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Abstract

With the aim to enhance automation in conflict detection and resolution
(CD&R) tasks in the Air Traffic Management domain, in this paper we pro-
pose deep learning techniques (DL) that can learn models of Air Traffic
Controllers’ (ATCO) reactions in resolving conflicts that can violate separa-
tion minimum constraints among aircraft trajectories: This implies learning
when the ATCO will react towards resolving a conflict, and how he/she will
react. Timely reactions, to which this paper aims, focus on when do reactions
happen, aiming to predict the trajectory points, as the trajectory evolves,
that the ATCO issues a conflict resolution action, while also predicting the
type of resolution action (if any). Towards this goal, the paper formulates
the ATCO reactions prediction problem for CD&R, and presents DL meth-
ods that can model ATCO timely reactions and evaluates these methods
in real-world data sets, showing their efficacy in prediction with very high
accuracy.

Keywords: Imitation Learning, Deep Learning, Variational AutoEncoders,
Air Traffic Control, Conflict Detection and Resolution

1. Introduction

The Air Traffic Management (ATM) system has reached its limits regard-
ing efficiency and cost effectiveness. This was evident in the pre COVID era
and is expected to evolve further in the post COVID era. To overcome the
implied limitations, different initiatives world-wide such as NextGen in the
US and SESAR in Europe have been exploring the use of automation and
Artificial Intelligence to enable a more efficient ATM system.

This work aims to contribute to conflict detection and resolution (CD&R)
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tasks executed as part of the Air Traffic Control (ATC1) service, promoting
safe, orderly and expeditious flow of air traffic, at the tactical phase of op-
erations by modeling Air Traffic Controllers’ (ATCO) reactions in resolving
conflicts: We propose data-driven, deep learning techniques to model ATCO
reactions. In general, this implies learning when the ATCO will react to
resolve a detected conflict, and how he/she will react. Timely reactions, to
which this paper aims, focus on when do reactions happen, aiming to pre-
dict the trajectory points, as the trajectory evolves, that the ATCO issues a
conflict resolution action, while also predicting the type of the conflict resolu-
tion action. In so doing, we formulate the ATCO reaction prediction problem
and present a data-driven deep learning method that models timely reac-
tions. This paves the way to (a) automate the ATC process, (b) optimizing
the ATC process, and ensuring enhanced decision making for ATCO, while
leveraging (c) human-AI collaboration in the context of ATC.

Casting CD&R as a data-driven problem from the perspective of model-
ing ATCO reactions, is novel since, as far as we know, there is not any other
study that does so. Indeed, most of the CD&R approaches are trained, vali-
dated and tested in simulated settings. We conjecture that in safety critical
domains such as ATC, the actions proposed by automated systems should
be “close” to those taken by humans: By “close” we mean with a short dis-
tance in any of the temporal, spatial dimensions at which actions are decided
and applied, as well as w.r.t. action specific dimensions, such as changes in
speed magnitude, temporal extent of manoeuvres, etc. This implies safety
in the automation process, taking into account human expertise, (human-
like) flexibility and tolerance in reacting to situations. We believe that such
an approach, is capable of developing trust to an automated system: Ac-
tions that are close to the human rationale are more understandable or self
explanatory to human operators, and the system objectives can be made
intuitively transparent, given that the system models the ATCO objectives
and preferences. Additionally, the automation of the CD&R process at the
tactical phase is expected to reduce the ATCO workload, increase the use of
airspace, and minimize costs of operations.

For such a data-driven imitation process historical expert samples (i.e.
flown trajectories annotated with ATCO resolution actions) must ideally
indicate, together with the resolution actions, the observations perceived by

1https://ext.eurocontrol.int/lexicon/index.php/Air traffic control
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ATCO before the resolution action, and which drove the specific action. Such
observations regard the prediction of the evolution of the trajectories, and
the assessment of conflicts. However, historical data sets indicate only the
effect of ATCO resolution actions, but not the rationale behind them. This
adds difficulty in the learning process, since imitating the when and how
of the ATCO reactions necessitates recovering the state, or the important
observations, that the ATCO faced or assessed, driving the decision. This is
not a trivial task as the evolution of the trajectories is uncertain, and this
uncertainty should be incorporated into the CD&R process. Towards this
goal, in this paper, we propose a methodology for simulating the uncertainty
in the trajectory evolution process towards revealing the ATCO observations
that have triggered the reactions.

The specific contributions made in this paper are as follows:
– We formulate the problem of learning the ATCO reactions;
– We propose using a supervised deep learning method employing a Vari-

ational Auto-Encoder (VAE) for predicting ATCO reactions in a hierarchical
manner, in the context of a methodology to model ATCO behaviour;

– We propose a data-driven method for simulating the uncertainty in the
evolution of trajectories, revealing the rationale behind ATCO reactions;

– We propose a methodology for evaluating data-driven methods to re-
solve the ATCO reaction problem;

– We evaluate the proposed method using real world data.
The paper is structured as follows: Section 2 presents background knowl-

edge, section 3 specifies the problem of predicting the ATCO reactions and
section 4 presents the proposed methodology. Section 5 presents the pro-
posed evaluation methodology and experimental results, section 6 presents
related work, and section 7 concludes the paper and presents future work.

2. Background Knowledge

2.1. Conflict Detection and Resolution

To maintain the risk of collision between aircraft in acceptable levels,
the ATM system requires that the aircraft do not breach certain separation
minima both at the horizontal and vertical axes. According to ICAO Doc
4444 the minimum prescribed horizontal separation when using surveillance
systems is 5NM. This may be further reduced or increased by the Air Traffic
Service (ATS) authority based on the surveillance systems’ capabilities and
the situation created between the aircraft. According to ICAO documents,
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the specified minimum vertical separation for Intrument Flight Rules (IFR)
flights is 1000 ft (300 m) below FL290 and 2000 ft (600 m) from FL290
and above. When Reduced Vertical Separation Minima (RVSM) apply, this
changes to 1000 ft (300 m) below FL410 and 2000 ft (600 m) from FL410 and
above.2 A loss of separation is defined as the violation of separation minima
in controlled airspaces, whereas a conflict is defined as a predicted violation
of the separation minima.

Nowadays conflicts are detected and resolved by the Planner Controller
(PC) and the Executive Controller (EC). Tactical conflict detection and res-
olution is executed by ECs detecting and resolving conflicts in their respec-
tive Areas of Responsibilities (AoRs) (airspace sectors that segregate the
airspace), also coordinating actions with the ECs of the downstream sectors.
In contrast to that, which happens today, in a flight-centric ATC we may
ignore AoRs corresponding to sectors: Conflicts are detected in a temporal
and spatial granularity which is larger than that of flights in sectors.

Conflict detection and resolution in the planning phase suggests changes
in the flight plan. At the tactical phase it implies changes of the actual flight
trajectory, given the trajectory up to the current time point, the current
flight plan, and/or prediction(s) on the evolution of the trajectory from that
time point and on. Prediction is crucial here, since the future position of
the aircraft is uncertain and the uncertainty grows larger with longer time
horizons, limiting the confidence on predictions. This, combined to the (un-
certain) evolution of other trajectories, implies uncertainties in conflicts that
ATCO have to assess towards prescribing resolution actions.

CD&R involves human expertise and informed judgement. Thus, it is
very difficult to hand-craft criteria which will drive a system to decide whether
a conflict deserves a certain reaction at a particular time point, which con-
flict should be resolved among several co-occurring ones, and at which time
point during the evolution of the involved trajectories one should react to a
conflict, especially in long-term horizons (i.e. beyond 15-20 minutes). In ad-
dition, this task requires advanced trajectory prediction abilities, considering
also the uncertainty in the evolution of trajectories.

2https://www.skybrary.aero/index.php/Separation Standards
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2.2. Imitation Learning

Imitation learning aims at learning policies that mimic expert behaviour
from demonstrations. Modeling the problem as a Markov Decision Process
(MDP), the goal in imitation learning is to learn a policy π(a|s), which
defines the conditional distribution over actions a ∈ A for any state s of
interest, given state-action sequences TE = {T |T = ((s0, a0), . . . , (s|T |, a|T |))
demonstrated by experts.

As any imitation problem, the data-driven CD&R task can be defined as
follows: Given a set TE of historical, demonstrated trajectories with conflict
resolution actions (i.e., demonstrating ATCO actions in resolving conflicts
in the course of trajectory evolution), the objective is to determine a policy
π and a “reward” function RE that determines the generation of maximal-
expected-cumulative-reward in any trajectory Tπ:

Tπ = argmaxπEπ[RE(s, a)]

The policy prescribes the probability of applying an action a at state s,
so as the trajectory to evolve from that state on, maximizing the expected
reward. In the context of CD&R problem, the policy must “shape” the
trajectory w.r.t. the demonstrated expert behaviour in TE, so as to resolve
conflicts. Actions executed at each state determine how the trajectory evolves
towards the next state (e.g. by means of change in speed, change in aircraft
course, other detailed aircraft intent instructions etc.).

Following a data-driven approach, the reward function shows the adher-
ence of predictions to behavioural patterns and policies, as these are demon-
strated in historical cases TE, and to additional constraints. Many imitation
learning methods do not require learning or crafting manually a reward func-
tion and this is the approach we follow in this work.

Bellow we provide succinct information on state of the art imitation learn-
ing methods for trajectories, in order to motivate and explain better the
proposal made in this paper and the methodology followed.

Ho et. al, in [1] introduced an imitation learning framework called Gen-
erative Adversarial Imitation Learning (GAIL) that is able to learn policies
for complex high-dimensional physics-based control tasks.

While GAIL can learn a policy that imitates the evolution of demon-
strated trajectories, considering CD&R tasks as sub tasks that must be ex-
ecuted while a flight trajectory evolves, we aim at imitating intra-trajectory
(i.e., intra-flight) modes of behaviour, that GAIL cannot detect. Directed
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InfoGAIL proposed in [2] aims to model such intra-trajectory sub-tasks’ vari-
ations by means of latent codes. Latent codes correspond to sub-tasks varia-
tions within a demonstration and can be considered in a hierarchical manner
as high-level actions “shaping a trajectory”, refined by primitive or low level
policy π actions.

In a more technical level, Directed InfoGAIL [2], in contrast to other
approaches, forces the policy to generate trajectories that maximize the di-
rected or causal information flow from trajectories to the sequence of la-
tent variables: Given a trajectory T generated up to current time t, T 1:t =
(s1, . . . , at−1, st), Directed InfoGAIL derives the variational lower bound L1(π, q)
of the mutual information I(c;T ) between latent codes and trajectories, by
using an approximated posterior q(ct|c1:t−1, T 1:t−1) for the mode to follow the
sequence of modes up to current time point t− 1, and T 1:t−1, instead of the
true posterior p(ct|c1:t−1, T 1:|T |):

L1(π, q) =
∑
t

Ec1:t∼p(c1:t),at−1∼π(·|st−1,c1:t−1)log(q(ct|c1:t−1, T 1:t)) +H(c) ≤ I(c;T )

Thus, at each time point t, this method learns a posterior distribution over
the latent code c at t, given the latent factors discovered up to t− 1, and the
trajectory up to t. To estimate this distribution, Directed InfoGAIL trains
a variational auto-encoder (VAE) [3] on the expert trajectories.

Following the above methodology to model the ATCO policy in resolving
conflicts, latent codes represent high-level ATCO reactions to detected con-
flicts, which are further refined by low-level conflict resolution actions that
evolve the flight trajectory. In this paper we report on what we consider
the first stage of this methodology: i.e. the prediction of ATCO reactions
at any specific trajectory point. We do this by training a model in a super-
vised way, exploiting demonstrated ATCO resolution actions associated to
historical conflict-free trajectories, estimating the features that affect ATCO
decisions.

2.3. Variational Auto-encoders (VAE)

This section provides background knowledge and preliminaries regarding
VAE, which is the model that we use in the first methodological stage.

Auto-encoders are neural network models trained to reconstruct the input
to their output. Internally they can be broken down into two parts: an
encoder network and a decoder network. The encoder network, comprising
a number of hidden layers, maps the input x to an encoding c, which can be
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denoted as c = qφ(x), where φ are the parameters of the encoder network.
The decoder network maps the encoding c to a reconstruction of the input
r = pθ(c), where θ are the decoder parameters. Auto-encoders do not merely
learn to reconstruct the input. They learn an encoded representation c of the
input x, which retains enough information to allow a reconstruction r (e.g. for
dimensionality reduction or feature learning in [4], [5]). Auto-encoders have
been explored for more than three decades, with recent advances applying
auto-encoders to image de-noising [6], anomaly detection [7], information
retrieval [8] and generative tasks (i.e. image captioning [9]).

Variational Auto-encoders (VAE) [3] are a generative variant of auto-
encoder models, successfully applied to generative tasks: The encoder of
a variational auto-encoder outputs the parameters of a distribution qφ(c|x)
approximating the true intractable posterior p(c|x). The decoder samples
c from qφ(c|x) and outputs a reconstruction r. Therefore, VAE learns an
approximation qφ(c|x) of the true intractable posterior p(c|x), represented
by the encoder, and a generative model pθ(r|c), represented by the decoder.
To do so VAE maximizes the lower bound:

L(θ, φ;x) = −DKL(qφ(c|x)||p(c)) + Eqφ(c|x)log(pθ(x|c)) (1)

In the context of Directed InfoGAIL [2] the encoder approximates the
true posterior p(ct|c1:t−1, T 1:|T |), predicting the latent codes while performing
tasks. The decoder learns a policy, generating actions, given the state and
the predicted latent code, according to the demonstrated examples. To do
so, the VAE used minimizes the following objective:

LV AE = −
∑
t
Ect∼q[logπ(at|st, c1:t)] +

∑
t

DKL(q(ct|c1:t−1, τ 1:t)||p(ct|c1:t−1))

Therefore, the encoder is trained w.r.t. the errors propagating backwards
from the decoder, following a hierarchical approach. Indeed, the variational
auto-encoder provides a hierarchical structure, where the encoder predicts
the mode of behaviour c (high-level actions), and the decoder predicts the
policy (low-level) actions π(a|s, c), given the state s and the predicted c.
Motivated by the Hierarchical Reinforcement Learning literature [10], [11],
[12] we consider a hierarchical structure of ATCO reactions where abstract
high-level reactions, corresponding to modes of the ATCO behavior (indi-
cating whether to issue a resolution action in the presence of a conflict) are
further refined by means of fine low-level reactions that imply the evolution
of aircraft state in a specific manner.
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3. Problem Specification

3.1. Definitions

A trajectory is a chronologically ordered sequence of states, without an
explicit consideration on actions shaping the trajectory: T = (s0, s1, ...s|T |).

In the aviation domain, most relevant state variables are airspeeds, 3D
position (determined by latitude (f), longitude (l) and geodetic altitude (h)),
and time (t). The direction of a trajectory at any point is usually expressed in
degrees from North (true, magnetic or grid). Here, we aim to exploit aircraft
trajectories whose states include 3D aircraft position with timestamps, in
conjunction to contextual features that are useful to the CD&R task. Adding
contextual features in a trajectory state results in a trajectory with enriched
points or enriched states, thus to an enriched trajectory:

An enriched trajectory state or enriched trajectory point of a trajectory of
length |T |, is defined to be a triplet sr,i = 〈pi, ti, vi〉, where pi is a point in the
3D space, vi is a vector consisting of categorical and/or numerical variables,
and ti is a timestamp, with i ∈ [0, |T |−1]. An enriched trajectory T is defined
to be a sequence of enriched states sr,i = 〈pi, ti, vi〉, i ∈ [0, |T | − 1].

A predicted trajectory Tp, is defined to be a specification of the future
evolution of the aircraft state as a function of (a) the current flight conditions
(e.g. an initial state with co-occurring trajectories according to flight plans or
other predictions, actual weather conditions etc.), (b) a forecast of contextual
features (e.g. forecast of weather conditions at specific points/regions, or
predicted states of other flights) and (c) a “policy” on how the trajectory
evolves, i.e. a specification of how the aircraft is to transit among subsequent
states starting from an initial state and on.

Given the evolution of a trajectory T 1:t, or simply T t, up to t, a pre-
dicted trajectory from that time point will be denoted as T tp. A set of such

predictions, showing potential trajectory evolutions of T t, is denoted by Tt
p.

The Closest Point of Approach (CPA)3 of an aircraft i w.r.t. another
aircraft j, is the position of i when the distance between the two aircraft is
minimum. The CPA can be computed in the horizontal axis, in the vertical
axis or in all 3 dimensions. The time at CPA is the time at which the
smallest distance between the two aircraft occurs. To compute the CPA at
the horizontal axis we follow the methodology presented in [13].

3https://www.skybrary.aero/index.php/Closest Point of Approach (CPA)
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The Crossing Point (CP) 4 of a pair of aircraft 〈i, j〉 is the point at which
the tracks of the aircraft intersect. Where the track5 of an aircraft is defined
as the projection of the aircraft trajectory on the earth’s surface.

Given a spatiotemporal area SA, neighbouring trajectories in SA are those
trajectories that co-occur in SA, i.e. with temporally corresponding points in
SA (3D points with equal timestamps), satisfying also constraints regarding
their tracks, CPA and CP.

More formally:

Neigh(SA, t) = {{Ti, Tj}|There is at least one point (si, t) in Ti and one
point (sj, t) in Tj, s.t. it holds that in(si, SA) and in(sj, SA) at time point t
and also the aircraft flying T ti and T tj satisfy a set of constraints CR.

The predicate in(s, SA) is true when the 3D spatial point corresponding
to s is in the spatial region SA. The set of constraints CR includes the
following:

- Aircraft have not crossed the crossing point;
- The tracks of the aircraft cross in less than ctth minutes;
- The horizontal distance at the CPA is less than cpadhthnm,
- The time to the CPA is less than cpatthmin;
- Aircraft altitude difference at the current time point is less than dvthft.

The parameter ctth is the crossing time threshold, cpadhth is the horizontal
distance threshold at the CPA, cpatth is the time to CPA threshold, and dvth
is the vertical distance threshold. We set ctth = 20 minutes, cpadhth = 15
nm, cpatth = 30 minutes and dvth to the vertical separation minimum (1000
feet under FL410 and 2000 feet from FL410 and over).

We consider aircraft flying trajectories in Neigh(SA, t), to be in conflict.
It must be noted that we use a large horizontal distance threshold at the

CPA (cpadhth ) of 15nm, in order to include margins of error when estimating
ATCO observations in triggering their reactions. In so doing we incorporate
further uncertainties in detecting conflicts. Indeed, ATCO take margins of
error perceiving flights,6 even when the predicted horizontal distance between
them at the CPA is greater than the horizontal separation minimum. Such

4https://www.skybrary.aero/index.php/Vectoring Geometry
5https://www.skybrary.aero/index.php/Heading, Track and Radial
6These margins may not be so large as we assume here but it must be emphasized that

we do so in order to reveal the situation that ATCO perceive prior to their reaction.
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margins of error are important to ensure safety.
In addition, given a specific (focal/own) trajectory Tf and a spatiotempo-

ral area SA, we define the set of neighboring and thus conflicting trajectories
to Tf in SA at a specific time point t, or the set of trajectories interacting
with Tf in SA at time point t, denoted Neigh(Tf , SA, t), those that a) have
at least one point spatially close to the focal trajectory point at the time
instance t, according to a horizontal distance measure horizontal distance
and a distance threshold Dth, and b) satisfy the constraints CR.

Formally:

Neigh(Tf , SA, t) = {T |There is a point (si, t) in T and a point (sj, t) in
Tf , s.t. it holds that in(si, SA) and in(sj, SA) at time point t,
horizontal distance(si, sj) ≤ Dth and the aircraft flying T tf and T t satisfy
the set of constraints in CR}.

3.2. ATCO Reaction Prediction Problem Specification

Given a set TE of historical trajectories and a set RAE of historical
ATCO conflict resolution actions associated to trajectories in TE, our goal
is to learn a model that imitates the ATCO’s behaviour in terms of these
resolution actions. Considering a set of ATCO behavior modes abstracting
resolution actions assigned to trajectories when conflicts are detected, our
goal is to predict whether, when and how the ATCO will react in assigning
a conflict resolution action.

So, in order to be able to imitate the behaviour of the ATCO and also the
evolution of the trajectories in time, given TE and RAE, we develop models
that:

1. Predict at any trajectory point the ATCO mode of behaviour deciding
whether the ATCO would issue a resolution action, and

2. Predict the resolution action the ATCO would decide, if any.

In this paper, focusing on ATCO reactions, we mostly focus on the 1st prob-
lem. In this case, modes of the ATCO behavior, in the more abstract form,
can include: “Not Assigning resolution action” and “Assigning resolution
action”. Thus, we consider modes of ATCO behaviour as decisions corre-
sponding to when, i.e., at which points of the trajectory, the ATCO issues a
resolution action. However, we conjecture that developing models of ATCO
timely reactions, we need to also consider the 2nd problem. Thus, models
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are trained to predict high-level reactions corresponding to modes, as well
as low-level ATCO resolution actions. Here we focus on the 1st problem.
Learning the low-level ATCO policy is a problem that will be addressed
more adequately in future works, according to the methodology followed.

Given the above, the ATCO Reaction Prediction Problem is about pre-
dicting at a time point t whether, when and how the ATCO will react re-
garding a particular flight that has executed a trajectory T tf (focal trajectory)
given Neigh(Tf , SA, t), w.r.t. a spatial area of responsibility SA.

This problem comprises (a) detecting conflicts by identifying neighbour-
ing trajectories in the spatio-temporal region SA, (b) determining the exact
time point tA, s.t. t ≤ tA ≤ tc for issuing a resolution action, if any; where tc
is the time point at which the conflict occurs, and (c) deciding the resolution
action to be applied, thus shaping the future evolution of the trajectory.

It must be noted that, given multiple aircraft executing neighbouring
trajectories, we also need to consider the problem of deciding which of the
involved aircraft must manoeuvre to resolve any such conflict. This problem
will be addressed in future work, together with learning the ATCO low-level
policy on resolution actions.

4. Solving the ATCO Reaction Problem

Figure 1: Methodology stages for solving the ATCO reaction problem

In this section we describe the methodology proposed for the ATCO re-
action prediction problem. Figure 1 depicts the stages of this methodology,
and subsequent subsections describe each stage in detail, starting with the
available data sources and their association. Briefly:

At the data pre-processing stage we pre-process and associate the available
data sources of historical flown, thus conflict-free, trajectories, and ATCO
events.

At the estimating trajectory evolution stage we estimate for any trajectory
T t, and at any time point t, the set of potential trajectory evolutions Tt

p,
modelling the uncertainty in the trajectory evolution that ATCO somehow
estimate towards detecting conflicts.
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The conflict detection stage exploits the predicted evolutions Tt
p of tra-

jectories to identify neighbouring trajectories within an area of responsibility,
and compute relevant features.

Finally, having detected conflicts that may have affected the evolution
of the trajectories, and associated ATCO events, at the imitation stage we
proceed to training our models to imitate ATCO reactions.

4.1. Data Sources

Data sources comprise (a) surveillance data (IFS) of operational qual-
ity data with actual flights’ trajectories (Spanish ATC Platform SACTA),
and (b) ATCO events that provide information regarding resolution actions
assigned to flights by the ATCO (ATON, Automated NORVASE Takes).

Surveillance data include radar track points with temporal distance of
approximately 5 seconds. At the pre-processing phase we synchronize all
flights in the temporal dimension by interpolating trajectory points at time
points with a value multiple of 5 seconds.

The surveillance dataset provides the spatiotemporal points of the trajec-
tories, specifically the position (longitude, latitude, altitude) and the times-
tamp together with other information that identifies a specific trajectory,
such as the callsign and the origin and destination airports. Such informa-
tion is essential in order to associate a trajectory with ATCO events. Given
the surveillance data set, an area SA and a particular flight we can determine
at any time point t the trajectory T t within SA, i.e. the trajectory up to
that time point, as well as Neigh(T t, SA, t).

The ATCO events dataset provides information regarding conflict resolu-
tion actions issued by ATCO. It provides the callsign of the trajectory, the
origin and destination airports, the timestamp of the resolution action and
the type of the resolution action: 〈callsign, origin airport, destination air-
port, resolution action type〉7. This information enables the association of
ATCO conflict resolution actions with trajectory points.

Specifically, we associate an ATCO event for a resolution action RA to a
trajectory T when the following conditions are satisfied:

1. RA.callsign = T.callsign

2. RA.departure airport = T.departure airport

7In this work we are interested only on the type of the resolution action, as the com-
putation of the ATCO policy for the exact resolution is out of scope.
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3. RA.destination airport = T.destination airport

4. Timestamp of the first T point ≤ timestamp of RA ≤ timestamp of
the last T point.

Given that the above conditions hold T and RA, the trajectory point that
is temporally closer to the RA, is associated with the RA.

Figure 2: Trajectory points (blue points) associated with a corresponding ATCO event.
The figure indicates the callsign, the departure (apt from) and the destination airports
(apt to), the resolution action type (mwm code), the time (time annotation) and the sector
in which the resolution was issued (sector). The red point depicts the trajectory point
(with the timestamp) associated to the ATCO event.

Figure 2 depicts an example of associating an ATCO event to the cor-
responding trajectory. The table reports the attributes of the ATCO event,
the blue line is the trajectory and the red point depicts the trajectory point
which is closer in time to the ATCO resolution action, together with its
timestamp. The timestamps of the ATCO event, of the first and of the last
point of the trajectory, are provided.

4.2. Simulating uncertainty in trajectory evolution

Addressing the ATCO reaction prediction problem in a data-driven way
(i.e. based on historical data), the training process necessitates having data
associating ATCO observations that drove estimations for conflicts, with
specific reactions. These observations are not recorded in a historical data
set and they concern contextual features of trajectories, revealing ATCO’s
estimations on the future evolution of trajectories at any time point, and
conflicts with neighboring trajectories, prior to implementing a resolution
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action. These observations must enrich the states of a trajectory and be
exploited during the training process.

Determining these observations, it involves detecting the conflicts that
would occur if the ATCO would not react at a time point t. It involves esti-
mating the cases where two trajectories T t1 and T t2 are in conflict and violate
the separation minima according to assessed trajectories’ evolutions T t1p and
T t2p. This is not trivial as the state of the aircraft after t is uncertain, and
this uncertainty grows exponentially as the temporal horizon of estimation
increases.

To estimate the evolution of trajectories we exploit ∆c and ∆sh of the
historical trajectories. ∆c is the difference ct+1 − ct where ct is the aircraft’s
course at time point t and ∆sh is the difference sht+1 − sht where sht is the
magnitude of the horizontal speed at time point t.

More specifically, given trajectories TE in the surveillance data set, at
each time point we compute ∆c and ∆sh and we divide the values in n
equi-height bins, where n is a hyper-parameter which we set to 20 in our
experiments. Using the median of each bin as the bin’s representative value,
we get n values for the potential deviation in the course and n values for the
potential deviation in the horizontal speed.

Overall, given a trajectory T up to the current time point t, i.e., T t, we
compute the course (courset) that the aircraft follows and the magnitude of
the aircraft’s speed (speedt) at that point st, exploiting information provided
at st and st−1. Adding 0 or any of the potential deviations to the courset

and speedt results to (n+ 1) ∗ (n+ 1) potential trajectory evolutions in Tt
p.

In the next section we discuss how we exploit the potential trajectory
evolutions to estimate conflicts.

4.3. Trajectory states, ATCO modes of reaction and resolution actions

Motivated by the bibliography on CD&R ( [13], [14], [15], [16]), we enrich
trajectory states with a vector v of variables including, the magnitudes of the
aircraft horizontal (sh) and vertical (sv) speed, as well as with the following
features regarding any neighboring trajectory Tj:

〈sin(bf ), cos(bf ), df , dhcpaj , dvcpaj , tcpaj , dcpj , tcpj , sin(aj), cos(aj), sin(bj), cos(bj)〉

As Figure 3 depicts, bf is the relative bearing w.r.t. a fixpoint, df is the dis-
tance from that fixpoint, dhcpaj , dvcpaj are the horizontal and vertical distance
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of the flights at the CPA and tcpaj is the time of the ownship to CPA. dcpj
is the distance between the ownship and the neighbouring aircraft j, when
the first of these is at the crossing point and tcpj is the time until the first
of the flights is at the crossing point. The intersection angle between the
two trajectories is aj, and bj is the relative bearing of the ownship w.r.t. the
trajectory Tj at the CPA.

To compute the CPA we follow the methodology presented in [13].

Figure 3: Features enriching a trajectory point w.r.t. the aircraft flying a conflicting
trajectory Tj .

As we want our model to be agnostic to the specific spatio-temporal
(longitude, latitude, timestamp) position, so as to generalize beyond specific
areas and origin destination pairs, we train and test our models using an
abstraction of states as follows:

s = (h, sh, sv, f)

where, f is a vector with features regarding all the neighboring trajectories.
As far as the actions are concerned, as described, we consider two levels

of action abstractions: Modes of behaviour and types of resolution actions.
The set of modes comprises three modes:
- C0: No conflicts detected, and no resolution action is applied.
- C1: At least one conflict is detected, and a resolution action is applied.
- C2: At least one conflict is detected but no resolution action is applied.
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The last mode indicates ATCO’s tolerance to some conflicts, and allows
delaying reactions after detecting conflicts and assessing the safety-criticality
of a situation.

The set of types of resolution actions consist of categorical actions:
-A0:“No resolution action”
-A1: “Speed change resolution action”
-A2: “Direct to waypoint resolution action”
Although our main focus here is to predict the mode of the ATCO be-

haviour at specific times, the model is trained to also predict categorical
conflict resolution actions as well as continuous actions regarding the trajec-
tory evolution. The set of continuous actions comprise the change in course
∆course of the trajectory, the change in the horizontal and vertical speeds
∆sh and ∆sv and also the time to the next point ∆t.

All these actions are important towards training models of timely ATCO
reactions and specify the policy of the ATCO in conjunction to the policy
of trajectory evolution at a fine level of detail. However, our focus in this
paper is on predicting ATCO mode of behavior: Future work will exploit
these models to predict ATCO resolution actions in conjunction to actions
driving the evolution of the (conflicts-free) trajectory from state to state.

4.4. Learning timely reactions

As already described in Section 2.2, towards predicting the ATCO’ timely
reactions we train a Variational Autoencoder (VAE) imitating the demon-
strated ATCO policy in a supervised way. Modes of behaviour are decided by
the encoder and exploited by the policy, which is represented by the decoder
network and prescribes sequences of low-level actions.

The encoder and decoder networks are trained by exploiting enriched tra-
jectory points, the associated ATCO reaction modes and resolution actions.
The errors regarding the predicted actions propagate backwards from the
decoder. The encoder aims to minimize the categorical cross entropy loss be-
tween the distribution of modes in the dataset and the distribution predicted
by the encoder.

To train the VAE for the continuous low-level actions we minimize the
Mean Squared Error (MSE) and for the categorical actions the categorical
cross entropy between the distribution of actions in the data set and the
distribution of the decoder predictions.

Formally, the loss function of VAE is as follows:
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LV AE(π, q) =− E(ct∼q,(at,st)∼pdata)[logπθ(a
t|st, ct)]

− E(ct,ct−1,st)∼pdata)[logqφ(ct|c(t−1), st)]
where πθ is the decoder’s policy, qφ is the encoder network, a, s and c are

the actions, states and modes, respectively, pdata denotes the data distribution
and t the timestep.

As modes are categorical variables we used the Gumbel-softmax trick [17]
to obtain samples from a categorical distribution.

Regarding the networks architecture, as LV AE specifies, the encoder net-
work, given the mode at time point t − 1 together with the state at time
point t, predicts the mode at the current time point t. The decoder network
takes as input the predicted mode and the state at the current time point t
and predicts the probabilities of low-level actions at time point t.

The encoder and decoder networks consist of two layers of 64 LSTM nodes
each, with tanh activation. Additionally, the encoder has a dense output
layer with linear activation and number of nodes equal to the number of high
level actions. Similarly, the decoder has a dense layer with linear activation
and number of nodes equal to the number of categorical actions, and another
dense output layer for the continuous actions, with linear activation and
number of nodes equal to the number of continuous actions. To minimize
the loss function for both the Encoder and VAE we use the Adam optimizer.

5. Experimental Evaluation

5.1. Experimental Setting

We evaluate the proposed method in two different types of settings w.r.t.
the area of responsibility (AoR) chosen: a) The sector-related and b) the
sector-ignorant settings.

In the sector-related case the AoR SA corresponds to a sector crossed
by the trajectory of the ownship. Given that neighbouring flights are all
flights in SA following the constraints in CR (according to the definition of
neighboring flights), we set the horizontal distance threshold Dth to infinity.

In the sector-ignorant case we simulate a setting close to the flight-centric
one and consider a rectangular area covering the Iberian Peninsula. We
segregate this area in cells of size 0.5 degrees longitude and latitude. We
do so in order to create an index of the positions of flights in each cell at
each time point. This allows fast access to the flights of each cell at each
time point, making the identification of neighbouring flights more efficient in
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terms of computational time. For each trajectory point in this area we limit
the neighbouring flights w.r.t. a focal trajectory to those with a distance
threshold Dth to 5 cells in the longitude (approx. 231 km) and latitude
(approx. 308km) dimensions. This has as an effect that the area defined by
the area covering the Iberian Peninsula and Dth specifies SA and follows the
movement of the ownship.

Figure 4 shows the SA area considered in the sector-ignorant case (area
covered by the grid), the focal trajectory of the ownship (red trajectory
or dark gray in grayscale) and neighboring trajectories in Neigh(Tf , SA, t).
The ownship’s position at time t is shown in white (middle point). The area
defined by Dth w.r.t. the ownship’s position is depicted by the red rectangle.
The yellow dot in the upper part of the grid is the fixpoint used and will be
further discussed in the following sections.

Figure 4: The SA area and the area defined by Dth (red rectangular area) w.r.t. the
ownship’s position (white dot) in the sector-ignorant case.

5.1.1. Data sets and Pre-processing

As discussed in section 4.3, we annotate the trajectory points for all tra-
jectories in TE using the modes C0 (“No conflicts detected, and no resolution
action has been applied”), C1 (“At least one conflict is detected, and a res-
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step C0 C1 C2

1 0.63933797 0.05469366 0.30596837
2 0.61360892 0.10181661 0.28457447
3 0.59235067 0.14231008 0.26533926
4 0.57311712 0.17803213 0.24885076
5 0.55696083 0.20905254 0.23398663
6 0.54101562 0.23763021 0.22135417

Table 1: Prior distribution of modes (C0, C1, C2) for different subsampling step values
computed on the dataset for the sector-ignorant experimental setting.

olution action has been applied”), and C2 (“At least one conflict is detected
but no resolution action has been applied”).

In so doing we have to deal with the following two problems:

1. The dataset is imbalanced regarding the modes. The typical case is to
have one resolution action and one point with C1 mode for a trajectory
with 700 points (699 points corresponding to modes C0 and C2).

2. Following a data-driven approach and exploiting data with flown (thus
conflict-free) trajectories, although we have defined the methodology
presented in Section 4.2 to detect conflicts that may exist prior to
issuing a conflict resolution action recorded in the datasets, there are
cases where there is an ATCO resolution action for a trajectory but no
conflicts are detected.

We cope with the first problem by augmenting data: The trajectory points
in a time window of 250 seconds before the resolution action are annotated
with C1, except the points at which no conflicts are detected which are filtered
out. This, somehow incorporates the uncertainty of ATCO’s decision about
the time to issue a resolution action. We call the point at which the resolution
action was issued the actual Resolution Action Trajectory Point (RATP) and
the annotated points due to data augmentation, before the actual RATP, are
called annotated RATPs.

Next, we apply subsampling to trajectory points with modes C0 and C2,
keeping one trajectory point with any of these modes every step trajectory
points. We experimented with different step sizes in order to balance the
prior distribution between modes. Table 1 reports the prior distribution of
modes C0, C1 and C2 for different step sizes considering the dataset of the
sector-ignorant experimental setting. Given these distributions we decided
to set step equal to 6 subsequent trajectory points (i.e. 30 seconds).
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Regarding the second problem, we filter out trajectories where there is
an associated ATCO resolution action in the dataset but no conflicts are
detected by our methodology in a time window of window duration seconds
before the actual RATP. The trajectory point (if any) in the specified time
window at which at least one conflict is detected and is temporally closest
to the point where the ATCO resolution action is indicated, as the actual
RATP. We set window duration=70s. This choice follows consistently the
evaluation methodology that is described in Section 5.1.2.

The fixpoint of a flight in the sector-related setting is the exit point from
the sector. In the sector-ignorant setting is the point at which the edge
towards the destination airport of the SA box crosses the line connecting the
origin and the destination airports.

The dataset contains trajectories between 5 different origin-destination
pairs, all from 2017: Malaga (LEMG) - Gatwick (EGKK), Malaga (LEMG)
- Amsterdam (EHAM), Lisbon (LPPT)- Paris(LFPO), Zurich (LSZH) - Lis-
bon (LPPT) and Geneva (LSGG) - Lisbon (LPPT). We study only ATCO
resolution actions issued at the en-route phase of operations and filter out
the climb and descent parts of the trajectories. In addition, we consider only
trajectories that have at least one ATCO resolution action and an associ-
ated actual RATP. This results to 255 enriched trajectories corresponding
to 344 resolution actions for the sector relevant case and 668 trajectories
corresponding to 791 resolution actions for the sector-ignorant case. It must
be noted here that the available ATCO events dataset covers the Spanish
airspace and thus we consider the points of the trajectories that are in this
airspace. However, the proposed method is generic, goes beyond sectors, as
we show in the sector-ignorant case, and can be applied in any airspace.

5.1.2. Evaluation methodology

To evaluate the accuracy of predictions made by the proposed models
we define weighted versions of precision and recall: We do so, in order to
provide the flexibility needed for the predicted RATPs, compared to the
actual and annotated RATPs. This flexibility is necessary, as ATCO’ timely
reactions may differ even in the same situation, if this situation occurs at
different times and/or for different ATCO. Weighted versions of precision
and recall penalize predicted RATPs based on their temporal distance to
the actual or annotated RATPs. for this purpose we define a score function
based on temporal distance between RATPs using a Gaussian distribution
with std =5, as justified below.
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Formally the score function is as follows:

score(x) =
1
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The parameter n is a factor translating the temporal distance in the x-axis
to a number of n-sec-intervals. We set n equal to 5, given that decisions are
made using the temporal granularity of 5 seconds. By using different values
for the standard deviation and n we can tune this score function, which may
be considered to estimate the probability that a reaction happens with a
temporal difference x compared to the ATCO reaction recorded in the data.

Figure 5: Score function

This function is depicted in Figure 5, taking values between 0 and 1.
Setting n to 5 we sync the temporal distance to the change of slope when
x=20 seconds at x/5=4 (indicated by a red line in Figure 5): Thus, the score
is reduced more drastically when the temporal distance between the predicted
and the actual reactions is greater than 20 seconds. The parameter n also
controls the time window out of which the score is approximately 0. For n=5
this is set to approx. 70s (shown in Figure 5 with the red dot at the right).
This is also the value used for the window duration used when setting the
actual RATP during preprocessing, as mentioned in Section 5.1.1.

Next, we discuss how the score function is used to calculate precision and
recall in experiments, weighting true/false positives/negatives per type of
reaction. The rationale for the weighting scheme is that we want to penalize
false predictions according to their temporal distance from the closest in
time actual or annotated RATP. For example, let us consider a case where
the model reacts to a conflict 5 seconds later or earlier than the reaction
recorded in the dataset. This, due to the small temporal distance between
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the predicted and the actual RATPs, will be penalized lightly, assuming that
both decisions were driven by the same contextual features. On the other
hand, a large temporal distance may be due either to different contexts in
which reactions occur, or to the lack of model’s capability to react at the
right time. In either case, the predicted reaction differs considerably from
the one provided in the data set.

To explain the evaluation scheme, let us consider the (high and low level)
reactions in their most general form. We distinguish the following two generic
classes of ATCO reactions:

- G0: Not Assigning Resolution Action
- G1: Assigning Resolution Action
Class G0 includes modes C0 and C2 and resolution action A0, whereas

class G1 includes mode C1 and resolution actions A1,A2. Thus both G0 and
G1 cases are specialized by subclasses of modes and low-level types of ATCO
resolution actions. Subsequently, we denote G0j , j = 1, .., k and G1j , j =
1, .., l the different subclasses of each class G0 and G1, respectively. The
methodology can be generalized beyond the classes considered here.

Next we describe in detail how false and true positives/negatives for G0

and G1 are weighted when computing precision and recall. Although cases
are presented starting from the most general classes, it must be noted that
the weighted scheme applies to either modes or ATCO resolution actions.

1. False positives/negatives of a subclass G0j

1(a) False positives : In this case the model falsely predicts a subclass G0j

of G0 while the dataset indicates either G1 “Assigning Resolution Action” or
a subclass G0k of G0 with j 6= k.

1(a)i. Let us consider the case where the dataset indicates G1 “Assigning
Resolution Action”. We penalize the prediction according to its distance
from the closest actual RATP. Our rational here is that if the prediction
corresponds to an annotated point far from the actual RATP then we want
to penalize it lightly as a false positive. On the other hand, if the model does
not predict a resolution action close to the actual RATP then we want to
penalize it heavily. To do so, given the time point of the prediction tp and the
time point of the closest actual RATP ta, we calculate the temporal distance
x = |tp− ta| and the weight wfp = fscore(x), considering that the prediction
is false positive with weight wfp and true positive with weight (1−wfp). This
means that G0 false (true) positives are weighted by wfpi (resp., (1− wfpi))
(resulting to

∑#FP
i=1 wfpi , resp. to

∑#FP
i=1 (1− wfpi)).
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1(a)ii. Regarding the second case, the model predicts a subclass G0j of
G0 while the dataset indicates another subclass G0k of G0 with j 6= k. As
ATCO resolution actions in G0 can be only of type A0, this case may occur
only when considering modes. For example, let us consider the case where
the mode indicated in the dataset is C2: “At least one conflict is detected
but no resolution action has been applied” and the model indicates C0: “No
conflicts detected, and no resolution action has been applied”. This is clearly
a false prediction that is penalized heavily by assigning a weight w = 1.

1(b) False negatives : In this case the model falsely predicts either G1

“Assigning Resolution Action” or a subclass of G0, G0k , k 6= j, while the
dataset indicates G0j .

1(b)i. Let us consider the case where the model predicts G1:“Assigning
Resolution Action” instead of G0j :“Not Assigning Resolution Action”. If this
falsely predicted point is close to either an annotated or an actual RATP
we want to tolerate the error penalizing lightly the prediction. To do so,
given the time point of the prediction tp and the time point of the closest
RATP (either actual or annotated) ta, we calculate the temporal distance
x = |tp − ta| and the weight wfn = 1 − fscore(x), considering that the
prediction is false negative with weight wfn and true negative with weight
(1−wfn). As is also evident by the formulas for w, wfn = 1− fscore(x) and
wfp = fscore(x), this case is the complementary of case 1(a)i.

1(b)ii. Considering the case where the dataset indicates G0j but the
model falsely predicts another subclass of G0, G0k where k 6= j, similarly to
the case 1(a)ii. , we assign a weight w = 1 considering that the prediction is
a false negative with weight of 1.

2. False positives/negatives of a subclass G1j

2(a) False positives : In this case the model falsely predicts a subclass G1j

of G1 “Assigning Resolution Action” while the dataset indicates either G0

“Not Assigning Resolution Action” or a subclass G1k of G1 with j 6= k.
2(a)i. Let us consider first the case where the dataset indicates G0 “Not

Assigning Resolution Action” at a point, but the model does issue a resolution
action. If the false prediction is close to either an annotated or an actual
RATP, the prediction is penalized lightly. To do so, given the time point
of the prediction tp and the time point of the closest RATP (either actual
or annotated) ta, we calculate the temporal distance x = |tp − ta| and the
weight wfp = 1 − fscore(x) considering that the prediction is false positive
with weight wfp and true positive with weight (1− wfp).

2(a)ii. Considering the second case, as there is a single mode C1 in class
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G1, this case occurs only when considering ATCO resolution action sub-
classes. In such cases we do not tolerate errors as the model predicts a
wrong resolution action according to the one demonstrated in the dataset.
Thus we assign a weight w = 1 considering that the prediction is a false
positive with weight of 1.

2(b) False negatives : In this case the dataset indicates G1j but the model
falsely predicts either G0 “Not Assigning Resolution Action” or a subclass of
G1, G1k where k 6= j.

2(b)i. Let us consider the case where the model predicts G0 ”Not Assign-
ing Resolution Action” instead of G1j :”Assigning Resolution Action”. The
prediction is penalized according to the distance of the prediction from the
closest actual RATP. Our rational here, as in case 1(a)i., is as follows: if the
prediction corresponds to an annotated point far from the actual RATP then
we want to penalize it lightly as a false negative. On the other hand, if the
model does not predict a resolution action close to the actual RATP then we
want to penalize it heavily. To do so, given the time point of the prediction tp
and the time point of the closest actual RATP ta we calculate the temporal
distance x = |tp − ta| and the weight wfn = fscore(x) considering that the
prediction is false negative with weight wfn and true negative with weight
(1−wfn). Again this means that false (true) negatives are weighted by wfni
(resp., (1− wfni)).

2(b)ii. Considering the case where the dataset indicates G1j but the
model falsely predicts a subclass G1k , where k 6= j, then, as specified in case
2(a)ii., we assign a weight w = 1 considering that the prediction is a false
negative with weight 1.

3. True positives of a subclass Gij : True positives are those cases
where the model correctly predicts a subclass Gij (assigned a score equal
to 1). Additionally, given that false positives are assessed with weight wfp,
then for the corresponding cases we may have a true positive with weight
(1 − wfp). Thus, true positives are calculated using the following formula:∑#TP

i=1 1 +
∑#FP

i=1 (1− wfpi)
4. True negatives of a subclass Gij : As true negatives we consider

those cases where the model correctly does not predict a subclass Gij and it
is scored with weight 1. In addition, given that false negatives predicted are
assessed with wfn, then with weight (1− wfn) we may have a true negative
for the corresponding cases. Thus, true negatives are calculated using the
following formula:

∑#TN
i=1 1 +

∑#FN
i=1 (1− wfni)
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Having considered the different cases we formally define the weighted ver-
sion of precision, recall and f1-score, namely WP, WR and WF1 respectively,
as follows:

WP =
TP

TP + FP

=

∑#TP
i=1 1 +

∑#FP
i=1 (1− wfpi)

[
∑#TP

i=1 1 +
∑#FP

i=1 (1− wfpi)] +
∑#FP

i=1 wfpi

=

∑#TP
i=1 1 +

∑#FP
i=1 (1− wfpi)∑#TP

i=1 1 +
∑#FP

i=1 1

(2)

WR =
TP

TP + FN

=

∑#TP
i=1 1 +

∑#FP
i=1 (1− wfpi)

[
∑#TP

i=1 1 +
∑#FP

i=1 (1− wfpi)] +
∑#FN

i=1 wfni

(3)

WF1 = 2 ∗ WP ∗WR

WP +WR
(4)

In these formulae, #TP is the number of true positives, #FP is the
number of false positives and #FN is the number of false negatives, It must
be noticed that when wfpi and wfni is equal to 1 WP, WR and WF1 revert
to the standard precision, recall and F1 measures.

5.2. Experimental Results

In the following we report the results achieved by the VAE model and
we also report the results achieved by training only the encoder network
(baseline). This shows the difference in performance between the two meth-
ods, caused by the decoder’s error backwards propagation. To evaluate the
VAE and the baseline method we perform 10 experiments with two times
repeated 5-fold cross validation, training the models for 1000 epochs at each
experiment. We report the 95% confidence interval (CI) of the non-weighted
precision, recall and f1-score, in conjunction to the weighted versions of these
measures.

Table 2 reports the 95% confidence interval of the precision, recall and
f1-score, achieved by the VAE and the Encoder (Enc) for the ATCO modes
of behavior and the resolution actions, for the sector-ignorant case. Columns
“modes non-weighted”/“actions non-weighted” and “modes weighted” / “ac-
tions weighted” report respectively on the non-weighted and the weighted
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model modes non-weighted modes weighted actions non-weighted actions weighted

VAE

precision
C0 : 1.000± 0.000
C1 : 0.976± 0.006
C2 : 0.934± 0.012

recall
C0 : 1.000± 0.000
C1 : 0.936± 0.014
C2 : 0.976± 0.006

f1-score
C0 : 1.000± 0.000
C1 : 0.956± 0.008
C2 : 0.954± 0.008

precision
C0 : 1.000± 0.000
C1 : 0.982± 0.005
C2 : 0.990± 0.000

recall
C0 : 1.000± 0.000
C1 : 0.989± 0.002
C2 : 0.983± 0.005

f1-score
C0 : 1.000± 0.000
C1 : 0.985± 0.004
C2 : 0.986± 0.004

precision
A0 : 0.975± 0.004
A1 : 0.635± 0.028
A2 : 0.646± 0.035

recall
A0 : 0.990± 0.000
A1 : 0.549± 0.026
A2 : 0.670± 0.022

f1-score
A0 : 0.985± 0.004
A1 : 0.588± 0.017
A2 : 0.656± 0.021

precision
A0 : 0.998± 0.003
A1 : 0.640± 0.026
A2 : 0.653± 0.035

recall
A0 : 0.993± 0.003
A1 : 0.589± 0.028
A2 : 0.709± 0.021

f1-score
A0 : 0.993± 0.003
A1 : 0.610± 0.017
A2 : 0.679± 0.023

Enc

precision
C0 : 1.000± 0.000
C1 : 0.950± 0.010
C2 : 0.870± 0.038

recall
C0 : 1.000± 0.000
C1 : 0.863± 0.053
C2 : 0.951± 0.011

f1-score
C0 : 1.000± 0.000
C1 : 0.904± 0.032
C2 : 0.909± 0.020

precision
C0 : 1.000± 0.000
C1 : 0.959± 0.009
C2 : 0.975± 0.009

recall
C0 : 1.000± 0.000
C1 : 0.969± 0.017
C2 : 0.961± 0.011

f1-score
C0 : 1.000± 0.000
C1 : 0.964± 0.009
C2 : 0.967± 0.006

- -

Table 2: Experimental Results of the sector-ignorant case achieved by the VAE and
the Encoder (Enc). Columns report the 95% confidence interval of precision, recall and
f1-score w.r.t. the modes and the resolution actions of ATCO, for the non-weighted and
weighted measures.

versions of the measures for modes and resolution actions. As the encoder
does not predict resolution actions, corresponding columns in the second row
are empty.

Regarding the modes of ATCO reaction, results show that both the VAE
and the Encoder networks achieve over 0.9 f1-score on all modes, for the non-
weighted and the weighted measures, with VAE achieving the best results
with a weighted f1-score greater or equal to 0.985 ± 0.004 on all modes.
Also the VAE outperforms the encoder on all measures, weighted or not,
although the Encoder is really competitive. The largest differences between
the models are observed w.r.t. the precision of mode C2 and the recall of mode
C1 for the non-weighted measures. For mode C2 VAE achieves a precision
of 0.934 ± 0.012 whereas the Encoder achieves a precision of 0.870 ± 0.038.
For mode C1 the VAE and the Encoder achieve a recall of 0.936 ± 0.014
and 0.863 ± 0.053, respectively. This shows that there are cases where the
Encoder should assign a resolution action but it fails to do so, as it predicts
mode C2. For the VAE, such cases are rather rare.

An interesting observation is that the non-weighted precision of mode C1

is higher of that of mode C2, while the non-weighted recall of mode C1 is
lower than that of mode C2. Regarding the weighted measures the situation
is quite the opposite, as the weighted precision of mode C1 is lower of that of
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mode C2, while the weighted recall of mode C1 is higher than that of mode C2.
Regarding the differences between the weighted and non-weighted measures
these can be explained as follows (we further delve into this in subsequent
paragraphs): According to the non-weighted measures that penalize all errors
equally, there are cases where the model should react by predicting mode C1

at a specific trajectory point, but it does not, as it instead predicts mode C2.
On the other hand, when considering the weighted measures, we can conclude
that the model predicts mode C1 near the RATPs, in points that according
to the dataset are annotated as C2. These are mostly points that succeed
the actual RATPs and precede the start of the manoeuvre that implements
the resolution action. Note that manoeuvres implementing the resolution
actions do not begin instantly after the ATCO reaction, as pilots need some
time to react to the ATCO’s instruction. Points succeeding the actual RATP
and preceding the start of the manoeuvre have features that are close to the
features of the corresponding actual RATPs, so they are penalized lightly.

Results for the prediction of ATCO resolution actions are not so im-
pressive as those achieved on the prediction of modes. The non-weighted
f1-score for the A1 and A2 resolution actions is A1 : 0.588 ± 0.017 and
A2 : 0.656 ± 0.021. The weighted f1-score is A1 : 0.610 ± 0.017 and A2 :
0.679 ± 0.023. The prediction of ATCO resolution actions will be further
explored in future work.

Observing the weighted and non-weighted measures w.r.t. the modes of
the ATCO reactions we see that the weighted measures are higher than the
non-weighted. To better understand the difference between the non-weighted
and the weighted measures, Table 3 shows 5 trajectories with the highest
difference between the weighted and non-weighted f1-score for the sector-
ignorant case. Column “Predicted” shows the modes predicted by the VAE
model, whereas column “Expert” shows the modes reported in the dataset.
In the x-axis we report the sequence number of each state of all 5 trajectories
and in the y-axis the modes. Blue dots denote the mode, either predicted or
reported in the dataset, at each point. Green solid vertical lines denote the
start of each trajectory, while red dashed ones denote the actual RATP. We
observe that in all 5 trajectories the model predicts mode C1 near the actual
RATPs, which agrees with the annotation of the dataset. Also, the model
predicts mode C2 instead of mode C1 at points which are further from the
actual RATPs (in most cases), and such errors will be penalized lightly by
our weighted measures.

Table 4 reports the 95% confidence interval of the non-weighted and
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Expert Predicted

Table 3: The 5 trajectories with the highest difference between the weighted and non-
weighted f1-score. Column “Predicted” shows the modes predicted by the VAE model,
whereas column “Expert” shows the modes reported in the dataset. X-axis: the sequence
number of the states of all trajectories. Y-axis: the modes. Blue dots denote the mode at
each point. Green solid vertical lines show the start of each trajectory, while red dashed
ones show the actual RATP.
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model modes non-weighted modes weighted actions non-weighted actions weighted

VAE

precision
C0 : 1.000± 0.000
C1 : 0.919± 0.029
C2 : 0.791± 0.048

recall
C0 : 1.000± 0.000
C1 : 0.835± 0.045
C2 : 0.893± 0.036

f1-score
C0 : 1.000± 0.000
C1 : 0.873± 0.025
C2 : 0.835± 0.025

precision
C0 : 1.000± 0.000
C1 : 0.929± 0.028
C2 : 0.960± 0.011

recall
C0 : 1.000± 0.000
C1 : 0.965± 0.012
C2 : 0.919± 0.033

f1-score
C0 : 1.000± 0.000
C1 : 0.945± 0.015
C2 : 0.940± 0.014

precision
A0 : 0.952± 0.012
A1 : 0.604± 0.087
A2 : 0.439± 0.099

recall
A0 : 0.981± 0.007
A1 : 0.566± 0.070
A2 : 0.362± 0.076

f1-score
A0 : 0.966± 0.005
A1 : 0.569± 0.039
A2 : 0.384± 0.075

precision
A0 : 0.993± 0.003
A1 : 0.611± 0.088
A2 : 0.446± 0.100

recall
A0 : 0.983± 0.006
A1 : 0.661± 0.068
A2 : 0.428± 0.093

f1-score
A0 : 0.986± 0.004
A1 : 0.620± 0.036
A2 : 0.419± 0.076

Enc

precision
C0 : 1.000± 0.000
C1 : 0.863± 0.020
C2 : 0.740± 0.037

recall
C0 : 1.000± 0.000
C1 : 0.805± 0.031
C2 : 0.809± 0.024

f1-score
C0 : 1.000± 0.000
C1 : 0.833± 0.022
C2 : 0.774± 0.024

precision
C0 : 1.000± 0.000
C1 : 0.874± 0.021
C2 : 0.950± 0.009

recall
C0 : 1.000± 0.000
C1 : 0.955± 0.011
C2 : 0.857± 0.022

f1-score
C0 : 1.000± 0.000
C1 : 0.913± 0.013
C2 : 0.902± 0.011

- -

Table 4: Experimental Results of the sector-related case achieved by the VAE and the
Encoder (Enc). Columns report the 95% confidence interval of precision, recall and f1-
score w.r.t. the modes and the resolution actions of ATCO, for the non-weighted and
weighted measures.

weighted versions of precision, recall and f1-score, achieved by the VAE and
the Encoder (Enc) for the ATCO modes and the resolution actions, for the
sector-related case. The structure of the table is similar to that of Table 2.

Regarding the modes of the ATCO reactions, the VAE network achieves
f1-score of at least 0.835± 0.025 (C2 mode) on all modes, for both the non-
weighted and the weighted measures, while the Encoder achieves f1-score
of at least 0.774 ± 0.024 (C2 mode). VAE achieves the best results with a
weighted f1-score of at least 0.945 ± 0.015 on all modes. The VAE model
outperforms the Encoder model on all measures, weighted or not.

Similarly, for the sector-related case, weighted measures are higher than
the non-weighted. This shows that in many cases the model makes false
predictions that are penalized lightly by the weighted measures, given that,
as explained in the sector-ignorant case, they are not critical.

As shown in Table 4, the non-weighted precision of mode C1 is higher of
that of mode C2, while the non-weighted recall of mode C1 is lower than that
of mode C2. On the other hand regarding the weighted measures the situation
is quite the opposite, as the weighted precision of mode C1 is lower of that of
mode C2, while the weighted recall of mode C1 is higher than that of mode
C2. As explained in the sector-ignorant case, this implies that according to
the non-weighted measures, there are cases where the model should assign a
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resolution action to a specific trajectory point by predicting mode C1, but
it does not, as in that particular point it instead predicts mode C2. On the
other hand, according to the weighted measures, the model predicts mode
C1 near the actual RATPs even for points that are annotated as C2.

Regarding the predictions of resolution actions, in the sector-related case
results are not good: The f1-score of the A2 resolution action is 0.384±0.075
for the non-weighted and 0.419±0.076 for the weighted measure. As already
pointed out, this will be further explored in future work.

As CD&R in the ATM domain is safety critical, we also report in Table 5
the cases where the models fail to predict a resolution action and do not react
at all in a critical situation. The “setting” column reports the experimental
setting, and columns “VAE #cases” and “Encoder #cases” report the the
number of cases within the 95% confidence interval for the VAE and the
Encoder, respectively.

For the sector-ignorant setting we observe that the average number of
cases for VAE is 6, which is 3.79% of the resolution actions in the test set.
The Encoder on the other hand reports less cases where it did not react
at all in a critical situation, with an average number of 3.2 cases, which
corresponds to 2.02% of the resolution actions in the test set. For the sector-
related setting the number of such cases for VAE is 5.2 corresponding to
7.6% of the resolution actions in the test set. For the Encoder on the other
hand the number of such cases is smaller, with an average value of 2.6 cases,
corresponding to 3.78% of the resolution actions in the test set.

Considering the results reported in Tables 2 and 4, in conjunction to the
number of cases where the models did not react at all to critical situations
reported in Table 5, we observe that the predictions of VAE, when compared
with those of the Encoder, fit better the modes of the test set. Specifically,
the window of points at which the VAE model predicts mode C1 is more close
to that of the expert, compared to the Encoder predictions. The Encoder
on the other hand has less cases where it did not react at all to critical
situations, compared to VAE. This, as we will discuss, could be explained by
the probabilities that each model assigns to modes in each case.

Comparing the performance of the models between the different settings,
we observe that models perform better for the sector-ignorant, rather than
for the sector-related setting. This could be due to the difference of the size
of the dataset between the two settings: The dataset for the sector-related
case is approximately 1/3 the size of the dataset for the sector-ignorant case.
Another explanation for this difference is that flights from adjacent sectors
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Setting VAE #cases Encoder #cases

sector-ignorant 6.000± 2.146 3.200± 1.746
sector-related 5.200± 1.311 2.600± 1.022

Table 5: Number of cases within the 95% confidence interval where the models do not
predict a resolution action to any of the annotated or actual RATPS or any point in the
time window of 70s near the actual or annotated RATPS.

may contribute to conflicts in the current sector (AoR) or in the downstream
sector of a flight. Such flights are not considered in the sector-related case,
therefore the corresponding conflicts are not detected.

Delving deeper into the experimental results, Table 6 provides plots de-
picting the modes according to the test set (column “Expert”) and the pre-
dictions of the models (column “Predicted”) for 10 trajectories. Column
“Setting” denotes the experimental setting, and column “Model” the model
used for the predictions. In the x-axis we report the sequence number of the
states of all trajectories and in the y-axis the modes. Green solid vertical
lines denote the start of each trajectory, while red dashed ones denote the
actual RATP. Numbers over the green lines denote the sequence number of
each trajectory. We observe that for both experimental settings, both models
accurately predict the modes with small deviations, as for instance predic-
tions made by the Encoder on trajectories 1 and 2 for the sector-ignorant
case (indicated by red circles).

Table 7 depicts the probability assigned in each mode by each model (VAE
or Encoder (Enc)) at every point of the 10 trajectories. Column “Setting”
denotes the sector-ignorant or sector-related experimental setting. In the
x-axis we report the sequence number of the states of all trajectories and in
the y-axis the probability of each mode. Green solid vertical lines denote
the start of each trajectory, while red dashed ones denote the actual RATP.
Numbers over the green lines denote the sequence number of each trajectory.
We observe that for the sector-ignorant case VAE provides more “confident”
predictions compared to the Encoder, assigning higher/lower probabilities
to modes. For the sector-related case both models provide quite confident
predictions and at most points the probabilities assigned to each mode are
either high or low.

The differences observed in the sector-ignorant case regarding the magni-
tude of the probabilities assigned to the different modes by each model, could
explain why a) the predictions of the VAE are more consistent with the expert
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Table 6: Modes according to the test set (column “Expert”) and the predictions of the
models (column “Predicted”) for 10 trajectories. X-axis: sequence number for all trajec-
tories. Y-axis: modes. Green vertical lines show the start of each trajectory, while red
dashed ones show the point of the actual RATP. Numbers over the green lines denote the
sequence number of each trajectory. Red circles indicate examples of deviations between
the predictions and the dataset.

32



data compared to the predictions made by the Encoder, and b) the encoder
has less cases where it did not react at all to critical situations, compared
to VAE. VAE being more confident in its predictions, assigning higher/lower
probabilities, will predict more consistently in a window of points one mode
or the other, not changing easily between predicted modes from point to
point. The Encoder on the other hand is assigning more mid-range probabil-
ities to modes and could alternate more easily between modes predicted on
consecutive points. Examples of such cases are indicated with the red circles
in Table 6. This implies that VAE when predicting a resolution action will
be more committed to the prediction of the resolution action for a window
of points, thus better fitting the dataset around the RATPs. On the other
hand, the Encoder, being less ”confident” and more ”fluid” in its predictions,
can predict at points mode C1, even if these points are in windows of points
where it mostly predicts mode C2. This can result to less cases where it does
not react at all to critical situations.

6. Related work

In recent years multiple works consider the problem of assisting the ATCO
with the CD&R task. [18] provides a survey of CD&R research both on
manned and unmanned aviation. [19] proposes a methodology to address
strategic planning involving continent scale traffic. This method finds an
optimal de-conflicted route and a departure time for each flight, relying on a
hybrid-metaheuristic optimization algorithm that combines the advantages
of simulated annealing and of hill-climbing local search methods. In [20] the
authors propose a light propagation algorithm inspired by nature in order to
generate conflict free 4-D trajectories, resolving conflicts at the tactical phase
of operations. Also, in [21] the authors propose a genetic algorithm based
approach to the en-route conflict resolution problem at the tactical phase
of operations. In [22] authors use a lattice-based search space exploration
AI planner to perform conflict resolution. In [23] authors exploit an HMM
to predict at the pre-tactical phase the evolution of trajectories based on
historical trajectories and weather observations. The proposed method uses
these predictions to detect conflicts and assign conflict-related probabilities to
states. Resolution actions are decided by a variant of the Viterbi algorithm.

The application of Reinforcement Learning (RL) methods on the CD&R
task has also received a lot of attention. Authors in [14] and [13] explore a
deep RL approach, based on Deep Deterministic Policy Gradient (DDPG) to
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Table 7: Scatterplots depicting the probability assigned at each mode by the VAE and
the Encoder (Enc) at every point in 10 trajectories. X-axis: the sequence number of the
states of all trajectories. Y-axis: the probability of each mode. Green vertical lines denote
the start of each trajectory and red ones denote the actual RATP. Numbers over the green
lines denote the state number of trajectories.
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resolve conflicts between two aircraft in the presence of uncertainty. While in
[16] authors formulate the problem as a multi-agent reinforcement learning
problem and propose a Message Passing Actor Critic Model inspired by DGN
[24], while also exploiting Message Passing Neural Networks [25]. In [15] the
authors combine Kernel Based RL with deep MARL to resolve conflicts by
applying speed changes in real-time, also considering other factors such as fuel
consumption and airspace congestion. Authors in [26] use Multi-Agent Deep
Deterministic Policy Gradient (MADPG) to resolve conflicts, also considering
time, fuel consumption and airspace complexity.

Closer to our approach are methods that somehow consider the ATCO
preferences, either in a data-driven way as in [27], [28] and [29], or by using
rules and procedures derived from human experts as in [30].

The work reported in [27] proposes a conflict resolution method operat-
ing at the strategic phase of operations. This method projects the aircraft’s
position into the future using the latest updated flight plans. The proposed
methodology utilizes a data-driven model that a) classifies the conflict reso-
lution maneuvers according to the relationship between the aircraft involved
in the conflict and b) clusters the conflict resolution actions, considering the
centroid of each cluster as a possible solution. Next, the method utilizes an ε-
constrained multi-objective optimization method to find the Pareto-optimal
solutions w.r.t. the minimization of fuel consumption and the maximization
of the likelihood of the resolution being implemented by an ATCO.

In [28] the authors propose a conflict resolution advisory system, able to
incorporate human preferences. The system uses an interactive conflict solver
(iCS) for acquiring and characterizing human resolutions in conjunction to a
RL agent that learns to resolve conflicts incorporating the characteristics of
human resolution acquired by the iCS. This work focuses on heading changes,
deciding the trajectory change point (TCP). TCP is the point at which an
aircraft after changing its heading to resolve a conflict will turn again towards
its initial track.

The method proposed in [29] aims to provide personalized advisories to
controllers. Authors train a convolutional NN on individual controller’s data
recorded from a human-in-the-loop simulation to predict conflict resolution
actions. The exploited dataset is in the form of Solution Space Diagrams
(SSD), integrating various critical parameters of the CD&R problem.

Finally, [30] describes an algorithm that provides 4D conflict resolution
trajectories, based on a set of rules and procedures derived from human
experts and from operational insights and analytical studies that reveal the
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characteristics of efficient conflict resolution techniques.
In this work we propose supervised deep learning techniques to learn

models of ATCO reactions in resolving conflicts. This implies learning when
the ATCO will react towards resolving a conflict, and which resolution action
the ATCO will decide. In contrast to the other data-driven methods men-
tioned above, this work advances the state of the Art in CD&R automation
by exploiting recorded ATCO resolution actions on historical trajectories,
formulating and addressing the ATCO reaction problem, considering both
abstract and low-level ATCO reactions, to imitate the ATCO.

7. Concluding remarks

In this paper we have formulated the problem of conflict detection and
resolution as a data-driven problem, aiming to learn ATCO reactions as
a hierarchical task involving high-level reactions representing the mode of
the ATCO behaviour, and low-level reactions representing ATCO resolution
actions. We propose the use of a deep learning method employing a Varia-
tional Auto-Encoder (VAE) in the context of a deep learning methodology
towards imitating ATCO, and have evaluated the proposed method using
real world data in two different experimental settings: the sector-ignorant
and the sector-related. To train the proposed model, we have developed a
data-driven method for simulating the evolution of trajectories, incorporat-
ing uncertainty and revealing the conflicts that ATCO may have assessed
before reacting. To evaluate the proposed method, as well as any other data-
driven method that aims to solve the ATCO reaction prediction problem,
we propose weighted precision, recall and F1 measures, and we use them to
compare the VAE model against a basic model comprising only an encoder.
This comparison delves into the difference that the backwards propagation
of the VAE decoder errors makes to the performance of VAE.

According to our experimental evaluation, both models (VAE and En-
coder) accurately predict the mode of the ATCO behaviour in both ex-
perimental settings: the sector-ignorant and the sector-related. The VAE
achieves consistently better results than the Encoder w.r.t. the weighted
and non-weighted measures in both settings. The Encoder on the other
hand performs better w.r.t. the number of cases where the models do not
predict a resolution action to any point near the actual RATP, or to any
point in the time window of 70s near the annotated RATPS. These are cases

36



where the model did not react at all to critical situations. This said, we must
point out that the number of such cases for both models is very small.

Regarding the predictions of resolution actions, results are not so impres-
sive as those achieved on the prediction of modes, and this will be further
explored in our future work, refining the policy learned by the decoder.

Finally, regarding the two experimental settings, models perform better
at the sector-ignorant case. This could be due to the difference of the size of
the training dataset in the two settings, as the dataset for the sector-related
case has approximately 1/3 of the size of the dataset for the sector-ignorant
case. Another explanation for this difference is that flights from adjacent
sectors may contribute to conflicts in the current or downstream sector of a
flight: These cases of conflict will not be detected in the sector related case.

Summarizing, the findings of this research are as follows:
– Our methodology accurately predicts the modes of the ATCO behavior,

predicting whether and when the ATCO reacts in the presence of conflicts.
– According to the experimental evaluation the VAE model assigns high/low

probabilities to modes, predicting one mode or the other without many fluc-
tuations in predictions. The Encoder on the other hand assigns more mid-
range probabilities to modes, and fluctuates frequently between modes in
consecutive trajectory points. As a result, the predictions of the VAE are
more consistent with the expert reactions compared to the predictions made
by the Encoder, although the Encoder has less cases where it did not react
at all to critical situations, compared to VAE. The accuracy of predictions
implies that errors propagating backwards from the decoder to the Encoder
play indeed an important role to the VAE model learned.

– Predictions made on the low-level ATCO conflict resolution actions,
were not as accurate as the predictions of the ATCO modes of reaction,
and this will be further explored in future work. The decision regarding the
resolution action depends on different factors, such as the evolution of the
trajectories and evolution of conflicts during and after the performance of the
resolution action, the preferences of ATCO, and also in some minor degree
the preferences of the airspace users.

– Regarding the different experimental settings explored, models perform
better at the sector-ignorant case compared to the sector-related. This is
something to be further explored in our future work.
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