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Abstract. We study bisimulations for useful description logics. The simplest among the con-
sidered logics is ALCreg (a variant of PDL). The others extend that logic with inverse roles,
nominals, quantified number restrictions, the universal role, and/or the concept constructor
for expressing the local reflexivity of a role. They also allow role axioms. We give results about
invariance of concepts, TBoxes and ABoxes, preservation of RBoxes and knowledge bases, and
the Hennessy-Milner property w.r.t. bisimulations in the considered description logics. Using
the invariance results we compare the expressiveness of the considered description logics w.r.t.
concepts, TBoxes and ABoxes. Our results about separating the expressiveness of descrip-
tion logics are naturally extended to the case when instead of ALCreg we have any sublogic
of ALCreg that extends ALC. We also provide results on the largest auto-bisimulations and
quotient interpretations w.r.t. such equivalence relations. Such results are useful for mini-
mizing interpretations and concept learning in description logics. To deal with minimizing
interpretations for the case when the considered logic allows quantified number restrictions
and/or the constructor for the local reflexivity of a role, we introduce a new notion called
QS-interpretation, which is needed for obtaining expected results. By adapting Hopcroft’s
automaton minimization algorithm and the Paige-Tarjan algorithm, we give efficient algo-
rithms for computing the partition corresponding to the largest auto-bisimulation of a finite
interpretation.

1 Introduction

Description logics (DLs) are variants of modal logic. They are of particular importance
in providing a logical formalism for ontologies and the Semantic Web. DLs represent the
domain of interest in terms of concepts, individuals, and roles. A concept is interpreted as a
set of individuals, while a role is interpreted as a binary relation among individuals. A DL
is characterized by a set of concept constructors, a set of role constructors, and a set of
allowed forms of role axioms and individual assertions. A knowledge base in a DL usually
has three parts: an RBox consisting of axioms about roles, a TBox consisting of terminology
axioms, and an ABox consisting of assertions about individuals. The basic DL ALC allows
basic concept constructors listed in Table 1, but does not allow role constructors nor role
axioms. The most common additional features for extending ALC are also listed in Table 1.

Given two individuals in an interpretation, sometimes we are interested in the question
whether they are “similar” or not, i.e., whether they are indiscernible w.r.t. the considered
description language. Indiscernibility is used, for example, in machine learning. In DLs, it is
formally characterized by bisimulation. Roughly speaking, two individuals are indiscernible
iff they are bisimilar.

Bisimulations arose in modal logic [38,39,40] and state transition systems [31,20]. They
were introduced by van Benthem under the name p-relation in [38,39] and the name zigzag
relation in [40]. Bisimulations reflect, in a particularly simple and direct way, the locality
of the modal satisfaction definition. The famous Van Benthem Characterization Theorem
states that modal logic is the bisimulation invariant fragment of first-order logic. Bisimula-
tions have been used to analyze the expressivity of a wide range of extended modal logics

? This is a revised and extended version of [15,14,17].
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Concept constructors of ALC
Constructor Syntax Example

complement ¬C ¬Male

intersection C uD Human uMale

union C tD Doctor t Lawyer

existential restriction ∃r.C ∃hasChild .Male

universal restriction ∀r.C ∀hasChild .Female

Some additional constructors/features of other DLs

Constructor/Feature Syntax Example

inverse roles (I) r− hasChild− (i.e., hasParent)

qualified number ≥nR.C ≥3 hasChild .Male

restrictions (Q) ≤nR.C ≤2 hasParent .>
nominals (O) {a} {John}
hierarchies of roles (H) R v S hasChild v hasDescendant

transitive roles (S) R ◦R v R hasDescendant ◦ hasDescendant v hasDescendant

Table 1. Concept constructors for ALC and some additional constructors/features of other DLs.

(see, e.g., [4] for details). In state transition systems, bisimulation is viewed as a binary
relation associating systems which behave in the same way in the sense that one system
simulates the other and vice versa. Kripke models in modal logic are a special case of labeled
state transition systems. Hennessy and Milner [20] showed that weak modal languages could
be used to classify various notions of process invariance. In general, bisimulations are a very
natural notion of equivalence for both mathematical and computational investigations.1

Bisimilarity between two states is usually defined by three conditions (the states have the
same label, each transition from one of the states can be simulated by a similar transition
from the other, and vice versa). As shown in [4], the four program constructors of PDL
(propositional dynamic logic) are “safe” for these three conditions. That is, we need to
specify the mentioned conditions only for atomic programs, and as a consequence, they
hold also for complex programs. For bisimulation between two pointed-models, the initial
states of the models are also required to be bisimilar. When converse is allowed (the case of
CPDL), two additional conditions are required for bisimulation [4]. Bisimulation conditions
for dealing with graded modalities were studied in [11,10,23]. In the field of hybrid logic,
the bisimulation condition for dealing with nominals is well known (see, e.g., [1]).

In this paper we study bisimulations for the family of DLs which extend ALCreg (a
variant of PDL) with an arbitrary combination of inverse roles, qualified number restric-
tions, nominals, the universal role, and the concept constructor ∃r.Self for expressing the
local reflexivity of a role. Inverse roles are like converse modal operators, qualified number
restrictions are like graded modalities, and nominals are as in hybrid logic.

The topic is worth studying due to the following reasons:

1. Despite that bisimulation conditions are known for PDL and for some features like
converse modal operators, graded modal operators and nominals, we are not aware of
previous work on bisimulation conditions for the universal role and the concept con-
structor ∃r.Self. More importantly, without proofs one cannot be sure that all the
conditions can be combined together to guarantee standard properties like invariance
and the Hennessy-Milner property.

There are many papers on bisimulations, but just a few on bisimulations in DLs:

– In [24] Kurtonina and de Rijke studied expressiveness of concept expressions in some
DLs by using bisimulations. They considered a family of DLs that are sublogics of

1 This paragraph is based on [4].
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the DL ALCNR, which extend ALC with (unqualified) number restrictions and role
conjunction. They did not consider individuals, nominals, qualified number restric-
tions, the concept constructor ∃r.Self, the universal role, and the role constructors
like the program constructors of PDL.

– In [27] Lutz et al. characterized the expressiveness of TBoxes in the DL ALCQIO
and its sublogics, including the lightweight DLs such as DL-Lite and EL. They
also studied invariance of TBoxes and the problem of TBox rewritability. The logic
ALCQIO lacks the role constructors of PDL, the concept constructor ∃r.Self and
the universal role.

– In [16] we studied comparisons between interpretations in DLs with respect to “log-
ical consequences” of the form of semi-positive concepts (like semi-positive concept
assertions). Such comparisons are called bisimulation-based comparisons and char-
acterized by conditions similar to the ones of bisimulations defined in the current
paper. The problems studied in [16] are: preservation of semi-positive concepts with
respect to comparisons, the Hennessy-Milner property for comparisons, and mini-
mization of interpretations that preserves semi-positive concepts.

– Bisimulation-based concept learning in DLs was studied in [29,36,19,13,35,37]. A sur-
vey on these papers is presented in Section 7.3.

The family of DLs studied in this work is large and contains useful DLs. Not only
concept constructors and role constructors are allowed, but role axioms are also allowed.
In particular, the DL SROIQ, which is the logical basis of the Web Ontology Language
OWL 2, belongs to this class.

2. DLs differ from other logics like modal logics and hybrid logics in the domain of appli-
cations and the settings. In DLs, there are special notions like named individual, RBox,
TBox, ABox. Also, recall that a knowledge base in a DL usually consists of an RBox, a
TBox and an ABox. Invariance of ABoxes and preservation of RBoxes and knowledge
bases in DLs were not studied before. On the other hand, invariance of TBoxes was
studied in the independent work [28,27] for the DL ALCQIO and its sublogics. The
works [28,27] use the notion of global bisimulation to characterize invariance of TBoxes,
whose condition is the same as the bisimulation conditions introduced in [15] and the
current paper for the universal role.

3. Bisimulation is a very useful notion for DLs. Apart from analyzing expressiveness of
DLs, it can be used for minimizing interpretations and concept learning in DLs:
– Roughly speaking, two objects that are bisimilar to each other can be merged. This is

the basis for minimizing interpretations. In automated reasoning in DLs, sometimes
we want to return a model of a knowledge base (e.g., as a counterexample for a
subsumption problem or an instance checking problem). It is expected that the
returned model is simple and as small as possible. One can just find some model
and minimize it. As another example, given an information system specified by an
acyclic knowledge base with a large ABox and a small TBox, one can compute that
information system and minimize it to save space and increase efficiency of reasoning
tasks.

– Concept learning in DLs is similar to binary classification in traditional machine
learning. The difference is that in DLs objects are described not only by attributes
but also by relationships between the objects. As bisimulation is the notion for
characterizing indiscernibility of objects in DLs, it is useful for concept learning in
DLs.

In this paper we present conditions for bisimulation in a uniform way for the whole
considered family of DLs. For this, we introduce bisimulation conditions for the universal
role and the concept constructor ∃r.Self. A special point of our approach is that named
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individuals are treated as initial states, which requires an appropriate condition for bisim-
ulation. Our bisimulation conditions for qualified number restrictions are relatively simpler
than the ones given for graded modalities in [11,10]. We prove the standard invariance
property (Theorem 3.9) and the Hennessy-Milner property (Theorem 4.4) and address the
following problems:

– When is a TBox invariant for bisimulation? (Corollary 3.11 and Theorem 3.13)
– When is an ABox invariant for bisimulation? (Theorem 3.15)
– What can be said about preservation of RBoxes w.r.t. bisimulation? (Theorem 3.19)
– What can be said about invariance or preservation of knowledge bases w.r.t. bisimula-

tion? (Theorems 3.21 and 3.22)

Furthermore, we give results (Theorems 5.5, 5.6, 5.7, 5.13 and 5.14) on the largest auto-
bisimulation of an interpretation in a DL, the quotient interpretation w.r.t. that equivalence
relation, and minimality of such a quotient interpretation. To deal with minimizing inter-
pretations for the case when the considered logic allows qualified number restrictions and/or
the concept constructor ∃r.Self, we introduce a new notion called QS-interpretation, which
is needed for obtaining expected results.

Computing the largest auto-bisimulations in modal logics and state transition systems
is standard like Hopcroft’s automaton minimization algorithm [21] and the Paige-Tarjan
algorithm [30]. By adapting these algorithms, we give efficient algorithms for computing the
partition corresponding to the largest auto-bisimulation of a finite interpretation in any DL
of the considered family. The adaptation involves the allowed constructors of the considered
DLs.

Using the invariance results we compare the expressiveness of the considered DLs w.r.t.
concepts, TBoxes and ABoxes. Our results about separating the expressiveness of DLs are
naturally extended to the case when instead of ALCreg we have any sublogic of ALCreg
that extends ALC.

The rest of this paper is structured as follows. In Section 2 we present notation and
semantics of the DLs considered in this paper. In Section 3 we define bisimulations in those
DLs and give our results on invariance and preservation w.r.t. such bisimulations. In Sec-
tion 4 we give our results on the Hennessy-Milner property of the considered DLs. Section 5
is devoted to auto-bisimulation and minimization. Section 6 is devoted to computing the
partition corresponding to the largest auto-bisimulation of a finite interpretation. Section 7
is devoted to applications of bisimulations. In particular, in Section 7.1 we present our re-
sults about separating the expressiveness of DLs w.r.t. concepts, TBoxes and ABoxes, in
Section 7.2 we discuss applications of interpretation minimization, and in Section 7.3 we
present a survey on bisimulation-based concept learning in DLs. Section 8 concludes this
work.

2 Preliminaries

2.1 Notation of Description Logics

Our languages use a countable set ΣC of concept names (atomic concepts), a countable
set ΣR of role names (atomic roles), and a countable set ΣI of individual names. Let
Σ = ΣC ∪ΣR ∪ΣI . We denote concept names by letters like A and B, denote role names
by letters like r and s, and denote individual names by letters like a and b.

We consider some (additional) DL-features denoted by I (inverse), O (nominal), Q
(qualified number restriction), U (universal role), Self. A set of DL-features is a set con-
sisting of some or zero of these names. We sometimes abbreviate sets of DL-features, writing
e.g., IOQ instead of {I,O,Q}.
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Definition 2.1 (Syntax of Concepts and Roles). Let Φ be any set of DL-features and
let L stand for ALCreg, which is the name of a DL corresponding to propositional dynamic
logic (PDL). The DL language LΦ allows roles and concepts defined inductively as follows:

– if r ∈ ΣR then r is a role of LΦ
– if A ∈ ΣC then A is a concept of LΦ
– if R and S are roles of LΦ and C is a concept of LΦ then

• ε, R ◦ S , R t S, R∗ and C? are roles of LΦ
• >, ⊥, ¬C, C uD, C tD, ∀R.C and ∃R.C are concepts of LΦ
• if I ∈ Φ then R− is a role of LΦ
• if O ∈ Φ and a ∈ ΣI then {a} is a concept of LΦ
• if Q ∈ Φ, r ∈ ΣR and n is a natural number

then ≥ n r.C and ≤ n r.C are concepts of LΦ
• if {Q, I} ⊆ Φ, r ∈ ΣR and n is a natural number

then ≥ n r−.C and ≤ n r−.C are concepts of LΦ
• if U ∈ Φ then U is a role of LΦ (we assume U /∈ ΣR)

• if Self ∈ Φ and r ∈ ΣR then ∃r.Self is a concept of LΦ. �

We use letters like R and S to denote arbitrary roles, and use letters like C and D to
denote arbitrary concepts. A role stands for a binary relation, while a concept stands for a
unary relation.

The intended meaning of the role constructors is the following:

– R ◦ S stands for the sequential composition of R and S

– R t S stands for the set-theoretical union of R and S

– R∗ stands for the reflexive and transitive closure of R

– C? stands for the test operator (as of PDL)

– R− stands for the inverse of R.

We say that a role R is in the converse normal form (CNF) if the inverse constructor
is applied in R only to role names and the role U is not under the scope of any other
role constructor. Since every role can be translated to an equivalent role in CNF,2 in this
dissertation we assume that roles are presented in the CNF.

We refer to elements of ΣR also as atomic roles. Let Σ±R = ΣR ∪ {r− | r ∈ ΣR}. From
now on, by basic roles we refer to elements of Σ±R if the considered language allows inverse
roles, and refer to elements of ΣR otherwise. In general, the language decides whether
inverse roles are allowed in the considered context.

The concept constructors ∀R.C and ∃R.C correspond respectively to the modal oper-
ators [R]C and 〈R〉C of PDL. The concept constructors ≥ nR.C and ≤ nR.C are called
qualified number restrictions. They correspond to graded modal operators.

Definition 2.2 (RBox – Box of Role Axioms). A role (inclusion) axiom in LΦ is an
expression of the form ε v r or R1 ◦ . . . ◦ Rk v r, where k ≥ 1 and R1, . . . , Rk are basic
roles of LΦ.3 An RBox in LΦ is a finite set of role axioms in LΦ. �

Definition 2.3 (TBox – Box of Terminological Axioms). A terminological axiom in
LΦ, also called a general concept inclusion (GCI) in LΦ, is an expression of the form C v D,
where C and D are concepts in LΦ. A TBox in LΦ is a finite set of terminological axioms
in LΦ. �

2 For example, ((r t s−) ◦ r∗)− = (r−)∗ ◦ (r− t s).
3 This definition depends only on whether LΦ allows inverse roles, i.e., whether I ∈ Φ.
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(R ◦ S)I = RI ◦ SI

(R t S)I = RI ∪ SI

(R∗)I = (RI)∗

(C?)I = {〈x, x〉 | CI(x)}
εI = {〈x, x〉 | x ∈ ∆I}
UI = ∆I ×∆I

(R−)I = (RI)−1

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

{a}I = {aI}
(∃r.Self)I = {x ∈ ∆I | rI(x, x)}

(∀R.C)I = {x ∈ ∆I | ∀y [RI(x, y) implies CI(y)]}
(∃R.C)I = {x ∈ ∆I | ∃y [RI(x, y) and CI(y)]

(≥ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) and CI(y)} ≥ n}
(≤ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) and CI(y)} ≤ n}

Fig. 1. Interpretation of complex roles and complex concepts.

Definition 2.4 (ABox – Box of Individual Assertions). An individual assertion in
LΦ is an expression of one of the forms C(a) (concept assertion), R(a, b) (positive role
assertion), ¬R(a, b) (negative role assertion), a

.
= b, and a 6= b, where C is a concept and

R is a role in LΦ. An ABox in LΦ is a finite set of individual assertions in LΦ. �

Definition 2.5 (Knowledge Base). A knowledge base in LΦ is a triple 〈R, T ,A〉, where
R (resp. T , A) is an RBox (resp. a TBox, an ABox) in LΦ. �

2.2 Semantics of Description Logics

As usual, the semantics of a logic is specified by interpretations and the satisfaction relation.

Definition 2.6 (Interpretation). An interpretation I = 〈∆I , ·I〉 consists of a non-empty
set ∆I , called the domain of I, and a function ·I , called the interpretation function of I,
which maps every concept name A to a subset AI of ∆I , maps every role name r to a
binary relation rI on ∆I , and maps every individual name a to an element aI of ∆I . We
say that I is a finite interpretation if ∆I and Σ are finite. The interpretation function ·I is
extended to complex roles and complex concepts as shown in Figure 1, where #Γ stands
for the cardinality of the set Γ , CI(x) denotes x ∈ CI , and RI(x, y) denotes 〈x, y〉 ∈ RI . �

For a set Γ of concepts, by Γ I we denote the set
⋂
{CI | C ∈ Γ}. If x ∈ Γ I then we

say that x satisfies Γ , I satisfies Γ (at x) and Γ is satisfied (at x) in I.
If RI(x, y) holds then we call y an R-successor of x.

Definition 2.7 (The Satisfaction Relation). Given an interpretation I, define that:

I |= C v D if CI ⊆ DI

I |= R1 ◦ . . . ◦Rk v r if RI1 ◦ . . . ◦RIk ⊆ rI

I |= ε v r if εI ⊆ rI

I |= a
.
= b if aI = bI

I |= a 6= b if aI 6= bI

I |= C(a) if CI(aI) holds

I |= R(a, b) if RI(aI , bI) holds

I |= ¬R(a, b) if RI(aI , bI) does not hold,
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where the operator ◦ stands for the composition of binary relations. We say that I validates
an axiom (resp. satisfies an assertion) ϕ if I |= ϕ. In that case, we also say that ϕ is validated
by (resp. satisfied in) I. �

Note that reflexiveness and transitiveness of atomic roles are expressible by role axioms.
When I ∈ Φ, symmetry of an atomic role can also be expressed by a role axiom.

Definition 2.8 (Semantics). An interpretation I is a model of a “box” (RBox, TBox or
ABox) if it validates all the axioms/assertions of that “box”. It is a model of a knowledge
base 〈R, T ,A〉 if it is a model of R, T and A. A knowledge base is satisfiable if it has a
model. An individual a is said to be an instance of a concept C w.r.t. a knowledge base
KB , denoted by KB |= C(a), if, for every model I of KB , aI ∈ CI . �

Example 2.9. Let

– ΣI = {Alice,Bob,Claudia,Dave,Eva,Frank ,George,Helen},
– ΣC = {Male,Female,Father ,Mother}, and
– ΣR = {hasChild , hasParent}.

Consider the interpretation I specified by:

– ∆I = {a, b, c, d, e, f, g, h, u, v},
– AliceI = a, BobI = b, . . . , HelenI = h (u and v are unnamed individuals),
– hasChildI consists of elements illustrated by edges in the following graph:

a : F

�� $$J
JJ

JJ
JJ

JJ
b : M

zzttt
tt
tt
tt

��
c : F

�� $$II
III

III
II

**TTT
TTTT

TTTT
TTTT

TTT
d : M

zzuu
uu
uu
uu
u

�� $$I
II

II
II

II
e : F

$$I
II

II
II

II
u : M

��
f : M g : M h : F v : F

(in this graph, the letter M denotes Male, and F denotes Female),
– hasParentI = (hasChild−1)I = (hasChildI)−1,
– MaleI = {b, d, f, g, u}, FemaleI = ∆I \MaleI = {a, c, e, h, v}‘,
– FatherI = (Male u ∃hasChild .>)I = {b, d, u},
– MotherI = (Female u ∃hasChild .>)I = {a, c, e}.

As examples, we have that:

– (∃hasChild .Self)I = ∅,
– (≥3 hasChild .>)I = {c, d},
– (≥2 hasChild .Male)I = {c, d},
– (Female u <2 hasChild .>)I = {e, h, v}. �

Example 2.10. Let ΣI = {a, b, c}, ΣC = {F,M} and ΣR = {r}. One can think of these
names as Alice (a), Bob (b), Claudia (c), female (F ), male (M), and has child (r). In Figure 2
we give three interpretations I1, I2 and I3.

The edges are instances of r. We have, for example, ∆I1 = {aI1 , bI1 , cI1 , u1, u2, u3},
where these six elements are pairwise different, F I1 = {aI1 , cI1 , u2}, and MI1 =
{bI1 , u1, u3}.4 All of these interpretations are models of the following ABox in LIOQ, where
r− can be read as has parent:

{ F (a), M(b), F (c), (∃r.(∃r−.{b} u ≥2 r.∃r−.{c}))(a) }
4 The elements ui, vj , wk are unnamed objects. (The elements of ΣI can be called named individuals, while

the elements ui, vj , wk can be called unnamed individuals.)
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(I1)

a : F

$$J
JJ

JJ
JJ

JJ
b :M

��
c : F

�� $$I
II

II
II

II
u1 :M

zzuuu
uu
uu
uu

��
u2 : F u3 :M

(I2) (I3)

a : F

$$I
II

II
II

II
b :M

��
c : F

�� $$I
II

II
II

II

**TTT
TTTT

TTTT
TTTT

TTT v1 :M

zzuuu
uu
uu
uu

�� $$I
II

II
II

II

v2 : F v3 :M v4 : F

a : F

%%JJ
JJJ

JJJ
JJ

b :M

��
c : F

�� $$JJ
JJJ

JJJ
JJ

w1 :M

zzttt
tt
tt
tt

�� $$JJ
JJ

JJ
JJ

J w5 : F

��
w2 : F w3 :M w4 : F

Fig. 2. Interpretations used in Examples 2.10 and 3.6.

Assuming that r means has child, then the last assertion of the above ABox means “a and
b have a child which in turn has at least two children with c”.

All the interpretations I1, I2 and I3 validate the terminological axioms ¬F v M and
{a} v ∀r∗.({a} t ≥2 r−.>) of LIOQ. �

3 Bisimulations and Invariance Results

Definition 3.1 (Bisimulation). Let I and I ′ be interpretations. A non-empty binary
relation Z ⊆ ∆I × ∆I

′
is called an LΦ-bisimulation between I and I ′ if the following

conditions hold for every a ∈ ΣI , A ∈ ΣC , r ∈ ΣR, x, y ∈ ∆I , x′, y′ ∈ ∆I′ :

Z(aI , aI
′
) (1)

Z(x, x′)⇒ [AI(x)⇔ AI
′
(x′)] (2)

[Z(x, x′) ∧ rI(x, y)]⇒ ∃y′ ∈ ∆I′ [Z(y, y′) ∧ rI′(x′, y′)] (3)

[Z(x, x′) ∧ rI′(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(x, y)], (4)

if I ∈ Φ then

[Z(x, x′) ∧ rI(y, x)]⇒ ∃y′ ∈ ∆I′ [Z(y, y′) ∧ rI′(y′, x′)] (5)

[Z(x, x′) ∧ rI′(y′, x′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(y, x)], (6)

if O ∈ Φ then

Z(x, x′)⇒ [x = aI ⇔ x′ = aI
′
], (7)

if Q ∈ Φ then

if Z(x, x′) holds and y1, . . . , yn (n ≥ 1) are pairwise different elements
of ∆I such that rI(x, yi) holds for every 1 ≤ i ≤ n then there exist
pairwise different elements y′1, . . . , y

′
n of ∆I

′
such that rI

′
(x′, y′i) and

Z(yi, y
′
i) hold for every 1 ≤ i ≤ n

(8)
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if Z(x, x′) holds and y′1, . . . , y
′
n (n ≥ 1) are pairwise different elements of

∆I
′

such that rI
′
(x′, y′i) holds for every 1 ≤ i ≤ n then there exist pair-

wise different elements y1, . . . , yn of ∆I such that rI(x, yi) and Z(yi, y
′
i)

hold for every 1 ≤ i ≤ n,

(9)

if {Q, I} ⊆ Φ then (additionally)

if Z(x, x′) holds and y1, . . . , yn (n ≥ 1) are pairwise different elements
of ∆I such that rI(yi, x) holds for every 1 ≤ i ≤ n then there exist
pairwise different elements y′1, . . . , y

′
n of ∆I

′
such that rI

′
(y′i, x

′) and
Z(yi, y

′
i) hold for every 1 ≤ i ≤ n

(10)

if Z(x, x′) holds and y′1, . . . , y
′
n (n ≥ 1) are pairwise different elements of

∆I
′

such that rI
′
(y′i, x

′) holds for every 1 ≤ i ≤ n then there exist pair-
wise different elements y1, . . . , yn of ∆I such that rI(yi, x) and Z(yi, y

′
i)

hold for every 1 ≤ i ≤ n,

(11)

if U ∈ Φ then

∀x ∈ ∆I ∃x′ ∈ ∆I′ Z(x, x′) (12)

∀x′ ∈ ∆I′ ∃x ∈ ∆I Z(x, x′), (13)

if Self ∈ Φ then

Z(x, x′)⇒ [rI(x, x)⇔ rI
′
(x′, x′)]. (14)

For example, if Φ = {I,Q} then only the conditions (1)-(6) and (8)-(11) (and all of them)
are essential. �

Notice that our bisimulation conditions (8)-(11) for qualified number restrictions are
relatively simpler than the ones given for graded modalities in [11,10].

Definition 3.2 (Finitely Branching Interpretation). An interpretation I is finitely
branching (or image-finite) w.r.t. LΦ if, for every x ∈ ∆I and every basic role R of LΦ, the
set {y ∈ ∆I | RI(x, y)} is finite. �

Observe that, if I and I ′ are finitely branching interpretations, then:

– the combination of the conditions (8) and (9) is equivalent to:

if Z(x, x′) holds then there exists a bijection h : {y | rI(x, y)} → {y′ | rI′(x′, y′)}
such that h ⊆ Z,

– the combination of the conditions (10) and (11) is equivalent to:

if Z(x, x′) holds then there exists a bijection h : {y | rI(y, x)} → {y′ | rI′(y′, x′)}
such that h ⊆ Z.

Lemma 3.3.

1. The relation {〈x, x〉 | x ∈ ∆I} is an LΦ-bisimulation between I and I.
2. If Z is an LΦ-bisimulation between I and I ′ then Z−1 is an LΦ-bisimulation between I ′

and I.
3. If Z1 is an LΦ-bisimulation between I0 and I1, and Z2 is an LΦ-bisimulation between
I1 and I2, then Z1 ◦ Z2 is an LΦ-bisimulation between I0 and I2.

4. If Z is a set of LΦ-bisimulations between I and I ′ then
⋃
Z is also an LΦ-bisimulation

between I and I ′.

The proof of this lemma is straightforward.
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Algorithm 1: checking LΦ-bisimilarity of two finite interpretations

input : a set Φ of DL-features and finite interpretations I, I′
output : an LΦ-bisimulation between I and I′ if they are LΦ-bisimilar, or false otherwise.

1 Z := ∆I ×∆I
′
;

2 repeat

3 foreach x ∈ ∆I and x′ ∈ ∆I
′
do

4 if some condition among (2)-(11), (14) is related to Φ but not satisfied for some A, r, y, y′, a
then delete the pair 〈x, x′〉 from Z

5 until Z was not modified during the last iteration;

6 if the condition (1) is not satisfied for some a ∈ ΣI then return false;
7 if U ∈ Φ and the condition (12) or (13) is not satisfied then return false;

8 return Z;

Definition 3.4 (LΦ-Bisimilarity). An interpretation I is LΦ-bisimilar to I ′ if there exists
an LΦ-bisimulation between them. We say that x ∈ ∆I is LΦ-bisimilar to x′ ∈ ∆I′ if there
exists an LΦ-bisimulation Z between I and I ′ such that Z(x, x′) holds. �

By Lemma 3.3, the former LΦ-bisimilarity relation is an equivalence relation between
interpretations. The latter LΦ-bisimilarity relation is also an equivalence relation (between
elements of interpretations’ domains).

To check whether two finite interpretations I and I ′ are LΦ-bisimilar to each other, one
can use Algorithm 1 (on page 10). It is straightforward to prove the following proposition.

Proposition 3.5. Algorithm 1 is correct. Furthermore, if it returns Z (but not “false”)
then Z is a maximal LΦ-bisimulation between I and I ′.

Example 3.6. Consider the interpretations I1, I2 and I3 given in Figure 2 (on page 8) and
described in Example 2.10.

– By using Algorithm 1, it can be checked that all the interpretations I1, I2 and I3 are
L-bisimilar. For example, running Algorithm 1 for I1 and I2 with Φ = ∅ results in Z =
{〈aI1 , aI2〉, 〈bI1 , bI2〉, 〈cI1 , cI2〉, 〈u1, v1〉, 〈u2, v2〉, 〈u2, v4〉, 〈u3, v3〉}. By Proposition 3.5,
this is a maximal L-bisimulation between I1 and I2.

– Let us construct a minimal L-bisimulation between I1 and I2. We try to construct
a minimal relation Z ⊆ ∆I1 × ∆I2 that satisfies the conditions (1)-(4). Recall that
∆I1 = {aI1 , bI1 , cI1 , u1, u2, u3} and ∆I2 = {aI2 , bI2 , cI2 , v1, v2, v3, v4}. To satisfy the
condition (1), Z(xI1 , xI2) must hold for x ∈ {a, b, c}. To satisfy the condition (3)
for the case when x = aI1 , x′ = aI2 and y = u1, Z(u1, v1) must hold. Observe
that, due to the condition (2) with A = M , none of the pairs 〈u2, v3〉, 〈u3, v2〉,
〈u3, v4〉 belongs to Z. Since Z(u1, v1) holds, to satisfy the condition (3) for the case
when x = u1, x

′ = v1 and y = u3, Z(u3, v3) must hold. Similarly, to satisfy the
condition (4) for the case when x = u1, x

′ = v1 and y′ = v2 (resp. y′ = v4),
we must have that 〈u2, v2〉 ∈ Z (resp. 〈u2, v4〉 ∈ Z). Summing up, we must have
{〈aI1 , aI2〉, 〈bI1 , bI2〉, 〈cI1 , cI2〉, 〈u1, v1〉, 〈u2, v2〉, 〈u2, v4〉, 〈u3, v3〉} ⊆ Z. Let Z be the set
in the left hand side of this inclusion. It is easy to check that Z satisfies all the condi-
tions (1)-(4). Hence, Z is a minimal L-bisimulation between I1 and I2. Together with
the above item, it follows that this is the unique L-bisimulation between I1 and I2.

– Running Algorithm 1 for I1 and I2 with Φ = {I,O} results in the same set Z =
{〈aI1 , aI2〉, 〈bI1 , bI2〉, 〈cI1 , cI2〉, 〈u1, v1〉, 〈u2, v2〉, 〈u2, v4〉, 〈u3, v3〉} as in the case Φ = ∅.
By Proposition 3.5, Z is a maximal LIO-bisimulation between I1 and I2. It follows that
the elements u2 (of I1) and v2, v4 (of I2) are LIO-bisimilar.
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– Running Algorithm 1 for I1 and I2 with Φ = {Q} results in false. Hence, I1 and I2 are
not LQ-bisimilar. Similarly, the interpretation I3 is not LI -bisimilar to I1 nor I2. �

Lemma 3.7. Let I and I ′ be interpretations and Z be an LΦ-bisimulation between I and
I ′. Then the following properties hold for every concept C in LΦ, every role R in LΦ, every
x, y ∈ ∆I , every x′, y′ ∈ ∆I′, and every a ∈ ΣI :

Z(x, x′)⇒ [CI(x)⇔ CI
′
(x′)] (15)

[Z(x, x′) ∧RI(x, y)]⇒ ∃y′ ∈ ∆I′ [Z(y, y′) ∧RI′(x′, y′)] (16)

[Z(x, x′) ∧RI′(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧RI(x, y)] (17)

if O ∈ Φ then:

Z(x, x′)⇒ [RI(x, aI)⇔ RI
′
(x′, aI

′
)]. (18)

Proof. We prove this lemma by induction on the structures of C and R.
Consider the assertion (16). Suppose Z(x, x′) and RI(x, y) hold. By induction on the

structure of R we prove that there exists y′ ∈ ∆I′ such that Z(y, y′) and RI
′
(x′, y′) hold.

The base case occurs when R is a role name and the assertion for it follows from (3). The
induction steps are given below.

– Case R = S1 ◦ S2 : We have that (S1 ◦ S2)I(x, y) holds. Hence, there exists z ∈ ∆I

such that SI1 (x, z) and SI2 (z, y) hold. Since Z(x, x′) and SI1 (x, z) hold, by the inductive
assumption of (16), there exists z′ ∈ ∆I′ such that Z(z, z′) and SI

′
1 (x′, z′) hold. Since

Z(z, z′) and SI2 (z, y) hold, by the inductive assumption of (16), there exists y′ ∈ ∆I′

such that Z(y, y′) and SI
′

2 (z′, y′) hold. Since SI
′

1 (x′, z′) and SI
′

2 (z′, y′) hold, we have that
(S1 ◦ S2)I

′
(x′, y′) holds, i.e. RI

′
(x′, y′) holds.

– Case R = S1 t S2 is trivial.
– Case R = S∗ : Since RI(x, y) holds, there exist x0, . . . , xk ∈ ∆I with k ≥ 0 such

that x0 = x, xk = y and, for 1 ≤ i ≤ k, SI(xi−1, xi) holds. Let x′0 = x′. For each
1 ≤ i ≤ k, since Z(xi−1, x

′
i−1) and SI(xi−1, xi) hold, by the inductive assumption of (16),

there exists x′i ∈ ∆I
′

such that Z(xi, x
′
i) and SI

′
(x′i−1, x

′
i) hold. Hence, Z(xk, x

′
k) and

(S∗)I
′
(x′0, x

′
k) hold. Let y′ = x′k. Thus, Z(y, y′) and RI

′
(x′, y′) hold.

– Case R = (D?) : Since RI(x, y) holds, we have that DI(x) holds and x = y. Since
Z(x, x′) and DI(x) hold, by the inductive assumption of (15), DI

′
(x′) also holds, and

hence RI
′
(x′, x′) holds. By choosing y′ = x′, both Z(y, y′) and RI

′
(x′, y′) hold.

– Case I ∈ Φ and R = r− : The assertion for this case follows from (5).

By Lemma 3.3(2), the assertion (17) follows from the assertion (16).
Consider the assertion (18) and suppose O ∈ Φ. By Lemma 3.3(2), it suffices to show

that if Z(x, x′) and RI(x, aI) hold then RI
′
(x′, aI

′
) also holds. We prove this by using

similar argumentation as for (16). Suppose Z(x, x′) and RI(x, aI) hold. We prove that
RI
′
(x′, aI

′
) also holds by induction on the structure of R. The base case occurs when R is

a role name and the assertion for it follows from (3) and (7). The induction steps are given
below.

– Case R = S1 ◦ S2 : We have that (S1 ◦ S2)I(x, aI) holds. Hence, there exists y ∈ ∆I
such that SI1 (x, y) and SI2 (y, aI) hold. Since Z(x, x′) and SI1 (x, y) hold, by the inductive
assumption of (16), there exists y′ ∈ ∆I′ such that Z(y, y′) and SI

′
1 (x′, y′) hold. Since

Z(y, y′) and SI2 (y, aI) hold, by the inductive assumption of (18), SI
′

2 (y′, aI
′
) holds. Since

SI
′

1 (x′, y′) and SI
′

2 (y′, aI
′
) hold, we have that (S1 ◦ S2)I

′
(x′, aI

′
) holds, i.e. RI

′
(x′, aI

′
)

holds.
– Case R = S1 t S2 is trivial.
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– Case R = S∗ : Since RI(x, aI) holds, there exist x0, . . . , xk ∈ ∆I with k ≥ 0 such that
x0 = x, xk = aI and, for 1 ≤ i ≤ k, SI(xi−1, xi) holds.

• Case k = 0 : We have that x = aI . Since Z(x, x′) holds, by (7), it follows that
x′ = aI

′
. Hence RI

′
(x′, aI

′
) holds.

• Case k > 0 : Let x′0 = x′. For each 1 ≤ i < k, since Z(xi−1, x
′
i−1) and

SI(xi−1, xi) hold, by the inductive assumption of (16), there exists x′i ∈ ∆I
′
such that

Z(xi, x
′
i) and SI

′
(x′i−1, x

′
i) hold. Hence, Z(xk−1, x

′
k−1) and (S∗)I

′
(x′0, x

′
k−1) hold.

Since Z(xk−1, x
′
k−1) and SI(xk−1, a

I) hold, by the inductive assumption of (18),

we have that SI
′
(x′k−1, a

I′) holds. Since (S∗)I
′
(x′0, x

′
k−1) holds, it follows that

RI
′
(x′, aI

′
) holds.

– Case R = (D?) : Since RI(x, aI) holds, we have that x = aI and DI(aI) holds. Since
Z(x, x′) holds, by (7), it follows that x′ = aI

′
. Since Z(aI , aI

′
) and DI(aI) hold, by

the inductive assumption of (15), DI
′
(aI

′
) also holds. Since x′ = aI

′
, it follows that

RI
′
(x′, aI

′
) holds.

– Case I ∈ Φ and R = r− : The assertion for this case follows from (5) and (7).

Consider the assertion (15). By Lemma 3.3(2), it suffices to show that if Z(x, x′) and
CI(x) hold then CI

′
(x′) also holds. Suppose Z(x, x′) and CI(x) hold. The cases when C

is of the form >, ⊥, A, ¬D, D tD′ or D uD′ are trivial.

– Case C = ∃R.D : Since CI(x) holds, there exists y ∈ ∆I such that RI(x, y) and DI(y)
hold. Since Z(x, x′) and RI(x, y) hold, by the assertion (16) (proved earlier), there exists
y′ ∈ ∆I′ such that Z(y, y′) and RI

′
(x′, y′) hold. Since Z(y, y′) and DI(y) hold, by the

inductive assumption of (15), it follows that DI
′
(y′) holds. Therefore, CI

′
(x′) holds.

– Case C = ∀R.D is reduced to the above case, treating ∀R.D as ¬∃R.¬D.

– Case O ∈ Φ and C = {a} : Since CI(x) holds, we have that x = aI . Since Z(x, x′)
holds, by (7), it follows that x′ = aI

′
. Hence CI

′
(x′) holds.

– Case Q ∈ Φ and C = (≥nR.D), where R is a basic role: Since CI(x) holds, there exist
pairwise different y1, . . . , yn ∈ ∆I such that RI(x, yi) and DI(yi) hold for all 1 ≤ i ≤ n.
Since Z(x, x′) holds, by the conditions (8) and (10), there exist pairwise different y′1, . . . ,
y′n ∈ ∆I

′
such that RI

′
(x′, y′i) and Z(yi, y

′
i) hold for all 1 ≤ i ≤ n. Since Z(yi, y

′
i) and

DI(yi) hold, by the inductive assumption of (15), it follows that DI
′
(y′i) holds. Since

RI
′
(x′, y′i) and DI

′
(y′i) hold for all 1 ≤ i ≤ n, it follows that CI

′
(x′) holds.

– Case Q ∈ Φ and C = (≤ nR.D), where R is a basic role: This case is reduced to the
above case, treating ≤ nR.D as ¬(≥ (n+ 1)R.D).

– Case Self ∈ Φ and C = ∃r.Self : Since CI(x) holds, we have that rI(x, x) holds.
By (14), it follows that rI

′
(x′, x′) holds. Hence CI

′
(x′) holds. �

Definition 3.8 (Invariance of a Concept). A concept C in LΦ is said to be invariant
for LΦ-bisimulation if, for any interpretations I, I ′ and any LΦ-bisimulation Z between I
and I ′, if Z(x, x′) holds then x ∈ CI iff x′ ∈ CI′ . �

Theorem 3.9. All concepts in LΦ are invariant for LΦ-bisimulation.

This theorem follows immediately from the assertion (15) of Lemma 3.7.

Definition 3.10 (Invariance of a TBox, an ABox or a Knowledge Base). A TBox
T in LΦ is said to be invariant for LΦ-bisimulation if, for every interpretations I and I ′,
if there exists an LΦ-bisimulation between I and I ′ then I is a model of T iff I ′ is a
model of T . The notions of whether an ABox or a knowledge base in LΦ is invariant for
LΦ-bisimulation are defined similarly. �
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Corollary 3.11. If U ∈ Φ then all TBoxes in LΦ are invariant for LΦ-bisimulation.

Proof. Suppose U ∈ Φ and let T be a TBox in LΦ and I, I ′ be interpretations. Suppose
that I is a model of T , and Z is an LΦ-bisimulation between I and I ′. We show that I ′
is a model of T . Let C v D be an axiom from T and let x′ ∈ ∆I′ . We need to show that
x′ ∈ (¬C tD)I

′
. By (13), there exists x ∈ ∆I such that Z(x, x′) holds. Since I is a model

of T , we have that x ∈ (¬C tD)I , which, by Theorem 3.9, implies that x′ ∈ (¬C tD)I
′
.
�

Definition 3.12 (Unreachable-Objects-Free Interpretation). An interpretation I is
said to be unreachable-objects-free (w.r.t. the considered language) if every element of ∆I

is reachable from some aI , where a ∈ ΣI , via a path consisting of edges being instances of
basic roles. �

It is clear that, if U /∈ Φ, C is a concept of LΦ and a ∈ ΣI , then I |= C(a) iff I ′ |= C(a),
where I ′ is the unreachable-objects-free interpretation obtained from I by deleting from the
domain unreachable objects. That is, when U /∈ Φ, unreachable objects are redundant for
the instance checking problem. Therefore, it is worth considering the class of unreachable-
objects-free interpretations.

Like Corollary 3.11, the following theorem concerns invariance of TBoxes w.r.t. LΦ-
bisimulation.

Theorem 3.13. Let T be a TBox in LΦ and I, I ′ be unreachable-objects-free interpreta-
tions (w.r.t. LΦ) such that there exists an LΦ-bisimulation between I and I ′. Then I is a
model of T iff I ′ is a model of T .

Proof. Let Z be an LΦ-bisimulation between I and I ′. By Lemma 3.3(2), it suffices to show
that if I is a model of T then I ′ is also a model of T . Suppose I is a model of T . Let
C v D be an axiom from T . We need to show that CI

′ ⊆ DI′ . Let x′ ∈ CI′ . We show that
x′ ∈ DI′ .

Since I ′ is an unreachable-objects-free interpretation, there exist elements x′0, . . . , x′k
of ∆I

′
and basic roles R1, . . . , Rk with k ≥ 0 such that x′0 = aI

′
for some a ∈ ΣI , x′k = x′

and, for 1 ≤ i ≤ k, RI
′
i (x′i−1, x

′
i) holds.

By (1), Z(aI , aI
′
) holds. Let x0 = aI . For each 1 ≤ i ≤ k, since Z(xi−1, x

′
i−1) and

RI
′
i (x′i−1, x

′
i) hold, by (17), there exists xi ∈ ∆I such that Z(xi, x

′
i) and RIi (xi−1, xi) hold.

Let x = xk. Thus, Z(x, x′) holds. Since x′ ∈ CI′ , by Theorem 3.9, we have that x ∈ CI .
Since I is a model of T , it follows that x ∈ DI . By Theorem 3.9, we derive that x′ ∈ DI′ ,
which completes the proof. �

To justify that Corollary 3.11 and Theorem 3.13 are as strong as possible, we present
here a simple example with U /∈ Φ and one of I, I ′ being not unreachable-objects-free such
that I and I ′ are LΦ-bisimilar but there exists a TBox T such that I |= T and I ′ 2 T :

Example 3.14. Assume that U /∈ Φ and let ΣC = {A}, ΣR = ∅, ΣI = {a} (i.e., the signature
consists of only concept name A and individual name a). Let I and I ′ be the interpretations
specified by: ∆I = {a}, ∆I′ = {a, u}, aI = aI

′
= a, AI = AI

′
= {a}. It is easy to see

that Z = {〈a, a〉} is an LΦ-bisimulation between I and I ′ (it satisfies all of the conditions
(1)-(11) and (14)). However, I is a model of the TBox {> v A}, while I ′ is not. �

As mentioned in the introduction, in the independent work [27] Lutz et al. use the notion
of global bisimulation to characterize invariance of TBoxes, whose condition is the same as
our bisimulation conditions (12) and (13) for the universal role. Their result on invariance of
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TBoxes is not stronger than our Corollary 3.11: one can just add U to Φ, and the considered
TBox, which may not use U , is invariant w.r.t. the corresponding bisimulation satisfying
the conditions (12) and (13). Furthermore, the family of DLs considered in this dissertation
contains other logics than the DL ALCQIO considered in [27]. On the matter of originality
of our Corollary 3.11 and Theorem 3.13, note that they appeared to the public early in [15].

The following theorem concerns invariance of ABoxes w.r.t. LΦ-bisimulation.

Theorem 3.15. Let A be an ABox in LΦ. If O ∈ Φ or A contains only assertions of the
form C(a) then A is invariant for LΦ-bisimulation.

Proof. Suppose that O ∈ Φ or A contains only assertions of the form C(a). Let I and I ′
be interpretations and let Z be an LΦ-bisimulation between I and I ′. By Lemma 3.3(2),
it suffices to show that if I is a model of A then I ′ is also a model of A. Suppose I is an
model of A. Let ϕ be an assertion from A. We need to show that I ′ |= ϕ.

– Case ϕ = (a
.
= b) : Since I |= ϕ, we have that aI = bI . By (1), Z(aI , aI

′
) and Z(bI , bI

′
)

hold. Since aI = bI , by (7), it follows that aI
′

= bI
′
. Hence I ′ |= ϕ.

– Case ϕ = (a 6= b) is reduced to the above case, by using Lemma 3.3(2).

– Case ϕ = C(a) : By (1), Z(aI , aI
′
) holds. Since I |= ϕ, CI(aI) holds. By (15), it follows

that CI
′
(aI

′
) holds. Thus I ′ |= ϕ.

– Case ϕ = R(a, b) : By (1), Z(aI , aI
′
) holds. Since I |= ϕ, RI(aI , bI) holds. By (16),

there exists y′ ∈ ∆I′ such that Z(bI , y′) and RI
′
(aI

′
, y′) hold. Consider C = {b} (the

assumption O ∈ Φ is used here). Since Z(bI , y′) and CI(bI) hold, by (15), CI
′
(y′) holds,

which means y′ = bI
′
. Thus RI

′
(aI

′
, bI

′
) holds, i.e., I ′ |= ϕ.

– Case ϕ = ¬R(a, b) is reduced to the above case, by using Lemma 3.3(2). �

Clearly, the condition “O ∈ Φ or A contains only assertions of the form C(a)” of the
above theorem covers many useful cases. The following example justifies that this theorem
is as strong as possible.

Example 3.16. We show that if O /∈ Φ then none of the ABoxes A1 = {a .
= b}, A2 = {a 6=

b}, A3 = {r(a, b)}, A4 = {¬r(a, b)} is invariant for LΦ-bisimulation. Assume that O /∈ Φ
and let ΣC = ∅, ΣI = {a, b}, ΣR = {r}. Let I and I ′ be the interpretations specified by:

∆I = ∆I
′

= {u, v} with u 6= v, aI = bI = aI
′

= u, bI
′

= v, and rI = rI
′

= {〈u, u〉, 〈v, v〉}.
It can be checked that Z = ∆I ×∆I′ is an LΦ-bisimulation between I and I ′. However:

– I is a model of A1, while I ′ is not

– I ′ is a model of A2, while I is not

– I is a model of A3, while I ′ is not

– I ′ is a model of A4, while I is not. �
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In general, RBoxes are not invariant for LΦ-bisimulations. (The Van Benthem Charac-
terization Theorem states that a first-order formula is invariant for bisimulations iff it is
equivalent to the translation of a modal formula (see, e.g., [4]).) We give below a simple
example about this:

Example 3.17. Let ΣC = ∅, ΣR = {r}, ΣI = {a} (i.e., the signature consists of only role
name r and individual name a) and Φ = ∅. Let I and I ′ be the interpretations specified by:

∆I = ∆I
′

= {a, u, v}, aI = aI
′

= a, rI = {〈a, u〉, 〈u, v〉, 〈v, v〉} and rI
′

= rI ∪ {〈a, v〉}. It
can be checked that Z = ∆I ×∆I′ is an LΦ-bisimulation between I and I ′. However, I ′ is
a model of the RBox {r ◦ r v r}, while I is not. �

Definition 3.18 (Least R-Extension of an Interpretation). An interpretation I ′ is
an r-extension of an interpretation I if ∆I

′
= ∆I , ·I′ differs from ·I only in interpreting

role names, and for all r ∈ ΣR, rI
′ ⊇ rI .

Given an interpretation I and an RBox R, the least r-extension of I validating R is the
r-extension I ′ of I such that I ′ is a model of R and, for every r-extension I ′′ of I, if I ′′ is
a model of R then rI

′ ⊆ rI′′ for all r ∈ ΣR. �

The least r-extension exists and is unique because the axioms of R correspond to non-
negative Horn clauses of first-order logic. Namely, a role axiom ε v r corresponds to the
following Horn clause

∀x r(x, x),

and a role axiom R1 ◦ . . . ◦Rk v r corresponds to the following Horn clause

∀x0 . . . ∀xk [R1(x0, x1) ∧ . . . ∧Rk(xk−1, xk)→ r(x0, xk)],

where s−(x, y) stands for s(y, x). It is clear that one can extend the relations standing for
the roles in a minimal way to satisfy all of the Horn clauses corresponding to the axioms
of R.

Theorem 3.19. Suppose Φ ⊆ {I,O, U} and let R be an RBox in LΦ. Let I0 be a model
of R, Z be an LΦ-bisimulation between I0 and an interpretation I1, and I ′1 be the least
r-extension of I1 validating R. Then Z is an LΦ-bisimulation between I0 and I ′1.

This theorem states that, even in the case when interpretations I0 and I1 are LΦ-
bisimilar but I0 |= R while I1 2 R, we can modify I1 slightly by adding some edges (i.e.
instances of roles) to obtain a model I ′1 of R that is LΦ-bisimilar with I0 (and hence also
with I1). This theorem is thus natural.

Proof. We only need to prove that, for every r ∈ ΣR, x ∈ ∆I0 , x′, y′ ∈ ∆I′1 :

1. [Z(x, x′) ∧ rI′1(x′, y′)]⇒ ∃y ∈ ∆I0 [Z(y, y′) ∧ rI0(x, y)]

2. if I ∈ Φ then [Z(x, x′) ∧ rI′1(y′, x′)]⇒ ∃y ∈ ∆I0 [Z(y, y′) ∧ rI0(y, x)].
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We prove these assertions by induction on the timestamps of the steps that extend
relations rI1 to rI

′
1 , for r ∈ ΣR.

Consider the first assertion. Suppose Z(x, x′) and rI
′
1(x′, y′) hold. We need to show there

exists y ∈ ∆I0 such that Z(y, y′) and rI0(x, y) hold. There are the following three cases:

– Case rI
′
1(x′, y′) holds because rI1(x′, y′) holds: The assertion holds because Z is an

LΦ-bisimulation between I0 and I1.
– Case rI

′
1(x′, y′) holds because (ε v r) ∈ R and y′ = x′ : Take y = x. Thus, Z(y, y′)

holds. Since I0 is a model of R, it validates ε v r, and hence rI0(x, y) also holds.

– Case rI
′
1(x′, y′) holds because R1 ◦ . . . ◦ Rk v r is an axiom of R and there exist x′0 =

x, x′1, . . . , x
′
k−1, x

′
k = y′ such that R

I′1
i (x′i−1, x

′
i) holds for all 1 ≤ i ≤ k : Let x0 = x. For

each 1 ≤ i ≤ k, since Z(xi−1, x
′
i−1) and R

I′1
i (x′i−1, x

′
i) hold, by the inductive assumptions

of both the assertions, there exists xi ∈ ∆I0 such that Z(xi, x
′
i) and RI0i (xi−1, xi) hold.

Thus, Z(xk, x
′
k) holds. Since I0 validates the axiom R1 ◦ . . . ◦Rk v r of R, we also have

that rI0(x0, xk) holds. We choose y = xk and finish with the proof of the first assertion.

The proof of the second assertion is similar to the proof of the first one. �

Example 3.20. To justify that the form of the above theorem is as strong as possible, we
show that allowing either Q or Self in Φ can make the theorem wrong. In the following:
ui 6= uj if i 6= j; vi 6= vj if i 6= j; and ui 6= vj for all i, j. Here are examples:

1. Assume that Self ∈ Φ and Φ ⊆ {Self, O, U}. Let ΣC = ∅, ΣI = {a} and ΣR = {r}.
Let I0 and I1 be the interpretations specified by:

– ∆I0 = {ui | i ≥ 0}, aI0 = u0, r
I0 = {〈ui, uj〉 | i < j}

– ∆I1 = {v0, v1, v2}, aI1 = v0, r
I1 = {〈v0, v1〉, 〈v1, v2〉, 〈v2, v1〉, 〈v0, v2〉}.

Let Z = {〈u0, v0〉} ∪ {〈ui, vj〉 | i ≥ 1 and (j = 1 or j = 2)}. It is easy to check that
Z is an LΦ-bisimulation between I0 and I1, I0 is a model of the RBox R = {r ◦ r v
r}, but I1 is not. Let I ′1 be the least r-extension of I1 validating R. We have that
{〈v1, v1〉, 〈v2, v2〉} ⊆ rI

′
1 , while 〈ui, ui〉 /∈ rI0 for all i ≥ 0. Hence {v1, v2} ⊆ (∃Self.r)I′1 ,

while ui /∈ (∃Self.r)I0 for all i ≥ 0, Thus, it is easy to check that Z is not an LΦ-
bisimulation between I0 and I ′1.

2. Assume that Q ∈ Φ and Self /∈ Φ. Let ΣC = ∅, ΣI = {a} and ΣR = {r}. Let I0 and
I1 be the interpretations specified by:
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– ∆I0 = {u0, u1, u2}, aI0 = u0,
rI0 = {〈u0, u0〉, 〈u0, u1〉, 〈u0, u2〉, 〈u1, u1〉, 〈u2, u2〉}

– ∆I1 = {v0, v1, v2}, aI1 = v0,
rI1 = {〈v0, v0〉, 〈v0, v1〉, 〈v0, v2〉, 〈v1, v2〉, 〈v2, v1〉}.

Let Z = {〈u0, v0〉}∪({u1, u2}×{v1, v2}). It is easy to check that Z is an LΦ-bisimulation
between I0 and I1, I0 is a model of the RBox R = {ε v r}, but I1 is not. Let I ′1 be
the least r-extension of I1 validating R. We have that {〈v1, v1〉, 〈v2, v2〉} ⊆ rI

′
1 . Hence

{v1, v2} ⊆ (≥ 2 r.>)I
′
1 , while ui /∈ (≥ 2 r.>)I0 for both i ∈ {1, 2}. Thus, it is easy to

check that Z is not an LΦ-bisimulation between I0 and I ′1.
3. Assume that Q ∈ Φ. Let ΣC = ∅, ΣI = {a}, ΣR = {r, s} and let I0, I1 be the

interpretations specified by:

– ∆I0 = {u0, . . . , u4}, aI0 = u0, r
I0 = {〈u0, u1〉, 〈u0, u2〉},

sI0 = {〈ui, uj〉 | {i, j} ⊆ {1, 3} or {i, j} ⊆ {2, 4}}
– ∆I1 = {v0, . . . , v4}, aI1 = v0, r

I1 = {〈v0, v1〉, 〈v0, v2〉},
sI1 = {〈vi, vi〉 | 1 ≤ i ≤ 4} ∪ {〈v1, v3〉, 〈v3, v2〉, 〈v2, v4〉, 〈v4, v1〉}.

Let Z = {〈u0, v0〉} ∪ ({u1, u2}× {v1, v2})∪ ({u3, u4}× {v3, v4}). It is easy to check that
Z is an LΦ-bisimulation between I0 and I1, I0 is a model of the RBox R = {s ◦ s v s},
but I1 is not. Let I ′1 be the least r-extension of I1 validating R. We have that
{〈v3, v4〉, 〈v3, v1〉} ⊆ sI

′
1 . Hence v3 ∈ (≥4 s.>)I

′
1 , while ui /∈ (≥4 s.>)I0 for all 0 ≤ i ≤ 4.

Thus, it is easy to check that Z is not an LΦ-bisimulation between I0 and I ′1. �

The following theorem concerns invariance of knowledge bases w.r.t. LΦ-bisimulation.
As stated before, in general, RBoxes are not invariant for LΦ-bisimulations. Thus, it is
natural to consider the case when the considered RBox is empty. Restricting to this case,
generality of the below theorem follows from the generality of Theorems 3.13 and 3.15. The
case when the considered RBox is not empty is addressed in Theorem 3.22.

Theorem 3.21. Let 〈R, T ,A〉 be a knowledge base in LΦ such that R = ∅ and either O ∈ Φ
or A contains only assertions of the form C(a). Let I and I ′ be unreachable-objects-free
interpretations (w.r.t. LΦ) such that there exists an LΦ-bisimulation between I and I ′. Then
I is a model of 〈R, T ,A〉 iff I ′ is a model of 〈R, T ,A〉.
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This theorem follows immediately from Theorems 3.13 and 3.15.

The following theorem concerns preservation of knowledge bases under LΦ-bisimulation.
Its generality follows from the generality of Theorems 3.13, 3.15 and 3.19. Clearly, it covers
many useful cases.

Theorem 3.22. Suppose Φ ⊆ {I,O, U} and let 〈R, T ,A〉 be a knowledge base in LΦ such
that if O /∈ Φ then A contains only assertions of the form C(a). Let I0 and I1 be inter-
pretations such that: I0 is a model of R, there is an LΦ-bisimulation Z between I0 and I1,
and if U /∈ Φ then I0 and I1 are unreachable-objects-free (w.r.t. LΦ). Let I ′1 be the least
r-extension of I1 validating R. Then:

1. Z is an LΦ-bisimulation between I0 and I ′1,

2. I ′1 is a model of 〈R, T ,A〉 iff I0 is a model of 〈R, T ,A〉.

This theorem follows immediately from Corollary 3.11 and Theorems 3.13, 3.15, 3.19.

4 The Hennessy-Milner Property

Definition 4.1 (Modally Saturated Interpretation). An interpretation I is said to
be modally saturated w.r.t. LΦ if the following conditions hold:

– for every x ∈ ∆I , every basic role R of LΦ and every infinite set Γ of concepts in LΦ,
if for every finite subset Λ of Γ there exists an R-successor of x that satisfies Λ, then
there exists an R-successor of x that satisfies Γ ;

– if Q ∈ Φ then, for every x ∈ ∆I , every basic role R of LΦ, every infinite set Γ of
concepts in LΦ and every natural number n, if for every finite subset Λ of Γ there exist
n pairwise different R-successors of x that satisfy Λ, then there exist n pairwise different
R-successors of x that satisfy Γ ;

– if U ∈ Φ and I is not unreachable-objects-free then, for every infinite set Γ of concepts
in LΦ, if every finite subset Λ of Γ is satisfied in I (i.e. ΛI 6= ∅) then Γ is also satisfied
in I (i.e. Γ I 6= ∅). �

Observe that ω-saturated interpretations (defined, e.g., as in [11]) are modally saturated.

Proposition 4.2. Every finite interpretation is modally saturated. Every finitely branching
and unreachable-objects-free interpretation is modally saturated. If U /∈ Φ then every finitely
branching interpretation is modally saturated.

The proof of this proposition is straightforward.

Definition 4.3 (LΦ-Equivalence). Let I and I ′ be interpretations, and let x ∈ ∆I and
x′ ∈ ∆I′ . We say that x is LΦ-equivalent to x′ if, for every concept C in LΦ, x ∈ CI iff
x′ ∈ CI′ . �

Theorem 4.4 (The Hennessy-Milner Property). Let I and I ′ be modally saturated
interpretations (w.r.t. LΦ) such that, for every a ∈ ΣI , aI is LΦ-equivalent to aI

′
. Suppose

that if U ∈ Φ then either both I and I ′ are unreachable-objects-free or both of them are
not unreachable-objects-free. Then x ∈ ∆I is LΦ-equivalent to x′ ∈ ∆I′ iff there exists an
LΦ-bisimulation Z between I and I ′ such that Z(x, x′) holds. In particular, the relation
{〈x, x′〉 ∈ ∆I×∆I′ | x is LΦ-equivalent to x′} is an LΦ-bisimulation between I and I ′ when
it is not empty.
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Proof. Consider the “⇐” direction. Suppose Z is an LΦ-bisimulation between I and I ′
such that Z(x, x′) holds. By (15), for every concept C in LΦ, CI(x) holds iff CI

′
(x′) holds.

Therefore, x is LΦ-equivalent to x′.
Now consider the “⇒” direction. Define Z = {〈x, x′〉 ∈ ∆I × ∆I′ | x is LΦ-equivalent

to x′} and assume that Z is not empty. We show that Z is an LΦ-bisimulation between I
and I ′.
– The assertion (1) follows from the assumption of the theorem.
– Consider the assertion (2) and suppose Z(x, x′) holds. By the definitions of Z and
LΦ-equivalence, it follows that, for every concept name A, AI(x) holds iff AI

′
(x′) holds.

– Consider the assertion (3) and suppose that Z(x, x′) and rI(x, y) hold. Let S = {y′ |
rI
′
(x′, y′)}. We want to show there exists y′ ∈ S such that Z(y, y′) holds. For the sake of

contradiction, suppose that, for every y′ ∈ S, Z(y, y′) does not hold, which means y is not
LΦ-equivalent to y′. Thus, for every y′ ∈ S, there exists a concept Cy′ such that y ∈ CIy′
but y′ /∈ CI′y′ . Let Γ = {Cy′ | y′ ∈ S}. Thus, no y′ ∈ S satisfies Γ (i.e. S ∩ Γ I′ = ∅).
Since I ′ is modally saturated, it follows that there exists a finite set Λ of Γ such that,
for every y′ ∈ S, y′ /∈ ΛI′ . Let C = ∃r.

d
Λ, where

d
{C1, . . . , Cn} = C1 u . . . u Cn andd

∅ = >. Thus, x ∈ CI but x′ /∈ CI′ , which contradicts the fact that x is LΦ-equivalent
to x′. Therefore, there exists y′ ∈ S such that Z(y, y′) holds.

– The assertion (4) can be proved analogously as for (3).
– Consider the assertions (5) and (6) and the case I ∈ Φ. Observe that the argumentation

used for proving (3) are still applicable when replacing r by r−. Hence the assertion (5)
holds. Similarly, the assertion (6) also holds.

– Consider the assertion (7) and the case O ∈ Φ. Suppose Z(x, x′) holds. Take C = {a}.
Since x is LΦ-equivalent to x′, x ∈ CI iff x′ ∈ CI′ . Hence, x = aI iff x′ = aI

′
.

– Consider the assertion (8) and the case Q ∈ Φ. Suppose Z(x, x′) holds. Let S = {y ∈
∆I | rI(x, y)} and S′ = {y′ ∈ ∆I

′ | rI′(x′, y′)}. Let y1, . . . , yn be pairwise different
elements of S. We need to show that there exist pairwise different y′1, . . . , y

′
n ∈ S′ such

that y′i is LΦ-equivalent to yi for every 1 ≤ i ≤ n. Without loss of generality, assume that
y1, . . . , yn are LΦ-equivalent to each other. Let S′′ = {y′ ∈ S′ | y′ is not LΦ-equivalent to
y1}. Thus, for every y′ ∈ S′′, there exists a concept Cy′ such that y1 ∈ CIy′ but y′ /∈ CI′y′ .
Let Γ = {Cy′ | y′ ∈ S′′}. Note that every element of Γ I

′
is LΦ-equivalent to y1. For

every finite subset Λ of Γ , since y1, . . . , yn ∈ ΛI , we have x ∈ (≥n r.
d
Λ)I , and since

Z(x, x′) holds, we also have that x′ ∈ (≥n r.
d
Λ)I

′
, which means there are at least n

pairwise different y′1, . . . , y
′
n ∈ S′ that belong to ΛI

′
. Since I ′ is modally saturated, it

follows that there are at least n pairwise different y′1, . . . , y
′
n ∈ S′ that belong to Γ I

′

and are thus LΦ-equivalent to y1 and any yi with 2 ≤ i ≤ n.
– The assertion (9) for the case Q ∈ Φ and the assertions (10) and (11) for the case
{Q, I} ⊆ Φ can be proved analogously as for (8).

– Consider the assertion (12) and the case U ∈ Φ. If I is unreachable-objects-free then
the assertion (12) follows from the assertions (1), (3) and (5). So, assume that I is not
unreachable-objects-free. Thus, I ′ is also not unreachable-objects-free. Since Z is not
empty, there exists 〈y, y′〉 ∈ Z. Let x ∈ ∆I . For the sake of contradiction suppose that no
x′ ∈ ∆I′ is LΦ-equivalent to x. Thus, for every x′ ∈ ∆I′ , there exists a concept Cx′ such
that x ∈ CIx′ but x′ /∈ CI′x′ . Let Γ = {Cx′ | x′ ∈ ∆I

′}. For any finite subset Λ of Γ , since
x ∈ ΛI , we have that y ∈ (∃U.

d
Λ)I , which implies that y′ ∈ (∃U.

d
Λ)I

′
, which means

Λ is satisfied in I ′. Since I ′ is modally saturated and not unreachable-objects-free, it
follows that Γ is satisfied in I ′, which is a contradiction.

– The assertion (13) can be proved analogously as for (12).
– Consider the assertion (14) and the case Self ∈ Φ. Suppose Z(x, x′) holds. Thus,
x ∈ (∃r.Self)I iff x′ ∈ (∃r.Self)I

′
. Hence, rI(x, x) holds iff rI

′
(x′, x′) holds. �
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5 Auto-Bisimulation and Minimization

Definition 5.1 (LΦ-Auto-Bisimulation). An LΦ-bisimulation between I and itself is
called an LΦ-auto-bisimulation of I. An LΦ-auto-bisimulation of I is said to be the largest
if it is larger than or equal to (⊇) any other LΦ-auto-bisimulation of I. �

Proposition 5.2. For every interpretation I, the largest LΦ-auto-bisimulation of I exists
and is an equivalence relation.

This proposition follows from Lemma 3.3.
Given an interpretation I, by ∼Φ,I we denote the largest LΦ-auto-bisimulation of I,

and by ≡Φ,I we denote the binary relation on ∆I with the property that x ≡Φ,I x
′ iff x is

LΦ-equivalent to x′.

Proposition 5.3. For every modally saturated interpretation I, ≡Φ,I is the largest LΦ-
auto-bisimulation of I (i.e. the relations ≡Φ,I and ∼Φ,I coincide).

Proof. By Theorem 4.4, ≡Φ,I is an LΦ-auto-bisimulation of I. We now show that it is the
largest one. Suppose Z is another LΦ-auto-bisimulation of I. If Z(x, x′) holds then, by (15),
for every concept C of LΦ, CI(x) holds iff CI(x′) holds, and hence x ≡Φ,I x

′. Therefore,
Z ⊆ ≡Φ,I . �

5.1 The Case without Q and Self

Definition 5.4 (Quotient Interpretation). Given an interpretation I, the quotient in-
terpretation I/∼ of I w.r.t. an equivalence relation ∼ ⊆ ∆I ×∆I is defined as usual:

– ∆I/∼ = {[x]∼ | x ∈ ∆I}, where [x]∼ is the equivalence class of x w.r.t. ∼,
– aI/∼ = [aI ]∼, for a ∈ ΣI ,
– AI/∼ = {[x]∼ | x ∈ AI}, for A ∈ ΣC ,
– rI/∼ = {〈[x]∼, [y]∼〉 | 〈x, y〉 ∈ rI}, for r ∈ ΣR. �

Theorem 5.5. If Φ ⊆ {I,O, U} then, for every interpretation I, the relation Z =
{〈x, [x]∼Φ,I 〉 | x ∈ ∆I} is an LΦ-bisimulation between I and I/∼Φ,I .

Proof. Suppose Φ ⊆ {I,O, U}. We have to consider the assertions (1)-(7), (12), (13) for
I ′ = I/∼Φ,I . By the definition of I/∼Φ,I , the assertions (1) and (2) clearly hold. Similarly,
the assertion (7) for the case O ∈ Φ and the assertions (12), (13) for the case U ∈ Φ also
hold.

Consider the assertion (3). Suppose Z(x, x′) and rI(x, y) hold. We need to show there

exists y′ ∈ ∆I/∼Φ,I such that Z(y, y′) and rI/∼Φ,I (x′, y′) hold. We must have that x′ =
[x]∼Φ,I . Take y′ = [y]∼Φ,I . Clearly, the goals are satisfied.

For a similar reason, the assertion (5) for the case I ∈ Φ holds.

Consider the assertion (4). Suppose Z(x, x′) and rI/∼Φ,I (x′, y′) hold. We need to show
there exists y ∈ ∆I such that Z(y, y′) and rI(x, y) hold. We must have that x′ = [x]∼Φ,I .

Since rI/∼Φ,I (x′, y′) holds, there exists y ∈ y′ such that rI(x, y) holds. Clearly, y′ = [y]∼Φ,I
and Z(y, y′) holds.

For a similar reason, the assertion (6) for the case I ∈ Φ holds. �

The following theorem concerns invariance of terminological axioms and concept as-
sertions, as well as preservation of role axioms and other individual assertion under the
transformation of an interpretation to its quotient using the largest LΦ-auto-bisimulation.
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Theorem 5.6. Suppose Φ ⊆ {I,O, U} and let I be an interpretation. Then:

1. For every expression ϕ which is either a terminological axiom in LΦ or a concept asser-
tion (of the form C(a)) in LΦ, I |= ϕ iff I/∼Φ,I |= ϕ.

2. For every expression ϕ which is either a role inclusion axiom or an individual assertion
of the form R(a, b) or a

.
= b, if I |= ϕ then I/∼Φ,I |= ϕ.

Proof. The first assertion follows from Theorems 5.5, 3.9 and the definition of I/∼Φ,I .
Consider the second assertion. This assertion for the cases when ϕ is of the form ε v r,
R(a, b) or a

.
= b follows immediately from the definition of I/∼Φ,I . Let ϕ = (R1◦. . .◦Rk v r)

and suppose I |= ϕ. We show that I/∼Φ,I |= ϕ. Let v0, . . . , vk be elements of ∆I/∼Φ,I such

that, for 1 ≤ i ≤ k, R
I/∼Φ,I
i (vi−1, vi) holds. We need to show that rI/∼Φ,I (v0, vk) holds.

For 1 ≤ i ≤ k, since R
I/∼Φ,I
i (vi−1, vi) holds, there exist yi−1 ∈ vi−1 and zi ∈ vi such that

RIi (yi−1, zi) holds. Let x0 = y0. For 1 ≤ i ≤ k, since xi−1∼Φ,I yi−1 and RIi (yi−1, zi) hold,
by (16), there exists xi such that xi∼Φ,I zi and RIi (xi−1, xi) hold, which implies xi ∈ vi
and xi∼Φ,I yi (when i < k). Since I |= (R1 ◦ . . . ◦Rk v r), it follows that rI(x0, xk) holds.

Therefore, by definition, rI/∼Φ,I (v0, vk) holds. �

An interpretation I is said to be minimal among a class of interpretations if I belongs to
that class and, for every other interpretation I ′ of that class, #∆I ≤ #∆I

′
(the cardinality

of ∆I is less than or equal to the cardinality of ∆I
′
). The following theorem concerns

minimality of quotient interpretations generated by using the largest LΦ-auto-bisimulations.

Theorem 5.7. Suppose Φ ⊆ {I,O, U} and let I be an interpretation.

1. If I is unreachable-objects-free or U ∈ Φ then I/∼Φ,I is a minimal interpretation LΦ-
bisimilar to I.

2. If I/∼Φ,I is finite then it is a minimal interpretation that validates the same set of
terminological axioms in LΦ as I.

3. If I/∼Φ,I is unreachable-objects-free and finitely branching then it is a minimal inter-
pretation that satisfies the same set of concept assertions in LΦ as I.

Proof. By Theorems 5.5 and 5.6, I/∼Φ,I is LΦ-bisimilar to I, validates the same set of
terminological axioms in LΦ as I, and satisfies the same set of concept assertions in LΦ
as I.

Since∼Φ,I is the largest LΦ-auto-bisimulation of I, by Lemma 3.3(4), for u, v ∈ ∆I/∼Φ,I ,
if u 6= v then u is not LΦ-bisimilar to v. Let Z = {〈[x]∼Φ,I , x〉 | x ∈ ∆I}. By Theorem 5.5
and Lemma 3.3(2), Z is an LΦ-bisimulation between I/∼Φ,I and I.

Consider the first assertion and suppose that either I is unreachable-objects-free or
U ∈ Φ. Let I ′ be any interpretation LΦ-bisimilar to I. We show that #∆I/∼Φ,I ≤ #∆I

′
.

Let Z ′ be an LΦ-bisimulation between I and I ′, and let Z ′′ = Z ◦Z ′. By Lemma 3.3(3), Z ′′

is an LΦ-bisimulation between I/∼Φ,I and I ′. If I is unreachable-objects-free, then I/∼Φ,I
is also unreachable-objects-free, and by (1), (3) and (5), for every u ∈ ∆I/∼Φ,I , there exists
xu ∈ ∆I

′
such that Z ′′(u, xu) holds. If U ∈ Φ then, by (12), we also have that, for every

u ∈ ∆I/∼Φ,I , there exists xu ∈ ∆I
′
such that Z ′′(u, xu) holds. Let u, v ∈ ∆I/∼Φ,I and u 6= v.

If xu = xv then, since u is LΦ-bisimilar to xu and xv is LΦ-bisimilar to v, we would have
that u is LΦ-bisimilar to v, which is a contradiction. Therefore xu 6= xv and we conclude
that #∆I/∼Φ,I ≤ #∆I

′
.

Consider the second assertion and suppose I/∼Φ,I is finite. Let ∆I/∼Φ,I = {v1, . . . , vn}.
Since ∼Φ,I is the largest LΦ-auto-bisimulation of I, by Theorem 4.4 and Lemma 3.3, if
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1 ≤ i < j ≤ n then vi is not LΦ-equivalent to vj . For 1 ≤ i, j ≤ n with i 6= j, let

Ci,j be a concept in LΦ such that vi ∈ C
I/∼Φ,I
i,j and vj /∈ C

I/∼Φ,I
i,j . For 1 ≤ i ≤ n, let

Ci = (Ci,1u . . .uCi,i−1uCi,i+1u . . .uCi,n). We have that vi ∈ C
I/∼Φ,I
i and vj /∈ C

I/∼Φ,I
i if

j 6= i. Let C = (C1t . . .tCn) and, for 1 ≤ i ≤ n, let Di = (C1t . . .tCi−1tCi+1t . . .tCn).
Thus, I/∼Φ,I validates > v C but does not validate any > v Di for 1 ≤ i ≤ n. Any other
interpretation with such properties must have at least n elements in the domain. That is,
I/∼Φ,I is a minimal interpretation that validates the same set of terminological axioms in
LΦ as I.

Consider the third assertion and suppose I/∼Φ,I is unreachable-objects-free and finitely
branching. Let I ′ be any interpretation that satisfies the same set of concept assertions
in LΦ as I. We show that #∆I/∼Φ,I ≤ #∆I

′
. By Theorem 5.6, I/∼Φ,I satisfies the same

set of concept assertions in LΦ as I and I ′. Thus, for every individual name a, aI/∼Φ,I

is LΦ-equivalent to aI
′
. Since ΣI is countable and I/∼Φ,I is unreachable-objects-free and

finitely branching, ∆I/∼Φ,I is countable. If I ′ is not finitely branching then it is infinite
and the assertion clearly holds. So, assume that I ′ is finitely branching. Let Z = {〈x, x′〉 ∈
∆I/∼Φ,I ×∆I′ | x is LΦ-equivalent to x′}. Like the proof of Theorem 4.4, the conditions (1),
(3) and (5) hold, and since I/∼Φ,I is unreachable-objects-free, the condition (12) also holds.

Analogously to the proof of the first assertion, it follows that #∆I/∼Φ,I ≤ #∆I
′
. �

5.2 The Case with Q and/or Self

The following two examples show that we cannot make Theorems 5.5 and 5.6 stronger by
allowing Self ∈ Φ or Q ∈ Φ.

Example 5.8. Let ΣC = ∅, ΣI = {a1, a2} and ΣR = {r}, where a1 6= a2. Consider the
interpretation I specified by:

∆I = {a1, a2}, aI1 = a1, a
I
2 = a2 and rI = {〈a1, a2〉, 〈a2, a1〉}. For any Φ, we have that

a1∼Φ,I a2. Denote a = [a1]∼Φ,I (= {a1, a2}). The quotient interpretation I/∼Φ,I is thus

specified by: ∆I/∼Φ,I = {a}, a
I/∼Φ,I
1 = a

I/∼Φ,I
2 = a and rI/∼Φ,I = {〈a, a〉}. Observe that

if Self ∈ Φ then:

– I/∼Φ,I is not LΦ-bisimilar to I,

– for ϕ being any of the axioms/assertions > v ∃r.Self, ε v r, (∃r.Self)(a1), a1 = a2,
r(a1, a1), we have that I/∼Φ,I |= ϕ, but I 6|= ϕ. �

Example 5.9. Let ΣC = ∅, ΣI = {a, b1, b2} and ΣR = {r}, where a, b1, b2 are pairwise
disjoint. Assume that Q ∈ Φ and consider the interpretation I specified by:
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∆I = {a, b1, b2}, aI = a, bI1 = b1, b
I
2 = b2 and rI = {〈a, a〉, 〈a, b1〉, 〈a, b2〉, 〈b1, b2〉,

〈b2, b1〉}. Note that b1 is LΦ-bisimilar to b2 and is not LΦ-bisimilar to a. Denote a′ = [a]∼Φ,I
and b′ = [b1]∼Φ,I (= {b1, b2}). The quotient interpretation I/∼Φ,I is thus specified by:

∆I/∼Φ,I = {a′, b′}, aI/∼Φ,I = a′, b
I/∼Φ,I
1 = b

I/∼Φ,I
2 = b′ and rI/∼Φ,I = {〈a′, a′〉, 〈a′, b′〉,

〈b′, b′〉}. Observe that:

– I/∼Φ,I is not LΦ-bisimilar to I,

– for ϕ being any of the axioms/assertions ≥2 r.> v ≥3 r.>, ε v r, (≥3 r.>)(a), b1 = b2,
r(b1, b1), we have that I |= ϕ iff I/∼Φ,I 6|= ϕ. �

For the case when Q ∈ Φ or Self ∈ Φ, in order to obtain results similar to Theorems 5.6
and 5.7, we introduce QS-interpretations as follows.

Definition 5.10 (QS-Interpretation).
A QS-interpretation is a tuple I = 〈∆I , ·I , QI , SI〉, where

– 〈∆I , ·I〉 is an interpretation,

– QI is a function that maps every basic role to a function ∆I × ∆I → N such that
QI(R)(x, y) > 0 iff 〈x, y〉 ∈ RI , where N is the set of natural numbers,

– SI is a function that maps every role name to a subset of ∆I .

If I is a QS-interpretation then we redefine

(∃r.Self)I = {x ∈ ∆I | x ∈ SI(r)}
(≥ nR.C)I = {x ∈ ∆I | Σ{QI(R)(x, y) | CI(y)} ≥ n}
(≤ nR.C)I = {x ∈ ∆I | Σ{QI(R)(x, y) | CI(y)} ≤ n},

where the sum of a set of natural numbers is assumed to be +∞ if it is not finitely bounded.
Other notions for interpretations remain unchanged for QS-interpretations. �

Definition 5.11 (Quotient QS-Interpretation). Given a finitely branching interpreta-
tion I, the quotient QS-interpretation of I w.r.t. an equivalence relation ∼ ⊆ ∆I × ∆I ,
denoted by I/QS∼ , is the QS-interpretation I ′ = 〈∆I′ , ·I′ , QI′ , SI′〉 such that:

– 〈∆I′ , ·I′〉 is the quotient interpretation of I w.r.t. ∼,

– for every basic role R and every x, y ∈ ∆I ,

QI
′
(R)([x]∼, [y]∼) = min

x′∈[x]∼
#{y′ ∈ [y]∼ | 〈x′, y′〉 ∈ RI},

– for every role name r,

SI
′
(r) = {[x]∼ | 〈x, x〉 ∈ rI}.

�
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Note that, in the case when Q ∈ Φ, we have

QI
′
(R)([x]∼Φ,I , [y]∼Φ,I ) = #{y′ ∈ [y]∼Φ,I | 〈x, y

′〉 ∈ RI}.

Lemma 5.12. Let I be a finitely branching interpretation and let I ′ = I/QS∼Φ,I . Then

Z = {〈x, [x]∼Φ,I 〉 ∈ ∆I × ∆I′} satisfies all the properties (1)-(7), (12), (13), (15)-(18).
In particular, the assertion (15) states that, for every concept C in LΦ and every x ∈ ∆I ,
x ∈ CI iff [x]∼Φ,I ∈ CI

′
.

Proof. The properties (1)-(7), (12) and (13) can be shown as in the proof of Theorem 5.5.
The properties (15)-(18) can be shown as in Lemma 3.7 except that the case when Q ∈ Φ
and C = (≥ nR.D) and the case when Self ∈ Φ and C = ∃r.Self in the proof of the
assertion (15) are changed to the following:

– Case Q ∈ Φ and C = (≥ nR.D), where R is a basic role: Since Z(x, x′) holds, we have
that x′ = [x]∼Φ,I . Since CI(x) holds, there exist pairwise different y1, . . . , yn ∈ ∆I

such that RI(x, yi) and DI(yi) hold for all 1 ≤ i ≤ n. Let the partition of {y1, . . . , yn}
that corresponds to the equivalence relation ∼Φ,I consist of pairwise different blocks
Yi1 , . . . , Yik , where {i1, . . . , ik} ⊆ {1, . . . , n} and yij ∈ Yij for all 1 ≤ j ≤ k. By the

inductive assumption, DI
′
([yij ]∼Φ,I ) holds for all 1 ≤ j ≤ k. By the definition of I ′,

QI
′
(R)([x]∼Φ,I , [yij ]∼Φ,I ) ≥ #Yij for all 1 ≤ j ≤ k. Hence CI

′
([x]∼Φ,I ) holds, which

means CI
′
(x′) holds.

– Case Self ∈ Φ and C = ∃r.Self : Since Z(x, x′) holds, we have that x′ = [x]∼Φ,I . Since

CI(x) holds, we have that rI(x, x) holds. Hence [x]∼Φ,I ∈ SI
′
(r) and consequently

[x]∼Φ,I ∈ (∃r.Self)I
′
, which means CI

′
(x′) holds. �

The following theorem is a counterpart of Theorem 5.6, with no restrictions on Φ.

Theorem 5.13. Let I be a finitely branching interpretation. Then:

1. For every expression ϕ which is either a terminological axiom in LΦ or a concept asser-
tion (of the form C(a)) in LΦ, I |= ϕ iff I/QS∼Φ,I |= ϕ.

2. For every expression ϕ which is either a role inclusion axiom or an individual assertion
of the form R(a, b) or a

.
= b, if I |= ϕ then I/QS∼Φ,I |= ϕ.

Proof. Denote I ′ = I/QS∼Φ,I and let Z = {〈x, [x]∼Φ,I 〉 ∈ ∆I × ∆I
′}. By Lemma 5.12, for

every concept C in LΦ, x ∈ CI iff [x]∼Φ,I ∈ CI
′
. The first assertion follows immediately

from this property. The second assertion can be proved as for Theorem 5.6. �

The following theorem is a counterpart of Theorem 5.7, with no restrictions on Φ.

Theorem 5.14. Let I be a finitely branching interpretation.

1. If I/QS∼Φ,I is finite then it is a minimal QS-interpretation that validates the same set of
terminological axioms in LΦ as I.

2. If I/QS∼Φ,I is unreachable-objects-free then it is a minimal QS-interpretation that satisfies
the same set of concept assertions in LΦ as I.

Proof. By Lemma 5.12, every x ∈ ∆I is LΦ-equivalent to [x]∼Φ,I . Since ≡Φ,I and ∼Φ,I
coincide, if [x]∼Φ,I 6= [x′]∼Φ,I then [x]∼Φ,I and [x′]∼Φ,I are not LΦ-equivalent to each other.
Denote I ′ = I/QS∼Φ,I .

Consider the first assertion and suppose I ′ is finite. Let ∆I
′

= {v1, . . . , vn}, where
v1, . . . , vn are pairwise different and each vi is some [xi]∼Φ,I . For 1 ≤ i, j ≤ n with i 6= j,
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let Ci,j be a concept in LΦ such that vi ∈ CI
′

i,j and vj /∈ CI
′

i,j . For 1 ≤ i ≤ n, let Ci =

(Ci,1 u . . . u Ci,i−1 u Ci,i+1 u . . . u Ci,n). We have that vi ∈ CI
′

i and vj /∈ CI
′

i if j 6= i. Let
C = (C1 t . . . t Cn) and, for 1 ≤ i ≤ n, let Di = (C1 t . . . t Ci−1 t Ci+1 t . . . t Cn).
Thus, I ′ validates > v C but does not validate any > v Di for 1 ≤ i ≤ n. Any other
QS-interpretation with such properties must have at least n elements in the domain. That
is, I ′ is a minimal QS-interpretation that validates the same set of terminological axioms
in LΦ as I.

Consider the second assertion and suppose I ′ is unreachable-objects-free. Since I is
finitely branching, I ′ is also finitely branching. Let I ′′ be any QS-interpretation that satisfies
the same set of concept assertions in LΦ as I. We show that #∆I

′ ≤ #∆I
′′
. Since ΣI is

countable and I ′ is unreachable-objects-free and finitely branching, ∆I
′

is countable. If I ′′
is not finitely branching then it is infinite and the assertion clearly holds. So, assume that
I ′′ is finitely branching. Since I ′ is unreachable-objects-free and I ′′ is a finitely branching
QS-interpretation that satisfies the same set of concept assertions in LΦ as I and I ′, it
can be shown that, for every x′ ∈ ∆I′ , there exists x′′ ∈ ∆I′′ that is LΦ-equivalent to x′.
Recall that if x′1 and x′2 are different elements of ∆I

′
then they are not LΦ-equivalent to

each other. This implies that #∆I
′ ≤ #∆I

′′
. �

6 Minimizing Interpretations

In this section, we adapt Hopcroft’s automaton minimization algorithm [21] and the Paige-
Tarjan algorithm [30] to obtain efficient algorithms for computing the partition correspond-
ing to the equivalence relation ∼Φ,I for the case when I is finite. The partition is used to
minimize I to obtain I/∼Φ,I for the case {Q, Self} ∩ Φ = ∅, or I/QS∼Φ,I for the other case.
We do not require any restrictions on Φ.

For x ∈ ∆I , Y ⊆ ∆I and a basic role R of LΦ, define

degR(x, Y ) = #{y ∈ Y | 〈x, y〉 ∈ RI} and degR(x) = degR(x,∆I).

The similarity between minimizing automata and minimizing interpretations relies on
that equivalence between two states in a finite deterministic automaton is similar to LΦ-
equivalence between two objects (i.e. elements of the domain) of an interpretation. The
alphabet Σ of an automaton corresponds to ΣR in the case I /∈ Φ, and Σ±R in the other
case. Note that the end conditions for equivalence are different; in the case of automata, it is
required that the two considered states are either both accepting states or both unaccepting
states; in the case of interpretations, it is required that the two considered objects x and x′

satisfy the conjunction of the following conditions:

– for every A ∈ ΣC , x ∈ AI iff x′ ∈ AI ,
– if Q /∈ Φ then, for every basic role R of LΦ, degR(x) = 0 iff degR(x′) = 0,

– if Q ∈ Φ then, for every basic role R of LΦ, degR(x) = degR(x′),

– if O ∈ Φ then, for every a ∈ ΣI , x = aI iff x′ = aI ,

– if Self ∈ Φ then, for every r ∈ ΣR, 〈x, x〉 ∈ rI iff 〈x′, x′〉 ∈ rI .

Denote the conjunction of the above conditions by ECondΦ(x, x′).5

Interpretations are like nondeterministic automata, while Hopcroft’s algorithm [21]
works only for deterministic automata. The Paige-Tarjan algorithm [30] for the relational
coarsest partition problem works on a graph and exploits the idea “process the smaller half”
of Hopcroft’s algorithm. We adapt it for computing the partition corresponding to ∼Φ,I for

5 This is a correction for [17].
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Algorithm 2: computing the partition corresponding to ∼Φ,I for the case Q ∈ Φ
input : a set Φ of DL-features with Q ∈ Φ and a finite interpretation I
output : the partition P corresponding to the largest LΦ-auto-bisimulation of I

1 if I /∈ Φ then let Σ†R = ΣR else let Σ†R = Σ±R ;

2 set P to the partition corresponding to the equivalence relation ECondΦ;
3 set Z to a maximal block of P;

4 set L to the empty collection;

5 foreach X ∈ P \ {Z} and R ∈ Σ†R do
6 add 〈X,R〉 to L;

7 while L 6= ∅ do
8 extract a pair 〈Y,R〉 from L;
9 foreach X ∈ P split by 〈Y,R〉 do

10 split X by 〈Y,R〉 into a set X of blocks;
11 replace X in P by all the blocks of X;
12 set Z to a maximal block of X;

13 foreach S ∈ Σ†R do
14 if 〈X,S〉 ∈ L then
15 replace 〈X,S〉 in L by all the pairs 〈X ′, S〉 with X ′ ∈ X;
16 else
17 add all the pairs 〈X ′, S〉 with X ′ ∈ X \ {Z} to L;

the case Q /∈ Φ. We directly adapt Hopcroft’s algorithm for the case Q ∈ Φ. The idea for
a similar problem related with number restrictions was formulated for graphs in [30] and
efficient algorithms for other similar problems were proposed even earlier (see [30]).

6.1 The Case Q ∈ Φ

Algorithm 2 (given on page 26) computes the partition corresponding to ∼Φ,I for the case
when Q ∈ Φ and I is finite. It starts by splitting ∆I into blocks using the equivalence
relation ECondΦ and after that follows the idea of Hopcroft’s algorithm [21] to refine
that partition. Like Hopcroft’s algorithm, Algorithm 2 keeps the current partition P and a
collection L of pairs 〈Y,R〉 for refining the partition, where Y ∈ P and R is a basic role.
Splitting a block X ∈ P by a pair 〈Y,R〉 is done so that x, x′ ∈ X are separated when
degR(x, Y ) 6= degR(x′, Y ), and may result in more than two blocks. Technically, it is done
as follows: for each y ∈ Y and for each edge coming to y via R from some x (i.e. for each
〈x, y〉 ∈ RI), do

1. if it is the first time x is considered for this task then set count(x) := 1, remove x from
its current block X and put x into the block Xcount=1,

2. else if count(x) = k then increase count(x) by 1, remove x from its current block
Xcount=k and put it into the block Xcount=k+1.

The non-empty blocks created from X together with the modified block X, if not empty,
form the set X mentioned in the algorithm.

Lemma 6.1. Consider an execution of Algorithm 2. The resulting partition P corresponds
to an LΦ-auto-bisimulation of I.

Proof. Let Z be the equivalence relation corresponding to the partition P. Consider the
conditions (1)–(14) with I ′ = I. Clearly, (1), (2), (7), (12), (13), (14) hold. As (3)–(6)
are instances of (8)–(11), respectively, we need to prove only (8)–(11). It is sufficient to
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show that, for every x, x′ ∈ ∆I , every basic role R of LΦ and every block Y ∈ P, if
degR(x, Y ) 6= degR(x′, Y ) then x and x′ belong to different blocks of P. This is clear for
the case degR(x) 6= degR(x′). So, assume that degR(x) = degR(x′). Let Y ′ be the smallest
block appeared during the execution of the algorithm such that Y ′ is a superset of Y and
degR(x, Y ′) = degR(x′, Y ′) (the biggest one is ∆I). Let Y1, . . . , Yk be the blocks obtained
from the splitting of Y ′. There exist 1 ≤ i, j ≤ k such that i 6= j, degR(x, Yi) 6= degR(x′, Yi)
and degR(x, Yj) 6= degR(x′, Yj). Hence, 〈Yi, R〉 or 〈Yj , R〉 is inserted into L when Y ′ is
split. It follows that, at some step, a pair 〈Y ′′, R〉 such that degR(x, Y ′′) 6= degR(x′, Y ′′) is
extracted from L (Y ′′ is some subset of Yi or Yj). This pair separates x and x′. �

Lemma 6.2. Consider an execution of Algorithm 2. If x, x′ ∈ ∆I are separated (i.e., belong
to different blocks of the partition P) then x 6≡Φ,I x

′.

Proof. Assume that x, x′ ∈ ∆I are separated. We prove that x 6≡Φ,I x
′ by induction on the

iteration k of the main loop at which x and x′ are separated.

Consider the base case k = 0 when x and x′ belong to different equivalence classes of
the equivalence relation ECondΦ. There are the following subcases:

– there exists A ∈ ΣC such that x ∈ AI and x′ /∈ AI or vice versa (i.e., x /∈ AI and
x′ ∈ AI);

– there exists a basic role R of LΦ such that degR(x) 6= degR(x′); without loss of generality,
assume that degR(x) = l > degR(x′);

– O ∈ Φ and there exists a ∈ ΣI such that x = aI and x′ 6= aI or vice versa (i.e., x 6= aI

and x′ = aI);

– Self ∈ Φ and there exists r ∈ ΣR such that 〈x, x〉 ∈ rI and 〈x′, x′〉 /∈ rI or vice versa
(i.e., 〈x, x〉 /∈ rI and 〈x′, x′〉 ∈ rI).

The concept A, ≥ l R.>, {a} or ∃r.Self of LΦ, respectively for these subcases, distinguishes
x and x′. Hence x 6≡Φ,I x

′.

Now consider the induction step and assume that x and x′ are separated by a pair 〈Y,R〉
at the iteration k + 1 of the main loop. Thus, degR(x, Y ) 6= degR(x′, Y ). Without loss of
generality, assume that degR(x, Y ) > degR(x′, Y ) and let h = degR(x, Y ). Let the partition
P before the iteration k + 1 be {Y0, . . . , Ys} with Y0 = Y and let Yi = {yi,1, . . . , yi,ti} for
0 ≤ i ≤ s. By the induction assumption, for each 1 ≤ i ≤ s, 1 ≤ j ≤ t0 and 1 ≤ j′ ≤ ti,
there exists a concept Ci,j,j′ such that y0,j ∈ CIi,j,j′ and yi,j′ /∈ CIi,j,j′ . For 1 ≤ i ≤ s and

1 ≤ j ≤ t0, let Ci,j = Ci,j,1 u . . . u Ci,j,ti , then y0,j ∈ CIi,j and yi,j′ /∈ CIi,j for all 1 ≤ j′ ≤ ti.

For 1 ≤ i ≤ s, let Ci = Ci,1 t . . . t Ci,t0 , then y0,j ∈ CIi for all 1 ≤ j ≤ t0, and yi,j′ /∈ CIi
for all 1 ≤ j′ ≤ ti. Let C = C1 u . . . uCs. Thus, Y0 ⊆ CI and Yi ∩CI = ∅ for all 1 ≤ i ≤ s,
which means that Y0 = CI . Therefore, x ∈ (≥hR.C)I and x′ /∈ (≥hR.C)I , which implies
x 6≡Φ,I x

′. �

Proposition 6.3. Algorithm 2 is correct and can be implemented to have time complex-
ity O(|Σ|(m + n) log n), where m =

∑
r∈ΣR |r

I | and n = |∆I |. A tighter bound for the
complexity is O(|ΣI |+ |ΣC |n+ |ΣR|(m+ n) log n).

Proof. (Sketch) The contrapositive of Lemma 6.2 states that if x ≡Φ,I x
′ then x and x′ are

not separated. That is, ≡Φ,I is a subset of the equivalence relation corresponding to the
partition P. As ≡Φ,I and ∼Φ,I coincide (by Proposition 5.3), it follows that ∼Φ,I is a subset
of the equivalence relation corresponding to the partition P. By Lemma 6.1, the latter is also
an LΦ-auto-bisimulation of I, hence it is the same as ∼Φ,I (the largest LΦ-auto-bisimulation
of I). That is, Algorithm 2 is correct.
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To estimate complexity, notice that the steps 4-17 of Algorithm 2 are essentially the same
as the skeleton of Hopcroft’s automaton minimization algorithm [21,32] used for refining the
partition. The only difference is the way of splitting X by a pair 〈Y,R〉. The technique for
this has been mentioned earlier. The complexity analysis of [32] can be applied to the steps 4-
17 of Algorithm 2. The first change is that instead of the occurrences of |{p ∈ Q : δ(p, a) ∈
Y }| we have |{〈x, y〉 ∈ RI : y ∈ Y }|. The second change is that, as Hopcroft’s automaton
minimization algorithm is for deterministic automata but here we have nondeterminism
(i.e., for each R ∈ Σ†R, RI is a binary relation but not a function), the last two lines
of [32] are modified so that O(n) is replaced by O(m) and O(|Σ|n log n) is replaced by
O(|ΣR|m log n). Thus, we can conclude that the steps 4-17 can be implemented to have

time complexity O(|Σ†R|(m+ n) log n), which is the same as O(|ΣR|(m+ n) log n).
Consider complexity of the step 2 of Algorithm 2. To compute equivalence classes of the

equivalence relation ECondΦ, we start from the partition {∆I} and then:

1. Refine the current partition by using the condition that, when O ∈ Φ, x and x′ should
be in the same block only if, for every a ∈ ΣI , x = aI iff x′ = aI . This can be done in
O(|ΣI |) steps.

2. Refine the current partition by using the condition that x and x′ should be in the same
block only if, for every A ∈ ΣC , x ∈ AI iff x′ ∈ AI . This can be done in O(|ΣC |n) steps.

3. Refine the current partition by using the condition that, when Self ∈ Φ, x and x′ should
be in the same block only if, for every r ∈ ΣR, 〈x, x〉 ∈ rI iff 〈x′, x′〉 ∈ rI . This can be
done in O(|ΣR|n) steps.

4. Refine the current partition by using the condition that x and x′ should be in the same
block only when degR(x) = degR(x′) (since when Q ∈ Φ). This can be done in O(|ΣR|n)
steps.

Summing up, the time complexity of the step 2 of Algorithm 2 is of rank O(|ΣI |+ |ΣC |n+
|ΣR|n). Therefore, Algorithm 2 can be implemented to have time complexity O(|ΣI | +
|ΣC |n+ |ΣR|(m+ n) log n). �

6.2 The Case Q /∈ Φ

Computing the partition corresponding to∼Φ,I for the caseQ /∈ Φ differs from the relational
coarsest partition problem studied in [30], among others, in that the “edges” are labeled
by basic roles of LΦ. Algorithm 3 (on page 29) is our adaptation of the Paige-Tarjan
algorithm [30] for computing the partition corresponding to ∼Φ,I for the case Q /∈ Φ.6

It is formulated in a way to reflect the traditional presentation of Hopcroft’s automaton
minimization algorithm.

Roughly speaking, the main problem is that the relation RI for a basic role R of LΦ need
not to be a function. Elements x and x′ of a block X should be separated by a pair 〈V,R〉,
where V is a block, not only when degR(x, V ) > 0 and degR(x′, V ) = 0 or vice versa (i.e.,
degR(x, V ) = 0 and degR(x′, V ) > 0), but also when degR(x, V ′) > 0 and degR(x′, V ′) = 0
or vice versa (i.e., degR(x, V ′) = 0 and degR(x′, V ′) > 0), where V ′ is the complement of
V w.r.t. an appropriate block Y containing V . Such a Y is the union of some blocks of the
current partition P. In [30], it is called a compound block.

Suppose that a block X cannot be split by a pair 〈Y,R〉 (in the sense that for every
x, x′ ∈ X, degR(x, Y ) > 0 iff degR(x′, Y ) > 0). Let V ⊂ Y and V ′ = Y \ V . Then splitting
X by a tuple 〈V, V ′, R〉 is done as follows:

– Split X by 〈V,R〉 to obtain X1 = {x ∈ X | degR(x, V ) > 0} and X2 = X \X1.

6 It is a correction for [17].
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Algorithm 3: computing the partition corresponding to ∼Φ,I for the case Q /∈ Φ
input : a set Φ of DL-features without Q, and a finite interpretation I
output : the partition P corresponding to the largest LΦ-auto-bisimulation of I

1 if I /∈ Φ then let Σ†R = ΣR else let Σ†R = Σ±R ;

2 set P to the partition corresponding to the equivalence relation ECondΦ;

3 L := {〈∆I , R〉 | R ∈ Σ†R};
4 while L 6= ∅ do
5 extract a pair 〈Y,R〉 from L;
6 let V be a minimal block of P such that V ⊂ Y ;
7 V ′ := Y \ V ;
8 if more than one block of P is a subset of V ′ then
9 add 〈V ′, R〉 to L

10 foreach X ∈ P split by 〈V, V ′, R〉 do
11 split X by 〈V, V ′, R〉 into a set X of blocks;
12 replace X in P by all the blocks of X;

13 foreach S ∈ Σ†R do
14 if L does not contain any pair 〈U, S〉 such that X ⊂ U then
15 add 〈X,S〉 to L

– Split X1 by 〈V ′, R〉 to obtain X1,1 = {x ∈ X1 | degR(x, V ′) > 0} and X1,2 = X1 \X1,1.
– Then return the set {X1,1, X1,2, X2} after deleting empty sets.

If the result contains more than one block then we say that X is split by 〈V, V ′, R〉. Note
that X2 cannot be split by 〈V ′, R〉. Denote R−1(U) = {x ∈ ∆I | degR(x, U) > 0}. Then,
also observe that:

– X1 = X ∩R−1(V ) and X2 = X \X1,
– X1,2 = X1 ∩ (R−1(V ) \R−1(V ′)) and X1,1 = X1 \X1,2.

This gives a good way for computing the split of X via R−1(V ) and R−1(V ) \R−1(V ′), as
the computation can “start” from V and “look back” via R. This is a crucial observation
of [30].

Regarding the idea “process the smaller half”, observe that if Y is the union of at least
two blocks from the current partition P and V is a minimal block of P such that V ⊂ Y
then #V ≤ #Y/2.

Lemma 6.4. Consider an execution of Algorithm 3. The resulting partition P corresponds
to an LΦ-auto-bisimulation of I.

Proof. Let Z be the equivalence relation corresponding to the partition P. Consider the
conditions (1)–(7) and (12)–(14) with I ′ = I. Clearly, (1), (2), (7), (12)–(14) hold. We need
to prove only (3)–(6). It is sufficient to show that, for every x, x′ ∈ ∆I , every basic role R
of LΦ and every block V ∈ P, if (degR(x, V ) > 0 and degR(x′, V ) = 0) or (degR(x, V ) = 0
and degR(x′, V ) > 0) then x and x′ belong to different blocks of P. This is clear for the
case when (degR(x) > 0 and degR(x′) = 0) or (degR(x) = 0 and degR(x′) > 0). So, assume
that either (degR(x) > 0 and degR(x′) > 0) or (degR(x) = 0 and degR(x′) = 0). Let Y
be the smallest block such that V ⊂ Y , 〈Y,R〉 appeared in L at some step and either
(degR(x, Y ) > 0 and degR(x′, Y ) > 0) or (degR(x, Y ) = 0 and degR(x′, Y ) = 0). Such a set
exists due to the candidate ∆I .

Consider the moment when 〈Y,R〉 is extracted from L. We have Y = V1∪ . . .∪Vk, where
k ≥ 2 and V1, . . . , Vk are blocks of P. Let V1 be the minimal block among V1, . . . , Vk that is
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taken for processing 〈Y,R〉 and let V ′1 = Y \ V1. If x and x′ are still in the same block of
P and they are not separated when splitting that block using 〈V1, V ′1 , R〉 then the following
conditions hold:

– (degR(x, V1) > 0 and degR(x′, V1) > 0) or (degR(x, V1) = 0 and degR(x′, V1) = 0),
– (degR(x, V ′1) > 0 and degR(x′, V ′1) > 0) or (degR(x, V ′1) = 0 and degR(x′, V ′1) = 0),
– k = 2 and either V ⊂ V1 or V ⊂ V ′1 .

This implies that V1 or V ′1 is split at some step and that operation adds 〈V1, R〉 or 〈V ′1 , R〉
to L. This contradicts the minimality of Y . Therefore, x are x′ must be separated by using
〈V1, V ′1 , R〉. �

Lemma 6.5. Consider an execution of Algorithm 3. If x, x′ ∈ ∆I are separated (i.e., belong
to different blocks of the partition P) then x 6≡Φ,I x

′.

Proof. Assume that x, x′ ∈ ∆I are separated. We prove that x 6≡Φ,I x
′ by induction on the

iteration k of the main loop at which x and x′ are separated.
Consider the base case k = 0 when x and x′ belong to different equivalence classes of

the equivalence relation ECondΦ. There are the following subcases:

– there exists A ∈ ΣC such that x ∈ AI and x′ /∈ AI or vice versa (i.e., x /∈ AI and
x′ ∈ AI);

– there exists a basic role R of LΦ such that either degR(x) > 0 and degR(x′) = 0 or
degR(x) = 0 and degR(x′) > 0;

– O ∈ Φ and there exists a ∈ ΣI such that x = aI and x′ 6= aI or vice versa (i.e., x 6= aI

and x′ = aI);
– Self ∈ Φ and there exists r ∈ ΣR such that 〈x, x〉 ∈ rI and 〈x′, x′〉 /∈ rI or vice versa

(i.e., 〈x, x〉 /∈ rI and 〈x′, x′〉 ∈ rI).

The concept A, ∃R.>, {a} or ∃r.Self of LΦ, respectively for these subcases, distinguishes
x and x′. Hence x 6≡Φ,I x

′.
Now consider the induction step and assume that x and x′ are separated by a tuple

〈V, V ′, R〉 at the iteration k + 1 of the main loop. There are the following cases:

1. degR(x, V ) > 0 and degR(x′, V ) = 0;
2. degR(x, V ) = 0 and degR(x′, V ) > 0;
3. degR(x, V ) > 0, degR(x′, V ) > 0, degR(x, V ′) > 0 and degR(x′, V ′) = 0;
4. degR(x, V ) > 0, degR(x′, V ) > 0, degR(x, V ′) = 0 and degR(x′, V ′) > 0.

Using the induction assumption, in a similar way as in the proof of Lemma 6.2, it can be
shown that there exist concepts C and C ′ such that V = CI and V ′ = C ′I . It can be seen
that either ∃R.C or ∃R.C ′ distinguishes x and x′. �

Proposition 6.6. Algorithm 3 is correct and can be implemented to have time complex-
ity O(|Σ|(m + n) log n), where m =

∑
r∈ΣR |r

I | and n = |∆I |. A tighter bound for the
complexity is O(|ΣI |+ |ΣC |n+ |ΣR|(m+ n) log n).

Proof. (Sketch) The contrapositive of Lemma 6.5 states that if x ≡Φ,I x
′ then x and x′

are not separated. That is, ≡Φ,I is a subset of the equivalence relation corresponding to
the partition P. As ≡Φ,I and ∼Φ,I coincide (by Proposition 5.3), it follows that ∼Φ,I is a
subset of the equivalence relation corresponding to the partition P. By Lemma 6.4, the latter
is also an LΦ-auto-bisimulation of I, hence it is the same as ∼Φ,I (the largest LΦ-auto-
bisimulation of I). That is, Algorithm 3 is correct. This algorithm can be implemented in a
similar way as the Paige-Tarjan algorithm for the relational coarsest partition problem [30]
and its complexity can be estimated analogously. �
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7 Applications

As mentioned in the introduction, bisimulations have applications in analyzing expressive-
ness of DLs, minimizing interpretations and concept learning in DLs.

7.1 Comparing the Expressiveness of Description Logics

The expressiveness of description logics (DLs) has been studied in a number of
works [2,5,6,24,27]. In [2] Baader proposed a formal definition of the expressive power of
DLs. His definition is liberal in that it allows the compared logics to have different vocabu-
laries. His work provides separation results for some early DLs. In [5] Borgida showed that
certain DLs have the same expressiveness as the two or three variable fragment of first-order
logic. The class of DLs considered in [5] is large, but the results only concern DLs without
the reflexive and transitive closure of roles. In [6] Cadoli et al. considered the expressiveness
of hybrid knowledge bases that combine a DL knowledge base with Horn rules. The used
DL is ALCNR. The work [24] by Kurtonina and de Rijke is a comprehensive work on
the expressiveness of DLs that are sublogics of ALCNR. It is based on bisimulation and
provides many interesting results. In [27] Lutz et al. characterized the expressiveness and
rewritability of DL TBoxes for the DLs that are sublogics of ALCQIO. They used semantic
notions such as bisimulation, equisimulation, disjoint union and direct product.

In this subsection we compare the expressiveness of the DLs LΦ w.r.t. concepts, TBoxes
and ABoxes, where L stands for ALCreg and Φ ⊆ {I,O,Q,U, Self}. Our results about
separating the expressiveness of DLs are based on bisimulations and naturally extended
to the case when instead of ALCreg we have any sublogic of ALCreg that extends ALC.
In the workshop paper [12], our results are extended a little further for separating the
expressiveness of DLs w.r.t. positive concepts.

Definition 7.1 (Equivalence between Concepts, TBoxes or ABoxes). Two con-
cepts C and D are equivalent if, for every interpretation I, CI = DI . Two TBoxes T1 and
T2 are equivalent if, for every interpretation I, I is a model of T1 iff I is a model of T2. Two
ABoxes A1 and A2 are equivalent if, for every interpretation I, I is a model of A1 iff I is
a model of A2. �

Definition 7.2 (Comparing Description Logics). We say that a logic L1 is at most
as expressive as a logic L2 w.r.t. concepts (resp. TBoxes, ABoxes), denoted by L1 ≤C L2
(resp. L1 ≤T L2, L1 ≤A L2), if every concept (resp. TBox, ABox) in L1 has an equivalent
concept (resp. TBox, ABox) in L2.

We say that a logic L2 is more expressive than a logic L1 (or L1 is less expressive
than L2) w.r.t. concepts (resp. TBoxes, ABoxes), denoted by L1 <C L2 (resp. L1 <T L2,
L1 <A L2), if L1 ≤C L2 (resp. L1 ≤T L2, L1 ≤A L2) and L2 6≤C L1 (resp. L2 6≤T L1,
L2 6≤A L1). �

Proposition 7.3. If a logic L1 is at most as expressive as a logic L2 w.r.t. concepts (resp.
TBoxes, ABoxes) and a logic L2 is at most as expressive as L3 w.r.t. concepts (resp. TBoxes,
ABoxes) then L1 is at most as expressive as L3 w.r.t. concepts (resp. TBoxes, ABoxes).

The proof of this proposition is straightforward.

Lemma 7.4. Let Φ1 and Φ2 be sets of DL-features such that Φ1 ⊆ Φ2. Denote L1 = LΦ1

and L2 = LΦ2. Let I, I ′ be interpretations and Z an L1-bisimulation between I and I ′.

1. If L1 ≤C L2, x ∈ ∆I , x′ ∈ ∆I′ , Z(x, x′) holds, and there exists a concept C of L2 such
that x ∈ CI but x′ 6∈ CI′, then L1 <C L2.



32 A.R. Divroodi and L.A. Nguyen

2. Suppose that U ∈ Φ1 or both I and I ′ are unreachable-objects-free. If L1 ≤T L2 and
there exists a TBox T in L2 such that I is a model of T but I ′ is not, then L1 <T L2.

3. Suppose O ∈ Φ1. If L1 ≤A L2 and there exists an ABox A in L2 such that I is a model
of A but I ′ is not, then L1 <A L2.

Proof. Consider the first assertion. Suppose L1 ≤C L2, x ∈ ∆I , x′ ∈ ∆I
′
, Z(x, x′) holds

and there exists a concept C of L2 such that x ∈ CI but x′ 6∈ CI′ . We prove that L2 6≤C L1.
For the sake of contradiction, suppose L2 ≤C L1. It follows that there exists a concept C ′

of L1 that is equivalent to C. Thus, x ∈ C ′I but x′ 6∈ C ′I′ . Hence, C ′ is not invariant for
Z, which contradicts Theorem 3.9. Therefore, L1 <C L2.

Consider the second assertion. Suppose L1 ≤T L2 and there exists a TBox T in L2 such
that I is a model of T but I ′ is not. We prove that L2 6≤T L1. For the sake of contradiction,
suppose L2 ≤T L1. It follows that there exists a TBox T ′ in L1 that is equivalent to T .
Thus, I is a model of T ′ but I ′ is not, which contradicts Corollary 3.11 or Theorem 3.13.
Therefore, L1 <T L2.

Consider the third assertion. Suppose L1 ≤A L2 and there exists an ABox A in L2
such that I is a model of A but I ′ is not. We prove that L2 6≤A L1. For the sake of
contradiction, suppose L2 ≤A L1. It follows that there exists an ABox A′ in L1 that is
equivalent to A. Thus, I is a model of A′ but I ′ is not, which contradicts Theorem 3.15.
Therefore, L1 <A L2. �

In the rest of this subsection, we assume that ΣC and ΣR are not empty and ΣI contains
at least two individual names. Let {a, b} ⊆ ΣI , A ∈ ΣC and r ∈ ΣR.

Lemma 7.5.

1. For any pair 〈L1,L2〉 among 〈LI ,LOQUSelf〉, 〈LQ,LIOUSelf〉, 〈LSelf,LIOQU 〉, we have
that: L1 6≤C L2, L1 6≤T L2, L1 6≤A L2.

2. LO 6≤C LIQUSelf and LO 6≤T LIQUSelf.
3. LU 6≤C LIOQSelf and LU 6≤A LIOQSelf.

Proof. Let us compare LI with LOQUSelf. Consider the interpretations I, I ′ and the relation
Z shown in the first part of Figure 3. The arrows denote the instances of r in I and I ′.
The instances of A in I and I ′ are explicitly indicated in the figure. Let BI = BI

′
= ∅

for all B ∈ ΣC \ {A}, sI = sI
′

= ∅ for all s ∈ ΣR \ {r}, and cI = aI , cI
′

= aI
′

for all
c ∈ ΣI \ {a, b}. The dotted lines in the figure indicate the instances of a binary relation
Z ⊆ ∆I × ∆I′ . It can be checked that Z is an LOQUSelf-bisimulation between I and I ′.
Consider the concept C = ∀r∀r−1.A of LI . Clearly, aI ∈ CI but aI

′ 6∈ CI′ . By Theorem 3.9,
C does not have any equivalent concept in LOQUSelf. Hence, LI 6≤C LOQUSelf. Consider
the TBox T = {A v C}. Since I |= T but I ′ 6|= T , by Theorem 3.13, T does not have any
equivalent TBox in LOQUSelf. Hence LI 6≤T LOQUSelf. Consider the ABox A = {C(a)}.
Since I |= A but I ′ 6|= A, by Theorem 3.15, A does not have any equivalent ABox in
LOQUSelf. Hence LI 6≤A LOQUSelf.

The proofs for the other pairs of logics can be done similarly, using I, I ′, C specified
in the next parts of Figure 3. For the parts without the presence of b, let bI = aI and
bI
′

= aI
′
. �

Theorem 7.6. Let Φ and Φ′ be subsets of {I,O,Q,U, Self}.

1. If Φ ⊂ Φ′ then LΦ <C LΦ′.
2. If Φ 6⊆ Φ′ then LΦ 6≤C LΦ′.
3. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {U} then LΦ <T LΦ′.
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Fig. 3. An illustration for the proof of Lemma 7.5.

4. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {U} then LΦ 6≤T LΦ′.
5. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {O} then LΦ <A LΦ′.
6. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {O} then LΦ 6≤A LΦ′.

Proof. Consider the first assertion and suppose Φ ⊂ Φ′. Since every concept of LΦ is also a
concept of LΦ′ , we have that LΦ ≤C LΦ′ . Since Φ′ \Φ 6= ∅, at least one feature among I, O,
Q, U , Self belongs to Φ′ \ Φ. Consider the case I ∈ Φ′ \ Φ. The cases of other features are
similar and omitted. For the sake of contradiction, suppose LΦ′ ≤C LΦ. Since LI ≤C LΦ′
and LΦ ≤C LOQUSelf, it follows that LI ≤C LOQUSelf, which contradicts Lemma 7.5.
Therefore, LΦ <C LΦ′ .

Consider the second assertion and suppose Φ 6⊆ Φ′. Since Φ\Φ′ 6= ∅, at least one feature
among I, O, Q, U , Self belongs to Φ \ Φ′. Consider the case I ∈ Φ \ Φ′. The cases of
other features are similar and omitted. For the sake of contradiction, suppose LΦ ≤C LΦ′ .
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Since LI ≤C LΦ and LΦ′ ≤C LOQUSelf, it follows that LI ≤C LOQUSelf, which contradicts
Lemma 7.5. Therefore, LΦ 6≤C LΦ′ .

Consider the third assertion and suppose Φ ⊂ Φ′ and Φ′ \Φ 6= {U}. At least one feature
among I, O, Q, Self belongs to Φ′ \ Φ. Consider the case I ∈ Φ′ \ Φ. The cases of other
features are similar and omitted. Since Φ ⊂ Φ′, LΦ ≤T LΦ′ . For the sake of contradiction,
suppose LΦ′ ≤T LΦ. Since LI ≤T LΦ′ and LΦ ≤T LOQUSelf, it follows that LI ≤T LOQUSelf,
which contradicts Lemma 7.5. Therefore, LΦ <T LΦ′ .

Consider the fourth assertion and suppose Φ 6⊆ Φ′ and Φ \ Φ′ 6= {U}. At least one
feature among I, O, Q, Self belongs to Φ \ Φ′. Consider the case I ∈ Φ \ Φ′. The cases of
other features are similar and omitted. For the sake of contradiction, suppose LΦ ≤T LΦ′ .
Since LI ≤T LΦ and LΦ′ ≤T LOQUSelf, it follows that LI ≤T LOQUSelf, which contradicts
Lemma 7.5. Therefore, LΦ 6≤T LΦ′ .

Consider the fifth assertion and suppose Φ ⊂ Φ′ and Φ′ \ Φ 6= {O}. At least one feature
among I, Q, U , Self belongs to Φ′ \ Φ. Consider the case I ∈ Φ′ \ Φ. The cases of other
features are similar and omitted. Since Φ ⊂ Φ′, LΦ ≤A LΦ′ . For the sake of contradiction,
suppose LΦ′ ≤A LΦ. Since LI ≤A LΦ′ and LΦ ≤A LOQUSelf, it follows that LI ≤A LOQUSelf,
which contradicts Lemma 7.5. Therefore, LΦ <A LΦ′ .

Consider the last assertion and suppose Φ 6⊆ Φ′ and Φ \ Φ′ 6= {O}. At least one feature
among I, Q, U , Self belongs to Φ \ Φ′. Consider the case I ∈ Φ \ Φ′. The cases of other
features are similar and omitted. For the sake of contradiction, suppose LΦ ≤A LΦ′ . Since
LI ≤A LΦ and LΦ′ ≤A LOQUSelf, it follows that LI ≤A LOQUSelf, which contradicts
Lemma 7.5. Therefore, LΦ 6≤A LΦ′ . �

Definition 7.7. We define ALC to be the sublogic of ALCreg such that the role construc-
tors ε, R ◦ S, R t S, R∗ and C? are disallowed. We say that L is a sublogic of ALCreg
that extends ALC, denoted by ALC ≤ L ≤ ALCreg, if it extends ALC with some of those
role constructors. For ALC ≤ L ≤ ALCreg and Φ ⊆ {I,O,Q,U, Self}, let LΦ be defined as
usual in the spirit of Definition 2.1. �

Corollary 7.8. Let L be any sublogic of ALCreg that extends ALC and let Φ and Φ′ be
subsets of {I,O,Q,U, Self}.

1. If Φ ⊂ Φ′ then LΦ <C LΦ′.
2. If Φ 6⊆ Φ′ then LΦ 6≤C LΦ′.
3. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {U} then LΦ <T LΦ′.
4. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {U} then LΦ 6≤T LΦ′.
5. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {O} then LΦ <A LΦ′.
6. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {O} then LΦ 6≤A LΦ′.

Proof. Observe that the concepts C listed in Figure 3 do not use any of the role constructors
ε, R ◦S, RtS, R∗, C?. All the lemmas and theorems given in Section 7.1 hold for the case
when L is a sublogic of ALCreg that extends ALC. Their proofs do not require any change.

�

Figure 4 illustrates the relationships between the expressiveness of all the DLs that
extend L, where ALC ≤ L ≤ ALCreg, with any non-empty combination of the features I,
O, Q, U , Self. Note that the problems whether LΦ <T LΦ′ when Φ′ \Φ = {U} and whether
LΦ <A LΦ′ when Φ′ \ Φ = {O} remain open.
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Fig. 4. Comparing the expressiveness of description logics, where ALC ≤ L ≤ ALCreg. If there is a path
from a logic L2 down to a logic L1 that contains either a normal edge or at least two edges then L2 is
more expressive than L1 w.r.t. concepts, TBoxes and ABoxes. If the path is a dotted edge then L2 is more
expressive than L1 w.r.t. concepts and TBoxes. If the path is a dashed edge then L2 is more expressive than
L1 w.r.t. concepts and ABoxes.

7.2 Interpretation Minimization: Applications

Minimizing an interpretation in a DL is not the same as minimizing an ontology in that
DL. From the logical point of view, an ontology is specified by a knowledge base, which may
have zero or infinitely many models. It is possible that interpretation minimization may have
some effects or may form a starting point for the study on ontology minimization. However,
this is a challenging topic of automated reasoning in DLs and is beyond the scope of this
paper. In this subsection we only discuss applications of interpretation minimization, which
is useful when one is dealing with a specific interpretation, e.g., with the unique intended
model of a rule-based knowledge base in a DL or with a counterexample of an instance
checking problem in a DL.

Note that if a knowledge base KB has the unique intended model I then a problem
of checking KB |= ϕ, where ϕ is a terminological axiom, a role inclusion axiom or an
individual assertion of the form C(a), R(a, b) or a = b, is usually defined to be equivalent
to the problem of checking whether I |= ϕ. In this case, it makes sense to reduce I to
I ′ = I/∼Φ,I when Φ ⊆ {I,O, U}, and to I ′ = I/QS∼Φ,I in the other case. According to

Theorems 5.7 and 5.14, I ′ is a minimal version of I w.r.t. essential aspects. Furthermore,
by Theorems 5.6 and 5.13, when ϕ is a query of one of the mentioned forms, I |= ϕ iff
I ′ |= ϕ, and hence KB |= ϕ iff I ′ |= ϕ. Clearly, the reduction is useful as it can be used for
answering many queries.
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We present below exemplary types of rule-based knowledge bases in DLs that have the
unique intended model:

– Acyclic knowledge bases: The notion of acyclic knowledge bases in DLs is widely
used (see, e.g., [29] for a definition). Under the unique name assumption and the closed
world assumption, an acyclic knowledge base KB has the standard model (see [29] for
details). The unique intended model of such a KB can be defined to be its standard
model. We refer the reader to [29] for an example.

– OWL 2 RL+: OWL 2 RL is a profile of OWL 2 Full recommended by W3C. It hase
PTime data complexity. Knowledge bases in OWL 2 RL may be unsatisfiable (i.e., in-
consistent), since their translations into Datalog may also need negative clauses as con-
straints. In [7] Cao et al. introduced OWL 2 RL0 as the logical formalism of OWL 2 RL
that ignores the predefined data types. They then introduced OWL 2 RL+ as a maximal
fragment of OWL 2 RL0 with the property that every knowledge base KB expressed in
OWL 2 RL+ can be translated to an equivalent Datalog program P without negative
clauses. The unique intended model of such a KB is the least Herbrand model of that
Datalog program P .

– WORL and SWORL: In [8] Cao et at. introduced a Web ontology rule language called
WORL, which combines a variant of OWL 2 RL with eDatalog¬. Similarly to the work
on OWL 2 RL+ [7], they disallowed those features of OWL 2 RL that play the role of
constraints7, allowed unary external checkable predicates, additional features like nega-
tion and the constructor ≥nR.C to occur at the left hand side of v in concept inclusion
axioms. They adopted some restrictions for the additional features to guarantee a trans-
lation of WORL programs into eDatalog¬. They also defined the rule language SWORL
(stratified WORL) and developed the well-founded semantics for WORL and the stan-
dard semantics for SWORL via translation into eDatalog¬. Both WORL with respect
to the well-founded semantics and SWORL with respect to the standard semantics have
PTime data complexity. The unique intended model of a WORL knowledge base KB
can be defined to be the well-founded model of KB , and the unique intended model of
a SWORL knowledge base KB can be defined to be the standard model of KB .

7.3 Concept Learning in Description Logics

Concept learning in DLs is useful for making decision rules as in traditional binary classifi-
cation. It is also useful in ontology engineering, e.g., for suggesting definitions of important
concepts. The major settings of concept learning in DLs are as follows:

Setting 1: Given a knowledge base KB and sets E+, E− of named individuals, learn a
concept C in a DL L such that: (a) KB |= C(a) for all a ∈ E+, and (b) KB |= ¬C(a)
for all a ∈ E−. The set E+ (resp. E−) contains positive (resp. negative) examples of C.

Setting 2: This setting differs from Setting 1 only in that the condition (b) is replaced by
the weaker one: KB 6|= C(a) for all a ∈ E−.

Setting 3: Given an interpretation I and sets E+, E− of named individuals, learn a con-
cept C in L such that: (a) I |= C(a) for all a ∈ E+, and (b) I |= ¬C(a) for all a ∈ E−.
Note that I 6|= C(a) is the same as I |= ¬C(a).

In [9] Cohen and Hirsh studied PAC-learnability of an early DL formalism called CLAS-
SIC. They proposed a concept learning algorithm based on “least common subsumers”.
In [25] Lambrix and Larocchia proposed a simple concept learning algorithm based on con-
cept normalization. Badea and Nienhuys-Cheng [3], Iannone et al. [22], Fanizzi et al. [18],

7 I.e., the ones that are translated to negative clauses of the form ϕ→ ⊥.
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Lehmann and Hitzler [26] studied concept learning in DLs by using refinement operators
as in inductive logic programming. The works [3,22] use Setting 1, while the works [18,26]
use Setting 2.

Bisimulations in DLs have been used for concept learning in DLs in a number of papers.
In the rest of this subsection, we present a survey about them.

Bisimulation-Based Concept Learning in DLs Using Setting 3

In [29] Nguyen and Sza las generalized our notion of bisimulations in DLs and some of our
results [14] to model indiscernibility of objects for concept learning in DLs. It also concerns
concept approximation by using bisimulation and Pawlak’s rough set theory [33,34]. The
generalization deals with the following: the main language is LΦ using the signature Σ, but
the concept to be learned may be restricted to a language LΦ† with a signature Σ†, where
Φ† ⊆ Φ and Σ† ⊆ Σ. For that they introduced the language LΣ,Φ and LΣ†,Φ†-bisimulation
between two interpretations I and I ′ (see [29] for details).

An LΣ†,Φ†-bisimulation between I and itself is called an LΣ†,Φ†-auto-bisimulation of I.
An LΣ†,Φ†-auto-bisimulation of I is said to be the largest if it is larger than or equal to (⊇)
any other LΣ†,Φ†-auto-bisimulation of I.

An information system in LΣ,Φ is a finite interpretation in LΣ,Φ. It can be given ex-
plicitly or specified somehow, e.g., by a knowledge base in the Web ontology rule language
OWL 2 RL+ [7] (using the standard semantics) or WORL [8] (using the well-founded se-
mantics) or SWORL [8] (using the stratified semantics).

Given an interpretation I in LΣ,Φ, by ∼Σ†,Φ†,I we denote the largest LΣ†,Φ†-auto-

bisimulation of I, and by ≡Σ†,Φ†,I we denote the binary relation on ∆I with the property
that x ≡Σ†,Φ†,I x′ iff x is LΣ†,Φ†-equivalent to x′.

The following theorem correspond to Propositions 5.2 and 5.3.

Theorem 7.9. [29, Theorem 19.3] Let Σ and Σ† be DL-signatures such that Σ† ⊆ Σ, Φ
and Φ† be sets of DL-features such that Φ† ⊆ Φ, and I be an interpretation in LΣ,Φ. Then:

– the largest LΣ†,Φ†-auto-bisimulation of I exists and is an equivalence relation,

– if I is finitely branching w.r.t. LΣ†,Φ† then the relation ≡Σ†,Φ†,I is the largest LΣ†,Φ†-
auto-bisimulation of I (i.e. the relations ≡Σ†,Φ†,I and ∼Σ†,Φ†,I coincide).

We say that a set Y is split by a set X if Y \ X 6= ∅ and Y ∩ X 6= ∅. Thus, Y is not
split by X if either Y ⊆ X or Y ∩X = ∅. A partition P = {Y1, . . . , Yn} is consistent with
a set X if, for every 1 ≤ i ≤ n, Yi is not split by X.

Theorem 7.10. [29, Theorem 19.4] Let I be an interpretation in LΣ,Φ, and let X ⊆ ∆I ,
Σ† ⊆ Σ and Φ† ⊆ Φ. Then:

1. if there exists a concept C of LΣ†,Φ† such that X = CI then the partition of ∆I by
∼Σ†,Φ†,I is consistent with X,

2. if the partition of ∆I by ∼Σ†,Φ†,I is consistent with X then there exists a concept C of

LΣ†,Φ† such that CI = X.

Let I be an information system in LΣ,Φ and let Ad ∈ ΣC be a concept name standing
for the “decision attribute”. Suppose that Ad can be expressed by a concept C in LΣ†,Φ† ,
for some specific Σ† ⊆ Σ \{Ad} and Φ† ⊆ Φ. How can we learn that concept C on the basis
of I? That is, how can we learn a definition of Ad in LΣ†,Φ† on the basis of I?

The idea of [29] for this task is based on the following observation:
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– A, where A ∈ Σ†C
– A = d, where A ∈ Σ†A \Σ

†
C and d ∈ range(A)

– A ≤ d and A < d, where A ∈ Σ†nA, d ∈ range(A) and d is not a minimal element of range(A)
– A ≥ d and A > d, where A ∈ Σ†nA, d ∈ range(A) and d is not a maximal element of range(A)
– ∃σ.{d}, where σ ∈ Σ†dR and d ∈ range(σ)

– ∃r.Ci, ∃r.> and ∀r.Ci, where r ∈ Σ†oR and 1 ≤ i ≤ n
– ∃r−.Ci, ∃r−.> and ∀r−.Ci, if I ∈ Φ†, r ∈ Σ†oR and 1 ≤ i ≤ n
– {a}, if O ∈ Φ† and a ∈ Σ†I
– ≤1 r, if F ∈ Φ† and r ∈ Σ†oR
– ≤1 r−, if {F, I} ⊆ Φ† and r ∈ Σ†oR
– ≥ l r and ≤mr, if N ∈ Φ†, r ∈ Σ†oR, 0 < l ≤ ]∆I and 0 ≤ m < ]∆I

– ≥ l r− and ≤mr−, if {N, I} ⊆ Φ†, r ∈ Σ†oR, 0 < l ≤ ]∆I and 0 ≤ m < ]∆I

– ≥ l r.Ci and ≤mr.Ci, if Q ∈ Φ†, r ∈ Σ†oR, 1 ≤ i ≤ n, 0 < l ≤ ]Ci and 0 ≤ m < ]Ci
– ≥ l r−.Ci and ≤mr−.Ci, if {Q, I}⊆Φ†, r∈Σ†oR, 1 ≤ i ≤ n, 0 < l ≤ ]Ci and 0 ≤ m < ]Ci
– ∃r.Self, if Self ∈ Φ† and r ∈ Σ†oR

Fig. 5. Basic selectors. Here, Σ†A denotes the set of attributes of Σ†, range(A) denotes the range of the
attribute A, Σ†nA denotes the set of numeric attributes of Σ†, Σ†dR denotes the set of data roles of Σ†,

range(σ) denotes the range of the data role σ, Σ†oR denotes the set of (object) role names of Σ†, n is the
number of blocks created so far when granulating ∆I , and Ci is the concept characterizing the block Yi.

if Ad is definable in LΣ†,Φ† then, by the first assertion of Theorem 7.10, AId must be

the union of some equivalence classes of ∆I w.r.t. ∼Σ†,Φ†,I .

Nguyen and Sza las [29] proposed the following method:

1. Starting from the partition {∆I}, make subsequent granulations to reach the partition
corresponding to ∼Σ†,Φ†,I . The granulation process can be stopped as soon as the cur-

rent partition is consistent with AId (or when some criteria are met). In the granulation
process, we denote the blocks created so far in all steps by Y1, . . . , Yn, where the current
partition {Yi1 , . . . , Yik} may consist of only some of them. We do not use the same sub-
script to denote blocks of different contents (i.e., we always use new subscripts obtained
by increasing n for new blocks). We take care that, for each 1 ≤ i ≤ n:
– Yi is characterized by an appropriate concept Ci (such that Yi = CIi ),
– we keep information about whether Yi is split by AId ,
– if Yi ⊆ AId then LargestContainer [i] := j, where 1 ≤ j ≤ n is the subscript of the

largest block Yj such that Yi ⊆ Yj ⊆ AId .
2. At the end, let j1, . . . , jh be all the indices from {i1, . . . , ik} such that Yjt ⊆ AId for 1 ≤
t ≤ h, and let {l1, . . . , lp} = {LargestContainer [jt] | 1 ≤ t ≤ h}. Let C be a simplified
form of Cl1 t . . . t Clp . Return C as the result.

In [36] Tran et al. generalized and extended the concept learning method of [29] for
DL-based information systems. They took attributes as basic elements of the language.
Each attribute may be discrete or numeric. A Boolean attribute is treated as a concept
name. They also allowed data roles and the features F (functionality) and N (unqualified
number restriction). If σ is a data role and d belongs to the range of σ then ∃σ.{d} is a
concept. Concepts ≥nR and ≤nR, where R is a basic role, mean ≥nR.> and ≤nR.>,
respectively, and can be used when the feature N is allowed. The concept ≤ 1 r (resp.
≤ 1 r−) is used to express functionality (resp. inverse functionality) of r. The Hennessy-
Milner property (Theorem 4.4) is reformulated in a straightforward way for the extended
language LΣ,Φ [36].

Reconsider the process of granulating {∆I} for computing the partition corresponding
to ∼Σ†,Φ†,I . The works [29,36] use the concepts listed in Figure 5 (on page 38) as basic
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selectors for the granulation process. Let the current partition of ∆I be {Yi1 , . . . , Yik}. If a
block Yij (1 ≤ j ≤ k) is split by DI , where D is a selector, then splitting Yij by D is done
as follows:

– s := n+ 1, t := n+ 2, n := n+ 2,
– Ys := Yij ∩DI , Cs := Cij uD,
– Yt := Yij ∩ (¬D)I , Ct := Cij u ¬D,
– the new partition of ∆I becomes {Yi1 , . . . , Yik} \ {Yij} ∪ {Ys, Yt}.

It was proved in [36] that using the basic selectors listed in Figure 5 is sufficient to
granulate ∆I to obtain the partition corresponding to ∼Σ†,Φ†,I . In practice, we prefer as
simple as possible definitions for the learned concept. Therefore, it is worth using also other
selectors [29,36,37] (despite that they are expressible by the basic selectors over I).

In [37] Tran et al. implemented the bisimulation-based concept learning method
of [29,36] (for most of the DLs considered in [29,36]). They presented a domain partitioning
method that use information gain and both basic selectors and extended selectors. The
evaluation results of [37] show that the concept learning method of [29,36] (for Setting 3)
is valuable and extended selectors support it significantly.

We refer the reader to [29,36,37] for examples illustrating concept learning for DL-based
information systems.

In [13] Divroodi et al. studied the C-learnability (possibility of correct learning) of
concepts in DLs using Setting 3. They proved that any concept in any DL that extends
ALC with some features amongst I, Self, Qk (qualified number restrictions with numbers
bounded by a constant k) can be learned if the training information system (specified by
an interpretation) is good enough. That is, there exists a learning algorithm such that, for
every concept C of those logics, there exists a training information system consistent with C
such that applying the learning algorithm to the system results in a concept equivalent to C.
This shows a good property of the bisimulation-based concept learning method of [29,36].

The work [13] uses bounded bisimulation in DLs and a new version of the algorithms pro-
posed in [29,36] that minimizes modal depths of resulting concepts. The notion of (bounded)
LΣ,Φ,d -bisimulation, where d is a natural number standing for the bound, is defined in [13]
appropriately so that the Hennessy-Milner property (similar to Theorem 4.4) holds and,
for every interpretations I, I ′ and elements x ∈ ∆I , x′ ∈ ∆I′ , we have that x is LΣ,Φ,d -
bisimilar to x′ iff x is LΣ,Φ,d -equivalent to x′ (i.e., for every concept C of LΣ,Φ with the
modal depth bounded by d, x ∈ CI iff x′ ∈ CI′).

Bisimulation-Based Concept Learning in DLs Using Settings 1 and 2

In [19] Ha et al. developed bisimulation-based methods, called BBCL and dual-BBCL, for
concept learning in DLs using Setting 1. Their method uses models of KB and bisimulations
in those models to guide the search for the concept to be learned.

In [35] Tran et al. developed a bisimulation-based method, called BBCL2, for concept
learning in DLs using Setting 2. Their method is based on the dual-BBCL method [19].
They made appropriate changes for dealing with the condition “KB 6|= C(a) for all a ∈ E−”
instead of “KB |= ¬C(a) for all a ∈ E−”.

The concept learning methods BBCL, dual-BBCL and BBCL2 are formulated for the
DLs LΦ with L = ALC, Φ ⊆ {F, I,N,O,Q,U, Self}, (discrete and numeric) attributes and
data roles. These DLs disallow the PDL-like role constructors, but it still covers a large
class of DLs and well-known DLs like ALC, SHIQ, SHOIQ, SROIQ. We refer the reader
to [19,35] for illustrative examples about BBCL, dual-BBCL and BBCL2.

These methods were not implemented and evaluated. As bisimulation is the notion for
characterizing indiscernibility of objects in DLs, one can hope that they are promising.
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8 Conclusions

We have studied bisimulations in a uniform way for a large class of DLs with useful ones
like the DL SROIQ of OWL 2. In comparison with [24,27], this class allows also the role
constructors of PDL, the concept constructor ∃r.Self and the universal role as well as role
axioms. Our main contributions are the following:

– We proposed to treat named individuals as initial states and gave an appropriate condi-
tion for bisimulation. We introduced bisimulation conditions for the universal role and
the concept constructor ∃r.Self.

– We proved that all of the bisimulation conditions (1)-(14) can be combined together to
guarantee invariance of concepts and the Hennessy-Milner property for the whole class
of studied DLs.

– We addressed and gave results on invariance or preservation of ABoxes, RBoxes and
knowledge bases in DLs. Independently from [27] we gave results on invariance of
TBoxes. By examples, we showed that our results on invariance or preservation of
TBoxes, ABoxes, RBoxes and knowledge bases in DLs are strong and cannot be ex-
tended in a straightforward way.

– We introduced a new notion called QS-interpretation, which is needed for dealing with
minimizing interpretations in DLs with qualified number restrictions and/or the concept
constructor ∃r.Self.

– We formulated and proved results on minimality of quotient interpretations w.r.t. the
largest auto-bisimulations.

– We adapted Hopcroft’s automaton minimization algorithm and the Paige-Tarjan al-
gorithm to give efficient algorithms for computing the partition corresponding to the
largest auto-bisimulation of a finite interpretation in any DL of the considered family.
The adaptation requires special treatments for the allowed constructors of the consid-
ered DLs.

– We provided results about separating the expressiveness of the DLs that extend L,
where ALC ≤ L ≤ ALCreg, with any combination of the features I, O, Q, U , Self. Our
separation results are w.r.t. concepts, TBoxes and ABoxes. Our work on the expressive-
ness of DLs differs significantly from all of [2,5,6,24,27], as the class of considered DLs
is much larger than the ones considered in those works and our separation results are
obtained not only w.r.t. concepts and TBoxes but also w.r.t. ABoxes.

We also gave a survey on bisimulation-based concept learning in DLs and discussed
applications of interpretation minimization.

This paper is a comprehensive work on bisimulations for DLs. Our results found the log-
ical basis for concept learning in DLs [29,36,19,13,35,37]. These cited papers are pioneering
ones in applying bisimulation to concept learning and approximation in DLs. That is, our
results, especially the ones on the largest auto-bisimulations, are very useful for machine
learning in the context of DLs.

Acknowledgements. This work was supported by the Polish National Science Centre
(NCN) under Grant No. 2011/01/B/ST6/02759.

References

1. C. Areces, P. Blackburn, and M. Marx. Hybrid logics: Characterization, interpolation and complexity.
J. Symb. Log., 66(3):977–1010, 2001.

2. F. Baader. A formal definition for the expressive power of terminological knowledge representation
languages. J. Log. Comput., 6(1):33–54, 1996.



On Bisimulations for Description Logics 41

3. L. Badea and S.-H. Nienhuys-Cheng. A refinement operator for description logics. In Proceedings of
ILP’2000, volume 1866 of LNCS, pages 40–59. Springer, 2000.

4. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Number 53 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2001.

5. A. Borgida. On the relative expressiveness of description logics and predicate logics. Artif. Intell.,
82(1-2):353–367, 1996.

6. M. Cadoli, L. Palopoli, and M. Lenzerini. Datalog and description logics: Expressive power. In Pro-
ceedings of APPIA-GULP-PRODE’1997, pages 333–344, 1997.

7. S.T. Cao, L.A. Nguyen, and A. Sza las. The web ontology rule language OWL 2 RL + and its extensions.
T. Computational Collective Intelligence, 13:152–175, 2014.

8. S.T. Cao, L.A. Nguyen, and A. Sza las. WORL: a nonmonotonic rule language for the semantic web.
Vietnam J. Computer Science, 1(1):57–69, 2014.

9. W.W. Cohen and H. Hirsh. Learning the Classic description logic: Theoretical and experimental results.
In Proceedings of KR’1994, pages 121–133.

10. W. Conradie. Definability and changing perspectives: The Beth property for three extensions of modal
logic. Master’s thesis, ILLC, University of Amsterdam, 2002.

11. M. de Rijke. A note on graded modal logic. Studia Logica, 64(2):271–283, 2000.
12. A.R. Divroodi. Comparing the expressiveness of description logics. In Informal Proceedings of DL’2014,

volume 1193 of CEUR Workshop Proceedings, pages 500–512. CEUR-WS.org, 2014.
13. A.R. Divroodi, Q.-T. Ha, L.A. Nguyen, and H.S. Nguyen. On C-learnability in description logics. In

Proceedings of ICCCI’2012 (1), volume 7653 of LNCS, pages 230–238. Springer, 2012.
14. A.R. Divroodi and L.A. Nguyen. On bisimulations for description logics. In Proceedings of CS&P’2011,

pages 99–110, 2011.
15. A.R. Divroodi and L.A. Nguyen. On bisimulations for description logics. http://arxiv.org/abs/1104.

1964v1, 2011-04-11.
16. A.R. Divroodi and L.A. Nguyen. Bisimulation-based comparisons for interpretations in description

logics. In Informal Proceedings of DL’2013, volume 1014 of CEUR Workshop Proceedings, pages 652–
669. CEUR-WS.org, 2013.

17. A.R. Divroodi and L.A. Nguyen. On bisimulations for description logics. Information Sciences, 295:465–
493, 2015.

18. N. Fanizzi, C. d’Amato, F. Esposito, and T. Lukasiewicz. Representing uncertain concepts in rough
description logics via contextual indiscernibility relations. In Proceedings of URSW’2008, volume 423
of CEUR Workshop Proceedings, 2008.

19. Q.-T. Ha, T.-L.-G. Hoang, L.A. Nguyen, H.S. Nguyen, A. Sza las, and T.-L. Tran. A bisimulation-based
method of concept learning for knowledge bases in description logics. In Proceedings of SoICT’2012,
pages 241–249. ACM, 2012.

20. M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the ACM,
32(1):137–161, 1985.

21. J. Hopcroft. An n logn algorithm for minimizing states in a finite automaton. Available at ftp:

//reports.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf, 1971.
22. L. Iannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals for concept learning

in the Semantic Web. Appl. Intell., 26(2):139–159, 2007.
23. D. Janin and G. Lenzi. On the relationship between monadic and weak monadic second order logic on

arbitrary trees, with applications to the mu-calculus. Fundam. Inform., 61(3-4):247–265, 2004.
24. N. Kurtonina and M. de Rijke. Expressiveness of concept expressions in first-order description logics.

Artif. Intell., 107(2):303–333, 1999.
25. P. Lambrix and P. Larocchia. Learning composite concepts. In Proc. of DL’1998.
26. J. Lehmann and P. Hitzler. Concept learning in description logics using refinement operators. Machine

Learning, 78(1-2):203–250, 2010.
27. C. Lutz, R. Piro, and F. Wolter. Description logic TBoxes: Model-theoretic characterizations and

rewritability. In T. Walsh, editor, Proceedings of IJCAI’2011, pages 983–988, 2011.
28. C. Lutz, R. Piro, and F. Wolter. Description logic TBoxes: Model-theoretic characterizations and

rewritability. CoRR, abs/1104.2844, 2011.
29. L.A. Nguyen and A. Sza las. Logic-based roughification. In A. Skowron and Z. Suraj, editors, Rough

Sets and Intelligent Systems (To the Memory of Professor Zdzis law Pawlak), Vol. 1, pages 529–556.
Springer, 2013.

30. R. Paige and R.E. Tarjan. Three partition refinement algorithms. SIAM J. Comput., 16(6):973–989,
1987.

31. D.M.R. Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor, Proceedings
of the 5th GI-Conference, volume 104 of LNCS, pages 167–183. Springer, 1981.

32. P. Parys. Analiza algorytmu Hopcrofta minimalizacji deterministycznego automatu skończonego. Avail-
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