
Fair Service for Mice in the Presence of Elephants

Seth Voorhies†, Hyunyoung Lee†, and Andreas Klappenecker∗‡

Abstract

We show how randomized caches can be used in resource-poor partial-state routers to provide a

fair share of bandwidth to short-lived flows that are known as mice when long-lived flows known as

elephants are present.
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1 Introduction

Offering internet access in apartments and hotels is now commonplace. However, it is not untypical

in such networks that a few users watching streaming video broadcasts consume most of the available

bandwidth, while – at the same time – users browsing the web experience unreasonably long delays. In

case of congestion, a router may be forced to drop packets. One can observe from experimental data that

long-lived flows (the elephants) receive a larger share of the bandwidth than short-lived flows (the mice)

in many common queuing policies such as drop tail, fair queuing, random early detection, stochastic fair

queuing, and class based queuing.

Recently, the elephant flow phenomenon gained much interest in the networking community, see,

for example [4]. An inexpensive, scalable solution to monitor elephant flows in a router without keeping

information about all flows was proposed by Smitha, Kim, and Reddy [10]. The basic idea of their scheme

is (a) to sample the packets and insert with a certain probability their flow identifiers into a cache; (b)

keep count of the number of packets per flow for all flows in the cache; (c) purge packets of elephant flows

in the cache from the queue if necessary. We propose a variation of this scheme that does not use step

(b) but still achieves the same goal. We give a thorough analysis and prove that our randomized caching

scheme is able to identify elephant flows with high probability.
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2 The Algorithm

We propose a queuing mechanism for a router that uses a randomized cache with least-recently-used

eviction strategy for congestion control. An incoming packet m is enqueued in a queue Q of pending

packets and a flow identifier id(m) is calculated from the header information of the packet. The flow

identifier id(m) is inserted with probability α into the cache T . If the queue Q of the router exceeds the

allowable number of packets due to network congestion, then all packets m with packet identifier id(m)

in T are deleted from the queue Q. The pseudocode for this queuing algorithm is shown in Algorithm 1.

Algorithm 1 Probabilistic Queuing.

ProbabilisticQueue(α, allowable)
/* α is cache insertion probability, allowable specifies the maximum length of the queue Q */
Initialization:
1: pending := 0; T := empty list; Q := empty queue;
When a request item m arrives:
2: pending := pending + 1;
3: if (pending > allowable) then /* congestion, need to dequeue requests in Q */
4: if (T is empty) then
5: choose at most t differing ids among the most recent requests and

put these ids in T ;
6: forall id in T do Q.dequeue(id);
7: pending := pending − (the number of dequeued requests);
8: Q.enqueue(m);
9: RandomCaching(id(m),α);

The operation Q.enqueue(m) inserts a packet m at the tail of Q. The operation Q.dequeue(id) removes

every packet with flow identifier id from Q. The last statement calls a randomized version of an LRU

cache; the corresponding pseudocode is shown in Algorithm 2.

Algorithm 2 Randomized Cache.

RandomCaching(id, α)
1: if (random put(α) = true) then /* id will be inserted into T with probability α */
2: if (id exists in T ) then
3: move id to the top of T ;
4: else /* id does not exist in T */
5: if (T contains t elements) then /* T is full */
6: evict the bottom element of T using T .delete();
7: create new element for id and put it at the top of T using T .insert(id);

The flow identifier id = id(m) of an incoming packet m will be placed in the cache T with probability

α > 0, that is, random put(α) realizes a coin flip and returns true with probability α. If the cache T

does not contain the identifier id, then the operation T .insert(id) inserts id at the top of the cache T ;
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otherwise it moves the id to the top of T . When T contains t elements (i.e., T is full) and a new item

is going to be inserted, the item at the bottom of T , the t-th element, will be evicted by the operation

T .delete( ).

The randomized cache T determines which items are deleted from the queue in the case of congestion.

If a flow with flow identifier id contains x packets, then the probability that its id will end up in the cache

at some point in time is 1−(1−α)x. Thus, processes sending more requests are more likely to be inserted

into the cache. We will show that if the cache t is small compared to the length of the queue Q of pending

packets, t ¿ allowable, then a flow with many packets, an elephant, is much more likely to reside in the

cache T than a mouse, a flow with few packets. If this queuing scheme is used in a router, then fewer

users get penalized in the case of congestion, namely the ones that use up most of the bandwidth.

Remark. An obvious variation of our scheme is to store each flow identifier in T together with a

counter. Initially, one inserts (id, 0) into T , and if the flow identifier id is again inserted, then the flow

identifier is moved to the top of the cache and the counter is increased by 1. This way, one deletes first

the packets of flows in T that have high counters until enough packets are purged from the queue to

alleviate the congestion. In practice, however, this scheme does not differ significantly from our scheme

because of Theorem 3 below and the fact that the cache is small.

3 Analysis

The list T realizes a randomized cache with least-recently-used update strategy. The purpose of this

cache is to discriminate between elephant and mice flows. We assume that the flows submitting packets

are given by a finite set U containing n elements. We assume that the requests of the flows u ∈ U are

independent and identically distributed with probability Pr[u] > 0,
∑

u∈U Pr[u] = 1. This assumption is

a matter of convenience, it turns out that our scheme shows the same behavior for many other probability

distributions, but we focus on the uniformly distributed case that is easier to analyze in view of the space

constraints.

The cache is fairly small in an actual system, typically much smaller than the length of the pending

queue, t ¿ allowable. Therefore, the long term behavior of this cache is of particular interest. We assume

that the cache T is of size t ≤ n. Flow identifiers are inserted into the cache T with probability α > 0.

Since we are only interested in the long term behavior, we may assume that the cache contains t identifiers.

Hence, a state of the cache can be described by a string of t letters over the alphabet U , which contains

no repetitions. The set of all possible states of the cache T is denoted by S. We use a Markov chain Mα

to model the behavior of the cache T . The states of Mα are given by the set S of all states of the cache.
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We have
(
n
t

)
selections of flow identifiers in the cache, and t! possible orderings, which gives a total of

(
n
t

)
t! = n!/(n− t)! different states of the Markov chain.

The admissible transitions of the Markov chain reflect the move-to-front rule of the cache. Several

components contribute to the transition probabilities of the Markov chain Mα: the insertion probability

α, and the probability Pr[u] that flow u issues a request. A state s = (u1, . . . , ut) of the cache remains

unchanged if a message is not included into the cache or if a request of u1 is selected for inclusion into T ;

the transition probability P (s, s) is therefore given by P (s, s) = 1− α + α Pr[u1]. If a message by u ∈ U

is selected to be included into the cache T and u is not contained in T , then the Markov model makes a

transition from the current state s = (u1, . . . , ut−1, ut) to the state s′ = (u, u1, . . . , ut−1) with probability

P (s, s′) = α Pr[u]. If a message by flow u is selected, and u is already in T , but not at the top of the

cache, then the Markov model makes a transition from the current state s = (u1, . . . , u`, u, u`+2, . . . , ut)

to the state s′ = (u, u1, . . . , u`, u`+2, . . . , ut) with probability P (s, s′) = α Pr[u].

In the Markov chain Mα there is a nonzero probability to go from one state to any other state (in

t steps), hence Mα is irreducible. Since there is a nonzero probability to stay in the same state, Mα is

aperiodic. It follows that there exists a limiting probability measure π on S, which satisfies

(π(s) : s ∈ S)P = (π(s) : s ∈ S), (1)

where P = (P (s, s′))s,s′∈S is the transition matrix of the Markov chain M . No matter in which state the

Markov chain is initially, the sequence of states will approach this probability distribution [7].

Theorem 1 The stationary distribution π on the state space S of the Markov chain Mα, with insertion

probability α > 0, is given by

π(s) = Pr[u1]
t∏

k=2

Pr[uk](
1−

t−k+1∑

`=1

Pr[u`]

) , (2)

where s is the state s = (u1, . . . , ut).

Proof. We verify by direct calculation that the probability measure π given in (2) satisfies the sta-

tionarity condition (1). According to (1) and the transition rules of the Markov chain Mα, we find that

π(s) = π(u1, . . . , ut) satisfies the equation

π(u1, . . . , ut) = (1− α)π(u1, . . . , ut)

+α Pr[u1]


 ∑

u 6=u1,...,ut

π(u2, . . . , ut, u) +
t∑

m=1

π(u2, . . . , um, u1, um+1, . . . , ut)


 .
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The first term on the right hand side models the fact that the state remains unchanged if an arriving

item m of flow u1 is not included in T . The last two terms model all possible states of T , which lead to

s after inclusion of m. Subtracting (1− α)π(s) from both sides and dividing by α yields

π(u1, . . . , ut) = Pr[u1]


 ∑

u 6=u1,...,ut

π(u2, . . . , ut, u) +
t∑

m=1

π(u2, . . . , um, u1, um+1, . . . , ut)


. (3)

Clearly, it suffices to check that (2) satisfies (3). It will be convenient to denote by di(s) the term

di(s) = 1−
t−i+1∑

`=1

Pr[u`].

Substituting (2) for π(u2, . . . , ut, u) yields

∑

u 6=u1,...,ut

π(u2, . . . , ut, u) =
∑

u 6=u1,...,ut

Pr[u]
t∏

k=2

Pr[uk]
dk−1(s) + Pr[u1]

=
∑

u 6=u1,...,ut

Pr[u]
t−1∏

k=1

Pr[uk+1]
dk(s) + Pr[u1]

.

Note that the sum
∑

u 6=u1,...,ut
Pr[u] = d1(s). Since the product term on the right hand side does not

depend on u, it follows that

∑

u 6=u1,...,ut

π(u2, . . . , ut, u) = d1(s)
t−1∏

k=1

Pr[uk+1]
dk(s) + Pr[u1]

.

Similarly,

t∑
m=1

π(u2, . . . , um, u1, um+1, . . . , ut) =
t∑

m=1

t∏

k=1

Pr[uk]

m∏

i=2

di(s)
t−1∏

i=m

(di(s) + Pr[u1])

.

Substituting the last two equations into equation (3) for π(s), we find that

π(s) =




t∏

k=1

Pr[uk]

t∏

i=2

di(s)







t∏

i=1

di(s)

t−1∏

k=1

(dk(s) + Pr[u1])

+
t∑

m=1

Pr[u1]
t∏

i=m+1

di(s)
m−1∏

i=1

(di(s) + Pr[u1])

t−1∏

i=1

(di(s) + Pr[u1])




.

We can simplify this expression to

π(s) =




t∏

k=1

Pr[uk]

t∏

i=2

di(s)







t∏

i=1

di(s) +

(
Pr[u1]

t∑
m=1

t∏

i=m+1

di(s)
m−1∏

i=1

(di(s) + Pr[u1])

)

t∏

i=1

(di(s) + Pr[u1])




,
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where we have used the fact that dt(s) + Pr[u1] = 1. It turns out that the term in brackets is equal to 1;

this is a consequence of the polynomial identity

t∏

i=1

xi =
t∏

i=1

(xi + λ)− λ

t∑
m=1

t∏

k=m+1

(xk + λ)
m−1∏

`=1

x`

that is easily proved by expanding the right-hand side and simplifying the expression.

Suppose that Pr[u1] ≥ Pr[u2] ≥ · · · ≥ Pr[un]. The preceding theorem shows that the most likely state

in the limiting probability measure is the state (u1, . . . , ut). Notice that all Markov chains Mα reach the

same limiting probability measure π, regardless of the insertion probability α. The main difference is

that the process will converge more slowly to this limiting distribution for small values of α.

Denote by Pr[ui,m] the probability to find the identifier of flow ui at position m in the cache in the

stationary distribution. The following theorem gives a precise analytic result for this probability:

Theorem 2 If the requests of the flows are independent and identically distributed, then the probability

Pr[ui,m] to find the identifier of flow ui at position m in the cache in a stationary state is given by

Pr[ui, m] = Pr[ui]
m−1∑
z=0

(−1)m−1−z

(
n− 1− z

m− 1− z

) ∑
|Z|=z
ui /∈Z

[1−QZ ]−1
, 1 ≤ m ≤ t, (4)

for any inclusion probability α > 0. The inner sum is taken over all subsets Z of the set of flows U , and

QZ =
∑

u∈Z Pr[u].

Proof. Suppose that the cache is in a stationary state. Let the history of past requests, which have

been selected for inclusion in the cache, be given by

(· · · , uj3 , uj2 , uj1).

If the most recent request of flow ui is request jk+1, then ui is at position m in the cache if and only

if the set Xk = {ujk
, . . . , uj1} has cardinality m − 1. We use this simple observation to determine the

probability for flow ui to be at position m in the cache.

It follows from our assumptions that the requests ujk
, which are included in the cache, are independent,

and identically distributed. The request ujk
occurs with probability Pr[ujk

]. According to our previous

observation, flow ui is at position m in the cache if and only if for some k ≥ 0, ujk+1 = ui, and the

random subset Xk of the past k requests does not contain ui, and |Xk| = m−1. This allows us to express

the probability Pr[ui,m] in the form

Pr[ui,m] =
∞∑

k=0

Pr[ujk+1 = ui, ui /∈ Xk, |Xk| = m− 1],
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because the events in the brackets are disjoint for different values of k. We can state the right hand side

more explicitly in terms of subsets Y of cardinality m− 1 of the universe U of flows:

Pr[ui,m] =
∞∑

k=0

Pr[ui]
∑

|Y |=m−1
ui /∈Y

Pr[Xk = Y ] = Pr[ui]
∞∑

k=0

∑

|Y |=m−1
ui /∈Y

Pr[Xk = Y ].

The inclusion-exclusion principle yields Pr[Xk = Y ] =
∑

Z⊆Y (−1)|Y−Z| Pr[Xk ⊆ Z]. In other words,

Pr[Xk = Y ] =
∑

Z⊆Y

(−1)|Y−Z| Pr[ujk
∈ Z, . . . , uj2 ∈ Z, uj1 ∈ Z] =

∑

Z⊆Y

(−1)|Y−Z|Q k
Z ,

where QZ =
∑

u∈Z Pr[u]. Combining this expression for Pr[Xk = Y ] with our previous formula for

Pr[ui,m] yields, after exchanging sums,

Pr[ui, m] = Pr[ui]
∑

|Y |=m−1
ui /∈Y

∑

Z⊆Y

(−1)|Y−Z|
∞∑

k=0

Q k
Z .

A straightforward reformulation of this expression gives

Pr[ui,m] = Pr[ui]
∑

|Z|≤m−1
ui /∈Z

∑
Z⊆Y

|Y |=m−1
ui /∈Y

(−1)|Y−Z| [1−QZ ]−1
,

which can be simplified to

Pr[ui, m] = Pr[ui]
m−1∑
z=0

∑
|Z|=z
ui /∈Z

(−1)m−1−z

(
n− 1− z

m− 1− z

)
[1−QZ ]−1

= Pr[ui]
m−1∑
z=0

(−1)m−1−z

(
n− 1− z

m− 1− z

) ∑
|Z|=z
ui /∈Z

[1−QZ ]−1
,

which concludes the proof.

Equation (4) shows, for instance, that flow ui is found at the top of the cache with probability

Pr[ui, 1] = Pr[ui]. Hence the flow with the most packets has the highest chance to be at the top of the

cache.

For our application, we are particularly interested in the probability that an elephant flow can be

found ahead of a mouse flow in the cache.

Theorem 3 In the stationary distribution, the probability to find flow ui ahead of flow uj in the cache

is given by

Pr[ui is ahead of uj ] =
Pr[ui]

Pr[ui] + Pr[uj ]
,

regardless of the cache inclusion probability α > 0.
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Proof. Let us assume that all flows are initially in some total order. The move-to-front rule is applied

when a flow is included in the cache, introducing a new order. This way, the first t flows represent the

state of our randomized LRU cache, and the new order ensures that a flow which is evicted from the

cache will be ahead of all flows outside the cache.

The probability to find flow ui ahead of flow uj after k requests is

Pr[ui is ahead of uj after k requests ]

=
1
2
(1− α Pr[ui]− α Pr[uj ])k +

k∑
m=1

(1− α Pr[ui]− α Pr[uj ])k−mα Pr[ui],

where the first term on the right hand side describes the case that ui was initially ahead of uj and neither

were included in the cache during these k requests; the second term represents the case that ui is included

in the cache at time m ≥ 1, and uj was not included after time m. A straightforward proof by induction

shows that
Pr[ui is ahead of uj after k requests ]

=
Pr[ui]

Pr[ui] + Pr[uj ]
− (1− α Pr[ui]− α Pr[uj ])k Pr[uj ]− Pr[ui]

2(Pr[ui] + Pr[uj ])
.

In the limit k →∞, we get

Pr[ui is ahead of uj ] =
Pr[ui]

Pr[ui] + Pr[uj ]
.

This proves the claim, since we assumed that ui and uj are in the cache.

If an elephant flow ue sends c > 1 times more requests than a mouse flow um, then the probability

Pr[ue is ahead of um] = c/(1 + c), whereas Pr[um is ahead of ue] = 1/(1 + c). This shows that elephant

flows are more likely to be near the top of the cache, and mouse flows are more likely to be evicted from

the cache or to be outside the cache.

Remark. There exists an extensive literature on the move-to-front rule for sorting [1, 2, 5, 8, 9], which

corresponds to the case α = 1 and n = t. More general deterministic LRU caches, with α = 1, have been

studied in [3, 6]. Although the goal of these papers is usually to estimate the expected computational

cost or the expected cache miss ratio, one can learn valuable lessons from these classical works.

4 Conclusions

We analyzed our randomized caching algorithm using a Markov chain model and derived a closed form

for its stationary distribution. We computed, in closed form, the probability that a flow resides at a

certain position in the cache. Furthermore, we calculated the probability that a flow is ahead of another

flow in the cache. Our results show that elephant flows are more likely to reside in the cache. In contrast
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to [10], we do not have to compare each incoming packet with all flow identifiers in the cache to achieve

this result.
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