
ar
X

iv
:1

51
0.

08
89

2v
1

 [
cs

.D
S]

 2
9

O
ct

 2
01

5

A Randomized Algorithm for Long Directed Cycle✩

Meirav Zehavi∗

Department of Computer Science, Technion IIT, Haifa 32000, Israel

Abstract

Given a directed graph G and a parameter k, the Long Directed Cycle
(LDC) problem asks whether G contains a simple cycle on at least k vertices,
while the k-Path problems asks whether G contains a simple path on exactly k

vertices. Given a deterministic (randomized) algorithm for k-Path as a black
box, which runs in time t(G, k), we prove that LDC can be solved in determinis-
tic time O∗(max{t(G, 2k), 4k+o(k)}) (randomized time O∗(max{t(G, 2k), 4k})).
In particular, we get that LDC can be solved in randomized time O∗(4k).

Keywords: algorithms, parameterized complexity, long directed cycle, k-path

1. Introduction

We study the Long Directed Cycle (LDC) problem. Given a directed
graph G = (V,E) and a parameter k, it asks whether G contains a simple cycle
on at least k vertices. At first glance, this problem seems quite different from
the well-known k-Path problem, which asks whether G contains a simple path
on exactly k vertices: while k-Path seeks a solution whose size is exactly k, the
size of a solution to LDC can be as large as |V |. Indeed, in the context of LDC,
Fomin et al. [1] noted that “color-coding, and other techniques applicable to
k-Path do not seem to work here.”

In this paper, we show that an algorithm for k-Path can be used as a black
box to solve LDC efficiently. More precisely, suppose that we are given a deter-
ministic (randomized) algorithm ALG that uses t(G, k) time and s(G, k) space,
and decides whether G contains a simple path on exactly k vertices directed from
v to u for some given vertices v, u ∈ V .1 Then, we prove that LDC can be solved
in deterministic time O∗(max{t(G, 2k), 4k+o(k)}) andO∗(max{s(G, k), 4k+o(k)})
space (if ALG is deterministic), or in randomized time O∗(max{t(G, 2k), 4k})
and O∗(s(G, k)) space (if ALG is randomized).2 Somewhat surprisingly, we

✩Abbreviations: Long Directed Cycle (LDC).
∗Corresponding author.
Email address: meizeh@cs.technion.ac.il (Meirav Zehavi)

1Known algorithms for k-Path handle the condition relating to the vertices v and u.
2The O∗ notation hides factors polynomial in the input size.

Preprint submitted to ??? October 14, 2018

http://arxiv.org/abs/1510.08892v1

show that cases that cannot be efficiently handled by calling an algorithm for
k-Path, can be efficiently handled by merely using a combination of a simple
partitioning step and BFS.

The first parameterized algorithm for LDC, due to Gabow and Nie [2],
runs in time O∗(kO(k)). Then, Fomin et al. [1] gave a deterministic parameter-
ized algorithm for LDC that runs in time O∗(8k+o(k)) using exponential-space.
Recently, Fomin et al. [3] and the paper [4] modified the algorithm in [1] to
run in deterministic time O∗(6.75k+o(k)) using exponential-space. It is known
that k-Path can be solved in randomized time O∗(2k) and polynomial-space
[5], and deterministic time O∗(2.59606k) and exponential-space [6]. Thus, we
immediately obtain that LDC can be solved in randomized time O∗(4k) and
polynomial-space, and deterministic time O∗(6.73953k) and exponential-space.

In the following sections, given a graph G = (V,E) and a set U ⊆ V , we let
G[U] denote the subgraph of G induced by U .

2. Finding Large Solutions in Polynomial-Time

We say that an instance (G, k) of LDC seems difficult if G does not contain
a directed cycle on ℓ vertices for any ℓ ∈ {k, k + 1, . . . , 2k}. Roughly speaking,
given such an instance, we are forced to determine whether G contains a large
solution. This case, as noted in [2] and [1], seems to be the core of difficulty
of LDC. We show, somewhat surprisingly, that under certain conditions, this
case can be solved in polynomial-time. More precisely, this section proves the
correctness of the following lemma.

Lemma 1. Let (G, k) be instance of LDC, and let (L,R) be a partition of
V . Then, there is a deterministic polynomial-time algorithm, PolyAlg, which
satisfies the following conditions.

• If (G, k) seems difficult, and G contains a simple cycle v1 → v2 → . . . →
vt → v1 such that t > 2k, v1, v2, . . . , vk ∈ L and vk+1, vk+2, . . . , v2k ∈ R,
PolyAlg accepts.

• If G does not contain a simple cycle on at least k vertices, PolyAlg rejects.

Proof. The pseudocode of PolyAlg is given in Algorithm 1. Clearly, if the
algorithm accepts, there exist two distinct vertices v and u such that G contains
two simple internally vertex disjoint paths, P = (VP , EP) (from v to u) and
P ′ = (V ′

P , E
′
P) (from u to v), where |VP | = k. In this case, G contains a simple

cycle, which consists of these paths, on at least k vertices. Thus, the second
item is correct.

Now, we turn to prove the first item. To this end, suppose that the condition
of this item is true. Then, we can let C = v1 → v2 → . . . → vt → v1 be a simple
cycle in G such that t > 2k, v1, v2, . . . , vk ∈ L and vk+1, vk+2, . . . , v2k ∈ R,
which minimizes t. We need the following observations.

Observation 1. The number of vertices on the shortest path from v1 to vk in
G[L] is exactly k.

2

Algorithm 1 PolyAlg(G = (V,E), k, L,R)

1: for all v ∈ L and u ∈ L \ {v} do
2: Use BFS to find a simple path P = (VP , EP) from v to u in G[L] that

minimizes |VP |.
3: if |VP | 6= k or the path P does not exist then
3: Skip the rest of this iteration.
4: end if
5: Use BFS to find a simple path P ′ = (V ′

P , E
′
P) from u to v in G[V \ (VP \

{v, u})] that minimizes |V ′
P |.

6: if the path P ′ exists then
7: Accept.
8: end if
9: end for

10: Reject.

Proof. The existence of C implies that we can let P = (VP , EP) denote a path
from v1 to vk in G[L] that minimizes |VP |, and that we can assume that |VP | ≤ k.
We furhter denote P = u1 → u2 → . . . → u|VP |, where u1 = v1 and u|VP | = vk.
It remains to show that |VP | = k. Suppose, by way of contradiction, that
|VP | < k. Let vi be the first vertex on the path vk+1 → vk+2 → . . . → vt → v1
that belongs to VP . Then, we can define a simple cycle C′ in G as follows.

• If i = 1: C′ = vk+1 → vk+2 → . . . → vt → (v1 = u1) → u2 → . . . →
(u|VP | = vk) → vk+1.

• Else: Let j be the index such that vi = uj. Then, C′ = vk+1 → vk+2 →
. . . → vi−1 → (vi = uj) → uj+1 → . . . → (u|VP | = vk) → vk+1.

Clearly, the number of vertices of C′ is smaller than t. Therefore, by
the choice of C and since (G, k) is a seemingly difficult instance of LDC, we
have that C′ is a cycle on less than k vertices. However, since VP ⊆ L and
vk+1, vk+2, . . . , v2k ∈ R (where R = V \ L), we have that 2k < i. This implies
that C′ is a cycle on at least k vertices, and thus we have reached a contradiction.
�

Observation 2. Let P = (VP , EP) be a simple path from v1 to vk in G[L] such
that |VP | = k. Then, G[V \ (VP \ {v1, vk})] contains a path from vk to v1.

Proof. Denote P = u1 → u2 → . . . → uk, where u1 = v1 and uk = vk. If
VP ∩ {vk+1, vk+2, . . . , vt} = ∅, then the claim is clearly true, since then vk →
vk+1 → . . . → vt → v1 is a path in G[V \ (VP \ {v1, vk})]. Suppose, by way of
contradiction, that VP ∩ {vk+1, vk+2, . . . , vt} 6= ∅. Then, we can let vi be the
first vertex on the path vk+1 → vk+2 → . . . → vt that belongs to VP . Let j be
the index such that vi = uj. We have that C′ = vk+1 → vk+2 → . . . → vi−1 →
(vi = uj) → uj+1 → . . . → (uk = vk) → vk+1 is a simple cycle in G. Now, we
reach a contradiction in the same manner as it is reached in the last paragraph
of the proof of the previous observation. �

3

Consider the iteration of Step 1 that corresponds to v = v1 and u = vk. The
first observation implies that the condition of Step 3 is false. Next, the second
observation implies that the condition of Step 6 is true, and therefore PolyAlg

accepts. �

3. Computing the Sets L and R

In this section we observe that the computation of the sets L and R can
merely rely on a simple partitioning step. To this end, we need the following
definition and known result.

Definition 1. Let F be a set of functions f : {1, 2, . . . , n} → {0, 1}. We say
that F is an (n, t)-universal set if, for every subset I ⊆ {1, 2, . . . , n} of size t

and a function f ′ : I → {0, 1}, there is a function f ∈ F such that, for all i ∈ I,
f(i) = f ′(i).

Lemma 2 ([7]). There is a deterministic algorithm that given a pair of in-
tegers (n, t), computes in O∗(2t+o(t)) time and space an (n, t)-universal set
F ⊆ 2{1,2,...,n} of size O∗(2t+o(t)).

Now, we turn to prove the following simple observations.

Observation 3. Let (G = (V,E), k) be a instance of LDC. Then, there is a
deterministic algorithm, DetLRAlg, that uses O∗(4k+o(k)) time and space, and
returns a set S = {(L,R) : L ⊆ V,R = V \ L} of size O∗(4k+o(k)) such that the
following condition is satisfied.

• For any simple cycle v1 → v2 → . . . → vt → v1 of G such that t ≥ 2k, there
exists (L,R) ∈ S such that v1, v2, . . . , vk ∈ L and vk+1, vk+2, . . . , v2k ∈ R.

Proof. DetLRAlg arbitrarily orders V , and denotes V = {v1, v2, . . . , v|V |} ac-
cordingly. It obtains an (|V |, 2k)-universal set F by relying on Lemma 2. Then,
it defines Lf = {vi ∈ V : f(i) = 0} and Rf = V \ L for each f ∈ F , and lets
S = {(Lf , Rf) : f ∈ F}. The correctness and running time of the algorithm
follow immediately from Definition 1 and Lemma 2. �

Observation 4. Let (G = (V,E), k) be a instance of LDC. Then, there is a
randomized algorithm, RandLRAlg, with polynomial time and space complexities,
that returns a partition (L,R) of V . Moreover, if RandLRAlg is called c·4k times
for some c ≥ 1, and G contains a simple cycle v1 → v2 → . . . → vt → v1 such
that t ≥ 2k, then with probability at least (1 − e−c), at least one of the calls
returns a pair (L,R) such that v1, v2, . . . , vk ∈ L and vk+1, vk+2, . . . , v2k ∈ R.

Proof. RandLRAlg initializes L to be an empty set, and R to be V . For each
v ∈ V , with probability 1

2 it removes v from R and inserts v into L. Then, it
returns the resulting pair (L,R), which is clearly a partition of V .

To prove the correctness of RandLRAlg, suppose that G contains a simple
cycle v1 → v2 → . . . → vt → v1 such that t ≥ 2k. Then, the probability that

4

v1, v2, . . . , vk ∈ L and vk+1, vk+2, . . . , v2k ∈ R is (12)
2k = 1

4k
. Now, if RandLRAlg

is called c · 4k times, the probability that none of the calls returns a pair (L,R)

such that v1, v2, . . . , vk ∈ L and vk+1, vk+2, . . . , v2k ∈ R is (1− 1
4k)

c·4k ≤ e−c.�

4. Solving the LDC Problem

We are now ready to solve LDC. The input for our algorithm, LDCALg,
consists of an instance (G, k) of LDC, an algorithm ALG for k-Path, and
an argument X ∈ {det, rand} that specifies whether ALG is deterministic or
randomized. LDCAlg first determines whether G contains a simple cycle on ℓ

vertices, for any ℓ ∈ {k, k + 1, . . . , 2k} by calling ALG. If no such cycle is
found, LDCAlg examines enough pairs (L,R), computed using the algorithm in
Observation 3 or 4, and accepts iff PolyAlg accepts one of the resulting inputs
(G, k, L,R). The pseudocode of LDCALg is given in Algorithm 2.

Algorithm 2 LDCAlg(G = (V,E), k, ALG,X)

1: for ℓ = k, k + 1, . . . , 2k do
2: for all (u, v) ∈ E do
3: Use ALG to determine whether G contains a simple path on exactly ℓ

vertices directed from v to u. If the answer is positive, accept.
4: end for
5: end for
6: if X = det then
7: Let S be the set returned by DetLRAlg (see Observation 3), ordered ar-

bitrarily. Moreover, let x = |S|, and let PartitionAlg be a procedure that
when called at the ist time, returns the ist pair (L,R) in S.

8: else
9: Let x = 10 · 4k, and let PartitionAlg be RandLRAlg (see Observation 4).

10: end if
11: for i = 1, 2, . . . , x do
12: Call PartitionAlg to obtain a pair (L,R).
13: If PolyAlg(G, k, L,R) accepts: Accept.
14: end for
15: Reject.

Theorem 1. Let ALG be an algorithm that uses t(G, k) time and s(G, k) space,
and decides whether G contains a simple path on exactly k vertices directed from
v to u for some given vertices v, u ∈ V . Then, LDCAlg solves LDC in deter-
ministic time O∗(max{t(G, 2k), 4k+o(k)}) and O∗(max{s(G, k), 4k+o(k)}) space
(if ALG is deterministic), or in randomized time O∗(max{t(G, 2k), 4k}) and
O∗(s(G, k)) space (if ALG is randomized).

Proof. First, observe that the time and space complexities of LDCAlg directly
follow from the pseudocode, Lemma 1 and Observations 3 and 4. Moreover, by

5

Lemma 1 and the correctness of ALG, if LDCAlg accepts, it is clearly correct (if
X = rand, we mean that LDCAlg accepts with high probability).3

Now, to complete the proof, suppose that (G, k) is a yes-instance. If G

contains a simple cycle on ℓ vertices for some ℓ ∈ {k, k + 1, . . . , 2k}, then one
of the calls to ALG accepts, and therefore LDCAlg accepts (if X = rand, we
mean that LDCAlg accepts with high probability). Thus, we can next assume
that (G, k) seems difficult, and let C = v1 → v2 → . . . → vt → v1 denote
a simple cycle in G, where t > 2k. By Observations 3 and 4, there is a call
to PartitionAlg where it returns a pair (L,R) such that v1, v2 . . . , vk ∈ L and
vk+1, vk+2, . . . , v2k ∈ R (in caseX = rand, we mean that there is such a call with
high probability). Then, by Lemma 1, PolyAlg accepts, and therefore LDCAlg

accepts. �

References

[1] F. V. Fomin, D. Lokshtanov, S. Saurabh, Efficient computation of repre-
sentative sets with applications in parameterized and exact agorithms, in:
SODA (see also arXiv:1304.4626), 2014, pp. 142–151.

[2] H. N. Gabow, S. Nie, Finding a low directed cycle, ACM Transactions on
Algorithms 4 (2008).

[3] F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh, Representative sets
of product families, in: ESA, 2014, pp. 443–454.

[4] H. Shachnai, M. Zehavi, Representative families: a unified tradeoff-based
approach, in: ESA, 2014, pp. 786–797.

[5] R. Williams, Finding paths of length k in O∗(2k) time, Inf. Process. Lett.
109 (2009) 315–318.

[6] M. Zehavi, Mixing color coding-related techniques, in: ESA, 2015.

[7] M. Naor, J. L. Schulman, A. Srinivasan, Splitters and near-optimal deran-
domization, in: FOCS, 1995, pp. 182–191.

3By iteratively removing edges from G, it is easy to see that one can use ALG not only
to determine whether G contains a simple path on exactly ℓ vertices from v to u, but also to
return such a path. In this manner, even if X = rand, LCDAlg can be modified to accept only
if (G, k) is a yes-instance.

6

	1 Introduction
	2 Finding Large Solutions in Polynomial-Time
	3 Computing the Sets L and R
	4 Solving the LDC Problem

