
Periodicity in Rectangular Arrays

Guilhem Gamard
LIRMM

CNRS, Univ. Montpellier
UMR 5506, CC 477

161 rue Ada
34095 Montpellier Cedex 5

France
guilhem.gamard@lirmm.fr

Gwenaël Richomme
LIRMM

CNRS, Univ. Montpellier
UMR 5506, CC 477

161 rue Ada
34095 Montpellier Cedex 5

France
and

Univ. Paul-Valéry Montpellier 3
Route de Mende

34199 Montpellier Cedex 5
France

gwenael.richomme@lirmm.fr

Jeffrey Shallit and Taylor J. Smith
School of Computer Science

University of Waterloo
Waterloo, ON N2L 3G1

Canada
shallit@cs.uwaterloo.ca

tj2smith@uwaterloo.ca

March 23, 2018

Abstract

We discuss several two-dimensional generalizations of the familiar Lyndon-Schützenberger
periodicity theorem for words. We consider the notion of primitive array (as one that
cannot be expressed as the repetition of smaller arrays). We count the number of m×n
arrays that are primitive. Finally, we show that one can test primitivity and compute
the primitive root of an array in linear time.

Key words and phrases: picture, primitive word, Lyndon-Schützenberger theorem, pe-
riodicity, enumeration, rectangular array.

AMS 2010 Classification: Primary 68R15; Secondary 68W32, 68W40, 05A15.

1

ar
X

iv
:1

60
2.

06
91

5v
2

 [
cs

.D
M

]
 1

 J
ul

 2
01

6

mailto:guilhem.gamard@lirmm.fr
mailto:gwenael.richomme@lirmm.fr
mailto:shallit@cs.uwaterloo.ca
mailto:tj2smith@uwaterloo.ca

1 Introduction

Let Σ be a finite alphabet. One very general version of the famous Lyndon-Schützenberger
theorem [18] can be stated as follows:

Theorem 1. Let x, y ∈ Σ+. Then the following five conditions are equivalent:
(1) xy = yx;
(2) There exist z ∈ Σ+ and integers k, ` > 0 such that x = zk and y = z`;
(3) There exist integers i, j > 0 such that xi = yj;
(4) There exist integers r, s > 0 such that xrys = ysxr;
(5) x{x, y}∗ ∩ y{x, y}∗ 6= ∅.

Proof. For a proof of the equivalence of (1), (2), and (3), see, for example [23, Theorem
2.3.3].

Condition (5) is essentially the “defect theorem”; see, for example, [17, Cor. 1.2.6].
For completeness, we now demonstrate the equivalence of (4) and (5) to each other and

to conditions (1)–(3):

(3) =⇒ (4): If xi = yj, then we immediately have xrys = ysxr with r = i and s = j.

(4) =⇒ (5): Let z = xrys. Then by (4) we have z = ysxr. So z = xxr−1ys and z = yys−1xr.
Thus z ∈ x{x, y}∗ and z ∈ y{x, y}∗. So x{x, y}∗ ∩ y{x, y}∗ 6= ∅.
(5) =⇒ (1): By induction on the length of |xy|. The base case is |xy| = 2. More generally,
if |x| = |y| then clearly (5) implies x = y and so (1) holds. Otherwise without loss of
generality |x| < |y|. Suppose z ∈ x{x, y}∗ and z ∈ y{x, y}∗. Then x is a proper prefix of y,
so write y = xw for a nonempty word w. Then z has prefix xx and also prefix xw. Thus
x−1z ∈ x{x,w}∗ and x−1z ∈ w{x,w}∗, where by x−1z we mean remove the prefix x from z.
So x{x,w}∗ ∩ w{x,w}∗ 6= ∅, so by induction (1) holds for x and w, so xw = wx. Then
yx = (xw)x = x(wx) = xy.

A nonempty word z is primitive if it cannot be written in the form z = we for a word
w and an integer e ≥ 2. We will need the following fact (e.g., [17, Prop. 1.3.1] or [23,
Thm. 2.3.4]):

Fact 2. Given a nonempty word x, the shortest word z such that x = zi for some integer
i ≥ 1 is primitive. It is called the primitive root of x, and is unique.

In this paper we consider generalizations of the Lyndon-Schützenberger theorem and the
notion of primitivity to two-dimensional rectangular arrays (sometimes called pictures in the
literature). For more about basic operations on these arrays, see, for example, [11].

2 Rectangular arrays

By Σm×n we mean the set of all m × n rectangular arrays A of elements chosen from the
alphabet Σ. Our arrays are indexed starting at position 0, so that A[0, 0] is the element in the
upper left corner of the array A. We use the notation A[i..j, k..`] to denote the rectangular
subarray with rows i through j and columns k through `. If A ∈ Σm×n, then |A| = mn is
the number of entries in A.

2

We also generalize the notion of powers as follows. If A ∈ Σm×n then by Ap×q we mean
the array constructed by repeating A pq times, in p rows and q columns. More formally
Ap×q is the pm × qn array B satisfying B[i, j] = A[i mod m, j mod n] for 0 ≤ i < pm and
0 ≤ j < qn. For example, if

A =

[
a b c

d e f

]
,

then

A2×3 =


a b c a b c a b c

d e f d e f d e f

a b c a b c a b c

d e f d e f d e f

 .
We can also generalize the notation of concatenation of arrays, but now there are two

annoyances: first, we need to decide if we are concatenating horizontally or vertically, and
second, to obtain a rectangular array, we need to insist on a matching of dimensions.

If A is an m×n1 array and B is an m×n2 array, then by A:B we mean the m×(n1+n2)
array obtained by placing B to the right of A.

If A is an m1×n array and B is an m2×n array, then by A	B we mean the (m1+m2)×n
array obtained by placing B underneath A.

3 Generalizing the Lyndon-Schützenberger theorem

We now state our first generalization of the Lyndon-Schützenberger theorem to two-dimensional
arrays, which generalizes claims (2), (3), and (4) of Theorem 1.

Theorem 3. Let A and B be nonempty arrays. Then the following three conditions are
equivalent:

(a) There exist positive integers p1, p2, q1, q2 such that Ap1×q1 = Bp2×q2.
(b) There exist a nonempty array C and positive integers r1, r2, s1, s2 such that A = Cr1×s1

and B = Cr2×s2.
(c) There exist positive integers t1, t2, u1, u2 such that At1×u1 ◦ Bt2×u2 = Bt2×u2 ◦ At1×u1

where ◦ can be either : or 	.

Proof.
(a) =⇒ (b). Let A be an array in Σm1×n1 and B be an array in Σm2×n2 such that
Ap1×q1 = Bp2×q2 . By dimensional considerations we have m1p1 = m2p2 and n1q1 = n2q2.
Define P = Ap1×1 and Q = Bp2×1. We have P 1×q1 = Q1×q2 . Viewing P and Q as words
over Σm1p1×1 and considering horizontal concatenation, this can be written P q1 = Qq2 . By
Theorem 1 there exist a word R over Σm1p1×1 and integers s1, s2 such that P = R1×s1 and
Q = R1×s2 . Let r denote the number of columns of R and let S = A[0 . . .m1 − 1, 0 . . . r− 1]
and T = B[0 . . .m2 − 1, 0 . . . r − 1]. Observe A = S1×s1 and B = T 1×s2 . Considering the r
first columns of P and Q, we have Sp1×1 = T p2×1. Viewing S and T as words over Σ1×r and
considering vertical concatenation, we can rewrite Sp1 = T p2 . By Theorem 1 again, there
exist a word C over Σ1×r and integers r1, r2 such that S = Cr1×1 and T = Cr2×1. Therefore,
A = Cr1×s1 and B = Cr2×s2 .

3

(b) =⇒ (c). Without loss of generality, assume that the concatenation operation is :.
Let us recall that A = Cr1×s1 and B = Cr2×s2 . Take t1 = r2 and t2 = r1 and u1 = s2 and
u2 = s1. Then we have

At1×u1 :Bt2×u2 = Cr1t1×s1u1 : Cr2t2×s2u2

= Cr1t1×(s1u1+s2u2) (Observe that r1t1 = r2t2)

= Cr2t2×s2u2 : Cr1t1×s1u1

= Bt2×u2 : At1×u1 .

(c) =⇒ (a). Without loss of generality, assume that the concatenation operation is :.
Assume the existence of positive integers t1, t2, u1, u2 such that

At1×u1 :Bt2×u2 = Bt2×u2 : At1×u1 .

An immediate induction allows to prove that for all positive integers i and j,

At1×iu1 :Bt2×ju2 = Bt2×ju2 : At1×iu1 . (1)

Assume that A is in Σm1×n1 and B is in Σm2×n2 . For i = n2u2 and j = n1u1, we get
iu1n1 = ju2n2. Then, by considering the first iu1n1 columns of the array defined in (1), we
get At1×iu1 = Bt2×ju2 .

Note that generalizing condition (1) of Theorem 1 requires considering arrays with the
same number of rows or same number of columns. Hence the next result is a direct conse-
quence of the previous theorem.

Corollary 4. Let A,B be nonempty rectangular arrays. Then
(a) if A and B have the same number of rows, A : B = B : A if and only there exist a
nonempty array C and integers e, f ≥ 1 such that A = C1×e and B = C1×f ;
(b) if A and B have the same number of columns , A	B = B 	A if and only there exist a
nonempty array C and integers e, f ≥ 1 such that A = Ce×1 and B = Cf×1.

4 Labeled plane figures

We can generalize condition (5) of Theorem 1. We begin with the following lemma. As in
the case of Corollary 4, we need conditions on the dimensions.

Lemma 5. Let X and Y be rectangular arrays having same number of rows or same numbers
of columns. In the former case set ◦ = :. In the latter case set ◦ = 	. If

X ◦W1 ◦W2 ◦ · · · ◦Wi = Y ◦ Z1 ◦ Z2 ◦ · · · ◦ Zj (2)

holds, where W1,W2, . . . ,Wi, Z1, Z2, . . . , Zj ∈ {X, Y } for i, j ≥ 0, then X and Y are powers
of a third array T .

4

Proof. Without loss of generality we can assume that X and Y have the same number r of
rows. Then the lemma is just a rephrasing of part (5) =⇒ (2) in Theorem 1, considering
X and Y as words over Σr×1.

Now we can give our maximal generalization of (5) =⇒ (3) in Theorem 1. To do so, we
need the concept of labeled plane figure (also called “labeled polyomino”).

A labeled plane figure is a finite union of labeled cells in the plane lattice, that is, a map
from a finite subset of Z × Z to a finite alphabet Σ. A sample plane figure is depicted in
Figure 1. Notice that such a figure does not need to be connected or convex.

a c b a

b a c b a

c b a c b

c b a c

Figure 1: A typical plane figure (from [13, 14])

Let S denote a finite set of rectangular arrays. A tiling of a labeled plane figure F is an
arrangement of translates of the arrays in S so that the label of every cell of F is covered by
an identical entry of an element of S, and no cell of F is covered by more than one entry of
an element of S. For example, Figure 2 depicts a tiling of the labeled plane figure in Figure 1

by the arrays [c b a],

 a
b
c

, and

 a c b a
b a c b
c b a c

.

a

b

c

c b a

a c b a

b a c b

c b a c

Figure 2: Tiling of Figure 1

Theorem 6. Let F be a labeled plane figure, and suppose F has two different tilings U and
V by two nonempty rectangular arrays A and B. Then both A and B are powers of a third
array C.

Proof. Assume that F has two different tilings by rectangular arrays, but A and B are not
powers of a third array C. Without loss of generality also assume that F is the smallest such
figure (with the fewest cells) and also that A and B are arrays with the fewest total entries
that tile F , but are not powers of a third array.

Consider the leftmost cell L in the top row of F . If this cell is covered by the same
array, in the same orientation, in both tilings U and V , remove the array from U and V ,
obtaining a smaller plane figure F ′ with the same property. This is a contradiction, since F

5

was assumed minimal. So F must have a different array in U and V at this cell. Assume U
has A in its tiling and V has B.

Without loss of generality, assume that the number of rows of A is equal to or larger
than r, the number of rows of B. Truncate A at the first r rows and call it A′. Consider
the topmost row of F . Since it is topmost and contains L at the left, there must be nothing
above L. Hence the topmost row of F must be tiled with the topmost rows of A and B
from left to right, aligned at this topmost row, until either the right end of the figure or an
unlabeled cell is reached. Restricting our attention to the r rows underneath this topmost
row, we get a rectangular tiling of these r rows by arrays A′ and B in both cases, but the
tiling of U begins with A′ and the tiling of V begins with B.

Now apply Lemma 5 to these r rows (with ◦ = :). We get that A′ and B are both
expressible as powers of some third array T . Then we can write A as a concatenation of
some copies of T and the remaining rows of A (call the remaining rows C). Thus we get two
tilings of F in terms of T and C. Since A and B were assumed to be the smallest nonempty
tiles that could tile F , and |T | ≤ |B| and |C| < |A|, the only remaining possibility is that
T = B and C is empty. But then A = A′ and so both A and B are expressible as powers of
T .

Remark 7. The papers [21, 22] claim a proof of Theorem 6, but the partial proof provided
is incorrect in some details and missing others.

Remark 8. As shown by Huova [13, 14], Theorem 6 is not true for three rectangular arrays.
For example, the plane figure in Figure 1 has the tiling in Figure 2 and also another one.

5 Primitive arrays

In analogy with the case of ordinary words, we can define the notion of primitive array. An
array M is said to be primitive if the equation M = Ap×q for p, q > 0 implies that p = q = 1.
For example, the array [

1 2
2 1

]
is primitive, but [

1 1
1 1

]
and

[
1 2
1 2

]
are not, as they can be written in the form [1]2×2 or [1 2]2×1 respectively.

As a consequence of Theorem 3 we get another proof of Lemma 3.3 in [10].

Corollary 9. Let A be a nonempty array. Then there exist a unique primitive array C and
positive integers i, j such that A = Ci×j.

Proof. Choose i as large as possible such that there exist an integer k and an array D such
that A = Di×k. Now choose j as large as possible such that there exists an integer j and an
array C such that A = Ci×j. We claim that C is primitive. For if not, then there exists an
array B such that C = Bi′×j′ for positive integers i, j, not both 1. Then A = Ci×j = Bii′×jj′ ,
contradicting either the maximality of i or the maximality of j.

6

For uniqueness, assume A = Ci1×j1 = Di2×j2 where C and D are both primitive. Then
by Theorem 3 there exists an array E such that C = Ep1×q1 and D = Ep2×q2 . Since C and
D are primitive, we must have p1 = q1 = 1 and p2 = q2 = 1. Hence C = D.

Remark 10. In contrast, as Bacquey [4] has recently shown, two-dimensional biperiodic
infinite arrays can have two distinct primitive roots.

6 Counting the number of primitive arrays

There is a well-known formula for the number of primitive words of length n over a k-letter
alphabet (see e.g. [17, p. 9]):

ψk(n) =
∑
d|n

µ(d)kn/d, (3)

where µ is the well-known Möbius function, defined as follows:

µ(n) =

{
(−1)t, if n is squarefree and the product of t distinct primes;

0, if n is divisible by a square > 1.

We recall the following well-known property of the sum of the Möbius function µ(d) (see,
e.g., [12, Thm. 263]):

Lemma 11. ∑
d|n

µ(d) =

{
1, if n = 1;

0, if n > 1.

In this section we generalize Eq. (3) to two-dimensional primitive arrays:

Theorem 12. There are

ψk(m,n) =
∑
d1|m

∑
d2|n

µ(d1)µ(d2)k
mn/(d1d2)

primitive arrays of dimension m× n over a k-letter alphabet.

Proof. We will use Lemma 11 to prove our generalized formula, which we obtain via Möbius
inversion.

Define g(m,n) := kmn; this counts the number of m× n arrays over a k-letter alphabet.
Each such array has, by Corollary 9, a unique primitive root of dimension d1 × d2, where

7

evidently d1 | m and d2 | n. So g(m,n) =
∑

d1|m
d2|n

ψk(d1, d2). Then

∑
d1|m
d2|n

µ(d1)µ(d2) g

(
m

d1
,
n

d2

)
=
∑
d1|m

µ(d1)
∑
d2|n

µ(d2) g

(
m

d1
,
n

d2

)

=
∑
d1|m

µ(d1)
∑
d2|n

µ(d2)
∑

c1|m/d1
c2|n/d2

ψk(c1, c2)

=
∑

c1d1|m

µ(d1)
∑
c2d2|n

µ(d2) ψk(c1, c2)

=
∑
c1|m

∑
c2|n

ψk(c1, c2)
∑

d1|m/c1
d2|n/c2

µ(d1)µ(d2).

Let r = m/c1 and s = n/c2. By Lemma 11, the last sum in the above expression is 1 if
r = 1 and s = 1; that is, if c1 = m and c2 = n. Otherwise, the last sum is 0. Thus, the sum
reduces to ψk(m,n) as required.

The following table gives the first few values of the function ψ2(m,n):

1 2 3 4 5 6 7
1 2 2 6 12 30 54 126
2 2 10 54 228 990 3966 16254
3 6 54 498 4020 32730 261522 2097018
4 12 228 4020 65040 1047540 16768860 268419060
5 30 990 32730 1047540 33554370 1073708010 34359738210
6 54 3966 261522 16768860 1073708010 68718945018 4398044397642
7 126 16254 2097018 268419060 34359738210 4398044397642 562949953421058

Remark 13. As a curiosity, we note that ψ2(2, n) also counts the number of pedal triangles
with period exactly n. See [24, 15].

7 Checking primitivity in linear time

In this section we give an algorithm to test primitivity of two-dimensional arrays. We start
with a useful lemma.

Lemma 14. Let A be an m × n array. Let the primitive root of row i of A be ri and the
primitive root of column j of A be cj. Then the primitive root of A has dimension p × q,
where q = lcm(|r0|, |r1|, . . . , |rm−1|) and p = lcm(|c0|, |c1|, . . . , |cn−1|).

Proof. Let P be the primitive root of the array A, of dimension m′ × n′. Then the row
A[i, 0..n−1] is periodic with period n′. But since the primitive root of A[i, 0..n−1] is of length
ri, we know that |ri| divides n′. It follows that q |n′, where q = lcm(|r0|, |r1|, . . . , |rm−1|). Now

8

suppose n′ 6= q. Then since q |n′ we must have n′/q > 1. Define Q := P [0..m′ − 1, 0..q − 1].
Then Q1×(n′/q) = P , contradicting our hypothesis that P is primitive. It follows that n′ = q,
as claimed.

Applying the same argument to the columns proves the claim about p.

Now we state the main result of this section.

Theorem 15. We can check primitivity of an m× n array and compute the primitive root
in O(mn) time, for fixed alphabet size.

Proof. As is well known, a word u is primitive if and only if u is not an interior factor of its
square uu [7]; that is, u is not a factor of the word uFuL, where uF is u with the first letter
removed and uL is u with the last letter removed. We can test whether u is a factor of uFuL
using a linear-time string matching algorithm, such as the Knuth-Morris-Pratt algorithm
[16]. If the algorithm returns no match, then u is indeed primitive. Furthermore, if u is not
primitive, the length of its primitive root is given by the index (starting with position 1) of
the first match of u in uFuL. We assume that there exists an algorithm 1DPrimitiveRoot
to obtain the primitive root of a given word in this manner.

We use Lemma 14 as our basis for the following algorithm to compute the primitive root
of a rectangular array. This algorithm takes as input an array A of dimension m × n and
produces as output the primitive root C of A and its dimensions.

Algorithm 1: Computing the primitive root of A

1: procedure 2DPrimitiveRoot(A,m, n)
2: for 0 ≤ i < m do . compute primitive root of each row
3: ri ← 1DPrimitiveRoot(A[i, 0..n− 1])

4: q ← lcm(|r0|, |r1|, . . . , |rm−1|) . compute lcm of lengths of primitive roots of rows
5: for 0 ≤ j < n do . compute primitive root of each column
6: cj ← 1DPrimitiveRoot(A[0..m− 1, j])

7: p← lcm(|c0|, |c1|, . . . , |cn−1|) . compute lcm of lengths of primitive roots of columns
8: for 0 ≤ i < p do
9: for 0 ≤ j < q do
10: C[i, j]← A[i, j]

11: return (C, p, q)

The correctness follows immediately from Lemma 14, and the running time is evidently
O(mn).

Remark 16. The literature features a good deal of previous work on pattern matching in two-
dimensional arrays. The problem of finding every occurrence of a fixed rectangular pattern
in a rectangular array was first solved independently by Bird [6] and by Baker [5]. Amir
and Benson later introduced the notion of two-dimensional periodicity in a series of papers
[2, 1, 3]. Mignosi, Restivo, and Silva [20] considered two-dimensional generalizations of the
Fine-Wilf theorem. A survey of algorithms for two-dimensional pattern matching may be
found in Chapter 12 of Crochemore and Rytter’s text [9]. Marcus and Sokol [19] considered

9

two-dimensional Lyndon words. Crochemore, Iliopoulos, and Korda [8] and, more recently,
Gamard and Richomme [10], considered quasiperiodicity in two dimensions. However, with
the exception of this latter paper, where Corollary 9 can be found, none of this work is
directly related to the problems we consider in this paper.

Remark 17. One might suspect that it is easy to reduce 2-dimensional primitivity to 1-
dimensional primitivity by considering the array A as a 1-dimensional word, and taking the
elements in row-major or column-major order. However, the natural conjectures that A is
primitive if and only if (a) either its corresponding row-majorized or column-majorized word
is primitive, or (b) both its row-majorized or column-majorized words are primitive, both
fail. For example, assertion (a) fails because[

a a

b b

]
is not primitive, while its row-majorized word aabb is primitive. Assertion (b) fails because[

a b a

b a b

]
is 2-dimensional primitive, but its row-majorized word ababab is not.

Acknowledgments

Funded in part by a grant from NSERC. We are grateful to the referees for several sugges-
tions.

References

[1] A. Amir and G. E. Benson. Two-dimensional periodicity and its applications. In Proc.
3rd Ann. ACM-SIAM Symp. Discrete Algorithms (SODA ’92), pp. 440–452, 1992.

[2] A. Amir and G. E. Benson. Alphabet independent two-dimensional pattern matching.
In Proc. 24th Ann. ACM Symp. Theory of Computing (STOC ’92), pp. 59–68, 1992.

[3] A. Amir and G. E. Benson. Two-dimensional periodicity in rectangular arrays. SIAM
J. Comput. 27(1) (1998), 90–106.

[4] N. Bacquey. Primitive roots of bi-periodic infinite pictures. In F. Manea and
D. Nowotka, editors, WORDS 2015 Conference, Local Proceedings, Kiel Computer Sci-
ence Series, 2015/5, pp. 1–16. 2015. Available at https://hal.archives-ouvertes.

fr/hal-01178256.

[5] T. P. Baker. A technique for extending rapid exact-match string matching to arrays of
more than one dimension. SIAM J. Comput. 7(4) (1978), 533–541.

[6] R. S. Bird. Two-dimensional pattern matching. Inform. Process. Lett. 6(5) (1977),
168–170.

10

https://hal.archives-ouvertes.fr/hal-01178256
https://hal.archives-ouvertes.fr/hal-01178256

[7] C. Choffrut and J. Karhumäki. Combinatorics of words. In A. Salomaa and G. Rozen-
berg, editors, Handbook of Formal Languages, Vol. 1, pp. 329–438. Springer-Verlag,
1997.

[8] M. Crochemore, C. S. Iliopoulos, and M. Korda. Two-dimensional prefix string matching
and covering on square matrices. Algorithmica 20 (1998), 353–373.

[9] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.

[10] G. Gamard and G. Richomme. Coverability in two dimensions. In A.-H. Dediu,
E. Formenti, C. Mart́ın-Vide, and B. Truthe, editors, LATA 2015, Vol. 8977
of Lect. Notes in Computer Sci., pp. 402–413. Springer-Verlag, 2015. Also see
http://arxiv.org/abs/1506.08375.

[11] D. Giammarresi and A. Restivo. Two-dimensional languages. In A. Salomaa and
G. Rozenberg, editors, Handbook of Formal Languages, Vol. 3, pp. 215–267. Springer-
Verlag, 1997.

[12] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford
University Press, 6th edition, 2008.

[13] M. Huova. A note on defect theorems for 2-dimensional words and trees. J. Automata
Lang. Combin. 14 (2009), 203–209.

[14] M. Huova. Combinatorics on words: new aspects on avoidability, defect effect, equations
and palindromes. Ph. D. thesis, Turku Centre for Computer Science, Finland. TUCS
Dissertations No. 172, April 2014.

[15] J. G. Kingston and J. L. Synge. The sequence of pedal triangles. Amer. Math. Monthly
95 (1988), 609–620.

[16] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM
J. Comput. 6(2) (1977), 323–350.

[17] M. Lothaire. Combinatorics on Words. Encyclopedia of Mathematics and Its Applica-
tions, Vol. 17. Addison-Wesley, 1983.

[18] R. C. Lyndon and M. P. Schützenberger. The equation aM = bNcP in a free group.
Michigan Math. J. 9 (1962), 289–298.

[19] S. Marcus and D. Sokol. On two-dimensional Lyndon words. In O. Kurland, M. Lewen-
stein, and E. Porat, editors, SPIRE 2013, Vol. 8214 of Lect. Notes in Comp. Sci.,
pp. 206–217. Springer-Verlag, 2013.

[20] F. Mignosi, A. Restivo, and P. V. Silva. On Fine and Wilf’s theorem for bidimensional
words. Theoret. Comput. Sci. 292 (2003), 245–262.

[21] M. Moczurad and W. Moczurad. Some open problems in decidability of brick (labelled
polyomino) codes. In K.-Y. Chwa and J. I. Munro, eds., COCOON 2004, Vol. 3106 of
Lect. Notes in Comput. Sci., pp. 72–81, Vol. 3106, Springer-Verlag, 2004.

11

http://arxiv.org/abs/1506.08375

[22] W. Moczurad. Defect theorem in the plane. RAIRO-Theor. Inf. Appl. 41 (2007) 403–
409.

[23] J. Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge
University Press, 2009.

[24] J. Vályi. Über die Fußpunktdreiecke. Monatsh. Math. 14 (1903), 243–252.

12

	1 Introduction
	2 Rectangular arrays
	3 Generalizing the Lyndon-Schützenberger theorem
	4 Labeled plane figures
	5 Primitive arrays
	6 Counting the number of primitive arrays
	7 Checking primitivity in linear time

