully chosen mapping fromyy, i] indices to
linear memory addresses leads to full utilizatigxigorithm 3
implements that mapping. Firstjs the slowest index so that
memory instructions in loops ovéin the kernel read contigu-
ous data. The next fastest indexyisvhich is handled in the
traditional manner. The index is the fastest, but it is rear-
ranged so that all the odd, and similarly evewalues are con-
tiguous in the linear space. We achieve further performance
improvements by using texture readet1Dfetch) in place of

the most throughput for reused read-only data.

Thanks to thesefforts, we achieve excellent utilization of the
available memory bandwidth. Benchmarks with the NVIDIA
visual profiler show a sustained bandwidth~o200 GB's out
of the texture cache. Achieving high occupancy and limiting
divergence are just as important. For example, selectiag th
16k/48k (L1/shared) mode increases occupancy and boosts per-
formance by 50% compared to the 488k mode. The loop on
line 16 goes from 0 ta,hax to boost performance by reduc-
ing divergent branches compared to looping over the nuntber o
particles currently in the cell. We set the values of the gmpt
particle slots to £10,-10) so that they do not result in false
overlaps. Early exit conditions upon finding the first ovprla
(not shown) cause additional divergent branches, but rergov
these checks reduces performance due to the increase in com-
putations and memory accesses.

Kernel performance varies with block siZ&.[ Short bench-
marks show that (32, 4) is the fastest, and we use it for al pro
ductionruns. It outperforms the slowest by 55%, demoriegat
the importance of performing this test.

Algorithm 4 implements the cell shift step on the GPU by
equivalently translating the particles in the oppositediion.
One thread per cell gathers all of the particles that belorige
new cell and builds the list in shared memory. It then writess o
the cell to a separate memory aréask_dbl andn_dbl, so that
other running threads do not read updated data. After the ker
nel completes, the double fhered data structures are swapped.
Since the shift direction is one of eithex, —x, +y, or -y, only
two old cells contribute particles to the new cell: the celihw
the same index, and one neighbor. Lines 7—14 loop over the
current cell, read in each particle, shift the cell, and #tthar-
ticle is still within the cell boundaries it is added to theane
list. Lines 18—-28 perform the same operations on the neighbo
cell, with the addition of a coordinate system transfororati
These rely on the following logic: if the particle left its $to
cell, it must have entered this cell. In this manner, eacli-par
cle is checked for inclusion by two threads and at two separat
points in the code.

The floating point operations by both of these threadst
be identical. Consider if line 20 were to perform the cooatkn
system translatioB — f - d+ Sand then check for particles that
enter the current cell. Floating point rouné-errors may result
in both this check and the corresponding check on line 1dlo fa



losing the particle. In a test simulation configured with 402 pairs betweem; andr; + 6r. The pair distribution functiog(r)

particles, several hundred were lost aftet #@eeps. Whenim- is evaluated by the equation

plemented as shown idlgorithm 4, no particles are lost even nri] n[ri]
il _ i

after 10 sweeps. oR) = NpoA = Np2rR or (5)
3.3. Parameter tuning at the sampling points= R, where
. .3_ 3
The maximum move radiu$and the number of trial moves = g% (6)
i+17 — hi

performed in each cell updatg; are free parameters. At fixed
nu, we testd € [0.06,0.08,...0.20] and at fixedl, we testhyy €~ The formula forR; is derived assuming a linear dependence of
[1...8]. Each test measures the autocorrelation of the averag#r) with r, which we observe to be valid closedo The min-
orientational order parametd#] over a long run of 1®sweeps  imum positionRy is greater thawr, so direct evaluation of the
for N = 5122, We find thatd = 0.16 andny = 4 minimize the  limit is not possible. We fig(R) to a polynomial of degred
autocorrelation time when measured in wall clock seconds. in the range € (o, o + €] and extrapolate to = o~. Extensive
testing with a model distributiom(r) = 30e~3") tunes the pa-
rameters to ensure that there is no systematic bias. We ehoos
4. Results parameters in the middle of the flat region with systematic er
rors less than 10. They aresr = 104, ¢ = 0.020, andd = 5.

The hard disk system is a standard model system in statistica Table 2shows the average* data obtained by simulations
mechanics and the one which was originally used to pioneer thwith MPMC. Independent runs o = 2562, N = 512, and
Monte Carlo computer simulation metho@7]. Its phase be- N = 1024 particles are performed at packing fractions between
havior is completely determined by the equation of statégivh ¢ = 0.698 andp = 0.718, which comprises the transformation
is the relation between internal pressBrand packing fraction from liquid to solid. Each run starts with a randomly gener-
¢ = pn(o/2)?. Here,p = N/V is density andv the volume ated configuration at low density and is quickly compressed t
of the simulation box. At packing fractions betwegn= 0.7  the target. The run then continues at constant density for 10
to 0.72 the system undergoes a first-order phase transition frosweeps, which only takes 4 days fr = 256 (15 days for
the liquid phase to the hexatic phase, followed by a continuN = 512) to complete on a Tesla M2070 GPU. The pressure
ous transition to the solid phasg4]. In their paper, Bernard is averaged every 200 sweeps in each run after an equibbrati
and Krauth showed with an event-chain simulation meti@}i [ period of 3- 10° sweeps.
that only very large simulation$\(> 256”) have minimal finite Our data confirms the equation of state reported in RB&j. [
size dfects, and long equilibration times are necessary. Thidll values overlap within error bars. We do not analyze posi-
demonstrates the need for high performance MC code and efional order or orientation order in the dense phase emgrgin
plains why previous simulation studies of the hard disk sysfrom the phase transition. Such an analysis would be neces-
tem 46-51] have been unable to provide conclusive evidencesary to distinguish a hexatic phase from a solid phase asedtis |
for a first-order phase transition or the existence of arringe ~ for a separate worlkdy]. We refer to Ref. 45 for an in-depth
diate hexatic phase. comparison of the phase diagram of hard disks obtained with

Phase transitions are extremely sensitive to the slightest  various algorithms, including MPMC.
gramming error or inadvertent correlation of trial move® du
to the appearance of (quasi-)long-range spatial coroglatind 5 performance
long equilibration times. Structural fluctuations are mione
portant in two dimensions than in three dimensions, and they We test the performance of the MPMC hard disk code using
are particularly large for the hard disk system. These prope CUDA on a single Tesla K20 GPU (Kepler). For comparison,
ties, together with the availability of high-precisionisédata ~ we also implement the MPMC algorithm on the CPU and run it
to compare with, make hard disks a good system to test ou@n our cluster nodes. The CPU implementation uses OpenMP
algorithm. to parallelize across all cores on a node. Each thread meses

In principaL Computing the pressure for hard disks is SEﬂpl a single horizontal strip of the simulation domain and theein
Estimate the radial distribution functigr) in the limit asr ap- ~ most loop followsAlgorithm 2. We make no attempt to paral-

proaches the disk diameterfrom the right, and calculatép] lelize across multiple GPUs or multiple CPU nodes using MPI.
All tests are performed using single precision floating pfan

i 5 T, mat to store particle coordinateRable 3lists complete specifi-
Pt = ket 7P (1 +507p im g(r)), (4)  cations of the hardware and software configurations of ir te
machines.

where we introduce the dimensionless pres§irdn practice,

obtaining an unbiased estimate requires special care. We es5.1. Scaling with number of particles

mate pressure using the following procedure. For each saimpl  We perform benchmarks at a fixed packing fractipn=
configuration, a histogram of particle pair distances is <om0.698 and analyze the performance scaling WthH-igure 4a)
puted over allN particles. n[r;] counts the number of particle plots the results an@lable 4lists selected numerical values.

7



System Dimensionless pressiiein the hard disk system at packing fraction
size Method ¢ =0.698 ¢=0702 ¢=0706 ¢=0710 ¢=0.714 ¢=0718

N = 256 MPMC 9.1709(1) 9.1920(2) 9.1854(1) 9.1792(1) 9.1758(1)18%(1)
BK 9.1708(4) 9.1924(4) 9.1858(5) 9.1790(4) 9.1758(5) ©(13
Difference  0.0000(5)  0.0004(5) 0.0004(5) 0.0002(4) 0.0000@)001(1)

N = 512 MPMC 9.1699(5) 9.1900(2) 9.1861(1) 9.1828(1) 9.1800(1)1980(4)
BK 0.1700(2) 9.1899(6) 9.1856(6) 9.1821(5) 9.1803(4) 97Q)
Difference  0.0001(5) 0.0001(6) 0.0004(6) 0.0007(5) 0.0003(@)006(5)

N=1024  MPMC 9.16934(4) 9.1882(3) 9.1859(3) 9.1842(3) 9.1819(4)1991(4)
BK 9.1693(1) 9.1880(2) 9.1855(2) 9.1843(2) 9.1822(2) 8%8)
Difference  0.0000(1)  0.0002(4) 0.0003(4) 0.0001(4) 0.0002@G)P001(5)

Table 2: This table shows data for the equation of S&i{e) over the range where the liquid transforms into the solidhdludes runs by MPMC (this work) and
by Bernard and Krauth (BK) with serial event chain simulatj84]. Error bars are shown at two standard errors of the mean,2(([P* - (P*)]2)/Nsampied*’?,
where the number in parentheses is the error in the lastaligizn. Our data is averaged over 8 independent runs%c§\i8eps (64 runs faf = 0.718,N = 256?).
See Ref34] for a description of the BK data averaging schemeTédences in the pressures are shown with propagated ersoftfas, . + o3,)Y/2.

25F 7607 1520 304
K20 7 6.23-10° 9.83-10° 1.09-10° 1.09-10°
n/max@) 0.567 0.895 1.00 1.00
Nseria 83.6 134 148 148

E5540 7 577-10° 578-10" 542-10° 5.26-10
(8 cores) n/max@) 0.900 0.900 0.860 0.820
n/Nserial 7.65 7.88 7.39 7.16

E5540 7 754.-10°F 7.33.-10° 7.33-10° 7.35-10°
(1 core) n/max@) 0.880 0.855 0.855 0.858

Table 4: Numerical values for selected benchmarks fragare 4



]_09 E_ T oolooomow 10
k
o 0.8 | 100
—~ = I | =
S ] o 1 %
— 10°¢ & L 1 &
~ & o 00oSfhOoorrro g 04 F i E
= i 0 K20 = . ]
0 E5540 (8 cores) 02 L i 10
A E5540 (1 core) :
7 L u b
10 k1 AN paaal 0.0 L 1 1
10* 10° 106 107 10% 10° 106 107
(a) N (b) N (©)

Figure 4: Benchmarks are performed with a varying numbeiisksiN, at a packing fractiog = 0.698. Each benchmark runs 100 sweeps to warm up and then
measures the time it takes to run another 100 sweeps as wk# dse number of attempted trial moves to compute Nmoves/t. 11 separate runs are performed
and the median result is plotted here. In all cases, the bar (one standard deviation) are smaller than the symiml Siubfigure (a) plots thefeiency of the
computationy; vs. N on various hardware configurations. Subfigure (b) piotsrmalized by the maximum obtained on each hardware coafignr Subfigure (c)
plots the speedup obtained over a serial execution. Theeddiste marks a speedup of 8.

The algorithm has a running tintee O(N), so the number
of trial moves per unit timey, should be constant under ideal
circumstances. In practice, there are overheads that ckdse
viation from constant ficiency. Figure 4b) collapses the in-
dividualz plots to a relative ficiency metric for each separate
configuration. When running on a single CPU coff&ceency is
flat with only a slight downward drift for larghl. This is likely
because the largest systems no longer fit in on-chip cactee. Th
K20 E5540 8-core benchmarks show the same behavior at ldrgéthough
it starts a factor of 2 higher because the same data is notv spli

ngdware custom built HP DL2x170h over 2 chips’ caches. The 8-core results also have a slight di
Mamb.oard ASUS Sabertooth for N < 10° due to the overhead of managing worker threads.
Chipset  AMD 990FX Intel 5520 On the GPU, the kernel launch overhead is significant enough
CPU  Athlon I1X4630  2x Intel Xeon ES540 54 for N less than 18) efficiency is less than 70%.
CPU clock 2.8 GHz 2.53GHz Despite this inflficiency, the GPU still outperforms the sin-
RAM  16GB DDR3 24GB DDR3 gle CPU core runs by a factor of 83 for systems as small as
RAM clock 1333 MHz 1333 MHz N = 25%. At peak dficiency, the GPU speedup over a single
GPU Tesla K20 core is a factor of 148. We prefer thinking about speedups com
Core clock 706 MHz pared to a single core, but recognize that there are othes ofay
Memory clock 5200 MHz evaluating it. On a per socket basis, a single GPU is 37xrfaste
DRAM 5 GB GDDR5 than a quad core E5540. On a per-node basis, it is still arr orde
ECC df of magnitude (20x) faster. In terms of aggregate perforraanc
0S Gentoo RHEL 6 per price, an 8-core nqde with 8 externally attached GPUs (th
Architecture  x8664 X86.64 configuration we use) is 148x fa}ster than just the ho_st, .biyt on
CPU compiler GCC 4.5.3 GCC 4.7.0 costs 5.5x as much for a benefit of 27x more swaepstime

given a fixed budget. We do not have power monitoring equip-
ment on our cluster, so we are unable to provide actual measur
ments of energy savings. Instead, we obtain an estimatg usin
the manufacturer’s TDP specifications, which report 80W for
the E5540 and 225W for the K20. Based on these numbers and
the per-socket speedup, a CPU simulation would use 13 times
more energy than if it were run for the same number of sweeps
on the GPU.

flags -O3 -funroll-loops -O3 -funroll-loops
GPU compiler CUDAS.0
flags default
GPU driver 310.19

Table 3: Benchmark hardware and software configurations.

5.2. Limitations

The number of parallel threads depends on the cell size; inte
action range, and particle shape. In this work, MPMC execute
one parallel thread per active cell. In terms of tgarticles,
the number of active cells isl/((ny29) where(n) is the aver-



age cell population and is the dimensionality of the system. end of a sweep when the grid shift is performed. The num-

It is approximatelyN/8 for hard disksd = 2) at high density ber of trial moves attempted per grid cal, could be further

((n) = 2). Hard sphered(= 3) decrease the number of active increased to lessen communication even more.

cells toN/16 ((n) = 2). Expanding the interaction range to a  During the course of this work we learned that it is surpris-

truncated and shifted Lennard-Jones potential with= 2.50-  ingly difficult to implement MC in a parallel environment. Ev-

in three dimensions drops the numbeiNpl44 (n) = 18 de-  ery slight violation of the balance conditions leads to imeot

termined by MD simulation). GPUs operate at pefiiceency  sampling, and with parallel update moves it is not simplegto d

only when running more than 10 thousand threads, estatjshi termine which schemes do not obey balance. Sometimes the

minimum practical system sizes of 80 thousand, 160 thoysanéffect on our simulations was so small that it would be easy

and 1.44 million particles for hard disks, hard spheres, andio miss in a typical complex practical application. It is ionp

Lennard-Jones beads, respectively. Depending on theedesirtant to test any new parallel algorithm thoroughly in a situa

application, these sizes may be unnecessary or prohilitivetion where reliable results are available from serial satiahs.

large. Hard disks are such a system. We computed to high precision
Alternate thread assignment schemes for MPMC can amehe hard disk equation of state over the density range where t

liorate this problem. One possibility is to executétBreads liquid transforms into the solid. Our results agree peljesith

per active cell, where each computes potential overlapedsst  serial event-chain Monte Carlo simulations and are corbfeati

the trial moves in the active cell with particles in one néighh  with the presence of a first-order liquid-hexatic phasesiran

ing cell. This technique greatly increases the number ddlpar tion [45] — a finding that is scientifically significant by itself.

lel threads, reducing the theoretical minimum practicateym

sizes to 9 thousand, 6 thousand, and 53 thousand folr hars] disk; Acknowledgements

hard spheres, and Lennard-Jones beads, respectively.e Thes

sizes are much more in line with typical simulation sizesaft s We thank Werner Krauth and Etienne Bernard for discussions

matter research. during the final stages of this work. We also thank NVIDIA for
Large density fluctuations present in Lennard-Jones systenproviding the Tesla K20 used for the benchmarks in this paper

should not pose a problem. Thread divergence is not inadeasd.A.A., M.E. and S.C.G acknowledge support by the Assistant

because the loop ovay, trial moves in each active cell is iden- Secretary of Defense for Research and Engineering, U.S. De-

tical across the entire system. The GPU’s fine-grained scheghartment of Defense [DOBSD(R&E)](N00244-09-1-0062).

uler replaces blocks as soon as they finish executing, sodide | Any opinions, findings, and conclusions or recommendations

is automatically balanced despite blocks in low densityaeg  expressed in this publication are those of the authors amdto

completing sooner than those in high density areas. Memorgecessarily reflect the views of the DOASD(R&E). E.J. and

is wasted in the sparse cell data structure, but modern GPUS.C.G. received support from the James S. McDonnell Founda-

have large amounts of memory (6GB), enough to store tens dfon 21st Century Science Research Aw&tddying Complex

millions of particles even with wasted space. Alternateadat Systems, grant no. 220020139, and E.J. acknowledges suppor

structures could always be employed. from the National Defense Science and Engineering Graduate

(NDSEG) Fellowship, 32 CFR 168a. E.J., T.L.G., and S.C.G.

acknowledge support from the National Science Foundatien u

der Award No. CHE 0624807. Simulations were performed on
Efficient parallel algorithms are essential for the applicatio a GPU cluster hosted by the University of Michigan’s Center

of Monte Carlo particle simulations on current and futureneo  for Advanced Computing.

puter hardware. Building on prior works utilizing checkealnd

domain decomposition, we detailed an algorithm for ma$give pterences

parallel MC and implemented it on the GPU and the CPU.

The GPU speedup that we obtain is comparable to what hasll '; KA;lifZ]g;"% E-Pi?t‘zgof-vg-LC;}:EE::oj é-h ;I-f ge\?\iﬂsn’a;-sbﬁmisv

been achieved in MD _SImUIatlonS'_ Our findings demor_]Strate Yélick, Thé Iaﬁdécape of p:;raliel.computir']g .resear,ch.: & fiem éeékel

that GPUs are well-suited for running large-scale MC simula ley, Technical Report UCEEECS-2006-183, EECS Department, Univer-

tions. Medium scale simulations could also make good use of sity of California, Berkeley, 2006.

the GPU after some work to increase parallelism in the imple-[2 J- E. Stone, D. J. Hardy, I. S. Ufimtsev, K. Schulten, GRideterated
mentation molecular modeling coming of age, Journal of Molecular Giep &

. . _ _ Modelling 29 (2010) 116-25.
Future work to parallelize on multiple GPUs using MPI will [3] J. A. Anderson, C. D. Lorenz, A. Travesset, General psepmolecular

enable even larger scale simulations. However, a straightf dynamics simulations fully implemented on graphics prefres units,
ward implementation of the MPMC algorithm onto multiple Journal of Computational Physics 227 (2008) 5342-5359.

P . 9 . . . p 4] HOOMD-blue, httpf/codeblue.umich.ednoomd-blue, 2012.
GP_US poses One. major problem. Communication with nelgh'[S] W. M. Brown, P. Wang, S. J. Plimpton, A. N. Tharrington, glementing
boring MPI ranks is necessary after every sub-sweep upsiate, molecular dynamics on hybrid high performance computetsostsange
slow PCle interconnect bandwidths would limit performance - forces, Computer thics Communications 18|2 (2011) 893—931

. : : . P 6] A. W. Gotz, M. J. Williamson, D. Xu, D. Poole, S. Le GranR, C.

A second level of parallell_zatl_o_n thatlntroducesmactmgaor_]s . Walker, Routine Microsecond Molecular Dynamics Simulasiovith
between the MPI rank_s significantly (_jecreases co_mm_unru:atlo AMBER on GPUs. 1. Generalized Born, Journal of Chemical Tjeo
needs. Such a technique only requires communication at the and Computation 8 (2012) 1542-1555.

10

6. Conclusions



(7]

(8]

El

(10]

[11]

(12]

[13]
[14]
[15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

S. Le Grand, A. W. Godtz, R. C. Walker, SPFP: Speed without
compromise—A mixed precision model for GPU acceleratedemdar
dynamics simulations, Computer Physics Communicatio$Zp

J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. HardyG. Trabuco,
K. Schulten, Accelerating molecular modeling applicagiovith graphics
processors, Journal of Computational Chemistry 28 (200T322640.
P. Eastman, V. S. Pande, fif€ient nonbonded interactions for molecu-
lar dynamics on a graphics processing unit, Journal of Caatipnal
Chemistry 31 (2010) 1268-72.

N. Ganesan, B. A. Bauer, T. R. Lucas, S. Patel, M. Taufgructural,
dynamic, and electrostatic properties of fully hydrated BMbilayers
from molecular dynamics simulations accelerated with ki@l process-
ing units (GPUs), Journal of Computational Chemistry 32L(90®958—
2973.

P. H. Colberg, F. Hofling, Highly accelerated simuwat of glassy dy-
namics using GPUs: Caveats on limited floating-point precijs Com-
puter Physics Communications 182 (2011) 1120-1129.

D. C. Rapaport, Enhanced molecular dynamics perfoomavith a pro-
grammable graphics processor, Computer Physics Comntiomis&l 82
(2011) 926-934.

GROMACS, httpy/www.gromacs.org 2013.

ACEMD, http7/www.acellera.com 2013.

R. Swendsen, J.-s. Wang, Nonuniversal critical dyrarm Monte Carlo
simulations, Physical Review Letters 58 (1987) 86—88.

J. Liu, E. Luijten, Rejection-free geometric clustégaithm for complex
fluids, Physical Review Letters 92 (2004) 1-4.

S. Whitelam, P. L. Geissler, Avoiding unphysical kicetraps in Monte
Carlo simulations of strongly attractive particles, Jaurof Chemical
Physics 127 (2007) 154101.

E. Bernard, W. Krauth, D. Wilson, Event-chain Monte [Baalgorithms
for hard-sphere systems, Physical Review E 80 (2009) 5-9.

G. Pawley, K. Bowler, R. Kenway, D. Wallace, Concurrgramd paral-
lelism in MC and MD simulations in physics, Computer Physizsm-
munications 37 (1985) 251-260.

R. Ren, G. Orkoulas, Acceleration of Markov chain Mofarlo sim-
ulations through sequential updating, Journal of Chenfitaisics 124
(2006) 64109.

T. Preis, P. Virnau, W. Paul, J. J. Schneider, GPU aca&dd Monte
Carlo simulation of the 2D and 3D Ising model, Journal of Catafional
Physics 228 (2009) 4468-4477.

T. Levy, G. Cohen, E. Rabani, Simulating lattice spindeis on graphics
processing units, Journal of Chemical Theory and Compmurtai(2010)
3293-3301.

G. S. Hetelfinger, M. E. Lewitt, A comparison between two massively
parallel algorithms for Monte Carlo computer simulationn Avestiga-
tion in the grand canonical ensemble, Journal of Computati€hem-
istry 17 (1996) 250-265.

A. Uhlherr, S. J. Leak, N. E. Adam, P. E. Nyberg, M. Doxdss, V. G.
Mavrantzas, D. N. Theodorou, Large scale atomistic polysieula-
tions using Monte Carlo methods for parallel vector prooess Com-
puter Physics Communications 144 (2002) 1-22.

R. Ren, G. Orkoulas, Parallel Markov chain Monte Cailougations,
Journal of Chemical Physics 126 (2007) 211102.

C. J. O'Kesdfe, G. Orkoulas, Parallel canonical Monte Carlo simulations
through sequential updating of particles, Journal of Cleahi?hysics 130
(2009) 134109.

B. Sadigh, P. Erhart, A. Stukowski, A. Caro, E. Martinéz Zepeda-
Ruiz, Scalable parallel Monte Carlo algorithm for atontigimulations
of precipitation in alloys, Physical Review B 85 (2012) 1-11

B. D. Lubachevsky, Hcient parallel simulations of asynchronous cellu-
lar arrays, Complex Systems 1 (1987) 1099-1123.

G. Korniss, M. Novotny, P. Rikvold, Parallelization afdynamic Monte
Carlo algorithm: a partially rejection-free conservatamproach, Journal
of Computational Physics 153 (1999) 488-508.

E. Martinez, J. Marian, M. Kalos, J. Perlado, Synclows parallel ki-
netic Monte Carlo for continuum fiusion-reaction systems, Journal of
Computational Physics 227 (2008) 3804-3823.

G. Arampatzis, M. a. Katsoulakis, P. Plecha¢, M. Baut. Xu, Hier-
archical fractional-step approximations and parallekekimMonte Carlo
algorithms, Journal of Computational Physics 231 (20135#7814.

K. Esselink, L. Loyens, B. Smit, Parallel Monte Carlasilations, Phys-

11

(33]
(34]
(35]
(36]
(37]
(38]
[39]
[40]
[41]
[42]

[43]
[44]

[45]

[46]
[47]
(48]

[49]

(50]

(51]

ical Review E 51 (1995) 1560-1568.

L. Loyens, B. Smit, K. Esselink, Parallel Gibbs-enséensimulations,
Molecular Physics 86 (1995) 171-183.

E. Bernard, W. Krauth, Two-step melting in two dimensso first-order
liquid-hexatic transition, Physical Review Letters 10012) 1-4.

R. Durstenfeld, Algorithm 235: random permutation, nGaunications
of the ACM 7 (1964) 420.

W. Krauth, Personal Communications, 2012.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Heller,
E. Teller, Equation of state calculations by fast computingchines,
Journal of Chemical Physics 21 (1953) 1087.

V. I. Manousiouthakis, M. W. Deem, Strict detailed bada is unneces-
sary in Monte Carlo simulation, Journal of Chemical Phy4&it8 (1999)
2753.

NVIDIA, CUDA C programming guide, v4.2, 2012.

D. B. Kirk, W.-m. W. Hwu, Programming Massively ParalRrocessors:
A Hands-on Approach, Morgan Kaufmann, 2010.

R. Farber, CUDA Application Design and Development, riyem Kauf-
mann, 2011.

J. Sanders, CUDA by Example, Addison-Wesley Profesdi®010.

S. Worley, Saru, Personal Communication, 2008.

C. L. Phillips, J. A. Anderson, S. C. Glotzer, Pseudpne@m number
generation for Brownian dynamics and dissipative partigleamics sim-
ulations on GPU devices, Journal of Computational Physs@s(2011)
7191-7201.

M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. Prrized,
W. Krauth, Hard-disk equation of state: First-order lighiekatic transi-
tion in two dimensions with three simulation methods, PtgisReview
E 87 (2013) 042134.

B. Alder, T. Wainwright, Phase Transition in ElasticsRs, Physical
Review 127 (1962) 359-361.

J. Lee, K. Strandburg, First-order melting transitafrthe hard-disk sys-
tem., Physical Review B 46 (1992) 11190-11193.

J. Zollweg, G. Chester, Melting in two dimensions., Biogl Review B
46 (1992) 11186-11189.

H. Weber, D. Marx, K. Binder, Melting transition in twardensions:
A finite-size scaling analysis of bond-orientational or@ehard disks,
Physical Review B 51 (1995) 14636—14651.

A. Jaster, Computer simulations of the two-dimensianalting transi-
tion using hard disks, Physical Review E 59 (1999) 2594—-2602

C. Mak, Large-scale simulations of the two-dimenslanalting of hard
disks, Physical Review E 73 (2006) 1-4.



	1 Introduction
	2 Algorithm
	2.1 Checkerboard decomposition
	2.2 Sweep structure
	2.3 Detailed balance
	2.4 Pitfalls leading to incorrect statistical sampling

	3 Implementation
	3.1 Data Structures
	3.2 Kernel
	3.3 Parameter tuning

	4 Results
	5 Performance
	5.1 Scaling with number of particles
	5.2 Limitations

	6 Conclusions
	7 Acknowledgements

