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Abstract

The Maxwell equations contain a dielectric permittivityε that describes the particular me-
dia. For homogeneous materials at low temperatures this coefficient is constant within a
material. However, it jumps at the interface between different media. This discontinuity can
significantly reduce the order of accuracy of the numerical scheme. We solve the Maxwell
equations, with an interface between two media, using a fourth order accurate algorithm.
We regularize the discontinuous dielectric permittivity by a continuous function either lo-
cally, near the interface, or globally, in the entire domain. We study the effect of this regu-
larization on the order of accuracy for a one dimensional time dependent problem. We then
implement this for the three-dimensional Maxwell equations in spherical coordinates with
appropriate physical and artificial absorbing boundary conditions. We use Fourier filtering
of the high frequency modes near the poles to increase the time-step.
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1 Introduction

Electromagnetic waves propagate in both free space and in bodies, which may be
inhomogeneous media. For instance, a cellular phone sends signals from a building
to the closest antenna to register its location. Another example is a sensor that
emits electromagnetic pulses into the ground to check for land mines. These can be
simulated by the solution of Maxwell’s equations with discontinuous coefficients.
A discontinuity in coefficients occurs at an interface between media with different
dielectric and magnetic properties.
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The Maxwell equations for~E, ~D, ~H and ~B are:

∂ ~B

∂t
+∇× ~E = 0 (Faraday’s Law), (1)

∂ ~D

∂t
−∇× ~H = − ~J (Ampere’s law),

coupled with Gauss’ law

∇ · ~B = 0 ∇ · ~D = ρ ,

where~J is the electric current density vector andρ is the electric charge density.

For linear materials we relate the magnetic flux density vector~B to the magnetic
field vector ~H and the electric flux density vector~D to the electric field vector~E
using

~B = µ ~H , ~D = ε ~E .

We assume the dielectric permittivityε and the magnetic permeabilityµ are given
scalar functions of space only. Both parameters are positive and describe the dielec-
tric and magnetic characteristics of the material. We setε= ε0 · εr andµ=µ0 · µr
whereµ0 =4π · 10−7H

m
andε0 = 1

c2µ0

F
m

are the free space permeability and permit-
tivity respectively (c ≈ 3.0 · 108 m

sec
is the speed of light). Different materials have

different dielectric characteristics. For very high frequencies (more than10GHz)
these characteristics become frequency dependent. However, for lower frequencies,
at room temperature, many materials have a constant relative dielectric permittivity
εr ≥ 1 and relative permeabilityµr = 1 (if they are non-metallic). In table 1 we
displayεr for several materials.

Material/medium εr

Air 1.0

Ice (at0◦ C) 3.2

Distilled water 80.0

Silica glass 2.25

Teflon 2.1

Rubber 2.3 – 4
Table 1
Relative permittivities for different materials.

As functions of spaceε andµ may be discontinuous across the interface between
different materials. This discontinuity may reduce the accuracy of a numerical
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scheme and may also make it unstable. The present ”state-of the-art” in the numer-
ical solution of the Maxwell equations with discontinuous coefficients by finite-
difference methods does not go beyond second order of accuracy confirmed for
simple cases (see, for instance, [1,3,7] and review in [12]). High order accurate
modelling of general dielectric bodies with meshes that are not aligned with the
body remains an open challenge to be addressed in future work. Hence, in this
study we shall only consider bodies aligned with the mesh.

The paper is organized as follows: We first discuss the general properties of the
fourth order accurate finite difference scheme for the solution of the time-dependent
Maxwell equations and compare it to the widely used second order accurate Yee
algorithm. Afterwards, we consider the one-dimensional time-dependent Maxwell
equations with piecewise continuous coefficients and describe various methods for
their regularization. We compare these methods numerically and discuss the in-
fluence of the regularization on the accuracy of the finite difference scheme. Fi-
nally, we show an application of the previously discussed regularization algorithms,
together with other special techniques, for the numerical solution of the three-
dimensional Maxwell equations in spherical coordinates with a dielectric interface
in the radial direction, i.e. the body is still aligned with the mesh.

2 Fourth Order Accurate Scheme

The classical Finite Difference Time Domain (FDTD) method was introduced by
Yee [28] in 1966. It uses a second order central difference scheme for integration in
space and the second order leapfrog scheme for integration in time. This is a stag-
gered non-dissipative scheme in both space and time. This method is implemented
in most of the commercial and open source solvers of the time-dependent Maxwell
equations. However, because of the second order accuracy, it requires a dense grid
to model various scales. This dense mesh reduces the allowable time step since sta-
bility requirements demand that the time step be proportional to the spatial mesh
size. Hence, a fine mesh requires both a lot of computer storage and also a long
computer running time. If we defineN as the maximal number of grid points in
one direction, then for the three-dimensional problem the storage will grow with
O(N3) and the computational cost withO(N4).

Instead, we implement a fourth-order accurate FDTD scheme for the solution of
the Maxwell equations suggested by Turkel and Yefet [30]. This scheme has a
number of advantages over the second order scheme (see for instance [12,25]). The
high order method only needs a coarse grid. This is especially important for three
dimensional numerical simulations and for long time integrations. A comparison
of different 4th order schemes can be found in [18,25].

There are several ways to treat a discontinuity for high-order accurate schemes.
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The important question is how to preserve the global order of accuracy. One of
the approaches to the solution of Maxwell equations is based on one-sided finite
difference formulae, approximating the differential equation from both sides of the
interface (see, for example, [7]). However, for multidimensional problems it is dif-
ficult to achieve higher order accuracy for an interface not aligned with the grid.
Another drawback of this approach is the violation of Gauss’ law at the interface
that can lead to the spurious solutions (see, for example, [16]).

2.1 Spatial Discretization

The scheme we use to approximate the spatial derivatives is a compact implicit
scheme with the same staggering as the Yee scheme. Gottlieb and Yang [11] and
Turkel [25] have shown that a staggered scheme is more accurate than a co-located
scheme for the same order of accuracy (it has smaller constant in the error term).
Staggering also simplifies the construction of the boundary conditions when fewer
components are located on boundaries. The compact implicit scheme is a good
compromise between an unconditionally stable implicit scheme that requires the
inversion of large matrices and an explicit scheme that has a stability condition
imposed on the time-step. The scheme in one dimension is derived using a Taylor
expansion (see also [26]):

ui+1/2 − ui−1/2

h
= u′i +

h2

24
Dhh(u

′
i) +O

(
h4

)
,

whereDhh = (∗)i+1−2(∗)i+(∗)i−1

h2 is a second order accurate finite difference operator
for approximation of second derivative.

A fourth order compact implicit scheme for the approximation of the spatial deriva-
tives is then derived [26] as:

(Du)i+1 + (Du)i−1

24
+

11

12
(Du)i =

ui+ 1
2
− ui− 1

2

∆x
(2)

At the first and last nodes and half-nodes we use fourth-order accurate one-sided
approximations based on the operators:

D1
hh =

2(∗)1 − 5(∗)2 + 4(∗)3 − (∗)4

h2
, Dp

hh =
2(∗)p − 5(∗)p−1 + 4(∗)p−2 − (∗)p−3

h2
.

The total spatial portion of the scheme, in matrix form, is given by
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Fig. 1. Approximation of the spatial derivatives at the nodes/half-nodes

Here “∗′′ denotes the direction of differentiation,p is the number of grid points
in one direction andU is a differentiated component of the Maxwell equations.
Carpenter et. al. [5,6] have shown in a similar case that the scheme is stable in
spite of the one-sided stencil near the boundary. This scheme uses the same 3-
point stencil as Yee scheme. The almost tridiagonal system is solved using anLU
decomposition (Thomas’ algorithm) withO(N) operations.

Yefet [29] gives a comparative analysis of the 4th order compact implicit scheme
and the 2nd order central difference scheme used in the Yee algorithm. He found
that the compact implicit scheme as well as the Yee scheme (see also [22]) have
pure imaginary eigenvalues so both schemes are non-dissipative but dispersive.
Kashdan and Galanti [19] discuss an effective parallelization strategy for the com-
pact implicit scheme applied to the spatial discretization of the three-dimensional
time-dependent Maxwell equations based on an alternating domain decomposition.

2.2 Fourth order approximation of the temporal derivative

For integration in time we replace the second order leapfrog scheme by a fourth-
order accurate Runge-Kutta scheme (f is a spatial finite difference operator):

U (1) = Un +
∆t

4
f [U (n)] ,

U (2) = Un +
∆t

3
f [U (1)] , (3)

U (3) = Un +
∆t

2
f [U (2)] ,

U (n+1) = Un + ∆tf [U (3)] .

This is a co-located, in time, second order accurate scheme for general ODEs, but
preserves fourth order accuracy for linear equations [31].

We have the following comparison of the four-stage Runge-Kutta method (3) versus
the leapfrog scheme [25] :

(1) Time-step.Without staggering in time, (3) has a time-step (CFL condition)
that is potentially 2.8 times larger than leapfrog. Since the Yee algorithm is
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staggered in time, the Runge-Kutta scheme loses a factor of two, but still has
a time step 1.4 larger. The Runge-Kutta scheme requires four times more com-
putations per time-step than leapfrog.

(2) Dissipation.The leapfrog method is not dissipative, while the four-stage Runge-
Kutta scheme is dissipative. Dissipativity of the scheme causes a leak of en-
ergy from the system. However, this dissipation helps to stabilize the numer-
ical solution in simulations of high frequency wave propagation. The Runge-
Kutta scheme is in general more robust especially at discontinuities.

(3) Numerical dispersion.Both schemes are dispersive. The leapfrog scheme has
a phase lead for time-steps within the stability limit. The Runge-Kutta scheme
has either phase lag or phase lead depending on the choice of the time step.
For time steps near the CFL limit there is a phase lag.

3 One Dimensional Time-Dependent Problem

Our goal is to build a three-dimensional time-dependent code for simulations of
electromagnetic phenomena in various media. This requires the analysis of the or-
der of convergence, stability and robustness of the numerical scheme. This analysis
is easier in one dimension though the applications are to three-dimensional time-
dependent wave propagation. Hence, we consider the system of the one-dimensional
Maxwell equations:

ε
∂E

∂t
=
∂H

∂x
, µ

∂H

∂t
=
∂E

∂x
. (4)

As the material interface model we consider a dielectric body (ε2) surrounded by
free space (ε1 =µ1 =1) as shown in Fig. 2

Fig. 2. Two interface model

At each interfaceL1andL2 we supplement (4) by the jump conditions
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E+ = E− , H+ = H− , (5)(
1

µ

∂E

∂x

)+

=

(
1

µ

∂E

∂x

)−
,

(
1

ε

∂H

∂x

)+

=

(
1

ε

∂H

∂x

)−
.

The one dimensional model shown in Fig. 2 can be considered as a part of the peri-
odically structured dielectric media. An example of such media is photonic crystals
(see, for example, [17]). These artificial materials are used in devices ranging from
dielectric mirrors and reflective coatings to DFB lasers.

4 Regularization of Discontinuous Functions

The idea of regularization is the replacement of the discontinuous function by a
continuous approximation. A straightforward calculation shows that a central dif-
ference scheme preserves a zero divergence of~E or ~B even when the coefficients
vary spatially. We develop our algorithm based on this approach. An important
question is what function to regularize:ε or 1

ε
, µ or 1

µ
. Regularization is based on

averaging of the piecewise-continuous function at the discontinuity. However, alge-
braic, geometric and harmonic averages yield different values which affect the ac-
curacy of the numerical solution. Another aspect of the regularization is connected
to the angle of incidence of the electromagnetic wave to the interface. Andersson
[1] shows, using the integral formulation of Ampere’s Law, that in order to preserve
the second order accuracy of the Yee scheme the tangential, to the interface, com-
ponents should be approximated using arithmetic averaging. On the other hand, for
the normal components the harmonic averaging should be used.

The electric and magnetic field vectors are mutually perpendicular. So one should
use different types of averaging when bothε andµ are discontinuous at the inter-
face. We divide regularization techniques into local and global methods. We also
pay attention as to whether the regularization should be monotonic.

We denote the errors byQ sinceE represents the electric field. The numerical
implementation of regularization introduces two types of errors:Q1 – the error
caused by replacement of the discontinuous problem by the regularized problem
(”regularization error”) andQ2 the error from the numerical discretization of the
regularized problem (”numerical error”). The total error isQ1 +Q2. Clearly,Q1

becomes smaller when the length of the regularization region decreases, (δ→ 0).
However,δ → 0 increases the errorQ2. The behavior of both regularization and
numerical errors as a function of the grid resolution was studied by Kashdan in
[18]. A numerical and asymptotic study of high order accurate methods for the
solution of the frequency space Maxwell equations and Helmholtz equation with
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discontinuous coefficients is given by Kashdan in [18] and Kashdan and Turkel in
[20].

4.1 Local Regularization

4.1.1 Simple Averaging

Consider simple averaging of the dielectric permittivityε at the discontinuity as a
particular case of local regularization. We choose several types of averaging:

• arithmetic averaging: ε(L1) = ε(L2) = 0.5(ε1 + ε2) ;
• harmonic averaging: ε(L1) = ε(L2) = 2ε1ε2

(ε1+ε2)
.

4.1.2 Hermite Cubic Spline

We chooseε as eitherε1 or ε2 far away from the discontinuities (see Fig. 2). We
chooseδ > 0 and connectε1 andε2 with a smooth function for|x − x0|< δ. We
also connectε smoothly to the constant states atx − x0 =±δ. As an example of
a connecting function we construct the Hermite cubic spline. Any cubic spline can
be written as

ε(x) = c1 + c2(x− xk) + c3(x− xk)2 + c4(x− xk)3, (6)

We then define in the intervalxk−1/2 ≤ x ≤ xk+1/2 the following parameters:

c1 = fk+1/2,

c2 = f ′k+1/2,

c3 =
3Sk − f ′k+1/2 − 2f ′k−1/2

∆x
,

c4 = −
2Sk − f ′k+1/2 − f ′k−1/2

(∆x)2

and

Sk =
fk+1/2 − fk−1/2

∆x
,

wheref is equal toε at the half-nodes. These conditions are derived in [15], where
it is shown that the most accurate approximation can be achieved if the derivative
f ′ is approximated using a high-order accurate implicit finite difference scheme.

We try improving the quality and accuracy of the approximation by enforcing
monotonicity to remove non-physical oscillations. The following criteria, [15], al-
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lows the addition of a monotonicity restraint to the approximation

f ′k =


min[max(0, f ′k), 3min(Sk−1, Sk)], min(Sk−1, Sk) > 0 ,

max[min(0, f ′k), 3max(Sk−1, Sk)], max(Sk−1, Sk) < 0 ,

0, Sk−1 · Sk ≤ 0 .

(7)

4.1.3 High Order Polynomial

As an alternative to a cubic spline one can consider a high order polynomial smoothly
connecting the knownεl andεr at a distanceδ from the interfaces. Letz = x−x0

δ
be

the normalized distance from the interfacex0. We define the polynomial

ε(x) =
εl + εr

2
+
εl − εr

2

315

128
z(1− 4z2

3
+

6z4

5
− 4z6

7
+
z8

9
) , (8)

wheref(x) and its first four derivatives are continuous atx0−δ andx0+δ. Moreover,
this function is monotone sincef ′= 315

128
(1− z2)4 ≥ 0 for −1≤z≤1.

4.1.4 Vanishing of Moments

Tornberg and Engquist [24], for the Poisson equation, and Andersson and Engquist
[2], for the Maxwell equations, have presented a local regularization technique
based on polynomial connecting functions that satisfy one or more vanishing mo-
ment conditions:

Mn =
∫ δ

−δ
[ε− ε(x)]xndx = 0, n ≥ 0 (9)

In the numerical experiments in [2] the authors used linear, third oder and fifth
order polynomials satisfying the vanishing of up to four moments (9).

4.2 Global Regularization

For global regularization (ε approximated throughout the physical domain) by an
implicit fourth-order accurate (Padé) interpolation. Based on a Taylor expansion
we have:

fi+1/2 + fi−1/2

2
= fi +

h2

8
f
′′

i +O(h4) ,

fi+1 + fi−1

2
= fi +

h2

2
f
′′

i +O(h4) .
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Eliminating the error term we obtain

fi+1 + fi−1

8
+

3

4
fi =

fi+1/2 + fi−1/2

2
+O(h4) . (10)

In the first and the last rows (away from the interface) a one-sided third order accu-
rate approximation is used according to:

−5f2 + 4f3 − f4

8
+

5

4
f1 =

f1/2 + f3/2

2
,

(11)
−fp−4 + 4fp−3 − 5fp−2

8
+

5

4
fp =

fp−3/2 + fp−1/2

2
.

We choosef = ε. The algorithm uses a tridiagonal solve to find the new values of
ε. Hence, the updatedε at a single node depends on the originalε at all the grid
points. This does not necessarily preserve monotonicity.

5 Experimental Results

5.1 Model Problem I

For most physical systemsµ is fairly constant across an interface. However, for
µ constant and variableε there is, in general, no explicit solution to be used for
calculating errors. Hence, for mathematical reasons, we consider the caseµ = ε.
The explicit solution of the Maxwell system (4) is then given by

E(x, t) = Af(t+
∫ x

0
ε(s)ds) +Bg(t−

∫ x

0
ε(s)ds) , (12)

H(x, t) = Af(t+
∫ x

0
ε(s)ds)−Bg(t+

∫ x

0
ε(s)ds),

whereε can be approximated by the analytic function:

ε(x) ≈ ε(x, η) = ε1+(ε2−ε1)
tanh[η(x− L1)]− tanh[η(x− L2)]

tanh(ηL1) + tanh(ηL2)
,−∞ < x <∞ .

In Fig. 3 we presentε as function ofx for variousη
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Fig. 3. Approximation of relative permittivity by continuous function for model problem

Numerical experiments [18] show that forη ≥ 100 further increasingη changes
the solution on the level of the machine error. In the numerical experiments we set
η = 200 for calculating the exact solution. We chooseL= 4π, L1 = 0.375L, L2 =
0.625L. We study the connection between the accuracy of the numerical scheme
and the size of the jump inε on the interface. We chooseε2 = 3, 7, 11 and compare
the errors in the numerical solution on grids with129, 257 and 513 nodes. We
choose the explicit solution as

E = sin(t+
∫ x

0
ε(s)ds)− sin(t−

∫ x

0
ε(s)ds) = 2 cos(t) sin(

∫ x

0
ε(s)ds) , (13)

H = sin(t+
∫ x

0
ε(s)ds) + sin(t−

∫ x

0
ε(s)ds) = 2 sin(t) cos(

∫ x

0
ε(s)ds) .

The initial conditions are given by (13) witht = 0. This solves Maxwell’s equations
(4) together with the jump conditions (5). We solve numerically the dimensionless
equations (c = 1) andE andH are normalized to have the same magnitude. In
the following plots we show theL2 error of the approximation ofE as function of
time. The error inH behaves similarly. We locate the interface at a node so only
the electric field component is located on interface. The “regularization” errorQ1

between the continuous solution based on variableε and piecewise continuousε
(denoted asεlim) is given by

Q1 =

∥∥∥∥∥2 cos(t)

[
sin

(∫ x

0
ε(s)ds

)
−sin

(∫ x

0
εlim(s)ds

)]∥∥∥∥∥ ≤ 4

∥∥∥∥∥sin
[∫ x

0

ε(s)−εlim(s)

2
ds

]∥∥∥∥∥
(14)

We have verified that for constantε the scheme discussed in section 2 is 4th order
accurate. However, we expect a reduction of accuracy driven by the regularization
of the piecewise continuous permittivity.

5.1.1 Averaging

We compare the arithmetic and harmonic averaging ofε on the interface for both
the Yee and the fourth order algorithm.

11



0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

Jump=3

Lo
g(

L 2 −
 e

rr
or

)

0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

O
rd

er
 o

f a
cc

ur
ac

y

0 2 4 6 8 10 12 14
10

−4

10
−3

10
−2

10
−1

10
0

Jump=7

Lo
g(

L 2 −
 e

rr
or

)

0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

O
rd

er
 o

f a
cc

ur
ac

y
0 2 4 6 8 10 12 14

10
−4

10
−3

10
−2

10
−1

10
0

Jump=11

Lo
g(

L 2 −
 e

rr
or

)

time
0 2 4 6 8 10 12 14

0.5

1

1.5

2

2.5

O
rd

er
 o

f a
cc

ur
ac

y

time

129,a
257,a
513,a
129,h
257,h
513,h

129/257,a
257/513,a
129/257,h
257/513,h

129,a
257,a
513,a
129,h
257,h
513,h

129/257,a
257/513,a
129/257,h
257/513,h

129,a
257,a
513,a
129,h
257,h
513,h

129/257,a
257/513,a
129/257,h
257/513,h

Fig. 4. Arithmetic (a) and harmonic (h) averaging ofε on interface, Yee scheme.
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Fig. 5. Arithmetic (a) and harmonic (h) averaging ofε on interface, 4th order scheme.
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In all the figures in this section we display the error between the numerical solu-
tion and the solution of the original continuous problem with piecewise constant
coefficients, i.e. the total error.

One observes from Figs. 4 and 5 that arithmetic averaging reduces the order of
accuracy to second for 4th order scheme and to1.5 for Yee scheme. The harmonic
averaging is only first order accurate, both independent of the size of the jump.
As expected, theL2 error of Yee scheme is larger than the error of the 4th order
scheme for the same grid resolution. Hence, even when a discontinuity occurs it is
more efficient to use the fourth order implicit scheme rather than Yee scheme.

5.1.2 Spline

A study of the local regularization in [18] shows that the physical length of the
δ-interval can be chosen the same for all the grids. In all the numerical tests in this
work we chooseδ = π/32. This allows the use of at least four points from the
discontinuity for the spline construction. We compare the regularization with and
without the monotonicity restraint on the spline as given by (7).
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Fig. 6. Regularization ofε by Hermite cubic splinew/wo monotonicity restraint (m).

The plots in Fig. 6 show that local regularization with splines is second order ac-
curate and confirms the results from the frequency domain given in [18,20]. The
monotonicity restraint does not improve the error behavior and order of accuracy.
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5.1.3 High Order Polynomial

We choose two kinds ofδ-interval: fixed physical length for all gridsδ = π/32
and four mesh points but variable physical length. At the edges of the regulariza-
tion region the high order polynomial is smoother than the cubic Hermitian spline.
However, in the interior of the regularization region the spline is closer to the orig-
inal piecewise continuous function.
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Fig. 7. Regularization of dielectric permittivity on interface by High Order Polynomial with
fixed (f) and variable (v) length ofδ-interval

One observes from Fig. 7 that the regularization of the discontinuous function with
a high order polynomial is only second order accurate for the variable physical
length of theδ-interval and the method does not converge to the analytic solution
when the physical length of theδ-interval is fixed (more points are used for con-
struction of the polynomial on grids with increasing resolution). We conclude that
a high order monotonic polynomial yields results similar to that for the cubic spline
for variable physical length of delta-region. Hence, monotoncity is not important.
Furthermore, the requirement of four continuous derivatives on the boundaries of
the delta-interval seems to be unnecessary.

The numerical experiments in [2], using a fourth-order accurate scheme with a
local regularization based on the vanishing moments condition (9), lead the authors
to similar accuracy observations. The order of accuracy is reduced, with subsequent
mesh refinement, to 1.5-2 even when preserving high-order moments. In [20] it is
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conjectured that the reason for the lower order accuracy for very fine meshes is that
the optimal regularization occurs within one mesh width and so is not represented
by a standard finite difference technique.

5.1.4 Global Regularization

We next apply an implicit fourth-order accurate (Padé) interpolation as given by
(10)+(11) to regularizeε and1/ε. The CFL condition for the largest discontinuity
is set equal to 0.5 because of stability considerations. The plots in Fig. 8 show that
the global regularization ofε allows an average order of accuracy of 2.8, while
the regularization of1/ε is only second order accurate. For the largest jumps the
regularization of1/ε yields an unstable solution.
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Fig. 8. Global regularization ofε and1/ε using Pad́e interpolation

Finally, we apply Pad́e interpolation with the second order accurate Yee scheme.
Comparing simple averaging (Fig. 4) with global regularization for Yee’s scheme
(Fig. 9) one observes that global regularization ofε yields an improvement in ac-
curacy especially for large jumps. Global regularization based on1/ε, with the Yee
scheme, does not converge to the analytic solution. Comparing Fig. 9 to Fig. 8 we
see that the compact implicit scheme is always much more accurate than the Yee
scheme. The oscillating behavior of the error in time for the Yee scheme (Figs.
4 and 9) is caused by numerical dispersion. On the other hand the fourth-order
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scheme has much better dispersive characteristics and a smaller truncation error
[29]. From formula (14) we see that the regularization error is time dependent.
Therefore, the balance error between the regularization error and the discretization
error varies in time for a given grid.
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Fig. 9. Global regularization ofε and1/ε using Pad́e interpolation for Yee scheme.

5.1.5 Estimation of the regularization error

As shown in [18,20], the regularization errorQ1,(see section 4) caused by the re-
placement of the problem with a piecewise continuous coefficient by a smooth
function, may reduce the order of accuracy. For fine grids the regularization error
is a large percentage of the total error. In order to estimate the regularization er-
ror we substitute the regularizedε into the first of equations (13) and approximate
the indefinite integral using a Newton-Bessel interpolation with order of accuracy
O(∆x7), which is more than sufficient for our needs. This is then compared with
the explicit solution for the piecewise continuousε (see also(14)).

Table 2 shows theQ1 error for global regularization ofε, i.e. the error between the
analytic solution of the continuous problem with discontinuous coefficients and the
analytic solution of the continuous regularized problem, see (14). We also list the
order of convergence and the ratio (percent) of the regularization error to the total
error. We definerate as the relation between errors on two consecutive grids and
display the order of convergence aslog2(rate).
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ε2 ] of nodes ∆x ‖Q1‖L2 Rate Order Percent

of convergence in total error

129 0.098 1.6094× 10−4 30.3

3 257 0.049 2.8777× 10−5 5.5927 2.4835 37.4

513 0.025 5.1017× 10−6 5.6406 2.4958 48.8

129 0.098 9.9137× 10−4 13.9

7 257 0.049 1.8864× 10−4 5.2554 2.3938 19.6

513 0.025 3.3989× 10−5 5.5500 2.4749 24.9

129 0.098 2.2362× 10−3 6.7

11 257 0.049 4.7243× 10−4 4.7333 2.2428 12.1

513 0.025 8.7584× 10−5 5.3941 2.4314 16.6
Table 2
Regularization (Q1) error for variousε2.

Table 2 shows that the role played by the regularization error increases with the
mesh refinement. For very dense grids, when the total error is dominated by the
regularization error, the order of convergence of global regularization is limited by
2.5. When the jump inε increases at the material interface, the total error increases
and the numerical errorQ2 is the main factor in the total error.

5.2 Model Problem II

We consider the more realistic case, whereµ is constant and onlyε is discontinuous.
Considerµ1 = µ2 = 1 and ε2 equal to 2, 5 and 10. Choose, in Fig. 2,L = 12,
L1 = 0.375L, L2 = 0.625L. We solve the one dimensional Maxwell equations with
an initial field of the form

E(x, 0) =


0, 0 < x < x1 ,

f(x), x1 ≤ x ≤ x2 ,

0, x > x2 ,

H(x, 0) = 0 .

The signal isf(x) := A · [sin(x − x1) · sin(x − x2)]4, x1 ≤ x ≤ x2, and zero
otherwise. This is a smooth function with compact support. We no longer have an
explicit solution with discontinuousε and these initial/boundary conditions.

The physical domain[0, L] is surrounded by a perfect electric conductor (PEC),
E(0) =E(L) = 0. Since we no longer have an explicit solution we base the error
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on the numerical solution for a very fine grid. Based on model problem I we expect
convergence and so this is reasonable. We compare the numerical solution on grids
with 129, 257 and513 nodes inside the physical domain with the ”reference” solu-
tion, to the original piecewise constant coefficient problem, constructed on a very
fine grid with 2049 nodes. We compare the solutions at the analytically computed
time when the right moving wave reaches the end of the physical domain (t = 9).

For the global regularization we approximateε using the scheme (10)+(11). The
CFL condition is chosen 0.5 for largest jump inε. For local regularization we use
a Hermite cubic spline (6) as the connecting function without the monotonicity
restraint (7). All regularizations are forε and not1

ε
.

ε2 ] of nodes ∆x ‖Error‖L2 Rate Order

of accuracy

129 0.094 2.7× 10−3

2 257 0.047 2.4674× 10−4 11.0106 3.4608

513 0.023 3.4487× 10−5 7.1547 2.8389

129 0.094 5.8× 10−3

5 257 0.047 6.3582× 10−4 9.0530 3.1784

513 0.023 1.1239× 10−4 5.6574 2.5001

129 0.094 9.4× 10−3

10 257 0.047 9.0180× 10−4 10.3760 3.3752

513 0.023 1.8947× 10−4 4.7596 2.2508
Table 3
Total error using global regularization for variousε2
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ε2 ] of nodes ∆x ‖Error‖L2 Rate Order

of accuracy

129 0.094 3.0× 10−3

2 257 0.047 3.3194× 10−4 9.0704 3.1812

513 0.023 6.2276× 10−5 5.3301 2.4142

129 0.094 6.8× 10−3

5 257 0.047 1.0× 10−3 6.7146 2.7473

513 0.023 2.1249× 10−4 4.7563 2.2499

129 0.094 1.2× 10−3

10 257 0.047 2.0× 10−3 6.1268 2.6151

513 0.023 4.0399× 10−4 4.8496 2.2779
Table 4
Total error using local regularization for variousε2

From Table 3 we see that the numerical scheme has an order of accuracy higher
than three for the coarse grids. However, it is reduced to second order for the finest
mesh of 513 nodes. Comparing tables 3 and 4 we observe that global regularization
yields the smaller error.

6 3D Computations

6.1 Formulation of the 3D Problem

Any coordinate system that is not aligned with the bodies has the disadvantage that
the body cannot be represented exactly. A general body in a Cartesian coordinate
system gives rise to stair-casing and its resultant errors (see for instance [4,14]). In
this paper we only consider bodies aligned with the coordinate system and so stair-
casing does not occur. Consider a PEC sphere surrounded by two different homo-
geneous media separated with an interface in the radial direction. Each medium has
its own dielectric permittivityε (the outermost medium is free space).This problem
shown in Fig. 10 has no explicit solution
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Fig. 10. Propagation of electromagnetic pulse in inhomogeneous media.

The Maxwell equations in spherical coordinates(r, θ, ϕ) are given by

ε
∂Er
∂t

=
1

r sin θ

[
∂

∂θ
(sin θHϕ)− ∂Hθ

∂ϕ

]

ε
∂Eθ
∂t

=
1

r sin θ

∂Hr

∂ϕ
− 1

r

∂

∂r
(rHϕ)

ε
∂Eϕ
∂t

=
1

r

[
∂

∂r
(rHθ)−

∂Hr

∂θ

]
(15)

µ
∂Hr

∂t
= − 1

r sin θ

[
∂

∂θ
(sin θEϕ)− ∂Eθ

∂ϕ

]

µ
∂Hθ

∂t
= − 1

r sin θ

∂Er
∂ϕ

+
1

r

∂

∂r
(rEϕ)

µ
∂Hϕ

∂t
= −1

r

[
∂

∂r
(rEθ)−

∂Er
∂θ

]

In addition to the time dependent equations we have Gauss’ law. In the absence of
sources both the divergence of

−→
E and

−→
H are zero:

div
−→
E =

1

r

∂

∂r

(
r2Er

)
+

1

r sin θ

∂

∂θ
(sin θEθ) +

1

r sin θ

∂Eϕ
∂ϕ

= 0

(16)

div
−→
H =

1

r

∂

∂r

(
r2Hr

)
+

1

r sin θ

∂

∂θ
(sin θHθ) +

1

r sin θ

∂Hϕ

∂ϕ
= 0

In order to obtain the high-order accurate solution of this problem one should over-
come a number of difficulties [18]:

(1) Discontinuity in the dielectric permittivityε. The presence of the interface
implies that the Maxwell equations have discontinuous coefficients. The mod-
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elled problem can be considered ”quasi-one-dimensional” – the discontinuity
appears in one direction only. However, our goal is to handle it with the mini-
mal lost of accuracy.

(2) Formulation of artificial boundary conditions to emulate an unbounded do-
main in the radial direction.

(3) Singularities at the poles. Equations (15) and (16) become singular whenθ =
0, π.

(4) The grid in spherical coordinates is non-uniform and becomes very dense near
the poles. The time step allowed by stability is proportional tosin θ and hence
very small near the poles.

6.2 Numerical scheme

We implement the 4th order accurate scheme discussed in the Section 2. We define
the staggered location of the components on the grid and follow this convention in
the code. We choose the following location of the components:

Er → {i+ 1/2, j, k, t}
Eθ → {i, j + 1/2, k, t}
Eϕ → {i, j, k + 1/2, t}

(17)
Hr → {i, j + 1/2, k + 1/2, t+ ∆t/2}
Hθ → {i+ 1/2, j, k + 1/2, t+ ∆t/2}
Hϕ → {i+ 1/2, j + 1/2, k, t+ ∆t/2}

6.3 Regularization

Since the discontinuity is only in ther direction we can use a one dimensional
regularization based on (10)+(11). However, due to the staggering of the spatial
stencil (see also (17)) the regularization ofε that appears with each component of
electric field should be treated separately. We defineεr as the permittivity sharing
the same grid withEr, εθ is associated withEθ andεϕ with Eϕ.

The most difficult case to be resolved is when the component is located at the
interface, where the associated dielectric permittivity is not defined. This problem
is modelled in Section 4. If we put the interface at the node (i∆r), then according
to (17), such a situation happens withεθ andεϕ. So, both of them are approximated
using the global regularization, when the values ofε that appear in RHS of (10) are
defined at half-nodes through the entire computational domain.

21



6.4 Construction of Artificial Boundary Conditions in spherical coordinates

To prevent reflections from the outer artificial boundary in the radial direction we
implement a perfectly matched layer (PML). We consider the generalization of the
uniaxial PML, derived by Gedney in [8], to spherical coordinates. We convert the
Maxwell equations to Fourier space as Teixeira and Chew [23] have suggested:

iωε
(
r̃

r

)2

Er =
1

r sin θ

{
∂

∂θ

[
sin θ

(
r̃

r
Hϕ

)]
− ∂

∂ϕ

(
r̃

r
Hθ

)}

iωεsr
r̃

r
Eθ =

1

r sin θ

∂

∂ϕ
(srHr)−

1

r

∂

∂r

[
r
(
r̃

r
Hϕ

)]
(18)

iωεsr
r̃

r
Eϕ =

1

r

{
∂

∂r

[
r
(
r̃

r
Hθ

)]
− ∂

∂θ
(srHr)

}

where

sr = 1 +
σ

iω
σ∗ =

1

r

∫ r

σdr
r̃

r
= 1 +

σ∗

iω
(19)

The two artificial conductivitiesσ and σ∗ are equal to zero inside the physical
domain. In the PML regionσ andσ∗ increase towards the external boundary for
instance, as a polynomial. Different profiles have been promoted (see, for instance,
[9]) for scalingσ. However, the polynomial profile

σ(x) = σmax

(
x

LPML

)p

has proved its effectiveness and it is implemented in many codes. There are three
parameters that have to be provided for the polynomial scaling:LPML=N∆x – the
thickness of the PML,σmax andp. For largerp, σ grows more rapidly towards the
outer boundaries of the PML. In this region the field amplitudes of the waves have
sufficiently decayed and so reflections due to the discretization error contribute
less. However, ifp is too large, the decay of the field emulates a discontinuity and
amplifies the wave reflected by the PEC boundary towards the physical domain. We
choosep = 4, see [9]. Artificial conductivityσ∗ is computed exactly using (19).
We introduce new variables

E∗r = srEr Pr =
r̃

r
Er

E∗θ =
r̃

r
Eθ E∗ϕ =

r̃

r
Eϕ
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and similarly for
−→
H . Substituting this into (18) we have

(iωε+ σ∗)Pr =
1

r sin θ

[
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∂θ

(
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)
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(H∗θ )

]
(iω + σ∗)E∗r = (iω + σ)Pr (20)
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]

and similarly for
−→
H . We replace~E by ~E∗ and add two variablesPr andQr. This is

converted to the time-domain usingiω → ∂
∂t

. This yields
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Inside the physical domain, whereσ = σ∗ ≡ 0, system (21) is equivalent to (15)
( ~E∗≡ ~E and ~H∗≡ ~H). Hence, we need only 8 variables inside the PML instead of
the 12 that were suggested in [23] or 10 that were suggested in [27]. Gedney in [9]
derives a spherical uniaxial medium that leads to similar equations to that presented
here (there are misprints in the formula in the book).

6.5 Singularity at the Poles

Equations (15) and (16) become singular whenθ is equal to0 or π. However, this
is only a coordinate singularity. In particular we assume that all components of the
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electric and magnetic fields have at least one continuous derivative at all points
includingθ = 0 andθ = π. Because of the geometry, the solution is independent
of ϕ at the poles and so all derivatives with respect toϕ are zero at the poles. This
was first analyzed by Holland [13], where he used an integral form of Maxwell
equations at the poles to avoid the singularity. We shall use a different approach
[21]. The solution can be bounded at the poles both analytically and numerically
only if the coefficient 1

r sin θ
is equal to zero. In such a case L’hôpital’s rule can be

applied. This yields from (15) (whenθ = 0, π):

Eϕ = Hϕ = 0

∂

∂r
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∂Hr

∂θ
= 0
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∂r
(rEθ)−

∂Er
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= 0

Using (16), we get at the poles:

Eθ = Eϕ = Hθ = Hϕ = 0

∂Er
∂θ

=
∂Hr

∂θ
= 0

Thus, the system (15), whenθ = 0, π, can be written as:

ε
∂Er
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1

r

∂Hφ

∂θ
µ
∂Hr

∂t
= −1

r

∂Eφ
∂θ

Eθ = 0 Hθ = 0 (22)
Eφ = 0 Hφ = 0

Distributing the grid nodes according to (17) we need to resolve only theEr com-
ponent at the poles. We defineHϕ as an odd function atθ = 0, π.

6.6 Fourier Filtering

The grid in spherical coordinates is non-uniform and becomes very dense near the
pole. The time step allowed by stability is proportional tosin θ. To increase the
time-step, which can be very small (see for example, [10]), we introduce Fourier
filtering in theθ direction near the poles (see also [18]) according to the algorithm
presented in Fig. 11

Fig. 11. Algorithm of the Fourier filtering.
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where the exponential filter has the forme−2θ(r̃+ϕ̃). The 2D FFT is applied in the
r andϕ directions for fixedθ. Implementation of the algorithm, shown in Fig. 11,
requires the determination of a number of several parameters:

• Nf – the frequency of application (in number of iterations).
• Nl – the percentage ofθ-layers affected by the filter.
• Ne/Nk – the percentage of frequencies completely eliminated/kept in each layer.

The number of frequencies removed in theθ direction depends on the distance
from the pole. Near the pole only a small fraction of the total frequencies are kept,
while away from the pole all the allowable discrete modes are kept. This effectively
reduces the high frequencies in circular layers near the pole and allows a significant
increase in the time-step. We have chosen the following set of parameters:Nf = 10,
Nl = 25 (near each pole),Ne decreases from 50 percent to 0 away from the pole
andNk increases from 34 percent to 100 percent away from the pole. This allowed
us to increase the time-step by at least a factor of two.

6.7 Graphical representation of results

To check the algorithm described in the previous sections, we consider the follow-
ing 3D test example. A PEC sphere of radiusr = 1 is surrounded by two media
separated by an interface located0.5 from the sphere surface. The uniaxial PML
is implemented to absorb waves leaving the physical domain. The number of lay-
ers is set equal to 12 and the artificial conductivityσ increases as a third degree
polynomial. The piecewise continuous dielectric permittivity is regularized using
the global regularization approach ((10)+(11)). The media closest to the sphere has
a relative dielectric permittivityεr = 2 and it is externally bounded by free space
(εr = 1). The point source, in the form of the Gaussian pulse, is located in free
space at a distance0.75 from the surface of the PEC sphere. To make the results
”understandable” we convert the solution to Cartesian coordinates and visualize
the solution using Data Explorer. The picture in Fig. 12 shows theEx component at
timeT = 2.8 (when the waves reach the internal sphere). The unit PEC unit sphere
of radiusr = 1 is centered atr = 0 and the source is located at (−1.66, 0,−0.54).

The transparent sphere in Fig. 12 is a sphere filled with PEC. The ”red” discus
includes the interface and the areas adjacent to it consisting of free space and the
dielectric. In this figure one can distinguish between different parts of the solution.
For example,Ex inside the transparent (PEC) sphere in the center of the domain
and also the red colored oscillations inEx in the vicinity of the interface.
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Fig. 12. Converted to Cartesian coordi-
nates.Ex componentof the total electric
field over entire physical domain

Fig. 13. The slice ofEϕ component in
θ-direction, taken at source point

In figure 13 we show a slice of theEφ component in theθ direction (taken at the
source). This shows that some of the waves are reflected by the interface. The phys-
ical explanation of this phenomena that refraction causes the waves to change direc-
tion and to move from the selected slice, needs do be combined with the numerical
problem of under-resolution since the Gaussian pulse includes a full spectrum of
wavelengths. When the waves travel through a medium with a smaller speed of
light then some of the waves can be only be represented on a finer grid.

7 Concluding Remarks

We have performed detailed computations for the time dependent Maxwell system
in one dimension with a discontinuity in some of the coefficients across the inter-
faces between the media. We use a compact implicit fourth order accurate method
on a staggered grid to solve the equations.

We show that regularization can be considered a reasonable approach to the solu-
tion of the Maxwell equations with discontinuous coefficients. The global regular-
ization based on an implicit (Padé) interpolation yields almost third order accuracy,
which is one order less than the basic accuracy of the scheme. A drawback of the
global regularization is the reduction of the CFL constant for large jumps in the
discontinuities. Local regularization does not require a reduction of the time-step,
however, it reduces the global accuracy of the algorithm to second order. An appli-
cation of the regularization techniques and the high order accurate finite difference
algorithm is a very effective tool for the modelling photonic band gaps (PBG) (see,
for instance, [17]) and other phenomena rising from electromagnetic wave propa-
gation through periodic dielectric structures.
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For problems in a spherical coordinate system we regularizeε in the r direction.
We Fourier transform the variables and then remove the higher frequencies near the
poles. This allows the use of a larger time step. A PML in the far field is used to
reduce reflections back into the domain. We use L’hôpital’s rule to derive boundary
conditions at the poles.

Future work will extend this to the scattering of electromagnetic waves by multi-
dimensional dielectric bodies that are not aligned with the mesh.
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