Signal Processing: Image Communication 80 (2020) 115652

Contents lists available at ScienceDirect

COMMUNICATION

Signal Processing: Image Communication

journal homepage: www.elsevier.com/locate/image e o

Robust image retrieval by cascading a deep quality assessment network ™ "

Check for
updates

Biju Venkadath Somasundaran ?, Rajiv Soundararajan *-*, Soma Biswas "

a Department of ECE, Indian Institute of Science, Bangalore, 560012, India
b Department of EE, Indian Institute of Science, Bangalore, 560012, India

ARTICLE INFO ABSTRACT

Keywords:

Image enhancement

Image quality assessment

Deep convolutional neural network
Denoising

Super resolution

Image retrieval

The performance of computer vision algorithms can severely degrade in the presence of a variety of distortions.
While image enhancement algorithms have evolved to optimize image quality as measured according to human
visual perception, their relevance in maximizing the success of computer vision algorithms operating on the
enhanced image has been much less investigated. We consider the problem of image enhancement to combat
Gaussian noise and low resolution with respect to the specific application of image retrieval from a dataset.
We define the notion of image quality as determined by the success of image retrieval and design a deep
convolutional neural network (CNN) to predict this quality. This network is then cascaded with a deep CNN
designed for image denoising or super resolution, allowing for optimization of the enhancement CNN to
maximize retrieval performance. This framework allows us to couple enhancement to the retrieval problem.
We also consider the problem of adapting image features for robust retrieval performance in the presence of
distortions. We show through experiments on distorted images of the Oxford and Paris buildings datasets that
our algorithms yield improved mean average precision when compared to using enhancement methods that

are oblivious to the task of image retrieval. !

1. Introduction

The proliferation of smart mobile devices has led to an explosion in
the amount of images that are captured, stored and analyzed. On the
other hand, the availability of increased compute power and internet
connectivity has enabled the application of sophisticated computer
vision algorithms for visual analytics. Indeed, the fruits of such ad-
vances have resulted in applications such as Google Lens which can
improve the quality of lives of humans by providing a wealth of
information. However, the performance of computer vision algorithms
on camera captured images can degrade due to a variety of distortions
such as noise, resolution, compression and illumination. In order to
provide a reliable extraction of visual analytics, there is a need to
ensure robustness of the computer vision algorithms in the presence
of such distortions. In this paper, we focus on a specific instance of
this robustness question by considering the problem of image retrieval.
We consider the design of image enhancement algorithms to ensure the
robust performance of retrieval algorithms in the presence of distor-
tions due to noise and low resolution. We note that the image retrieval
algorithm we refer to here is the classical retrieval problem where

the goal is to retrieve images from a database with similar content or
semantic similarity.

Image retrieval based on the bag of words model has been studied
quite extensively [1,2]. Several improvements have also been pro-
posed to overcome the limitations of feature detectors and descriptors,
descriptor comparison metrics and quantization of descriptors [3-5].
Nevertheless, the performance of image retrieval in the presence of
distortions and how to improve performance in such scenarios has been
much less studied. Image denoising and super resolution are problems
with rich literature and successful algorithms have been developed.
Various techniques developed over the years have evolved to optimize
the perceptual quality of the enhanced images. Improved statistical pri-
ors on natural images and the idea of exploiting the similarity of patch
content across the image have led to image denoising algorithms with
excellent performance [6,7]. The theory of sparse signal representations
has been used to develop state of the art single image super resolution
algorithms [8]. Recently, deep convolutional neural networks (CNN)
have been successfully deployed for both image denoising and super
resolution [9]. It is shown that state of the art performance can be
achieved for both these problems using simple architectures of CNNs.
While all these algorithms lead to images with very good perceptual
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quality, their relevance to the success to computer vision algorithms
and in particular, image retrieval, has been much less studied.

At first sight, the optimization of classical denoising and/or single
image super resolution algorithms for image retrieval tasks appears to
be challenging. This is partly because the denoising or super resolution
algorithms themselves are complex involving non-linear operations of
various parameters that need to be optimized. While the use of deep
CNNs simplifies the enhancement operation to some extent, networks
are typically optimized for cost functions such as regularized mean
squared error or perceptual quality indices such as the structural sim-
ilarity index [10]. While these cost functions may be relevant for
perceptual quality, their relevance in improving the performance of
image retrieval is not clear. The measurement of image retrieval perfor-
mance involves two components, the retrieval algorithm itself and the
performance evaluation of the output of the retrieval algorithm in terms
of metrics such as average precision by comparing the output with an
annotated database. These involve a complex sequence of operations
that cannot be written as a closed form expression. Thus it is not clear
how a differentiable cost function can be obtained that can be used to
optimize the image enhancement algorithms.

Our main contribution is in the design of a framework for image de-
noising and super resolution for image retrieval. We first design a deep
CNN to predict the image retrieval performance in terms of average
precision as a function of image distortions. We refer to this CNN as the
quality assessment for image retrieval (QAIR) CNN since it predicts the
image quality as relevant to image retrieval. We then cascade this CNN
to the output of a denoising or super resolution CNN and use the output
of the QAIR CNN to optimize the weights of the denoising or super
resolution CNN through back propagation. This architecture provides
a seamless method to optimize the denoising or super resolution for
improving image retrieval performance. We conduct experiments to
show that the QAIR CNN is efficient in predicting the image quality
of the distorted image. Further we also show that by coupling the
enhancement CNN with the QAIR CNN, we are able to improve the
performance of image retrieval when compared to approaches which
treat enhancement and retrieval as separate problems.

In contrast to the approach of image enhancement to achieve ro-
bust image retrieval, we then consider the complementary problem of
feature adaptation for image retrieval. The goal of this problem is to
design a framework that allows the learning of features for the image
retrieval task at hand in the presence of distortions. Further, while we
seek to learn features, the rest of the pipeline in the given retrieval
algorithm remains unchanged. The features will need to be learnt
appropriately for a different retrieval task. While a generic solution
appears to be challenging, we present a solution for adapting deep CNN
based features used for image retrieval [11]. In particular, we design a
QAIR CNN which takes as input, the deep CNN based features in [12]
and predicts the average precision of the image retrieval. We then
cascade this QAIR CNN with the deep CNN used to generate the features
to fine tune the later CNN while keeping the former fixed. We show that
this feature adaptation leads to an improvement in performance of the
deep CNN based features with respect to noise and low resolution.

We published preliminary results of our work in a conference ver-
sion which only focussed on the problem of image denoising for image
retrieval for specific noise levels [13]. In this paper, we also consider
the complementary problem of feature adaptation for robust image
retrieval on distorted images and show how our framework can be used
to solve this problem as well. This material is contained in Section 5
and is completely new. We also extend our image denoising framework
for a set of noise levels instead of individual noise levels. Further,
we apply our framework to perform image super resolution for image
retrieval. The extension to super resolution is discussed in Section 4.2.
The experimental results corresponding to all the new material are
contained in Sections 6.3, 6.4.3, 6.6, 6.7, and 6.9.

The rest of the paper is organized as follows. In Section 2, we
present an overview of the related work. We describe our method of
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quality assessment for image retrieval in Section 3, the image enhance-
ment framework in Section 4 and the feature enhancement approach
in Section 5. We present detailed experiments and comparisons in
Section 6 and conclude the paper in Section 7.

2. Related work

We now discuss prior work related to our problem. We identify five
different areas in image retrieval, image denoising, super resolution,
quality assessment and the connection between computer vision algo-
rithms and image quality as related to our work. We discuss these in
the following.

Image retrieval usually refers to the problem of retrieving a set of
images relevant to a query image containing a particular object. Suc-
cessful retrieval algorithms based on the construction of a bag of visual
words have been developed [1,2]. Several researchers have improved
the performance of retrieval algorithms by designing different feature
descriptors [4]. Further, spatial and geometric constraints [14,15] have
also led to improved performance. Compact codes have been designed
based on local image descriptions to speed up the retrieval algo-
rithms [16]. While majority of the approaches deal with improvements
in the image retrieval pipeline, the robustness of the retrieval algorithm
to image quality degradations such as noise and resolution has been
much less studied.

There is rich literature in image denoising. One of the state of the
art denoising methods is Block-Matching and 3D Filtering (BM3D) [6],
which is based on non-local self similarity and combines multiple steps
such as block matching, collaborative filtering on different blocks and
aggregation of different blocks to form the denoised image. Other
successful image denoising algorithms such as those based on ex-
pected patch log likelihood (EPLL) [7] and Gaussian scale mixture
models [17], explore the availability of rich natural scene statistical
models. Sparse representations of images have also led to successful
image denoising algorithms [18]. While neural networks were initially
explored for image denoising [19], deep convolutional neural networks
(CNNs) such as DnCNN [9] and FFDNet [20] have been shown to
achieve state of the art image denoising performance.

The problem of image super resolution has also been addressed by
several researchers. Improving resolution by image registration [21]
and example based super resolution [22] are examples of super resolu-
tion using multiple low resolution images. One of the earlier pieces of
work on single image super resolution was done by Glasner et al. [23]
by exploiting the recurrence of patches in an image, both at the same
scale as well as across scales. Dong et al. designed a CNN called
SRCNN which had 3 layers and achieves super resolution on image
patches [24]. Kim et al. came up with a deep CNN based model
for image super resolution [25] inspired by the VGG-net for image
classification by predicting the residual image given an up sampled low
resolution image. This residual image is then added to the up sampled
image to generate the high resolution image. DnCNN [9] also adopts a
similar approach to solve the super resolution problem.

The problem of perceptual image quality assessment has rich liter-
ature and significant progress has been made on no reference image
quality assessment through algorithms such as DIVIINE [26], BLI-
INDS [27], BRISQUE [28] and CORNIA [29]. While the above algo-
rithms operate based on natural scene statistics based features, there
have been several efforts based on convolutional neural networks [30-
33]. In [31], a pre-trained deep CNN to extract image features is
combined with dense fully connected layers to predict perceptual image
quality. CNN based architectures have been also been applied success-
fully in both full reference and no reference QA through a unified
framework [34].

The impact of image quality on computer vision tasks has been
much less studied. Perceptual image quality features are shown to
be relevant for robust face detection [35]. The notion of machine
vision quality is used to design image enhancement algorithms for
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face detection [36]. The relation between image quality and image
utility or the usefulness of an image with respect to performing a
particular task is explored in [37]. The relation between image quality
and the performance of object tracking has also been studied [38]. More
recently, image denoising algorithms have been optimized for a deep
learning based image classification problem [39].

3. Image quality assessment for image retrieval

In this section, we define the notion of image quality with respect
to the success of the specific computer vision task of image retrieval.
We first describe the performance measurement of image retrieval and
then define our notion of quality for image retrieval. An image retrieval
algorithm takes as input, an image database and a query image and
returns as output, matching images from the database in order of their
similarity to the query image. An example of a retrieval algorithm
based on the scale invariant feature transform (SIFT) is shown in
Fig. 1. Image retrieval involves the computing of image features and
their comparison with a database of images subject to some geometric
consistency checks. Thus, the output of the retrieval algorithm is a
complex function of the input image. While we present an example
based on the SIFT features above, our framework applies to any image
retrieval algorithm in general.

3.1. Image quality index

We define the quality of an image for image retrieval in terms of
the success of the retrieval task. In particular, we define quality as the
average precision achieved on a given test image with respect to the
database [1]. Mathematically, let precision and recall of retrieval be
defined as

CM
ma
where RI is the number of retrieved images for a query image, CM
is the number of correct matches in the set of retrieved images and
T M is the total number of true matches in the database for that query
image. The number of images in the sorted list output by the retrieval
algorithm can be varied using a threshold to obtain a precision-recall
curve. We define image quality as the average precision or the area
under the precision-recall curve. Note that the average precision that
we seek to predict is a function of the given retrieval algorithm.
Before we present algorithms for predicting image quality for image
retrieval, we discuss how this notion of image quality can be different
from perceptual image quality, which is typically associated with a task
free viewing condition and human perception. The example in Fig. 2
shows the difference between quality assessment for image retrieval
and perceptual quality assessment. An image which looks visually good
may not give good results when used for image retrieval. On the other
hand, an image which has visible distortions may yet be good from
the point of view of the success of image retrieval. Thus the relation
between the presence of distortions in an image and the success of a
computer vision task is complex and needs to be learnt carefully.

@

Precision = %, Recall =
RI

3.2. Image QA CNN

Having defined the notion of image quality with respect to image
retrieval, we now consider the problem of designing algorithms to
predict this quality given a potentially distorted image. We design a
CNN to predict this quality directly from the image. The use of a CNN
instead of specific features such as those in [26,28] for image retrieval
QA is motivated by their suitability for optimizing image enhancement
as discussed in Section 4. Since we do not have enough data to train a
CNN for this purpose from scratch, we use pre-trained convolutional
layers of the VGG-16 CNN [12] trained for image classification on
the ImageNet dataset [40], and augment it with 5 fully connected
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layers at the end. This is similar in nature to the approach in [31]
to predict perceptual image quality. The pre-trained CNN is shown in
Fig. 3 and the fully connected layers are shown in Fig. 4. The first
fully connected layer has 128 nodes and the last layer has a single
node corresponding to the output. All the layers except the last layer
have rectified linear units (ReLU) as activation functions. Initially, the
convolutional layers are frozen and the only the fully connected layers
are trained using Adam optimizer. After sufficient training, the last
9 convolutional layers of the VGG-16 network are unfrozen and fine
tuned using stochastic gradient descent (SGD) optimizer with a low
learning rate of 10~3. We refer to our CNN architecture as the quality
assessment for image retrieval (QAIR) CNN.

We divide the image into patches of size 124 x 124 and train the
QAIR CNN on image patches to predict the average precision of the
distorted image from which these patches are drawn. Let x, and y, be
the ground truth and predicted quality scores (or average precision) of
the nth image patch and let N be the total number of patches. Then
for training the QA CNN, we use the mean absolute error loss function
defined as,

N
1
L=Fn§|yn—xn|. @

4. Image enhancement framework for image retrieval

We now describe our approach to image enhancement for image
retrieval. We consider two different image enhancement scenarios for
image retrieval, image denoising and image super resolution. Our goal
is to optimize image denoising or image super resolution to maximize
the success of image retrieval by using the quality index we define
in Section 3. Since optimizing arbitrary denoising or super resolution
methods for such an index appears difficult, we present a framework
where both denoising and super resolution are achieved through CNNs.
We believe that this is a reasonable approach since deep CNN based
methods have also been shown to achieve state of the art enhancement
results. Further, the use of a CNN to define the quality with respect to
image retrieval allows for a differentiable cost function. Thus gradients
can be computed during back propagation to update the denoising or
super resolution CNN. Note that while the true average precision can
be computed for every distorted image, it is not clear how to write a
differentiable cost function that can be used to update the enhancement
CNN. Computing the true average precision involves finding matching
scores for every image in the database with respect to the query image
and listing out images from the database based on a threshold on the
matching scores. Further, the threshold needs to be varied to obtain
the average precision. Our CNN based approach allows to predict
the average precision using a differentiable cost function. We first
present the details of image denoising in detail. Super resolution follows
similarly.

4.1. Image denoising for image retrieval

The proposed architecture is given in Fig. 5. As shown in the figure,
there are two CNNs, one for image denoising and another for QAIR.
Initially, both these CNNs are trained independently (details mentioned
in Section 6.2). Then, during the combined training stage, the QAIR
CNN weights are kept frozen. Only the denoising CNN is fine tuned,
by minimizing a combined loss function based on the output of the
QAIR CNN and the mean squared error (MSE) of the denoised image
with respect to the reference image. In particular, the combined loss
function is defined as

L=(1-AP)+i% MSE, 3

where AP is the average precision predicted by the QAIR CNN and
M SE is the mean square error between the denoised image and the
reference image. This combined loss function ensures that the quality
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Fig. 1. A block diagram of the steps in an image retrieval algorithm.
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Fig. 3. Block diagram of QAIR CNN.

as predicted by the QA CNN improves without changing the denoised
image too much from the actual image. A is a parameter used to balance
the two losses and the optimal value is learnt through a validation
dataset. Note that in the combined loss function, AP is a function of
weights of both the denoising CNN and the QA CNN, whereas M SE is
a function only of the former. Once the combined training is over, the
denoising CNN alone can be used for denoising and testing.

While several CNN architectures have been proposed in literature
for denoising [9,20], we use a deep CNN based on the work by Zhang
et al. [9], which predicts the residual noise in a noisy image. This
residual noise image when subtracted from the noisy image gives the
clean image. A block diagram of the network is given in Fig. 6. This
CNN has 20 layers and each layer has 64 channels. All convolution
kernels are of size 3 x 3.
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Fig. 6. Block diagram of denoising CNN [9].

4.2. Image super resolution for image retrieval

In addition to image denoising, we also consider the task of image
super resolution for image retrieval. The framework we adopt is very
similar to the above for image denoising, where the denoising CNN
is replaced by the super resolution CNN. While several algorithms for
single image super resolution exist in literature, we focus on CNN
based approaches and optimize the CNNs for image retrieval using our
QAIR network. In particular, we employ the DnCNN [9] used above
for denoising, since it also achieves state of the art performance for
image super resolution [9]. Given an up-sampled image using bi-cubic
interpolation, the CNN is trained to predict the residual image, or the
difference between the reference image and the upsampled image. The
residual image is then added to the bi-cubic interpolated image to
obtain the super resolved image. This CNN has 20 layers and each layer
has 64 channels. All convolutional kernels are of size 3 x 3.

5. Feature adaptation for image retrieval

So far, we explored image enhancement for image retrieval. How-
ever, since retrieval is primarily based on image features, we now
explore the problem of feature adaptation for image retrieval. The
intuition behind this approach is that since features are ultimately
used for retrieval, one could potentially perform better by adapting
the features to account for distortions in addition to enhancing the
images. We address this question in the context of a deep CNN based
image retrieval algorithm [11], since it allows the flexibility to modify
the features by changing the weights of the CNN. Thus, we consider
whether we can improve retrieval performance by applying feature
adaptation on top of image enhancement. Note that in Section 4,
we fixed the feature vector and optimized image enhancement with
respect to the given feature vector. However, we now fix the image
enhancement and ask whether the feature extraction process can be

optimized to improve image retrieval performance. In each of these two
methods, different sets of parameters are optimized and one approach
does not include the other.

5.1. Feature adaptation framework

We illustrate our framework for feature adaptation in Fig. 7. First,
we pass the degraded image through an image enhancement network,
potentially fine tuned as discussed in Section 4. The feature extraction
procedure is then carried out on this enhanced image. The output of
the feature extraction network is given as input to a feature QA CNN.
We introduce the feature QA CNN to predict the performance of the
features in terms of average precision as a measure of the success of the
retrieval algorithm. A combined loss function based on the output of the
feature QA CNN and the features of the enhanced image is used to fine
tune the weights of the feature extraction network. The loss function is
represented as

L=(1-AP)+ M, 4

where AP is the average precision predicted by the feature QA CNN and
M is the mean square error between the present output of the feature
extraction CNN and the initial output of the feature extraction CNN in
its original configuration. The first term updates the feature extraction
CNN such that the retrieval performance improves, while the second
term ensures that the feature extraction CNN output does not deviate
too much.

5.2. Feature QA network

We design the feature QA CNN to predict the average precision of
the image given the output of the feature extraction CNN. The output
of the feature extraction CNN, is a 4D tensor with shape N x 36 x
36 x 512 where N is the batchsize. The feature QA CNN contains a
global average pooling layer and five fully connected layers similar
to Fig. 4. The global average pooling layer converts the 4D tensor to
a 2D tensor. The fully connected layers are designed so that the size
gradually reduces to 1 from 128. The first four fully connected layers
have ReLU activation functions and the last layer has linear activation.
A block diagram of the feature QA CNN is shown in Fig. 8.
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Fig. 8. Block diagram of feature QA network.

6. Experiments and results

We present the experimental results with respect to image denoising
and super resolution for image retrieval and the feature adaptation
framework. Before presenting the results, we describe the databases
used for the experiments and the training details of the various CNNs
involved. We use the SIFT based image retrieval algorithm described
earlier for many of the experiments in the following unless otherwise
stated.

6.1. Database

We use two standard image retrieval datasets in our experiments,
the Extended Oxford buildings dataset [1] and the Paris landmarks
dataset [41]. The extended Oxford buildings dataset has 5063 images
of 11 different Oxford landmarks and one hundred thousand distractor
images which makes a total of 105K images. Each landmark has 5 query
images along with ground truth match details resulting in a total of 55
query images. The Paris dataset has 6412 images which contains 11
different Paris landmarks and 5 different query images per landmark.
Out of the 55 query images in each dataset, 80%, i.e. 44 images and
their distorted versions are used for training and the remaining 11
images and their distorted versions are used for testing. The train—
test split is repeated across 5 iterations with a different split in each
iteration such that there is no overlap in the content between the
training and testing sets.

6.2. Training details

We adopt a patch based approach for image enhancement to use
batch mode training. Therefore, each image is split into multiple
patches of size 124 x 124. The enhancement and QAIR CNNs are
trained and tested on patches. While training, all patches in an image
are assigned the same quality score as the average precision on the full
image. After enhancing, the image patches are merged to create the full
image. All models are implemented in Python with Keras library using
Tensorflow back end. We now describe the training of the CNNs used
for denoising, super resolution and feature adaptation.

6.2.1. Image denoising

The image denoising CNN is trained on around 700K patches of size
50 x 50, generated from the image retrieval datasets. Different noise
standard deviations are used for training the denoising CNN. We train
the network for 40 epochs using Adam [42] optimizer.

During the fine tuning phase of the denoising CNN using the QAIR
CNN, the images input to the QAIR CNN will be denoised images.
Thus, the QAIR CNN needs to be trained on denoised images. Since
the denoised images will have some amount of residual noise and blur
artifacts, we create a dataset based on the 55 query images and obtain
10 different degraded versions of the same. The degradations include
five different additive Gaussian noisy versions with noise standard
deviation of [3, 8, 14,26,44] and 3 blurred versions with a Gaussian blur
kernel of standard deviations [0.5, 1,2]. The degraded set also contains
denoised images corresponding to a noise standard deviation of 50,
denoised using the DnCNN [9] and BM3D algorithms [6]. The denoising
CNN is fine tuned on noisy images that are split into patches of size
124 x 124. The fine tuning of the denoising CNN is performed for 40
epochs with SGD optimizer and a learning rate of 1073,

6.2.2. Image super resolution

The super resolution (SR) CNN is trained on patches of size 50 x 50.
Around 700K image patches are used for training on each of the Oxford
buildings dataset and the Paris dataset. The SR CNN is trained for a
given super resolution factor (4 in our experiments) for 40 epochs using
Adam optimizer with a mean square error loss function. The batch size
is fixed to 100.

The output of the SR CNN may still have some amount of blur
artefacts. We train the QAIR CNN for super resolution on varying
degrees of blur to account for residual blur in the super resolved image.
The degraded images include 3 blurred versions with Gaussian blur
kernels of standard deviation of [0.5, 1,2] and upsampled images using
bi-cubic interpolation for a scaling factor of 2 and 4. The SR CNN is
fine tuned for 40 epochs using SGD optimizer with a learning rate of
1073

6.2.3. Feature adaptation

We let the images processed by the DnCNN [9] as above for image
enhancement pass through the feature adaptation CNN. In order to fine
tune the feature extraction CNN, we first train the feature QA CNN on
the output of the feature extraction CNN for different types of image
distortions. For the denoising case, degraded versions include different
levels of noisy and blurred images whereas for super resolution, the
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Table 1
Mean absolute error (MAE) between predicted and actual QA scores for denoised images
corresponding to noise standard deviation ¢ = 50.
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Table 4
Mean average precision for noisy and denoised images for noise standard deviation
o =90.

Dataset Oxford Paris Dataset Clean Noisy BM3D NN-Org NN NN-QA
MAE 0.086 0.060 Oxford 0.632 0.158 0.455 NA 0.483 0.499
Paris 0.633 0.367 0.530 NA 0.556 0.562
Table 2
Mean absolute error (MAE) between predicted and actual QA scores for image super Table 5

resolution by a factor of 4.

Dataset Oxford Paris
MAE 0.071 0.036
Table 3

Mean average precision for noisy and denoised images for noise standard
deviation ¢ = 50.

Dataset Clean Noisy BM3D NN-Org NN NN-QA
Oxford 0.632 0.487 0.590 0.589 0.585 0.595
Paris 0.633 0.562 0.615 0.610 0.608 0.611

degradations include different levels of blurred and downsampled-
upsampled images. The feature QA network is trained using Adam
optimizer with mean absolute error loss function for 60 epochs.

The fine tuning of the feature extraction network is done using
degraded images of similar degradation levels on which we want to
test. The feature extraction CNN is trained using SGD optimizer with a
low learning rate of 3 x 1074,

6.3. QAIR performance

We evaluate the performance of the QAIR-CNN with respect to
denoising in Table 1 by computing the mean absolute error between
the actual average precision and predicted average precision. We test its
quality prediction performance on images denoised using the CNN for
a noise standard deviation of 50. As mentioned before, the evaluations
are performed by the splitting the dataset of denoised images into
training and testing in the ratio 80:20 ensuring no overlap of scene
content between training and testing and averaging the performance
across 5 iterations. The results indicate that the mean absolute error
is quite low and the QAIR CNN is able to predict the image retrieval
performance reasonably well.

Further, we measure the accuracy of prediction of the retrieval
performance by the QAIR CNN with respect to super resolution in
Table 2. The results indicate that the mean absolute error between the
predicted and actual average precision scores is reasonable.

6.4. Image denoising

We now present the results of image denoising for image retrieval
for different ranges of noise levels in the following subsections.

6.4.1. Denoising for noise standard deviation of 50

We first present the results of denoising for a noise standard de-
viation ¢ = 50. The results for Oxford and Paris dataset are given in
Table 3. In this table, “Clean” refers to the mean average precision
on the clean images, “Noisy” refers to the same on the noisy images,
“BM3D” denotes the results of images denoised using BM3D algorithm,
“NN-Org” refers to the pre-trained CNN as in [9], “NN” denotes the
CNN trained by us using images in the retrieval datasets and ‘“NN-QA”
refers to the results of our method i.e. the fine tuned denoising CNN
using the QA CNN.

As seen in the table, our method outperforms all other methods in
Oxford dataset. On the Paris dataset, the performance of our method is
slightly less than that of BM3D, but better than the pre-trained CNN
and the CNN trained by us. We show examples of the noisy image
and denoised images using different techniques in Fig. 9. The image
denoised using our technique is visually sharper than the other images
and also achieves a better average precision.

Mean average precision for noisy and denoised images for noise standard deviation in
the range 30-60.

Dataset Clean Noisy BM3D NN-Org NN NN-QA
Oxford 0.632 0.539 0.605 0.602 0.605 0.618
Paris 0.633 0.589 0.622 0.617 0.618 0.619

6.4.2. Denoising for a noise standard deviation of 90

We evaluate the performance of our algorithm at a higher noise
level of 6 = 90. The denoising CNN is trained on the dataset for this
noise level. The mean average precision for different methods are given
in Table 4. The results show that our denoising method is superior to
all other denoising methods in terms of image retrieval performance.
We note that the improvements with respect to the other methods are
slightly higher for ¢ = 90 when compared to ¢ = 50.

6.4.3. Denoising for variable noise levels

While so far we evaluated our algorithm on fixed noise levels, we
now test our algorithm for noise standard deviations belonging to a
range between 30 and 60. We do not consider noise levels correspond-
ing to standard deviation less than 30 since there is very minimal drop
in the retrieval performance at those noise levels. Here, the denoising
CNN is trained on a random subset of noise standard deviations in the
range of 30 to 60. The results of our method and other methods for the
variable noise level case is given in Table 5.

Across the three sets of results described above, we observe that
BM3D is competitive and even achieves slightly better performance
than our framework sometimes on the Paris dataset. We believe that
the Paris dataset has a larger set of matching blocks which lends itself
to superior denoising performance of BM3D. However, we note that
for the BM3D algorithm, we need to specify the exact noise standard
deviation while the other methods do not require such knowledge.
We observe that on the Oxford dataset, our method performs better
than all the other methods and on the Paris dataset, the performance
of our method is only slightly less than that of BM3D which requires
knowledge of the noise standard deviation.

6.5. Image retrieval using SURF features

We now evaluate the performance of our method for another image
retrieval method based on Speeded Up Robust Features (SURF) [43].
SURF is a speeded up version of SIFT and uses box filters to approx-
imate difference of Gaussian. The feature length is 64 for SURF, in
comparison to 128 for SIFT. Initially, the SURF features are computed
for all images in the database and stored. A given query image is then
compared with all images in the database based on the number of
matching SURF features and a geometric consistency check.

We present results of this method on the Paris dataset for noise
levels of standard deviation ¢ = 50 and ¢ = 90. The image retrieval
results in Table 6 reveal that for ¢ = 50, our method performs almost
as well as the original DnCNN, and better than the DnCNN trained
by us. For ¢ = 90, our method outperforms all other methods. The
performance of “NN-Org” is marked as “NA” since that CNN is not
trained for this noise level.
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(a: AP=0.275)

(b: AP=0.534)

(c: AP=0.680)

(d: AP=0.703) (e: AP=0.721)

Fig. 9. (a) Noisy image for ¢ = 50; (b) denoised image using BM3D; (c) denoised image using the pre-trained CNN in [9]; (d) denoised image using the CNN in [9] trained by

us (e) denoised image using a CNN which is trained in combination with QA network.

Table 6
Mean average precision for noisy and denoised images for SURF based image
retrieval.

o Clean Noisy BM3D NN-Org NN NN-QA

50 0.392 0.251 0.355 0.357 0.352 0.355

90 0.392 0.057 0.222 NA 0.259 0.267
Table 7

Mean average precision for noisy and denoised images for CNN features based image
retrieval.

Dataset Clean Noisy BM3D NN-Org NN NN-QA
Oxford 0.451 0.014 0.220 0.141 0.214 0.219
Paris 0.658 0.212 0.513 0.436 0.486 0.487

6.6. Image retrieval using deep CNN features

We also test our image enhancement framework on a different
image retrieval method using deep features [11]. In this method, a
pre-trained deep CNN, VGG-19 [12], is used to extract features from
the images. The last convolutional layer output of the network is used
as features. A block diagram of the feature extraction and aggregation
steps for image retrieval are shown in Fig. 10. The experimental results
for ¢ = 50 on both the Oxford and Paris datasets are shown in Table 7.
While the improvements with respect to other learning methods are
marginal and there is a performance gap with respect to BM3D, we
show later on that the performance of our framework can be further
improved using feature adaptation.

6.7. Super resolution results

We now present the performance analysis of our enhancement
framework for super resolution in Table 8. In the table, “Original”
refers to the actual query image, “Down sample by 4” refers to the
image down sampled by 4, “Up sample bicubic 4” refers to the image
which is down sampled and then bi-cubic interpolated by a factor of
4, “SR NN” refers to the images output by the SR CNN, “SR CNN QA”
refers to the output of the fine tuned SR CNN using the QAIR CNN. The
results indicate that our method outperforms all other methods on both
the Oxford and Paris datasets. We also observe that super resolution
of downsampled images can sometimes improve the retrieval perfor-
mance. We believe this can be viewed as some preprocessing of the
image before image retrieval that can improve retrieval performance.

An example image and its different SR versions are given in Fig. 11.
We see that the image enhanced using our method is sharper than other
images leading to a performance improvement in terms of average
precision.

Table 8
Mean average precision for image super resolution by a factor of 4.

Dataset Original Down sample by 4 Up sample bi-cubic 4 SR NN SR NN QA

Oxford 0.632 0.265 0.604 0.620 0.626
Paris 0.633 0.323 0.619 0.635 0.642
Table 9

Mean average precision for both noisy and low resolution (LR) images using CNN based
enhancement and image retrieval.

Dataset Clean Noisy/LR NN-Org NN NN-QA
Paris 0.6330 0.6020 0.6128 0.6308 0.6322
Table 10

Mean average precision for noisy and denoised images for noise standard deviation
o =50.

Dataset Clean Noisy BM3D NN-Org NN NN + tweaked features

Oxford 0.451  0.014  0.220 0.141 0.214  0.230
Paris 0.658 0.212 0.513 0.436 0.486  0.507

6.8. Denoising and super resolution using the same network

We also conduct an experiment where both denoising and super
resolution are achieved using a single enhancement CNN on the Paris
dataset. The corresponding QAIR CNN is trained on a mix of denoised,
noisy, blurred and low resolution images upsampled using bicubic
interpolation and CNN based algorithms. Further, the enhancement
CNN was trained as before on 8 distorted versions of each query image,
with 4 noisy images with noise standard deviation between 30 and 60
and 4 low resolution images with downsampling factors of 3.8, 3.9,
4 or 4.1. The test set consists of 2 distorted versions of each query
image with one noisy image with standard deviation between 30 and 60
and 1 low resolution image with downsampling factor of 4. The same
train-test split among query images explained earlier across multiple
iterations was used. The results in Table 9 indicate that the “NN-QA”
approach does indeed offer benefits when compared to not using the
QAIR CNN for training the enhancement CNN.

6.9. Feature adaptation

We now analyze the performance of the feature adaptation frame-
work for both denoising and super resolution.

6.9.1. Feature adaptation for noisy images with ¢ = 50

The image retrieval performance on the Oxford and Paris dataset
are shown in Table 10. In this table, “NN+tweaked features” refers
to the results of our proposed method in which the images are passed
through a denoising CNN and the feature extraction CNN is fine tuned
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Fig. 10. Block diagram of CNN based feature extraction and image matching.
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(a: AP=0.814)

(b: AP=0.791)

(c: AP=0.802)

(d: AP=0.804)

Fig. 11. (a) Original Image; (b) Image interpolated using bicubic interpolation; (c) super resolution image using the CNN in [9] trained by us (d) super resolution image using a

CNN which is trained in combination with QA network.

Table 11
Mean average precision for noisy and denoised images for noise standard deviation in
the range 30 to 60.

Dataset Clean Noisy BM3D NN-Org NN NN + tweaked features
Oxford 0.451 0.047  0.235 0.156 0.222 0.255
Paris 0.658 0.276  0.536  0.468 0.513  0.533

using a feature QA CNN. The results shows that fine tuning the feature
extraction CNN can lead to a performance improvement. We also note
that the feature enhancement method performs better when compared
to image enhancement in Table 7 for the same scenario.

6.9.2. Feature adaptation for noisy images with o in the range [30, 60]

We now analyze how the feature adaption method performs when
we train for noise levels in a range instead of a single noise level. Here,
we train for noise values with standard deviation in the range [30, 60].
The feature QA network is trained in a similar setup as that of the
previous section. The results in Table 11 indicate that there is a good
improvement in both datasets for our method when compared to the
case where features are not fine tuned.

6.9.3. Feature adaptation results for image super resolution by a factor of
4

We also test the feature adaptation framework for the super resolu-
tion case. We design the feature adaptation framework by first passing
the low resolution image though a super resolution network and then
through a fine tuned feature extraction network. The image SR CNN

and its training method are same as that in Section 4.2. The feature QA
network is trained on query images and different degraded versions of
the same as discussed before. The results obtained on the Oxford and
Paris dataset are given in Table 12. In the table, “SR NN + tweaked
features” refers to the performance of SR CNN output using enhanced
features. Again, the results show that our method out performs all other
methods.

In summary, we observe that our image enhancement and feature
adaptation frameworks yield improvements in the mean average preci-
sion in several scenarios. In other scenarios, the performance is almost
as good as the best performing enhancement method.

7. Conclusion and future work

In this work, we developed a framework for image enhancement
for image retrieval by defining a relevant notion of image quality. The
quality of a query image for image retrieval is defined as the area under
the precision-recall curve for that image and we designed a deep CNN
based method for image quality prediction. By modeling the image
enhancement as a deep CNN, we can fine tune such a network for
the success of image retrieval. Note that this particular modeling is
not very restrictive owing to the success of deep CNN methods in a
variety of image processing applications. We showed the benefits of
such an approach for two image enhancement cases, image denoising
and image super resolution.

We also developed a framework for feature adaptation to improve
the image retrieval performance of degraded images using a feature
QA network. This framework of feature adaptation is applicable for
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Mean average precision for image super resolution by a factor of 4.

Dataset Original Down sample by 4 Up sample bi-cubic 4 SR NN SR NN + tweaked features
Oxford  0.451 0.015 0.150 0.166  0.186
Paris 0.658 0.296 0.397 0.496  0.537

deep CNN features based image retrieval. We tested such an approach
for both image denoising and image super resolution cases and were
successful in showing that fine tuning the feature extraction framework
using a feature QA network leads to better image retrieval performance.

While we showed the utility of our framework, one could potentially
improve the results by further enhancing the prediction of average
precision. Moreover, we considered the homogenous distortions and a
patch based approach for enhancement. It will be interesting to study
enhancement operations that operate on the entire image with the
average precision of the entire image. In order to attempt such an
approach, methods for predicting the average precision using much
lesser data may need to be explored. Further, the framework can
be extended to study other enhancement settings such as low light
enhancement, defogging and so on.

While we considered the specific case of image retrieval, our frame-
work can also be used to study image enhancement for various other
computer vision applications. Our framework is particularly useful
when the performance of the computer vision task is arbitrary and
cannot be modeled by closed form expressions of the output of a
deep CNN. Thus, by converting any computer vision task performance
to a quality assessment CNN, one could potentially optimize image
enhancement for the relevant computer vision task.
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