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Abstract

There are two major approaches for sequence labeling. One is the probabilistic

gradient-based methods such as conditional random fields (CRF) and neural

networks (e.g., RNN), which have high accuracy but drawbacks: slow training,

and no support of search-based optimization (which is important in many cases).

The other is the search-based learning methods such as structured perceptron

and margin infused relaxed algorithm (MIRA), which have fast training but also

drawbacks: low accuracy, no probabilistic information, and non-convergence in

real-world tasks. We propose a novel and “easy” solution, a search-based prob-

abilistic online learning method, to address most of those issues. The method is

“easy”, because the optimization algorithm at the training stage is as simple as

the decoding algorithm at the test stage. This method searches the output can-

didates, derives probabilities, and conducts efficient online learning. We show

that this method, which is easy to implement, can support search-based opti-

mization and obtain top accuracy with fast training and theoretical guarantee

of convergence. Experiments on well-known tasks show that our method has

better accuracy than CRF and BiLSTM1.
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1. Introduction

Sequence labeling models are popularly used to solve structure dependent

problems in a wide variety of application domains, including natural language

processing, bioinformatics, speech recognition, and computer vision. To solve

those problems, many sequence labeling methods have been developed, most

of which are from two major categories. One is the probabilistic gradient-

based learning methods such as conditional random fields (CRF) [16] and neural

networks (e.g., RNN) [13]. The other is the search-based learning methods such

as the margin infused relaxed algorithm (MIRA) [7] and structured perceptrons

[5]. Other related work on sequence labeling includes maximum margin Markov

networks [36] and structured support vector machines [37].

As for the probabilistic gradient-based learning methods such as CRF and

RNN, they have high accuracy because of the exact computation of the gra-

dient and probabilistic information. Nevertheless, those methods have critical

drawbacks.

First, the probabilistic gradient-based methods typically do not support

search-based optimization (search-based learning or decoding-based learning),

which is important in sequence labeling problems with emphasis on the learn-

ing speed (e.g., for large-scale datasets). In the tasks with complex structures,

the gradient computation is usually quite complicated and sometimes even in-

tractable. This is mainly because dynamic programming for computing gradient

is hard to scale for large-scale datasets. On the other hand, the search tech-

nique is easier to scale to large-scale datasets. This is because search-based

learning is much simpler than gradient-based learning [29, 41, 30] — just search

the promising output candidates and compare them with the oracle labels and

update the weights accordingly.
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Another category of sequence labeling methods is the search-based learning

methods (decoding-based learning) such as structured perceptrons2 and MIRA.

A major advantage of those methods is that they support search-based learning

such that the gradient is not needed and the learning is done by simply searching

and comparing the promising output candidates with the oracle labels, and

updating the model weights accordingly. As a by-product of the avoidance of

gradient computation, those methods have faster training speed compared with

probabilistic gradient-based learning methods such as CRF. However, there are

also severe drawbacks of the existing search-based learning methods:

• First, the existing search-based learning methods such as structured per-

ceptrons and MIRA have relatively low accuracy, compared with the prob-

abilistic gradient-based learning methods such as CRF and RNN.

• Second, when applied to most of the real-world tasks, those search-based

learning methods are non-convergent, i.e., they diverge in the training.

As large margin classification models, theoretically those search-based

learning methods have some convergent properties dependent on strict

separability conditions. However, those strict separability conditions are

not satisfiable in most real-world tasks, as demonstrated in many lines of

prior work [31]. We will also show in the experiments that those search-

based learning methods diverge dramatically as the training goes on, which

makes the model accuracy go worse and worse.

• The existing search-based methods do not support probabilistic informa-

tion. The magnitude of model weights grows dramatically as training

2The perceptron model used in the manuscript is the structured perceptron which includes

features that incorporate transition features (structural information). The decoding of the

structured perceptrons has to apply the Viterbi algorithm, because of the introduction of

transition features. The decoding is the same with CRF models, which indeed considers the

transition features. It is very different from the ordinary non-structured perceptron models,

which can use greedy decoding because of the lack of transition features.
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goes on, and there is no reliable probabilistic information that can be de-

rived. We will also show the curves of the model weight magnitude in the

experiments.

To address those issues, we propose a novel and “easy” solution, a search-

based probabilistic online learning framework (SAPO), which can fix almost all

of those drawbacks. The method is “easy” because the optimization algorithm at

the training stage is as simple as the decoding algorithm at the test stage. The

proposed method searches the top-n output candidates, derives probabilities

based on the searched candidates, and conducts fast online learning by updating

the model weights.

We show that the proposed method is of fast training speed which is com-

parable with structured perceptrons and MIRA, able to support search-based

optimization and no need to calculate gradient, very easy to implement, with

top accuracy which is even better than CRF and BiLSTM, and with theoretical

guarantees of convergence towards the optimum given reasonable conditions.

Experiments on well-known tasks show that our method has better accuracy

than CRF and BiLSTM and almost as fast training speed as structured percep-

trons and MIRA.

The contributions of this work are as follows:

• On the methodology side, we propose a general purpose search-based prob-

abilistic online learning framework SAPO for sequence labeling. We show

that SAPO can address a variety of issues of existing methods. Compared

with probabilistic gradient-based learning methods such as CRF and RNN,

the proposed method supports search-based learning such that avoiding

complex gradient calculation, and with extra advantages on accuracy and

training speed. Compared with search-based learning methods such as

structured perceptron and MIRA, SAPO has much higher accuracy.

• For the proposed method, we provide theoretical and empirical justifica-

tions of convergence, even if the data is linearly non-separable. We provide
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Algorithm 1 Search-based Probabilistic Online Learning Algorithm (SAPO)

1: input: top-n search parameter n, regularization strength λ, learning rate γ

2: repeat

3: Draw a sample zzz = (xxx,yyy∗) at random from training set S

4: Based on www, search the top-n outputs Yn = {yyy1, yyy2, · · · , yyyn}

5: For every yyyk ∈ Yn, compute the probability Pk = P (yyyk|xxx,www)

6: For every yyyk ∈ Yn, update the weights by www ← www − γPkFFF (xxx,yyyk)

7: For yyy∗, update the weights by www ← www + γFFF (xxx,yyy∗)

8: Regularize the weights by www← www − γλ
|S|∇R(www)

9: until Convergence

10: return the learned weights www∗

a novel theoretical analysis on the convergence of the proposed method,

which does not rely on the assumption of linearly separable margin. On

the other hand, structured perceptron and MIRA diverge in real-world

tasks, which have linearly non-separable datasets, as to be shown in our

experiments.

• On the application side, for several benchmark natural language processing

tasks, including part-of-speech tagging, biomedical entity recognition, and

phrase chunking, our simple search-based learning method can easily beat

the strong baseline systems on those competitive tasks with faster speed.

2. Proposed method

We first describe the proposed search-based probabilistic online learning al-

gorithm SAPO; then, we compare SAPO with existing methods.

2.1. Search-based probabilistic online learning

The proposed search-based probabilistic online learning algorithm SAPO

has the key schemes as follows: top-n search (either exact search or approx-

imate search), a scheme for calculating probabilities, perceptron-style update
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for weights, and a regularizer on weights. We introduce the technical details of

the key schemes as follows, after which we summarize the SAPO algorithm in

Algorithm 1.

First, SAPO draws a training sample zzz = (xxx,yyy∗) at random from training

set S, and searches for the top-n outputs:

Yn = {yyy1, yyy2, · · · , yyyn}

In this work, each output yyy is a structured label sequence yyy = {y1, y2, · · · , yl},

where l is the number of labels in the sequence. There are many methods

to realize top-n search. One method uses the A* search algorithm [12]. An

A∗ search algorithm with a Viterbi heuristic function can be used to produce

top-n outputs one-by-one in a efficient manner. We use the backward Viterbi

algorithm [42] to compute the admissible heuristic function for the forward-style

A∗ search. This way, we can produce the top-n taggings efficiently.3

Then, for every yyyk ∈ Yn, compute the probability in a log-linear fashion:

Pk , P (yyyk|xxx,www) ,
exp[wwwTFFF (xxx,yyyk)]

∑

∀yyy∈Yn
exp[wwwTFFF (xxx,yyy)]

(1)

where www is the vector of the model weights, FFF (xxx,yyyk) is the feature vector based

on xxx and yyyk, and Yn is simply the top-n outputs defined before. With this

definition, we can see that
∑n

k=1 Pk = 1. That is, we use top-n search results

to estimate the probability distribution, which is typically defined as:

P (yyyk|xxx,www) ,
exp[wwwTFFF (xxx,yyyk)]

∑

∀yyy exp[www
TFFF (xxx,yyy)]

(2)

As we can see, the only difference is the normalizer — we use top-n search results

to estimate the normalizer. With the growth of n, this probability estimation

in (1) goes more and more accurate towards the traditional probability in (2).

3Note that, although our search is “exact” top-n search, “exact” top-n search is not strictly

required in the SAPO framework. In other words, we can replace exact A* search with non-

exact beam search scheme for the SAPO algorithm. In the experiments we test both exact

A* search and non-exact beam search with pruning (beam size is 50), and we find that there

is almost no difference on the experimental results.
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On the theoretical side, we will show in the theoretical analysis that this proba-

bility estimation can be arbitrarily-close to the traditional probability by using

a proper n, and the SAPO algorithm is guaranteed to converge towards the

optimum weights www∗ with an arbitrarily-close distance, given reasonable condi-

tions. On the empirical side, we will show in experiments that the probability

estimation is good enough for most real-world tasks even with n = 5 or n = 10.

After that, SAPO updates the weights in a perceptron fashion. For every

yyyk ∈ Yn, the weights are updated as follows:

www ← www − γPkFFF (xxx,yyyk) (3)

As we can see, this is similar to the perceptron style update, except with an

additional learning rate γ and a probabilistic scale Pk. On the other hand, for

the oracle tagging yyy∗, the weights are updated by

www ← www + γFFF (xxx,yyy∗) (4)

As we can see, this is also similar to the perceptron style update. There is no

need to use a probability scale here, because the probability is 1.

Finally, SAPO uses a weight regularizer with regularization strength λ, just

like the stochastic regularization adopted in stochastic gradient descent (SGD)

[2, 23, 31]. Following the regularization scheme of SGD, the regularization

strength turns to λ/|S| in the online learning setting [2, 23, 31]. Also, the

regularization should be scaled with the learning rate γ. Thus, by using a

regularizer denoted as R(www), the regularization step is as follows:

www ← www −
γλ

|S|
∇R(www) (5)

The regularizer R(www) can be L2, L1, or other regularization terms. For sim-

plicity, in this work we use the most widely used L2 regularizer (a Gaussian

prior).

The SAPO algorithm is summarized in Algorithm 1.
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2.2. Comparison and discussion

Among the existing sequence labeling methods, the most similar and related

methods to SAPO are structured perceptrons [5] and CRF [16].

If we compare SAPO with the structured perceptron [5] and CRF [16] with

stochastic training, it is interesting to see that SAPO is like a “unification” of

the structured perceptron and the stochastically trained CRF. The differences

between CRF, structured perceptron, and SAPOmainly lie in how they estimate

the parameters using the sequential information in the training phase. Struc-

tured perceptron updates the parameters only using the gold sequence path.

CRF updates the parameters using an expectation of all the possible sequence

paths. SAPO updates the parameters using the top-n possible sequence paths.

If we neglect the learning rate and the regularizer term of SAPO, the struc-

tured perceptron algorithm [5] can be seen as an extreme case of SAPO with

n = 1 (i.e., using top-1 search instead of top-n search). On the other hand, the

stochastically trained CRF can be seen as another extreme case of SAPO with

exponentially big n that enumerates over all possible output taggings (the only

difference is that CRF uses dynamic programming instead of top-n search).

In other words, structured perceptron can be seen as SAPO with extremely

small n, and CRF can be seen as SAPO with extremely big n. We argue

that SAPO is more natural than both structured perceptrons and CRF — we

should use a moderate value of n instead of an extremely small n (structured

perceptrons) or an extremely huge n (CRF). As we will show in experiments

and theoretical analysis, an extremely small n like structured perceptron will

lead to low accuracy and non-convergent training, and an extremely large n like

CRF will also lead to loss of accuracy (due to the overfitting of probabilities)

and high computational cost. In practice, we find it good enough to use n = 5

or n = 10 for real-world tasks.

The MIRA algorithm also has a variation of Nbest MIRA which also uses top-

n search [7]. Interestingly, it is also good enough to use n = 5 or n = 10 for Nbest

MIRA [7, 19, 3]. Nevertheless, SAPO is substantially different compared with

Nbest MIRA. The major difference is that SAPO has probability estimation
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of different outputs while Nbest MIRA does not. Nbest MIRA treats different

outputs equally without probability difference, which is why CRF cannot be

seen as a special case of Nbest MIRA. Even if Nbest-MIRA uses extremely huge

n in top-n search, it is not equivalent to CRF, and the difference is substantial.

Also, there are other differences between SAPO and Nbest MIRA. For example,

SAPO has the regularizer term and the learning rate and has no need to use

the “minimum change” optimization criterion of MIRA during weight update.

3. Theoretical analysis

Here we give theoretical analysis on the objective function, update term,

convergence conditions, and convergence rate.

3.1. Objective function and update term

Here we analyze the equivalent objective function of SAPO and the update

term of SAPO. The SAPO algorithm (Algorithm 1) is a search-based optimiza-

tion algorithm so that there is no need to compute the gradient of an objective

function, and there is no explicit objective function used in the SAPO algorithm.

Nevertheless, interestingly, we show that the SAPO algorithm is convergent and

it converges towards the optimum weights www∗ which maximizes the objective

function as follows:4

maximizewww

m
∑

i=1

logP (yyy∗i |xxxi,www)− λR(www) (6)

where m is the number of training samples, i.e., m = |S|, and R(www) is a weight

regularization term for controlling overfitting. This objective function is similar

to that of CRF. Equivalently, for the convenience of convex-based analysis, we

denote the objective function f(www) as the negative form of (6):

f(www) = −

m
∑

i=1

logP (yyy∗i |xxxi,www) + λR(www) (7)

4The subscript of yyy is overloaded here. For clarity throughout, yyy with subscript i and

usually with the ∗ mark refers to the tagging of the i’th indexed training sample (e.g., yyy∗
i
),

and yyy with subscript k refers to the k’th output of the search (e.g., yyyk).
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We show that the SAPO algorithm converges towards the optimum www∗ which

minimizes the convex objective function of f(www):

www∗ = minimizewwwf(www) (8)

To clarify the theoretical analysis, we compare SAPO with the SGD (stochas-

tic gradient descent) training scheme. Recall that the weight update has the

following form in SGD [2, 23]:5

www ← www − γ∇fzzz(www) (9)

where ∇fzzz(www) is the stochastic gradient of f(www) based on the sample zzz, which

has the following form when using the CRF objective function:

∇fzzz(www) = −
{

FFF (xxx,yyy∗)−
∑

∀yyy

P (yyy|xxx,www)FFF (xxx,yyy)−
λ

|S|
∇R(www)

}

= −
{

FFF (xxx,yyy∗)−
∑

∀yyy

exp[wwwTFFF (xxx,yyy)]
∑

∀yyy′ exp[wwwTFFF (xxx,yyy′)]
FFF (xxx,yyy)−

λ

|S|
∇R(www)

}

(10)

To make a comparison, we denote ssszzz(www) as the (negative) SAPO update term

for a sample zzz such that

www ← www − γssszzz(www) (11)

Then, according to the procedure of SAPO algorithm, it is easy to check that

ssszzz(www) has the following form:

ssszzz(www) = −
{

FFF (xxx,yyy∗)−

n
∑

k=1

PkFFF (xxx,yyyk)−
λ

|S|
∇R(www)

}

= −
{

FFF (xxx,yyy∗)−
∑

∀yyy∈Yn

exp[wwwTFFF (xxx,yyy)]
∑

∀yyy′∈Yn
exp[wwwTFFF (xxx,yyy′)]

FFF (xxx,yyy)−
λ

|S|
∇R(www)

}

(12)

As we can see from (10) and (12), by increasing n, the SAPO update term ssszzz(www)

can be arbitrarily-close to the stochastic gradient ∇fzzz(www). More formally, we

5In practice, SGD and SAPO can use decayed learning rate or fixed learning rate. Following

[23, 30], for the convenience of theoretical analysis, our theoretical analysis is more focused

on SGD and SAPO with fixed learning rate.
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define

δzzz(www) = ∇fzzz(www)− ssszzz(www) (13)

Then, for any ǫ ≥ 0, there is at least a corresponding n such that,

δzzz(www) ≤ ǫ (14)

In other words, when n is increasing, the approximation is expected to be more

and more accurate and finally reaches the point where δzzz(www) ≤ ǫ.

3.2. Optimum, convergence, and convergence rate

Recall that f(www) is the sequence labeling objective function, and www ∈ W

is the weight vector. Taking the time stamp t into consideration, the SAPO

update (11) can be reformulated as follows:

wwwt+1 ← wwwt − γssszzzt
(wwwt) (15)

To state our convergence analysis results, we make several assumptions following

[22]. We assume f is strongly convex with modulus c, that is, ∀www,www′ ∈ W ,

f(www′) ≥ f(www) + (www′ −www)T∇f(www) +
c

2
||www′ −www||2 (16)

where || · || means 2-norm || · ||2 by default in this work. When f is strongly

convex, there is a global optimum/minimizer www∗. We also assume Lipschitz

continuous differentiability of ∇f with the constant q, that is, ∀www,www′ ∈ W ,

||∇f(www′)−∇f(www)|| ≤ q||www′ −www|| (17)

Also, let the norm of ssszzz(www) be bounded by κ ∈ R
+:

||ssszzz(www)|| ≤ κ (18)

Moreover, it is reasonable to assume

γc < 1 (19)

because even the ordinary gradient descent methods will diverge if γc > 1 [23].

Based on the assumptions, we show that SAPO converges towards the min-

imum www∗ of f(www) with an arbitrary-close distance, and the convergence rate is

given as follows.
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Theorem 1 (Optimum, convergence, and rate). With the conditions (16),

(17), (18), (19), let ǫ > 0 be a target degree of convergence. Let τ be an

approximation-based bound from sss(www) to ∇f(www) such that

[∇f(www)− sss(www)]T (www −www∗) ≤ τ (20)

where www is a historical weight vector that updated during SAPO training, and

sss(www) is expected ssszzz(www) over zzz such that sss(www) = Ezzz [ssszzz(www)]. Since sss(www) can be

arbitrary-close to ∇f(www) by increasing n, SAPO can use the smallest n as far

as the following holds:

τ ≤
cǫ

2q
(21)

Let γ be a learning rate as

γ =
cǫ− 2τq

βqκ2
(22)

where we can set β to be any value as far as β ≥ 1. Let t be the smallest integer

satisfying

t ≥
βqκ2 log (qa0/ǫ)

c(cǫ− 2τq)
(23)

where a0 is the initial distance such that a0 = ||www0−www
∗||2. Then, after t updates

of www, SAPO converges towards the optimum such that

E[f(wwwt)− f(www∗)] ≤ ǫ (24)

The proof is in Appendix A.

This theorem shows that the approximation based learning like SAPO is

also convergent towards the optimum of the objective function. Thus, we can

approximate the true gradient by top-n search and still keep the convergence

properties, without having to calculate exact gradients such as the training of

CRF.

More specifically, the theorem shows that SAPO is able to converge towards

the optimum of the objective function with arbitrarily close distance ǫ, as far

as the SAPO update term sss(www) is a “close-enough approximation” (i.e., satis-

fying (21)) of the true gradient ∇f(www). Since sss(www) can be arbitrary-close to

∇f(www) by increasing n, SAPO can use the smallest n as far as the close-enough
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approximation (21) is satisfied. In practice, we find that setting n to 5 or 10

already empirically satisfies the close-enough approximation in most of the real-

world tasks. Moreover, the convergence rate is given in the theorem — SAPO

is guaranteed to converge with t updates, and t is the smallest integer satisfying

(23).

This analysis also explains why the structured perceptron algorithm [10, 5]

does not converge in most of the practical tasks. As discussed before, the

structured perceptron algorithm can be essentially treated as an extreme case

of SAPO, which uses an extremely small n as 1. In most cases, the use of

n = 1 does not satisfy the close-enough approximation condition of (21). Thus

in most cases the structured perceptron algorithm has a bad approximation over

the true gradient and it diverges (as we will show in experiments).

As for the real-world tasks, the datasets are often linearly non-separable, so

the structured perceptron and MIRA will diverge. However, according to the

theoretical analysis, SAPO is able to remain convergent even when the data is

linearly non-separable. Our experiments in Section 4 will show how SAPO is

still convergent in the real-world tasks.

4. Experiments

We describe the real-world tasks for the experiments, the experimental set-

tings, and the experimental results as follows.

4.1. Tasks

We conduct experiments on natural language processing tasks with quite di-

verse characteristics. The natural language processing tasks include (1) part-of-

speech tagging, (2) biomedical named entity recognition, and (3) phrase chunk-

ing. All of the tasks use boolean features. From tasks (1) to (3), the average

length of samples (i.e., the number of tags per sample) is quite different, being

23.9, 26.5, 46.6, respectively. The dimension of tags |Y| is also very diversified

among tasks, with |Y| ranging from 5 to 45.

13



Part-of-Speech Tagging (POS-Tag): Part-of-Speech (POS) tagging is

an important and highly competitive task in natural language processing. We

use the standard benchmark dataset in prior work [5, 40], which is derived from

PennTreeBank corpus and uses sections 0 to 18 of the Wall Street Journal (WSJ)

for training (38,219 samples), and sections 22-24 for testing (5,462 samples).

Following the previous work [39], we use features based on unigrams and bigrams

of neighboring words, and lexical patterns of the current word, with 393,741 raw

features6 in total. Following previous work, the evaluation metric for this task

is per-word accuracy.

Biomedical Named Entity Recognition (Bio-NER): This task is from

the BioNLP-2004 shared task, which is to recognize 5 kinds of biomedical named

entities (DNA, RNA, etc.) on the MEDLINE biomedical text corpus [20, 4].

There are 17,484 training samples and 3,856 test samples. Following the pre-

vious work [39], we use word pattern features and POS features, with 403,192

raw features in total. The evaluation metric is balanced F-score.

Phrase Chunking (Chunking): In the phrase chunking task, the non-

recursive cores of noun phrases called base NPs are identified. The phrase

chunking data is extracted from the data of the CoNLL-2000 shallow-parsing

shared task [27]. The training set consists of 8,936 sentences, and the test set

consists of 2,012 sentences. Following the previous work [39], we use the feature

templates based on word n-grams and part-of-speech n-grams, with 264,818 raw

features in total. Following previous studies, the evaluation metric for this task

is balanced F-score.

4.2. Experimental settings

We compared the proposed SAPO algorithm with strong baselines in the ex-

isting literature, including both probabilistic gradient-based learning methods

and search-based learning methods. For the probabilistic gradient-based learn-

6Raw features are those observation features based only on xxx, i.e., no combination with

tag information.
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ing methods, we choose the arguably most popular model CRF [16], bidirectional

LSTM (Bi-LSTM) [28], and bidirectional LSTM CRF (Bi-LSTM-CRF) [14] as

the baselines. The CRF is with the widely used L2 regularization and is trained

with the standard SGD training algorithm. The Bi-LSTM and Bi-LSTM-CRF

are trained with Adam optimizing algorithm [15].

For search-based learning methods, we choose structured perceptrons (Perc)

[5] and MIRA [7], which are arguably the most popular search-based learning

methods, as the baselines. In most cases, the averaged versions of structured

perceptrons and MIRA work empirically better than naive versions of struc-

tured perceptron and MIRA [5, 19, 8, 3]. Thus we also compare SAPO with

averaged versions of structured perceptrons and MIRA. To differentiate the

naive and averaged versions, we denote them as Perc-Naive, Perc-Avg, MIRA-

Naive, MIRA-Avg, respectively. Moreover, the MIRA method has the Nbest

versions [7, 19], which adopt top-n search and update instead of Viterbi search

and update. We also choose Nbest versions of MIRA as the additional base-

lines. We denote the Nbest MIRA with naive training as MIRA-Nbest-Naive

and denote the one with averaged training as MIRA-Nbest-Avg.

The regularization strength λ of CRF is tuned among values 0.1, 0.5, 1, 2, 5

and are determined on the development data provided by the standard dataset

(POS-Tag) or simply via 4-fold cross validation on the training set (Bio-NER

and Chunking). With this automatic tuning for regularization strength, we set

it to be 2, 5, 1 for POS-Tag, Bio-NER, and Chunking tasks, respectively. To

give no tuning advantage to SAPO, SAPO simply uses the same regularizer and

the same learning rate as CRF does. All the tuning is based on CRF, and there

is no additional tuning for SAPO.

Also, the proposed SAPO algorithm uses the same top-n search scheme as

the Nbest MIRA does. As shown in the previous work [7, 19, 3], it is good

enough to use n = 5 or n = 10 for Nbest MIRA. It is also good enough to use

n = 5 or n = 10 for the proposed SAPO algorithm. Thus, we set n = 5 for

Nbest MIRA and SAPO for fast speed.

The features used are based on previous work [39]. The features used for
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chunking are unigrams and bigrams of neighboring words, as well as unigrams,

bigrams and trigrams of neighboring POS tags. The features used for Bio-NER

are unigrams of neighboring chunk tags, substrings (shorter than 10 characters)

of the current word, and the morphological features of the word, as well as the

features used in the chunking experiments. For the features of POS-Tag, we use

unigrams and bigrams of neighboring words, prefixes and suffixes of the current

word, and some characteristics of the word. We also normalize the current word

by turning all capital letters into lower case and converting all the numerals

into ‘#’, and used the normalized word as a feature. Those features are exactly

based on the previous work [39]. For the neural models, the uni-gram features in

the feature set use pre-trained Senna word embeddings [6] with 50 dimensions

for initialization. The embeddings are optimized by backpropagation during

training.

The labeling scheme is the same for all models (including neural models).

For POS-Tag, it is the original POS tag. For BioNER and Chunking, it is the

BIO scheme following the previous work [39].

All Experiments are performed on a computer with the Intel(R) Xeon(R)

3.0GHz CPU. For fair comparison, we set the batch size to 1 for all experiments.

4.3. Experimental results

The experimental results in terms of accuracy/F-score and the computation

cost are shown in Figure 1, Figure 2, Figure 3, and Figure 4. As we can see,

although the tasks involve diverse feature types and different characteristics,

the results are quite consistent — the proposed SAPO algorithm has the best

accuracies/F-scores in all of the three tasks compared with the existing baselines.

First, we compare SAPO with three popular gradient-based learning algo-

rithms: CRF, Bi-LSTM, Bi-LSTM-CRF. It is impressive that the proposed

SAPO algorithm even has better accuracy than the CRF, Bi-LSTM, and Bi-

LSTM-CRF, which are three popular models for sequence labeling. Note that

all the models are already fully optimized. As for the superiority, the reason

is that the probability is distributed on top-n outputs in SAPO, which is a
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Figure 1: Comparison with CRF, Bi-LSTM, and Bi-LSTM-CRF.

“regularized” distribution instead of the probability distribution spread over all

possible outputs (an exponential number). In this sense, SAPO is “regularizing”

the exponential probability distribution to a simpler top-n probability distribu-

tion. This can be seen as a probability-based regularizer with hyper-parameter

n controlling the regularization strength. Interestingly, the experimental results

suggest that this type of regularization can indeed improve the accuracy/F-

score.

We observe that SAPO is better than CRF, Bi-LSTM, and Bi-LSTM-CRF

in all of the three tasks, and it shows that in many cases the differences are

17



0 20 40 60 80 100
96.7

96.8

96.9

97

97.1

97.2

97.3

97.4

Number of Iteration

A
c
c
u
ra

c
y
 (

%
)

POS−Tag: Accuracy

 

 

SAPO
Perc−Avg
MIRA−Avg
MIRA−Nbest−Avg

0 20 40 60 80 100
68

69

70

71

72

Number of Iteration

F
−

s
c
o
re

 (
%

)

Bio−NER: F1

 

 

SAPO
Perc−Avg
MIRA−Avg
MIRA−Nbest−Avg

0 20 40 60 80 100
94

94.1

94.2

94.3

94.4

94.5

94.6

94.7

Number of Iteration

F
−

s
c
o
re

 (
%

)

Chunking: F1

 

 

SAPO
Perc−Avg
MIRA−Avg
MIRA−Nbest−Avg

0 20 40 60 80 100
96

96.2

96.4

96.6

96.8

97

97.2

97.4

Number of Iteration

A
c
c
u
ra

c
y
 (

%
)

POS−Tag: Accuracy

 

 

SAPO
Perc−Naive
MIRA−Naive
MIRA−Nbest−Naive

0 20 40 60 80 100
60

62

64

66

68

70

72

Number of Iteration

F
−

s
c
o
re

 (
%

)

Bio−NER: F1

 

 

SAPO
Perc−Naive
MIRA−Naive
MIRA−Nbest−Naive

0 20 40 60 80 100
93

93.5

94

94.5

Number of Iteration
F

−
s
c
o
re

 (
%

)

Chunking: F1

 

 

SAPO
Perc−Naive
MIRA−Naive
MIRA−Nbest−Naive

Figure 2: Comparison with structured perceptron and MIRA.

statistically significant. Also, we can see that SAPO is several times faster than

CRF and Bi-LSTM in terms of training time. On convergence state, SAPO

performs similar or even better than CRF.

Second, we compare SAPO with search-based learning methods, including

naive/average versions of Perceptron, MIRA, and Nbest MIRA. As we can see,

the superiorities of SAPO over search-based learning methods are even more

significant than over CRF.

We also conduct significance tests based on t-test.7 For the POS-Tag and

chunking task, the significance test suggests that the superiorities of SAPO over

all of the baselines except CRF are statistically significant, with at least p <

0.01. For the Bio-NER task, the significance test suggests that the superiorities

of SAPO over all of the baselines are significant, with at least p < 0.05.

Figure 1 and Figure 2 show the training curves based on the number of train-

7For the tasks measured by F-score, the t-test is approximated by using accuracy to ap-

proximate F-score.
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Figure 3: Comparison on parameter weights with structured perceptron and MIRA.

ing iterations. As we can see, SAPO and CRF are convergent as the training

goes on, and Bi-LSTM, Bi-LSTM-CRF, Perc, MIRA, and Nbest MIRA diverge

as the training goes on.

Figure 3 shows the www-complexity based on the number of training iterations.

Thewww-complexity is the averaged (absolute) value of the weights. As we can see,

SAPO is convergent and has very small weight complexity as the training goes

on, and Perceptron, MIRA, and Nbest MIRA have linear or even super-linear

explosion of weight complexity as the training goes on. Big weight complexity

is typically a bad sign for controlling generalization risk.

Figure 4 and Figure 5 show the training time per iteration in terms of sec-

onds. As we can see, SAPO is with low computational cost, especially compared

with CRF and Bi-LSTM.

To summarize, the experiment results demonstrate that SAPO has better

accuracy than probabilistic gradient-based methods like CRF and BiLSTM, at

the same time with fast training speed as structured perceptrons and MIRA.
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Figure 4: Computation time cost of different models (MIRA-NA: Average Nbest MIRA,

MIRA-NN: Naive Nbest MIRA, MIRA-A: Average MIRA, MIRA-N: Naive MIRA, Perc-A:

Average Perceptron, Perc-N: Naive Perceptron).

Compared with structured perceptron, which only uses the gold sequence and

causes insufficient estimation of the parameters, leading to final divergence,
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Figure 5: Computation time cost of SAPO, BiLSTM, and BiLSTM-CRF.

SAPO uses top-n possible sequences with probabilistic information in training,

and the parameters are more accurate. Compared with CRF, which considers

all the possible sequences but causes the overfitting problem, the n in SAPO

serves as a kind of regularizer and can control the complexity of the parameters.

Compared with LSTM, which is not a structured prediction model at all and

does not consider the structural information, SAPO is a structured prediction

model and considers the structural information. Moreover, since LSTM can be

combined with perceptrons8, structured perceptrons and CRF, SAPO can also

be combined with LSTM to learn the deep semantic features. Also, SAPO is

convergent towards optimum with controllable weight complexity as the training

goes on. Note that there are other important advantages of SAPO that are not

revealed in those experiments — SAPO supports search-based learning which

makes gradient information not necessary and gives probability information,

and it is very easy to implement.

5. Related work

Many sequence labeling methods have been developed including probabilistic

gradient-based learning methods and search-based learning methods [44, 11].

8Most of the LSTM models for sequence labelling belong to this category.
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The probabilistic gradient-based learning methods include conditional random

fields [16, 38], and a variety of extensions such as dynamic conditional random

fields [35], hidden conditional random fields [26], and latent-dynamic conditional

random fields [21].

The search-based learning methods include margin infused relaxed algorithm

[7], structured perceptrons [5], and a variety of related work in this direction

such as latent structured perceptrons [33, 32], confidence weighted linear clas-

sification (CW) [9], max-violation perceptrons [45]. Most of the search-based

learning methods are large-margin online learning methods. Other related work

on sequence labeling also includes maximum margin Markov networks [36] and

structured support vector machines [37].

For training sequence labeling models, especially probabilistic gradient-based

learning methods like CRF and its variation models, the arguably most popular

training method is stochastic gradient descent (SGD) [2, 47, 23, 34, 31], which

typically has faster convergence rate compared with alternative batch training

methods, such as limited-memory BFGS (L-BFGS) [24] and other quasi-Newton

optimization methods. The SGD training has theoretical guarantees to con-

verge to the optimum weights given the convex objective function (e.g., CRF)

[2, 47, 23]. For the search-based learning methods such as structured percep-

trons, MIRA, and their variation algorithms, the training scheme is usually

quite simple and self-contained in the search-based learning algorithm/model

[5, 7, 19].

As for dealing with overfitting, the probabilistic gradient-based learning

methods typically use explicit regularization terms such as the widely used L2

regularizer. Other regularization schemes include the L1 regularizer [1, 39],

the group Lasso regularization [46, 18], the structure regularization [30], and

others [25]. For the search-based learning methods like structured perceptrons

and MIRA, the scheme to deal with overfitting is less formal compared with a

regularizer, usually by using parameter averaging or voting [5, 19, 8, 3].
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6. Conclusions and future work

The existing sequence labeling methods are problematic. The existing prob-

abilistic gradient-based methods such as CRF and LSTM have slow training

speed and do not support search-based optimization. The existing search-based

learning methods such as structured perceptrons and MIRA have relatively low

accuracy and are non-convergent in most of the real-world tasks. We propose

a novel and “easy” solution, a search-based probabilistic online learning frame-

work SAPO, to address most of those issues. SAPO is with fast training, able to

support search-based optimization, very easy to implement, with top accuracy,

with probabilistic information, and with theoretical guarantees of convergence.

Experiments on well-known benchmark tasks demonstrate that SAPO has

better accuracy than CRF and BiLSTM and roughly comparable training speed

as structured perceptrons and MIRA. Results also show that SAPO can easily

beat the strong baseline systems on those competitive tasks.

In the current implementation, our top-n search uses a simple A* search

algorithm with Viterbi heuristics. This top-n search algorithm is not fully op-

timized for speed. There are several other top-n search algorithms possibly

with faster speed. In the future we can optimize the top-n search algorithm.

We believe that this can further improve the training speed of SAPO. Moreover,

SAPO is a general purpose algorithm for structured classification with arbitrary

structures. In the future we can apply SAPO to structured classification with

structures that are more complex, e.g., syntactic parsing [17] and statistical

machine translation [43].

Acknowledgements

We thank the anonymous reviewers for their thoughtful comments. This

work was supported in part by National Natural Science Foundation of China

(No. 61673028).

23



References

References

[1] Andrew, G., Gao, J., 2007. Scalable training of L1-regularized log-linear

models, in: International Conference on Machine Learning (ICML), pp.

33–40.

[2] Bottou, L., LeCun, Y., 2003. Large scale online learning., in: Advances in

Neural Information Processing Systems (NIPS), MIT Press.

[3] Chiang, D., 2012. Hope and fear for discriminative training of statistical

translation models. Journal of Machine Learning Research 13, 1159–1187.

[4] Cho, H., Okazaki, N., Miwa, M., Tsujii, J., 2013. Named entity recognition

with multiple segment representations. Inf. Process. Manage. 49, 954–965.

[5] Collins, M., 2002. Discriminative training methods for hidden markov mod-

els: Theory and experiments with perceptron algorithms, in: Conference

on Empirical Methods in Natural Language Processing (EMNLP), pp. 1–8.

[6] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa,

P.P., 2011. Natural language processing (almost) from scratch. Journal of

Machine Learning Research 12, 2493–2537.

[7] Crammer, K., Singer, Y., 2003. Ultraconservative online algorithms for

multiclass problems. Journal of Machine Learning Research 3, 951–991.
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A. Appendix: Proof

Here we give the proof of Theorem 1. First, the recursion formula is derived.

Then, the bounds are derived.

A.1. Recursion Formula

By subtracting www∗ from both sides and taking norms for (15), we have

||wwwt+1 −www∗||2 = ||wwwt − γssszzzt
(wwwt)−www∗||2

= ||wwwt −www∗||2 − 2γ(wwwt −www∗)Tssszzzt
(wwwt) + γ2||ssszzzt

(wwwt)||
2

(25)

Taking expectations and let at = E||wwwt −www∗||2, we have

at+1 = at − 2γE[(wwwt −www∗)Tssszzzt
(wwwt)] + γ2

E[||ssszzzt
(wwwt)||

2]

(based on (18) )

≤ at − 2γE[(wwwt −www∗)Tssszzzt
(wwwt)] + γ2κ2

(since the random draw of zzzt is independent of wwwt)

= at − 2γE[(wwwt −www∗)TEzzzt
(ssszzzt

(wwwt))] + γ2κ2

= at − 2γE[(wwwt −www∗)Tsss(wwwt)] + γ2κ2

(26)

We define

δ(www) = ∇f(www)− sss(www) (27)

and insert it into (16), it goes to

f(www′) ≥ f(www) + (www′ −www)T [sss(www) + δ(www)] +
c

2
||www′ −www||2

= f(www) + (www′ −www)Tsss(www) +
c

2
||www′ −www||2 + (www′ −www)T δ(www)

(28)
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By setting www′ = www∗, we further have

(www −www∗)Tsss(www) ≥ f(www)− f(www∗) +
c

2
||www −www∗||2 − (www −www∗)T δ(www)

≥
c

2
||www −www∗||2 − (www −www∗)T δ(www)

(29)

Combining (26) and (29), we have

at+1 ≤ at − 2γE
[ c

2
||wwwt −www∗||2 − (wwwt −www∗)T δ(wwwt)

]

+ γ2κ2

= (1− cγ)at + 2γE[(wwwt −www∗)T δ(wwwt)] + γ2κ2

(30)

Considering (20) and (27), it goes to

at+1 ≤ (1− cγ)at + 2γτ + γ2κ2 (31)

We can find a steady state a∞ as follows

a∞ = (1− cγ)a∞ + 2γτ + γ2κ2 (32)

which gives

a∞ =
2τ + γκ2

c
(33)

Defining the function A(x) = (1− cγ)x+ 2γτ + γ2κ2, based on (31) we have

at+1 ≤ A(at)

(Taylor expansion of A(·) based on a∞, with ∇2A(·) being 0)

= A(a∞) +∇A(a∞)(at − a∞)

= A(a∞) + (1 − cγ)(at − a∞)

= a∞ + (1− cγ)(at − a∞)

(34)

Thus, we have

at+1 − a∞ ≤ (1 − cγ)(at − a∞) (35)

Unwrapping (35) goes to

at ≤ (1− cγ)t(a0 − a∞) + a∞ (36)
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A.2. Bounds

Since ∇f(www) is Lipschitz according to (17), we have

f(www) ≤ f(www′) +∇f(www′)T (www −www′) +
q

2
||www −www′||2

Setting www′ = www∗, it goes to f(www)− f(www∗) ≤ q
2
||www −www∗||2, such that

E[f(wwwt)− f(www∗)] ≤
q

2
E||wwwt −www∗||2 =

q

2
at

In order to have

E[f(wwwt)− f(www∗)] ≤ ǫ (37)

it is required that q
2
at ≤ ǫ, that is

at ≤
2ǫ

q
(38)

Combining (36) and (38), it is required that

(1− cγ)t(a0 − a∞) + a∞ ≤
2ǫ

q
(39)

To meet this requirement, it is sufficient to set the learning rate γ such that

both terms on the left side are less than ǫ
q
. For the requirement of the second

term a∞ ≤
ǫ
q
, recalling (33), it goes to

γ ≤
cǫ− 2τq

qκ2

Thus, introducing a real value β ≥ 1, we can set γ as

γ =
cǫ− 2τq

βqκ2
(40)

Note that, to make this formula meaningful, it is required that

cǫ− 2τq ≥ 0

Thus, it is required that

τ ≤
cǫ

2q

which is solved by the condition of (21).

31



On the other hand, we analyze the requirement of the first term that

(1− cγ)t(a0 − a∞) ≤
ǫ

q
(41)

Since a0 − a∞ ≤ a0, it holds by requiring

(1− cγ)ta0 ≤
ǫ

q
(42)

which goes to

t ≥
log ǫ

qa0

log (1− cγ)
(43)

Since log (1− cγ) ≤ −cγ given (19), and that log ǫ
qa0

is a negative term, we have

log ǫ
qa0

log (1− cγ)
≤

log ǫ
qa0

−cγ

Thus, (43) holds by requiring

t ≥
log ǫ

qa0

−cγ

=
log (qa0/ǫ)

cγ

(44)

Combining (40) and (44), it goes to

t ≥
βqκ2 log (qa0/ǫ)

c(cǫ− 2τq)

which completes the proof.
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