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Abstract

The elliptic Monge-Ampère equation is a fully nonlinear Partial Differential Equation
which originated in geometric surface theory, and has been applied in dynamic meteorol-
ogy, elasticity, geometric optics, image processing and image registration. Solutions can
be singular, in which case standard numerical approaches fail.

In this article we build a finite difference solver for the Monge-Ampère equation,
which converges even for singular solutions. Regularity results are used to select a priori
between a stable, provably convergent monotone discretization and an accurate finite
difference discretization in different regions of the computational domain. This allows
singular solutions to be computed using a stable method, and regular solutions to be com-
puted more accurately. The resulting nonlinear equations are then solved by Newton’s
method.

Computational results in two and three dimensions validate the claims of accuracy and
solution speed. A computational example is presented which demonstrates the necessity
of the use of the monotone scheme near singularities.

Keywords: Fully Nonlinear Elliptic Partial Differential Equations, Monge Ampère
equations, Nonlinear Finite Difference Methods, Viscosity Solutions, Monotone
Schemes, Convexity Constraints

1. Introduction1

In this article we build a finite difference solver for the Monge-Ampère equation, which2

converges even for singular solutions. Regularity results are used to select a priori be-3

tween two discretizations in different regions of the computational domain. Near possible4

singularities, a stable, provably convergent monotone discretization is used. Elsewhere a5

more accurate discretization is used. This allows singular solutions to be computed using6

a stable method, and regular solutions to be computed more accurately. The resulting7

nonlinear equations are then solved by Newton’s method, which is fast, O(M1.3), where8

M is the number of data points, independent of the regularity of the solution.9
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1.1. The setting for equation10

The Monge-Ampère equation is a fully nonlinear Partial Differential Equation (PDE).11

12

det(D2u(x)) = f(x), for x in Ω. (MA)

The Monge-Ampère operator, det(D2u), is the determinant of the Hessian of the function13

u. The equation is augmented by the convexity constraint14

u is convex, (C)

which is necessary for the equation to be elliptic. The convexity constraint is made15

explicit for emphasis: it is necessary for uniqueness of solutions and it is essential for16

numerical stability.17

While other boundary conditions appear naturally in applications, we consider the18

simplest boundary conditions: the Dirichlet problem in a convex bounded subset Ω ⊂ Rd19

with boundary ∂Ω,20

u(x) = g(x), for x on ∂Ω. (D)

Under suitable assumptions on the domain and the functions f(x), g(x), recalled in sub-21

section 2.1, there exist unique classical (C2) solutions to (MA), (C). However, when22

these conditions fail, solutions can be singular. For singular solutions, the correct notion23

of weak solutions must be used. In this case, novel discretizations and solutions methods24

must be used to approximate the solution.25

1.2. Applications26

The PDE (MA) is a geometric equation, which goes back to Monge and Ampère27

(see [1]). The equation naturally arises in geometric problems of existence and uniqueness28

of surfaces with proscribed metrics or curvatures [2, 3]. Early applications identified29

in [4] include dynamic meteorology, elasticity, and geometric optics [5, 6, 7, 8]. For an30

application of Monge-Ampère equations in mathematical finance, see [9].31

The Monge-Ampère equation arises as the optimality conditions for the problem of32

optimal mass transport with quadratic cost [1, 10, 11]. This application of the Monge-33

Ampère equation has been used in many areas: image registration [12, 13, 14], mesh34

generation [15, 16, 17], reflector design [18], and astrophysics (estimating the shape of35

the early universe) [19].36

The problem here is to find a mapping g(x) that moves the measure µ1(x) to µ2(y)37

and minimizes the transportation cost functional38 ∫
Rd

|x− g(x)|2 dµ1.

The optimal mapping is given by g = ∇u, where u satisfies the Monge-Ampère equation39

det(D2u(x)) = µ1(x)/µ2(∇u(x)).

In this situation, the Dirichlet boundary condition (D) is replaced by the implicit bound-40

ary condition41

g(·) : Ω1 → Ω2 (1)
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where the sets Ω1 and Ω2 are the support of the measures µ1, µ2. These boundary42

conditions are difficult to implement numerically; we are not aware of an implementation43

using PDE methods. For many applications, both domains are squares, and a simplifying44

assumption that edges are mapped to edges allows Neumann boundary conditions to be45

used. In other applications, periodic boundary conditions are used.46

In other problems, the Monge-Ampère operator appears in an inequality constraint in47

a variational problem for optimal mappings where the cost is no longer the transportation48

cost. Here the operator has the effect of restricting the local area change on the set of49

admissible mappings, see [20] or [21].50

1.3. Related numerical works51

Despite the number of applications, until recently there have been few numerical52

publications devoted to solving the Monge-Ampère equation. We make a distinction53

between numerical approaches with optimal transportation type boundary conditions (1)54

and the standard Dirichlet boundary conditions (D). In the latter case, a number of55

numerical methods have been recently proposed for the solution of the Monge-Ampère56

equation.57

An early work is [4], which presents a discretization which converges to the Alek-58

sandrov solution in two dimensions. Another early work by Benamou and Brenier [22]59

used a fluid mechanical approach to compute the solution to the optimal transportation60

problem.61

For the problem with Dirichlet boundary conditions which is treated here, a series of62

papers have recently appeared by two groups of authors, Dean and Glowinski [23, 24, 25],63

and Feng and Neilan, [26, 27]. The methods introduced by these authors perform best64

in the regular case and can break down in the singular case. See [28] a more complete65

discussion.66

We also mention the works [29], in the periodic case, and [15] for applications to67

mappings. The method of [30] treats the problem of periodic boundary conditions in68

odd dimensional space.69

1.4. Numerical challenges70

When the conditions for regularity are satisfied, classical solutions can be approx-71

imated successfully using a range of standard techniques (see, for example works such72

as [23, 24, 25], and [26, 27]). However, for singular solutions, standard numerical methods73

break down: either by becoming unstable, poorly conditioned, or by selecting the wrong74

(non-convex) solution.75

Weak solutions76

For singular solutions, the appropriate notion of weak (viscosity or Aleksandrov)77

solutions must be used. Numerical methods have been developed which capture weak78

solutions: Oliker and Prussner, in [4], presents a method which converges to the Aleksan-79

drov solution. One of the authors introduced a finite difference method which converges80

to the viscosity solution in [31]. Both of these methods were restricted to two dimensions.81

However, methods which are provably convergent may have lower accuracy or slower so-82

lution methods than other methods which are effective for regular solutions. In [32] we83

introduced a monotone discretization which is valid in arbitrary dimensions. A proof84
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of convergence to viscosity solutions is provided, as well as a proof of convergence of85

Newton’s method.86

Convexity87

The convexity constraint is necessary for both uniqueness and stability. In partic-88

ular, the equation (MA) fails to be elliptic if u is non-convex (see subsection 2.5). so89

instabilities can arise if the convexity condition (C) is violated, as demonstrated in sub-90

section 8.1. Any approximation of (MA) requires some selection principle to choose the91

convex solution. This selection principle can be built in to the discretization, as in [31],92

or built in to the solution method, as in [28].93

Accuracy94

The convergent monotone schemes of [31] and [32] use a wide stencil, and the accuracy95

of the scheme depends on the directional resolution, which depends on the width of the96

stencil. As we demonstrate below, for highly singular solutions, such as (17), the direc-97

tional resolution error can dominate. On the other hand, more accurate discretizations,98

such as standard finite differences, can be unstable for singular solutions.99

Fast solvers100

Previous work by the authors and a coauthor [28] investigated fast solvers for (MA).101

An explicit method was presented which was moderately fast, independent of the solution102

time. For regular solutions, a faster (by an order of magnitude) semi-implicit solution103

method was introduced (see subsection 6.2) but this method was slower (by an order of104

magnitude) on singular solutions.105

2. Analysis and weak solutions106

In this section we present regularity results and background analysis which inform107

the numerical approach taken in this work. In particular, the regularity results of sub-108

section 2.1 are used to determine the discretization used in section 5.109

The definition of viscosity solutions and Aleksandrov solutions presented in subsec-110

tion 2.2-2.3 are used to make sense of the weak solutions (15) and (17), respectively.111

2.1. Regularity112

Under the following conditions, the Monge-Ampère equation is guaranteed to have113

a unique C2,α solution Regularity results for the Monge-Ampère equation have been114

established in [33, 34, 35]. We refer to the book [36] for the following result.115 
The domain Ω is strictly convex with boundary ∂Ω ∈ C2,α.

The boundary values g ∈ C2,α(∂Ω).

The function f ∈ Cα(Ω) is strictly positive.

(2)

Remark 1. In the extreme case, with f(x) = 0 for all x ∈ Ω, the equation (MA),(C)116

reduces to the computation of the convex envelope of the boundary conditions [37, 38].117

In this case, solutions may not even be continuous up to the boundary and can also be118

non-differentiable in the interior.119
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Remark 2. While is it usual to perform numerical solutions on a rectagle, regularity120

can break down in particular convex polygons [11, 39].121

2.2. Viscosity solutions122

We recall the definition of viscosity solutions [40], which are defined for the Monge-123

Ampère equation in [36].124

Definition 1. Let u ∈ C(Ω) be convex and f ≥ 0 be continuous. The function u is125

a viscosity subsolution (supersolution) of the Monge-Ampère equation in Ω if whenever126

convex φ ∈ C2(Ω) and x0 ∈ Ω are such that (u − φ)(x) ≤ (≥)(u − φ)(x0) for all x in a127

neighbourhood of x0, then we must have128

det(D2φ(x0)) ≥ (≤)f(x0).

The function u is a viscosity solution if it is both a viscosity subsolution and supersolution.129

Example 1 (Viscosity solution of Monge-Ampère). We consider an example which130

will later be solved numerically in two and three dimensions (sections 8-9). Consider (MA)131

with solution and f given by132

u(x) =
1

2
((|x| − 1)+)2, f(x) = (1− 1/ |x|)+.

This function, although it is not a classical C2 solution of the Monge-Ampère equa-133

tion, is a viscosity solution.134

2.3. Aleksandrov solutions135

Next we turn our attention to the Aleksandrov solution, which is a more general weak136

solution than the viscosity solutions. Here f is generally a measure [36]. We begin by137

recalling the definition of the normal mapping or subdifferential of a function.138

Definition 2. The normal mapping (subdifferential) of a function u is the set-valued139

function ∂u defined by140

∂u(x0) = {p : u(x) ≥ u(x0) + p · (x− x0)}, for all x ∈ Ω.

For a set V ⊂ Ω, we define ∂u(V ) =
⋃
x∈V

∂u(x).141

Now we want to look at a measure generated by the Monge-Ampère operator.142

Definition 3. Given a function u ∈ C(Ω), the Monge-Ampère measure associated with143

u is defined as144

µ(V ) = |∂u(V )|

for any set V ⊂ Ω.145

This measure naturally leads to the notion of the generalized or Aleksandrov solution146

of the Monge-Ampère equation.147
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Definition 4. Let µ be a Borel measure defined in a convex set Ω ∈ Rd. Then the148

convex function u is an Aleksandrov solution of the Monge-Ampère equation149

det(D2u) = µ

if the Monge-Ampère measure associated with u is equal to the given meaure µ.150

Example 2 (Aleksandrov solution). As an example, we consider the cone and the151

the scaled Dirac measure152

u(x) = |x| , µ(V ) = π

∫
V

δ(x) dx.

2.4. A PDE for convexity153

The convexity constraint (C) is necessary for uniqueness, since without it, −u is also154

a solution of (MA).155

For a twice continuously differentiable function u, the convexity restriction (C) can be156

written as D2u is positive definite. Since we wish to work with less regular solutions, (C)157

can be enforced by the equation158

λ1(D2u) ≥ 0,

understood in the viscosity sense [37, 38], where λ1[D2u] is the smallest eigenvalue of the159

Hessian of u.160

The convexity constraint can be absorbed into the operator by defining161

det+(M) =

d∏
j=1

λ+j (3)

where M is a symmetric matrix, with eigenvalues, λ1 ≤ . . . ,≤ λn and162

x+ = max(x, 0).

Using this notation, (MA),(C) becomes163

det+(D2u(x)) = f(x), for x in Ω (MA)+

Remark 3. Notice that there is a trade off in defining (3): the constraint (C) is elimi-164

nated but the operator becomes non-differentiable near singular matrices.165

2.5. Linearization and ellipticity166

The linearization of the determinant is given by167

∇det(M) ·N = trace (MadjN)

Where Madj is the adjugate [41], which is the transpose of the cofactor matrix. The168

adjugate matrix is positive definite if and only if M is positive definite. When the matrix169

M is invertible, the adjugate, Madj , satisfies170

Madj = det(M)M−1 (4)

We now apply these considerations to the linearization of the Monge-Ampère opera-171

tor. When u ∈ C2 we can linearize this operator as172

∇M det(D2u) · v = trace
(
(D2u)adjD

2v
)
. (5)
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Example 3. In two dimensions we obtain173

∇M det(D2u)v = uxxvyy + uyyvxx − 2uxyvxy

which is homogenous of order one in D2u. In dimension d ≥ 2, the linearization is174

homogeneous order d− 1 in D2u.175

The linear operator176

L[u] ≡ traceA(x)D2u

is elliptic if the coefficient matrix A(x) is positive definite.177

Lemma 1. Let u ∈ C2. The linearization of the Monge-Ampère operator, (5) is elliptic178

if D2u is positive definite or, equivalently, if u is (strictly) convex.179

Remark 4. When the function u fails to be strictly convex, the linearization can be180

degenerate elliptic, which affects the conditioning of the linear system (5). When the181

function u is nonconvex, the linear system can be ustable.182

The definition of a nonlinear elliptic PDE operator generalizes the definition of linear183

elliptic operator. It also allows for the operators to be non-differentiable.184

Definition 5. Let the PDE operator F (M) be a continuous function defined on sym-185

metric matrices. Then F (M) is elliptic if it satisfies the monotonicity condition186

F (M) ≤ F (N) whenever M ≤ N,

where for symmetric matrices M ≤ N means xTMx ≤ xTNx for all x.187

Example 4. The operator det+(M) is a non-decreasing function of the eigenvalues, so188

it is elliptic.189

3. The standard finite difference discretization190

We begin by considering the standard finite difference discretization of the Monge-191

Ampère equation. For brevity, we describe the discretization in two dimensions, but this192

is easily generalized to higher dimensions.193

This discretization does not enforce the convexity condition (C), so it can lead to194

instabilities. In particular, we show in subsection 8.1 that Newton’s method can become195

unstable if this discretization is used.196

The Monge-Ampère operator has a particularly simple form in two dimensions:197

det(D2u) =
∂2u

∂x2
∂2u

∂y2
−
(
∂2u

∂x∂y

)2

, in Ω ⊂ R2.

In two dimensions, the natural discretization of the operator is given by198

MAN [u] ≡ (Dxxu)(Dyyu)− (Dxyu)2 (MA)N
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where, writing h for the spatial resolution of the grid,

[Dxxu]ij =
1

h2
(ui+1,j + ui−1,j − 2ui,j)

[Dyyu]ij =
1

h2
(ui,j+1 + ui,j−1 − 2ui,j)

[Dxyu]ij =
1

4h2
(ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1) .

Remark 5. There is no reason to assume that the standard discretization converges. In199

fact, the two dimensional scheme has multiple solutions. In [28] this discretization was200

used, but the the solvers were designed to select the convex solution.201

4. Convergent monotone discretization202

The method of [31] describes a discretization of the two-dimensional Monge-Ampère203

equation that converges to the viscosity solution. In [32] we introduced another dis-204

cretization, which generalized to higher dimensions, and also converged to the viscosity205

solution. Both methods require the use of a wide stencil scheme, which has an additional206

discretization parameter, the directional resolution, explained below.207

In addition to being monotone, which means it is provably convergent, the latter208

method discretizes the convexified version of the equation, (MA)+, which is enough to209

ensure convergence of Newton’s method. The proof of this result can be found in [32].210

In this section we present the convergent discretization, which will be used to build211

the hybrid solver.212

4.1. Wide stencils213

When we discretize the operator on a finite difference grid, we approximate the second214

derivatives by centred finite differences (spatial discretization). In addition, we consider215

a finite number of possible directions ν that lie on the grid (directional discretization).216

We consider the finite difference operator for the second directional derivative in the217

direction ν, which lies on the finite difference grid. These directional derivatives are218

discretized by simply using finite differences on the grid219

Dννui =
1

|ν|h2
(u(xi + νh) + u(xi − νh)− 2u(xi)) .

Depending on the direction of the vector ν, this may involve a wide stencil. At points220

near the boundary of the domain, some values required by the wide stencil will not be221

available; see Figure 1. In these cases, we use interpolation at the boundary to construct222

a (lower accuracy) stencil for the second directional derivative; see [31] for more details.223

Since the discretization considers only a finite number of directions ν, there will be224

an additional term in the consistency error coming from the angular resolution dθ of the225

stencil. This angular resolution will decrease and approach zero as the stencil width is226

increased.227
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(a) In the interior. (b) Near the boundary.

Figure 1: Wide stencils on a two dimensional grid.

4.2. Discretization of the convexified Monge-Ampère operator228

In two dimensions, the largest and smallest eigenvalues of a symmetric matrix can be229

represented by the variational formula230

λ1[A] = min
|ν|=1

νTAν, λ2[A] = max
|ν|=1

νTAν.

This formula was used in [31] to build a monotone scheme for the Monge-Ampère oper-231

ator, which is the product of the eigenvalues of the Hessian, by replacing the min,max232

over all directions, by a finite number of grid directions.233

In higher dimensions, the formula above does not generalize naturally. Instead, in [32],234

we used another characterization, which applied to positive definite matrices.235

Lemma 2 (Variational characterization of the determinant). Let A be a d×d symmetric236

positive definite matrix with eigenvalues λj and let V be the set of all orthonormal bases237

of Rd:238

V = {(ν1, . . . , νd) | νj ∈ Rd, νi ⊥ νj if i 6= j, ‖νj‖2 = 1}.

Then the determinant of A is equivalent to239

d∏
j=1

λj = min
(ν1,...,νd)∈V

d∏
j=1

νTj Aνj .

We use Lemma 2 to characterize the determinant of the Hessian of a convex C2
240

function φ in terms of second directional derivatives of φ.241

det(D2φ) = min
(ν1,...,νd)∈V

d∏
j=1

νTj D
2φνj = min

(ν1,...,νd)∈V

d∏
j=1

∂2φ

∂νj2
.
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The convexified Monge-Ampère operator (MA)+ can then be represented by simply242

enforcing positivity of the eigenvalues, which leads to the following,243

det+(D2φ) = min
{ν1...νd}∈V

d∏
j=1

(
∂2φ

∂ν2j

)+

.

To discretize the operator on a finite difference grid, restrict to the set of orthogonal244

vectors, G, available on the given stencil. Then the convexified Monge-Ampère opera-245

tor (MA)+ is approximated by246

MAM [u] ≡ min
{ν1...νd}∈G

d∏
j=1

(
Dνjνju

)+
(MA)M

Theorem 3 (Convergence to Viscosity Solution). Let the PDE (MA) have a unique247

viscosity solution. Then the solutions of the scheme (MA)M , converges to the viscosity248

solution of (MA) as h, dθ, δ → 0.249

The proof of convergence follows from verifying consistency and degenerate ellipticity250

and can be found in [32].251

5. A hybrid discretization252

In this section we propose a hybrid discretization of the Monge-Ampère equation253

which takes advantage of the best features of each of the previous discretizations. We254

want to make use of the natural discretization (MA)N wherever possible in order to take255

advantage of its simplicity and higher accuracy. However, we wish to use the monotone256

discretization (MA)M in regions where the solution may be singular in order to prop-257

erly capture the behaviour of the viscosity solution. In this way we hope to achieve the258

second-order accuracy of the simple discretization in smooth regions and the monotonic-259

ity necessary to capture the behaviour of the viscosity solution in non-smooth regions.260

We propose the following hybrid scheme.261

Discretize (MA) using a weighted average of the two discretizations:262

MAH = w(x)MAN + (1− w(x))MAM (MA)H

where w : Ω→ [0, 1] is a weight function defined a priori from the data as follows.263

We first identify Ωs which is a neighborhood of the possible singular set of u on Ω,264

using conditions (2).265

Ωs = {x ∈ Ω | ε < f(x) < 1/ε} ∪ {x ∈ ∂Ω | ∂Ω flat or g(x) 6∈ C2,α} (6)

where ε is a small parameter, which we can take equal to h, the spatial resolution.266

Then define w(x) to be a differentiable function which is zero in an h-neighborhood267

of Ωs, and which goes to 1 elsewhere.268

Remark 6. The hybrid scheme will sometimes be less accurate than the standard finite269

differences when the solution is C2, because it will lose some accuracy at the flat bound-270

ary. While this might seem conservative, there are examples, (see [28]), where the flat271

boundary causes blow up in the Hessian, so the monotone scheme is needed.272
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6. Explicit and semi-implicit solution methods273

Any discretization of (MA) leads to a system of nonlinear equations which must be274

solved in order to obtain the approximate solution.275

6.1. Explicit solution methods for monotone schemes276

Using a monotone discretization F [u] of the Monge-Ampère operator, the simplest277

way to solve the Monge-Ampère equation is by solving the parabolic version of the278

equation using forward Euler. That is, we perform the iteration279

un+1 = un + dt(F [un]− f).

Explicit iterative methods have the advantage that they are simple to implement, but the280

number of iterations required suffers from the well known CFL condition (which applies281

in a nonlinear form to monotone discretizations, as explained in [42]). This approach is282

slow because for stability it requires a small time step dt, which depends on the spatial283

resolution h. The time step, which can by computed explicitly, is O(h2). This was the284

approach used in [31].285

6.2. A semi-implicit solution method286

The next method we discuss is a semi-implicit method, which involves solving the287

Laplace equation at each iteration. In [28] we used the identiy (8) to build a semi-implicit288

solution method. We showed that the method is a contraction, but the strictness of the289

contraction requires strict positivity of f . In practice, this meant that the iteration was290

fast for regular solutions, but degenerated to become slower than the explicit method291

when f was zero in large parts of the domain.292

The conditioning of the linearized equation (5), which affects solution time, depends293

on the strict convexity of the solution, see lemma 1. The convexity, in turn depends of294

strict positivity of f , see subsection 2.1. This explains why solution time of the semi-295

implicit solver depends on regularity.296

Next, we describe a generalization of the semi-implicit method to higher dimensions.297

We won’t be using the method to solve (MA). Instead, we will use one iteration to set298

up the initial value for Newton’s method.299

Begin with the following identity for the Laplacian in two dimensions,300

|∆u| =
√

(∆u)2 =
√
u2xx + u2yy + 2uxxuyy. (7)

So if u solves the Monge-Ampère equation, then

|∆u| =
√
u2xx + u2yy + 2u2xy + 2f =

√
|D2u|2 + 2f

This leads to a semi-implicit scheme for solving the Monge-Ampère equation, used in [28].301

302

∆un+1 =

√
2f + |D2un|2 (8)
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To generalize this to Rd, we can write the Laplacian in terms of the eigenvalues of the
Hessian: ∆u =

∑d
i=1 λi[D

2u]. Taking the d-th power, and expanding, gives the sum of
all possible products of d eigenvalues.

(∆u)d = d!

d∏
i=1

λi + P (λ1, . . . , λd),

where P (λ) is a d-homogeneous polynomial, which we won’t need explicitly.303

The result is the semi-implicit scheme304

∆un+1 =
√
d!f + P (λ1[D2un], . . . , λd[D2un]). (9)

A natural initial value for the iteration is given by the solution of305

∆u0 =
√
d!f. (10)

7. Implementation of Newton’s method306

To solve the discretized equation307

MAH [u] = f

we use use a damped Newton iteration308

un+1 = un − αvn

for some 0 < α < 1. The damping parameter α is chosen at each step to ensure that309

the residual ‖MAH(un) − f‖ is decreasing. (In practice we can often take α = 1, but310

damping is sometimes needed.)311

The corrector vn solves the linear system312 (
∇uMAH [un]

)
vn = MAH [un]− f. (11)

To set up the equation (11), the Jacobian of the scheme is needed. Since the hybrid313

discretization is a weighted average of the monotone and standard discretization, and314

the weight function, w(x), is determined a priori, the Jacobian of the hybrid scheme will315

simply be a weighted average of the corresponding Jacobians.316

The Jacobian of the Monge-Ampère operator, discretized using standard finite differ-317

ences, is given by318

∇uMAN [u] = (Dxxu)Dyy + (Dyyu)Dxx − 2(Dxyu)Dxy, (12)

which is a discrete version of the linearization of Monge-Ampère (5)319

The Jacobian for the monotone discretization is obtained by using Danskin’s Theo-320

rem [43] and the product rule.321

∇uMAM [u] =

d∑
j=1

diag

∏
k 6=j

Dν∗
kν

∗
k
u

Dν∗
j ν

∗
j
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where the ν∗j are the directions active in the minimum in (MA)M .322

Thus the corrector is obtained by solving the weighted average of the two lineariza-
tions

(w(x)∇uMAN [un] + (1− w(x))∇uMAM [un])vn

= w(x)MAN [un] + (1− w(x))MAM [un]. (13)

In order for the linear equation (11) to be well-posed, we require the coefficient matrix323

to be positive definite. As observed in lemma Theorem 1, this condition can fail if the324

iterate un is not strictly convex.325

7.1. Initialization of Newton’s method326

Newton’s method requires a good initialization for the iteration. Since we need the327

resulting linear system to be well posed it is essential that the initial iterate: (i) be328

convex, (ii) respect the boundary conditions, (iii) be close to the solution.329

In order to do this, we first: use one step of the semi-implicit scheme (9), to obtain a330

close initial value. This amounts to solving (10) along with consistent Dirichlet boundary331

conditions (D). Then convexify the result, using the method of [37]. Since both the steps332

can be performed on a very coarse grid, and interpolated onto the finer grid, the cost of333

the initialization is low.334

7.2. Preconditioning335

In degenerate examples, the PDE for vn (13) may be degenerate, which can lead336

to an ill-conditioned or singular Jacobian. To get around this problem, we regularize337

the Jacobian to make sure the linear operator is strictly negative definite; this will not338

change the fixed points of Newton’s method. We accomplish this by replacing the second339

directional derivatives uνν with340

ũνν = max{uνν , ε}

Here ε is a small parameter. In the computations of section 8, we take ε = 1
2dx2 × 10−8.341

8. Computational results in two dimensions342

In this section, we summarize the results of a number of two-dimensional examples343

solved using the hybrid scheme described in section 5. In particular, we are interested344

in comparing the computation time for Newton’s method with the time required by the345

methods proposed in [28]. We also visualize the map generated by the gradient of the346

solution.347

These computations are performed on an N × N grid on the square [0, 1]2. The348

monotone scheme used a 17 point stencil.349

When needed as part of the initialization, the convex envelope is computed on a350

coarse grid using the discretization described in [37]. Since the solution can be computed351

on a coarse grid, and interpolated, the added computational time is negligible.352
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8.1. Failure of Newton’s method for natural finite differences353

In this section, we give an example where Newton’s method breaks down when stan-354

dard finite differences are used.355

We chose an example which is only singular at one point, on the boundary. Never-356

theless, this mild singularity is enough for Newton’s method to break down.357

Consider the solution of (MA) in [0, 1]2, given by358

u(x) = −
√

2− |x|2, f(x) = 2
(

2− |x|2
)−2

The gradient of the solution is unbounded on |x| = 2, in particular at the point (1, 1).359

The singularity arises from the fact that f is unbounded there.360

Due to the singularity, there is an instability in Newton’s method if the natural finite361

difference method is used. The iteration is initialized with the exact solution. The result362

after performing two iterations of Newton’s method along with the gradient map, is363

illustrated in Figure 2. The correct computed solution is presented in Figure 3(g)-3(h).364
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(a) Solution after two iterations

0 1 2
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0.5

1
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u
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u
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(b) Gradient map after two iterations

Figure 2: Failure of Newton’s method using standard finite differences: the solution oscillates and
becomes non-convex.

8.2. Four representative examples365

We have tested the hybrid method on a number of examples of varying regularity;366

the results are summarized in subsection 8.4-8.3. To illustrate these results, we present367

more detailed results for four representative examples.368

Write x = (x, y), and x0 = (.5, .5) for the center of the domain.369

The first example solution, which is smooth and radial, is given by370

u(x) = exp

(
|x|2

2

)
, f(x) = (1 + |x|2) exp(|x|2). (14)

The second example, which is C1, is given by371

u(x) =
1

2

(
(|x− x0| − 0.2)+

)2
, f(x) =

(
1− 0.2

|x− x0|

)+

. (15)
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The third example is the one which was used in subsection 8.1 to demonstrate that372

Newton’s method for standard finite differences is unstable. The solution is twice differ-373

entiable in the interior of the domain, but has an unbounded gradient near the boundary374

point (1, 1). The solution is given by375

u(x) = −
√

2− |x|2, f(x) = 2
(

2− |x|2
)−2

. (16)

This final is example solution is the cone, which was discussed in subsection 2.3. It376

is Lipschitz continuous.377

u(x) =
√
|x− x0|, f = µ = π δx0 (17)

It order to approximate the solution on a grid with spatial resolution h, using viscosity378

solutions, we approximate the measure µ by its average over the ball of radius h/2, which379

gives380

fh =

{
4/h2 for |x− x0| ≤ h/2,
0 otherwise.

8.3. Visualization of solutions and gradient maps381

In Figure 3 the solutions and the gradient maps for the three representative examples382

are presented. For example (17) the gradient map is too singular to illustrate. To383

visualize the maps, the image of a Cartesian mesh under the mapping384 (
x
y

)
→
(
Dxu
Dyu

)
is shown, where (Dxu,Dyu) is the numerical gradient of the solution of the Monge-385

Ampère equation. The image of a circle is plotted for visualization purposes, the equation386

is solved on a square. For reference, the identity mapping is also displayed.387

In each case, the maps agree with the maps obtained using the gradient of the exact388

solution.389

8.4. Computation time390

The computation times for the four representative examples is presented in Table 1.391

The computations time are compared to those for the Gauss-Seidel and Poisson iterations392

described in [28]. The Newton solver is faster in terms of absolute solution time in each393

case. Table 2 presents of order of magnitude solutions times. The order of magnitude394

solution time for Newton’s method is independent of the regularity of the solutions and395

faster than both of the other methods.396

8.5. Accuracy397

Numerical errors are presented in Table 3. We compare the accuracy of the hybrid398

scheme to the standard finite difference discretization, (using the results of [28]) and to399

the monotone scheme which was also solved using Newton’s method.400

We discuss each example in turn.401
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Figure 3: Solutions and mappings for the (a),(b) identity map, (c),(d) C2 example, (e),(f) C1 example,
and (g),(h) example with blow-up.
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C2 Example (14)
N Newton CPU Time (seconds)

Iterations Newton Poisson Gauss-Seidel

31 3 0.2 0.7 2.2
45 4 0.2 1.1 4.1
63 4 0.4 1.9 15.0
89 4 1.0 4.8 57.6
127 5 2.9 9.6 236.7
181 5 9.0 23.2 1004.0
255 5 30.5 52.6 —
361 6 131.4 162.6 —

C1 Example (15)
N Newton CPU Time (seconds)

Iterations Newton Poisson Gauss-Seidel

31 4 0.4 1.1 0.8
45 6 0.4 6.1 2.8
63 7 0.8 20.5 9.5
89 9 2.0 80.0 35.9
127 11 5.7 256.8 145.5
181 13 17.7 — 558.0
255 16 55.3 — —
361 20 200.0 — —

Example with blow-up (16)
N Newton CPU Time (seconds)

Iterations Newton Poisson Gauss-Seidel

31 4 0.2 0.5 0.8
45 4 0.4 1.4 5.3
63 4 0.7 2.9 19.4
89 5 1.8 8.1 74.1
127 7 5.1 17.7 293.3
181 7 12.9 51.4 1637.1
255 7 36.1 128.2 —
361 8 152.9 374.5 —

C0,1 (Lipschitz) Example (17)
N Newton CPU Time (seconds)

Iterations Newton Poisson Gauss-Seidel

31 9 0.5 5.3 0.8
45 11 0.6 27.8 5.9
63 15 1.4 91.9 21.5
89 22 4.3 451.0 90.5
127 32 14.1 1758.2 373.9
181 30 34.6 — 1576.1
255 34 101.7 — —
361 29 280.2 — —

Table 1: Computation times for the Newton, Poisson, and Gauss-Seidel methods for four representative
examples.
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Regularity of Solution
Method C2,α (14) C1,α (15) and (16) C0,1 (17)

Gauss-Seidel Moderate Moderate Moderate
(∼ O(M1.8)) (∼ O(M1.9)) (∼ O(M2))

Poisson Fast Fast–Slow Slow
(∼ O(M1.4) (∼ O(M1.4)–blow-up) (∼ O(M2)–blow-up)

Newton Fast Fast Fast
(∼ O(M1.3)) (∼ O(M1.3)) (∼ O(M1.3))

Table 2: Order of magnitude computation time for the different solvers in terms or the regularity of
solutions. Here M = N2 is the total number of grid points.

The C2 solution (14)402

The standard finite difference schemes gives O(h2) accuracy (see [28]). In this case,403

the hybrid scheme is slightly less accurate, because the monotone scheme is used near the404

boundary. On a strictly convex domain the hybrid scheme would reduce to the standard405

discretization and achieve the same accuracy.406

The effect diminishes as the number of grid points increases so that the number of407

interior points using the higher order scheme dominates. Accuracy approaches O(h2) as408

the number of grid points increases. This is a definite improvement over the monotone409

scheme, which has its accuracy limited by the stencil width.410

The C1 solution (15)411

The accuracy is O(h), which is similar to the standard discretization and better412

than the limited accuracy permitted by the monotone discretization with a fixed stencil413

width. We also look at the error at each point (see Figure 4); it is evident that the414

singularity around the circle is the factor that most affects the accuracy. Because of this415

non-smoothness, there is no reason to expect our scheme to produce the O(h2) accuracy416

that is possible on C2 solutions.417

The blow-up solution (16)418

In this case, the hybrid scheme accuracy is O(h1.5). This is better than the accuracy419

of both the standard discretization, which was O(h0.5) [28], and the monotone scheme,420

which is limited by the stencil width.421

The cone solution (17)422

For this singular example, the hybrid scheme is identical to the monotone scheme423

(since the right-hand side is either 0 or very large everywhere in the domain). Con-424

sequently, the angular resolution (stencil width) limits the accuracy of solutions. We425

observed that the 17 point stencil reduced the error by an order of magnitude compared426

to the 9 point stencil. This dependence on the stencil width is also evident in the surface427

plot of error (Figure 4), which demonstrates that error is largest along directions that428

are not captured by the stencil. Since this solution is so singular the reduced accuracy429

is to be expected.430
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C2 Example (14)
N Maximum Error

Standard Monotone Hybrid

31 7.14× 10−5 89.09× 10−5 24.45× 10−5

45 3.39× 10−5 60.50× 10−5 15.29× 10−5

63 1.73× 10−5 50.88× 10−5 9.06× 10−5

89 0.87× 10−5 47.51× 10−5 5.32× 10−5

127 0.43× 10−5 45.53× 10−5 3.02× 10−5

181 0.21× 10−5 44.65× 10−5 1.61× 10−5

255 0.11× 10−5 44.22× 10−5 0.87× 10−5

361 0.05× 10−5 44.00× 10−5 0.46× 10−5

C1 Example (15)
N Maximum Error

Standard Monotone Hybrid

31 2.6× 10−4 17.5× 10−4 12.2× 10−4

45 1.8× 10−4 11.6× 10−4 5.9× 10−4

63 1.5× 10−4 9.8× 10−4 4.2× 10−4

89 0.9× 10−4 8.4× 10−4 2.6× 10−4

127 0.6× 10−4 7.9× 10−4 2.0× 10−4

181 0.4× 10−4 7.4× 10−4 1.2× 10−4

255 — 7.2× 10−4 1.0× 10−4

361 — 7.0× 10−4 0.7× 10−4

Example with blow-up (16)
N Maximum Error

Standard Monotone Hybrid

31 17.15× 10−3 1.74× 10−3 1.74× 10−3

45 14.59× 10−3 0.98× 10−3 0.98× 10−3

63 12.53× 10−3 0.59× 10−3 0.59× 10−3

89 10.67× 10−3 0.37× 10−3 0.35× 10−3

127 9.00× 10−3 0.35× 10−3 0.20× 10−3

181 7.59× 10−3 0.34× 10−3 0.12× 10−3

255 6.42× 10−3 0.33× 10−3 0.07× 10−3

361 5.41× 10−3 0.33× 10−3 0.04× 10−3

C0,1 (Lipschitz) Example (17)
N Maximum Error

Standard Monotone Hybrid

31 10× 10−3 3× 10−3 3× 10−3

45 8× 10−3 3× 10−3 3× 10−3

63 6× 10−3 3× 10−3 3× 10−3

89 4× 10−3 4× 10−3 4× 10−3

127 3× 10−3 4× 10−3 4× 10−3

181 2× 10−3 4× 10−3 4× 10−3

255 — 4× 10−3 4× 10−3

361 — 4× 10−3 4× 10−3

Table 3: Accuracy for the standard, monotone, and hybrid discretizations for four representative exam-
ples.
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Figure 4: Surface plots of error using the hybrid scheme for the (a) C1 example and (b) cone example.

9. Computational results in three dimensions.431

In this section, we demonstrate the speed and accuracy of the hybrid Newton’s method432

for three dimensional problems. These computations are performed on an N × N × N433

grid on the square [0, 1]3. The monotone scheme used a 19 point stencil.434

The size of the computation was restricted by the available memory, not by solution435

time (the computations were performed on a recent model laptop).436

The solution methods of [28] were restricted to the two-dimensional Monge-Ampère437

equation, so we are no longer able to compare solution times to Newton’s method for438

these examples.439

As before, we provide specific results for three representative examples of varying440

regularity. In this section we use the notation441

x = (x, y, z)

and let x0 = (.5, .5, .5) be the centre of the domain.442

The first example is the C2 solution given by443

u(x) = exp

(
|x|2

2

)
, f(x) = (1 + |x|2) exp (

3

2
|x|2). (18)

The second example is the C1 solution given by444

u(x) =
1

2

(
(|x− x0| − 0.2)+

)2
, (19)

445

f(x) =

{
1− 0.4

|x−x0| + 0.04
|x−x0|2

, |x− x0| > 0.2

0 otherwise.

The third example is the surface of a ball, which is differentiable in the interior of the446

domain, but has an unbounded gradient at the boundary.447

u(x) = −
√

3− |x|2, f(x) = 3(3− |x|2)−5/2. (20)
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As indicated by the results in Table 4, the hybrid Newton’s method continues to448

perform well in three dimensions. (The fact that the solver required only one iteration449

for Example (19) was simply an artifact—for larger problems sizes more iterations were450

required.451

C2 Example (18)
N Max Error Iterations CPU Time (s)

7 0.0151 2 0.04
11 0.0140 3 0.10
15 0.0129 5 0.71
21 0.0121 6 6.72
31 0.0111 5 86.63

C1 Example (19)
N Max Error Iterations CPU Time (s)

7 0.0034 1 0.02
11 0.0022 1 0.09
15 0.0016 1 0.22
21 0.0009 1 1.03
31 0.0005 1 17.12

Example with Blow-up (20)
N Max Error Iterations CPU Time (s)

7 9.6× 10−3 1 0.03
11 5.2× 10−3 3 0.11
15 4.6× 10−3 3 0.48
21 4.0× 10−3 6 7.42
31 2.9× 10−3 8 138.74

Table 4: Maximum error and computation time for the hybrid Newton’s method on three representative
examples.

10. Conclusions452

The purpose of this work was to build a fast, accurate finite difference solver for the453

elliptic Monge-Ampère equation.454

A hybrid finite difference discretization was used which selects between an accurate455

standard finite difference discretization and a stable (provably convergent) monotone456

discretization. The choice of discretization was based on known regularity results which457

depended on the boundary data, g, the right hand side function f , and strict convexity of458

the domain. Wherever the requirements on the data are not met, the hybrid discretization459

chooses the monotone discretization.460

The discretized equations were solved by Newton’s method, which is fast, O(M1.3),461

where M is the number of data points, independent of the regularity of the solution. The462

implementation of Newton’s method was significantly (orders of magnitude) faster than463
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the two other methods used for comparison. The hybrid discretization was shown to be464

necessary for stability of Newton’s method: an example with a mildly singular solution465

showed that the standard discretization leads to instabilities.466

The hybrid discretization was introduced to improve the accuracy of the monotone467

discretization on regular solutions. This expected improvement was achieved. On regular468

solutions the hybrid solver was (asymptotically) as accurate as the standard finite dif-469

ference discretization. For one moderately singular example the hybrid solver was more470

accurate than standard finite differences by O(h).471

The discretization and solution method used was not restricted to two dimensions.472

This allowed for the solution of three dimensional problems on moderate sized grids, with473

the problem size limited by computer memory, not solution time.474

In summary, the solver presented used a novel discretization in general dimensions,475

accompanied by a fast solution method. The resulting solver is a significant improvement476

over existing methods for the solution of possibly singular solutions of the elliptic Monge-477

Ampère equation, in terms of solution time, stability, and accuracy.478
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