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Abstract  

Spoken dialogue systems have been increasingly employed to provide ubiquitous access via telephone to 

information and services to the non-Internet-connected public. They have been successfully applied in the 

health care context; however, speech technology requires a considerable development investment. The 

advent of VoiceXML reduced the proliferation of incompatible dialogue formalisms, at the expense of 

adding even more complexity. This paper introduces a novel architecture for dialogue representation and 

interpretation, AdaRTE, which allows developers to layout dialogue interactions through a high level 

formalism, offering both declarative and procedural features. AdaRTE’s aim is to provide a ground for 

deploying complex and adaptable dialogues whilst allowing experimentation and incremental adoption of 

innovative speech technologies. It enhances Augmented Transition Networks with dynamic behavior, and 

drives multiple back-end realizers, including VoiceXML.  It has been especially targeted to the health 

care context, because of the great scale and the need for reducing the barrier for a widespread adoption 

of dialogue systems.  

 

Keywords:  Telemedicine, Speech Recognition Software, Ambulatory Care Information Systems, 

Telephone, Computerized. 

 

1 Introduction 

Automated dialog systems are widely used to provide the public with access to a set of automated 

services. The opportunities offered by computer-based conversations can be reaped for telemedicine 

applications, e.g. offering patients a self-paced access to an ever-increasing fraction of clinical 

information. Patients can take the role of either information consumers (e.g. for receiving counsel and 
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education), producers (interviews, long-term monitoring of chronic diseases, symptom reporting, etc.), or 

both (e.g. as a support to the scheduling of clinical exams and receiving therapy updates).  

Adopting dialogue systems in the medical domain, however, is especially complex. First, dialogues in 

health care context should be designed to maintain a continuous relation with patients through the time. 

Some dialogues have the objective of eliciting changes in patient’s behaviours or habits. Criticality is also 

present in dialogues used for chronic symptoms monitoring [1]. Last but not least, clinical practices enact 

complex guidelines, ontologies and procedures [2], which increment the complexity of automated 

dialogues.  A number of these clinical practices in patients’ home care require professional assistance to 

be successfully fulfilled.  At the same time, it is simply unfeasible to have the whole medical personnel 

available to cover patients’ demands and, perhaps, this is the main motivation towards the adoption of 

automatic dialogue systems in medicine. Another important motivation is to increase availability of cost-

effective monitoring in disadvantaged geographical regions. 

 

This paper presents the AdaRTE framework, devised in order to overcome the issues of the existing 

dialogue management methods. Our interest is mainly focused on health care dialogues systems, and 

therefore our solution is especially targeted at offering rapid prototyping, standards-compliant 

deployment and experimentation through the incremental integration of other voice formalisms, e.g. NLP 

based on lexicalized grammars.  

 

AdaRTE’s features were designed to reduce the burden of dialogue development through reuse, support 

of augmented transition networks, adaptable decision points and adoption of best practices. This paper 

shows how AdaRTE implements these features for dialogue deployment, and presents the results obtained 

prototyping five medical telephony-linked systems. Three of them were inspired by earlier  working 

systems, namely the Chronic Obstructive Pulmonary Disease (COPD) care [3], the Homey dialogue 

system for hypertensive patient home management [4], and for diabetes care [5]. Two more dialogues 

were implemented from scratch to assist patients receiving peritoneal dialysis and Oral Anticoagulation 

Therapy (OAT); the latter is being prepared for use at the Mondino Neurological Hospital of Pavia (Italy).  

 



 3 

2 Background 
 

 

Computer-based dialogue systems have been proven useful to provide the general public with access to 

telemedicine services. Several studies have discussed their advantages for chronic symptoms monitoring, 

interviews, counselling and education. Piette, Corkrey, Krishna, Kaplan and Edmonds [6-10] reviewed 

interactive voice response systems (IVR) that have been used for interviews, alcohol or drug-abuse 

support, hypertension monitoring, and others, emphasizing the benefits of these systems such as the 

ability to be in continuous operation whilst offering confidentiality. Migneault [11] summarizes the 

experience in building over twenty IVR systems for various health purposes focusing on positively 

influencing patient’s health behaviour and disease monitoring such as angina pectoris, chronic obstructive 

pulmonary disease, asthma and others. Several interventions have been reportedly able to improve quality 

of service and communication in a cost-effective way.  Also, dialogues supporting automated speech 

recognition (ASR) have been used successfully for health purposes. For instance, a dialogue for the 

management of hypertensive patients supporting high adaptability and restricted mixed initiative is 

described in [4]. More recently, Levin presented a system for chronic pain monitoring, tested on 

volunteers, that profiles users upon their experience, offering varying amounts of help, and fallbacks in 

case of misunderstanding by the ASR component [12]. Further discussion on the adoption of dialog 

systems for health communication can be found in a special issue [13].  

 

Despite the growing efforts towards developing user-friendly IVR systems, this kind of telemedicine 

interventions have been criticized for their lack of flexibility, mainly due to the fact that, to be effective, 

they greatly restrict the interaction with the user. This is mostly due to technical reasons: touch-tone based 

systems are limited to numeric input and menu-like navigation. On the other hand, speech-based system 

emerged as a very promising solution thanks to the extensive efforts pursued by the speech recognition 

community. Nevertheless, speech-based systems are still error-prone and their language understanding 

component doesn’t cover the whole variety of linguistic phenomena [14]. 
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2.1 Theoretical approaches 

 

Attempts towards more sophisticated approaches to dialogue modelling in the medical domain have been 

pursued in [15, 16]. In the former, Allen et al. present a medication advisor “Chester”, in which the 

dialogue is seen as a collaborative system where agents work together in order to achieve a common goal. 

Chester embraces the generic architecture developed for The Rochester Interactive Planning System 

(TRIPS) [17], which clearly separates domain and dialogue representations.  It uses a stochastic plan and 

an intention recognizer in order to infer the user’s intention and supports mixed initiative. In the latter, 

Beveridge et al. present a decision support dialogue system for advising physicians about whether or not a 

patient should be referred to a cancer specialist. The dialogue follows the conversational games theory of 

dialogue modelling, first introduced by Power [18]. Its architecture separates dialogue and domain 

representation and, in particular, the domain and plan representation use ontologies and guidelines, 

respectively.  

 

In spite of the remarkable endeavours, a considerable effort should still be done in order to solve issues 

related to language, pronunciation modeling of medical terminology, limited information in knowledge 

bases, computational costs for reasoning and adaptability.  This is even more evident when considering 

the perspective of implementing robust, functional and complete dialogue systems for real situations in 

the medical domain. 

 

A range of approaches is available for dialogue modeling. According to the classification made by Allen 

et al. [19] ordered by increasing complexity, the simplest of these is finite-state scripts, also called 

dialogue grammar, followed by frame-based, sets of context, plan-based, and agent-based models. In a 

finite-state script the dialogue is represented as a script of prompts for the user. In frame-based systems, 

questions are asked in order to enable the system to fill slots of entity requirements to perform a task. Sets 

of contexts describe the dialogue task and each context is represented using the frame-based technique.  

Conversely, plan-based theories claim that utterances infer acts that are part of a plan, thus, the system 

should identify the user underlying plan and respond appropriately [20]. Agent-based models are at the 

highest level of complexity.  They consider planning, executing and monitoring operations in a 

dynamically changing world, possibly involving multimodality. An additional approach, the 
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conversational games theory, is presented in [16, 18, 21]. This approach models task-oriented dialogues 

and uses techniques from both frame-based and plan-based models. This approach provides a method of 

modeling mixed-initiative and complex dialogues.   

 

Generally, many of the aforesaid approaches require heavily coded solutions and are not readily suited for 

small-scale applications in a real-world setting. Additionally, there is not much information available 

about time and costs implied in the dialogue systems development process. As a matter of fact, the 

process of deployment dialogue systems has been considered complicated, costly, time demanding and 

usually requires speech technology experts. Several toolkits were devised in order to simplify the 

programming burden; among them, the best-known is probably TrindiKit [22]. Although TrindiKit allows 

the implementation of dialogues following the theoretical approach of information state, it is complex to 

use and requires the proprietary language SICStus Prolog.  

 

2.2 Standardization of technology 

 

 

Recently, the WWW Consortium introduced the web-based “Voice Browser” (VB) activity [23]. VBs are 

built around a dialogue manager, which fetches documents over the web and interprets them. Its delivery 

reduced the proliferation of incompatible dialogue formalisms by offering a reference model for voice 

applications. Dialogue systems built with VoiceXML have been published lately, e.g. for home 

monitoring of diabetic patients [24].  In spite of the aforesaid advantages, VoiceXML has inherent 

limitations which are well analyzed in [25, 26]. For instance, its structure is declarative, static and it lacks 

means for efficient and heavy computation, so it is difficult to access remote resources (e.g. databases and 

ontologies). Also, its support to mixed-initiative interaction is limited. Furthermore, due to the web-based 

paradigm, VoiceXML documents themselves have to be generated dynamically by other code, which 

complicates application maintenance. Finally, the strongest limit pointed out by the research community 

is that neither dynamic natural language understanding, generation nor multimodality are directly 

supported.  
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3 Motivation 

 
Early methods for describing the detailed structure of computerized voice interactions followed either the 

finite-state or the frame-based approach. Technically, they were implemented either in native computer 

code, or with custom dialog managers. In the former, the interaction was specified and hard-coded in a 

custom program, step by step, in a native computer programming language, for example C. Such a 

program activates speech and telephony-related features on demand according to the point of the dialog, 

by means of platform-specific application-program interfaces (API) which depend on the particular 

hardware and software combination. This approach is familiar to computer programmers and allows fine 

control over all aspects of the interaction. However, it ties implementations to the specific software or 

hardware vendors, is not portable, and puts the dialog flow design mainly in the hands of programmers, 

rather than domain experts. 

 

3.1 Context-based approaches 

 

 

The fact that most of the telephone interaction boils down to a few steps of basic types, e.g. playing 

prompts, listening to answers, storing results in variables, and so forth, has motivated dialog engines to be 

built around context-based approaches [27, 28]. The definition of “context” differed among platforms, but 

usually it was characterized by a group of properties, such as: prompt, grammars, variables to hold the 

result, help, and pointer to the next context.  

 

Although this formalism simplifies dialog layout by decomposing it into basic building blocks, and 

provides a higher level of abstraction than low-level computer languages, it still has the disadvantages of 

being proprietary and strongly tied to the specific dialog manager. Furthermore, it generally lacks the 

flexibility required for handling special, application-specific cases – e.g. to compute prompts adaptively 

on the basis of user experience or other factors, to enable or disable confirmation questions, and generally 

it’s difficult to implement strategies beyond those supplied with the platform as built-ins. These 

refinements tend to be important for a smooth user experience, but often can be expressed readily only 

through procedural programming (e.g. to keep track of counters and sensible defaults, perform non-trivial 
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string analysis, hold complex states in an object-oriented fashion, and so on). Procedural and object-

oriented constructs conflict with the static declarative structure of context-based dialog formalisms. 

 

3.2 Conforming to industry standards 

 

 

VoiceXML has been a first step towards a combined procedural and declarative approach, because it has 

foreseen both a form-filling mechanism and a procedural interpreter, in the form of the standard 

ECMAScript standard language [29]; context variables and scripts belong to the same namespace. In 

addition, ECMAScript is a powerful general-purpose language, but its usefulness is severely limited by 

being confined on the client-side. Therefore, this interesting approach is limited by the web-based 

paradigm, because the document generation and exchange have to be meta-programmed and executed at 

runtime, and the procedural interpreter is restricted to the browser. Both the high-level dialog 

management and the resources access take place on the web server, where they have to be programmed 

with the less-than-straightforward mechanisms like Java Server Pages. Again, this paradigm may be 

familiar to programmers, but is often outside of the grasp of domain experts for dialog writing or 

maintenance.  For the reasons discussed in the previous section, VoiceXML has a negative impact on the 

ability to produce telemedicine applications efficiently.  

 

As a consequence, a variety of extensions to VoiceXML have been proposed: for instance, DialogXML 

(applied to car telematics) extended the VB in order to support NLP KANTOO generated grammars [30]. 

A prototype of an editor for creating VoiceXML documents is exposed in [31]. Other VoiceXML 

generative approaches are presented in [32], which follows a database-oriented approach, and in [33], 

which is seemingly targeted towards customer care tasks with sophisticated call routing. We believe that a 

big effort should still be done in adapting dialog systems best practices [34], such as confirmation 

strategies, adaptability, mixed initiative into VoiceXML-based frameworks, providing usable speech 

interfaces to users and graphical interfaces to developers. 

 

We devised a dialog representation that overcomes these limits. This work has been motivated by two 

main factors: (1) reduce time required to deploy dialogue applications, and enable subjects who were not 
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programmers to develop and test autonomously their applications; and (2) experiment with best practices 

and alternative dialog strategies, incorporating them in existing systems, where possible, without rewrite. 

(So-called “best practices” suggest consistent adoption of dialog features like self-revealing prompts, 

incremental amounts of help, smart recovery from ASR recognition errors, and so on. [34]) 

 

4 Adaptable Runtime Engine 
 

The approach we propose is AdaRTE, a flexible dialog manager patterned around the combined 

procedural-declarative approach to dialogue-based interfaces. According to Allen’s classification [19], 

the new approach falls in the “sets-of-context” category, because it combines the static nature of contexts 

and slots with the dynamic features of a procedural interpreter. The interpreter provides enough flexibility 

in execution in order to switch contexts according to arbitrarily complex criteria. The main components of 

the proposed architecture are (a) dialogue interpreter, (b) a runtime engine and (c) an interface media 

realizer for back-end generation (Figure 1).  A system typically interacts with three main roles: dialogue 

developers, patients, and case managers (e.g. physicians or case manager nurses, typically through a web 

interface). 

 

The flow of a conversation is structured as a series of Augmented Transition Networks (ATN). Usually, 

an ATN is associated with a context or a topic; we call this structure subdialogue. Subdialogues  partition 

a complex application into modules (Figure 2). This contributes to structure the conversation layout for 

ease of maintenance, because subdialogues can be reused both within the same dialog, and across 

different applications (Figure 3).   

 

Prompts, questions and other elements are the nodes (here named blocks) of an ATN that specifies the 

flow of the conversation. Blocks are represented in the description by XML tags. When the system is 

started, the XML dialogue description is read and compiled into an internal representation. When a call 

reaches the system, the dialog representation is executed. Consequently, AdaRTE activates the dialogue 

blocks, constructs prompts, interprets the answers returned by the caller through the voice platform, and 

interacts with external resources as appropriate.  



 9 

 

When a call is setup, the main subdialogue is retrieved and started; it will, in turn, invoke other 

subdialogues, and so forth.  When the end of each subdialogue is reached, the execution flows returns to 

the caller, and at the end of the main subdialogue, the call is terminated.  Subdialogues flow can be 

altered by throwing dialog-specific exceptions.  

 

 

Figure 1 Block diagram of the AdaRTE architecture. 
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Figure 2 Block-based dialogue description. Subdialogues are defined by the application developer 

(shown here as rounded dotted boxes), and can be invoked with a subdialogue calling block (shown in 

double-border). 

 

 

 

Figure 3 Within-application reuse of blocks. Dialogue sequence is rearranged without duplication 

 

Several blocks are available for building subdialogues, namely: prompt, question, script, decision, 

exception handler, prompt sets, place-holders, containers and subdialogue calling blocks (Table I).  

 

Block Class Description 

Prompt Evaluates its content and realizes the result in speech 

Question Evaluates and plays its content ; activates a grammar, and 

binds the return value to an object 

Script Allows bulk evaluation of arbitrary procedural and object-

oriented code; may be used e.g. for defining functions, 
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evaluating complex formulas, and accessing external 

resources and libraries  

Decision If- and switch-like statements evaluate their arguments and 

consequently alter  the block execution flow 

Subdialogue Activates a different subdialogue placing it on the call stack 

Exception handlers Exception handlers (catch) and generators (throw) handle 

out-of-band events, including “no-match” and similar and 

user-defined events. 

Container Multiple blocks can be grouped into a container, and 

activated according to a chosen criterion – e.g. incrementally 

across calls, to provide different information in subsequent 

contacts; or according to any suitable “profile ability 

function”. 

Placeholder Can be instantiated as no-operation blocks, and their 

implementation deferred to later 

Head One-time declarations, e.g. directions for database access 

Table I  Main block classes for the AdaRTE dialog formalism 

 

Containers are another important feature that supports building of natural-sounding interactions; they are 

used for common tasks in which one of several subdialogues are selected according to a specified policy 

(Figure 4).  Containers provide a direct way for designers to augment the flexibility of the dialogue, for 

instance allowing prompts to accommodate to users’ experience with the system. Policies for activations 

of blocks inside containers could be: randomly, in sequence, ordered by call number and according to an 

externally defined schedule. Another policy could be generated, for instance, by performing statistical 

analysis to classify the level of experience of the user or even the likelihood of their encountering 

problems on specific parts of the dialogue.   

 

Equally central, along with the declarative block structure, is the embedded procedural interpreter. It 

provides an execution space which is shared with the block structure. Inclusion of procedural code is 

essential for flexibility, inter-operability, and ease of programming. Almost all prompts, questions and 
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other user-visible elements are evaluated dynamically at run-time. Evaluation can include function and 

method calls; this allows, for example, to model entities (like, for examples, dates, therapy and doses) as 

complex objects. Therefore, they can be converted to their various natural-language representations via 

convenient calls to their methods. Furthermore, AdaRTE allows embedding larger blocks of code written 

in the ECMAScript language into script blocks. Procedural code has extensive access to external 

resources, Java standard libraries, and user-provided APIs. Note that, in contrast to VoiceXML, the script 

interpreter belongs to the server side, and thus it has access to external resources such as databases, 

ontologies, or any other commodity library.  

 

Standard-conforming VBs provide basic mechanisms for semantic interpretation, e.g. through compliance 

to the SISR specification [35].  Grammars conforming to the specification construct objects and set their 

properties according to the parts of the sentence recognized. These objects are transferred to the AdaRTE 

server; in this way, semantic interpretation can happen both on the client, according to the SISR rules, or 

be coded in the server, e.g. using regular expressions, statistical text models, or NLP libraries. 

 

Vendor-independence is an important consequence of the architecture of AdaRTE; it operates with off-

the-shelf speech recognition software; in particular, for telephone interactions it acts as a web server and 

dynamically transmits VoiceXML code to a voice browser. The VB, which is in turn connected to other 

hardware, will be in charge of interpreting documents according to user’s interaction over the phone. The 

browser captures and recognizes the answers, and sends them back to AdaRTE through HTTP requests. 

Vendor independence means that VBs can be replaced depending on economic considerations, quality of 

the recognition, languages supported, or even outsourced.  

 

A large body of research is available on the optimization of spoken interfaces. Some of the results of the 

research have been condensed into best practices [36]. More complex confirmation strategies with respect 

to simple “yes/no” answers, for example, should be adapted according to confidence thresholds and n-

best lists. The inclusion of such techniques into custom-developed systems is complex. A big advantage 

in using an interpretable and high-level dialogue representation language like the one proposed in this 

work is that such “dialogue practices” can be incorporated seamlessly into the underlying dialogue 
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interpretation, removing the burden from the dialogue developer. Within the AdaRTE formalism, for 

example, developers can enable either plain or skip-list based confirmation steps to questions which are 

more prone to ASR misrecognitions (e.g. critical questions, or those activating more complex language 

models). These features will be handled internally to the server-side, which will map them into lower-

level constructs. 

 

A well-known limitation of conventional ASR grammars is that – on field – they do not perform well in 

some domains, e.g. with lists of drug names. Since AdaRTE is independent of the VB, more complex 

language models can be employed, as long as they are offered by the underlying platform. This includes, 

for example, especially-trained n-grams, or speaker-dependent adaptations. 

 

 

Figure 4  Containers automate switching between homologous blocks. Switching happens according to a 

container-specific policy — in this case, only one contained block is activated per invocation, according 

to call number for that patient: a long system description is played on the first call, a brief reminder is 

given on the second time he calls, and so on. Containers simplify the addition of variability to the 

dialogue. 

 

5 Evaluation and results 
 

The AdaRTE framework is currently fully operative and it has been integrated with three Voice Service 

Providers (VSPs). In this section we present the evaluation of the framework through the construction of 

three realistic health care dialogue systems derived by actual systems, which had been deployed and 
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validated in the past, and two more test cases for peritoneal dialysis and OAT assistance.  Implementation 

details are also presented in this section.  A number of practical examples are displayed, describing the 

implementation of some of the important features explained in section 4. 

 

5.1 Evaluation 

 

AdaRTE was evaluated by constructing five health-care dialogues, paying special attention to the metrics 

that allow us to measure each dialogue development process. As a consequence, the strength of the 

framework is demonstrated by describing the variety of supported voice applications. At first, we 

consider as metrics the time invested, the expertise of developers and the technology and platform used in 

each developed dialogue, as shown in Table II.  The first dialogue prototype is based on the TLC-COPD 

system previously deployed by the Friedman et al. [3]. For this specific example, we used Tellme Studio 

as VSP. The implementation of this pilot required less than two weeks of man-effort.  The fulfilled 

activities, shown in Figure 5, included database schema definition, data preparation and dialogue 

deployment. This dialogue is in English language and based on phone keypad interaction (also known as 

touch-tones, based on dual-tone multi-frequency or DTMF). 

 

No. Prototype 

Development 

Mode Grammar Platform Lang. Ref. 
Time 

(wk) 

Prof. 

1 
Chronic Obstructive  

Pulmonary Desease 
2  Expert DTMF -- 

Tellme Studio, 

Loquendo 
English [3] 

2 
Hypertensive Patients 

Management 
3  Expert Speech 

GSL , 

SGRS 

Voxpilot, 

Loquendo 
Italian [4] 

3 Diabetes 4  
Non-

Expert 
Speech SGRS Loquendo Italian [5] 

4 Dialysis 4  
Non-

Expert 
Speech SGRS Loquendo Italian -- 

5 
Oral Anticoagulation  

Therapy 
4  

Non-

Expert 
Speech SGRS Loquendo Italian -- 

Table II - Five test-case health dialogues implemented in AdaRTE. The first three prototypes were based 

on previous implementations (see reference). GSL is the Nuance Grammar Specification Language; 

SRGS is the Speech Recognition Grammar Specification from the WWW Consortium[37]. 
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Figure 5 Gantt diagram of the COPD dialogue pilot prototype implemented in AdaRTE. 

 

 

The second test case has been the partial re-implementation of the Homey dialogue system for the care of 

hypertension. It included an extensive Electronic Health Records (EHR) system with storage of personal 

data and profiles, in order to support dialogue adaptability. The original system has been used at two 

Italian hospitals for approximately two years [4]. Despite the successful deployment, the time spent in 

developing the original system (Figure 6) has been rather long and the result was reusable only to a 

limited extent. The voice part of the Homey system, for instance, took approximately one man-year for 

design and implementation. Re-engineering the system from the original proprietary dialogue manager to 

the AdaRTE architecture required approximately three weeks (eleven days of man effort).  This valuable 

test case allowed a side-to-side comparison between different dialog development environments. The re-

development of this prototype involved the following activities: VSP evaluation, database definition, and 

grammars and dialogue deployment (Figure 7). Unlike the TLC-COPD pilot, this system makes extensive 

use of grammars for speech input;  grammars were formulated both in the GSL (Nuance 7) and the SRGS 

grammar formats [37], and the dialogue was tested by using the Voxpilot and Loquendo VoxNauta 7.0 

VSP platforms.  

 



 16 

 

Figure 6 Phases in the development cycle of the original context-based Homey system. 

 

 

Figure 7 Gantt diagram of the Homey pilot developed in AdaRTE. 

 

 

Dialogues 3-5 in Table II have been implemented by external, junior developers; all of them support 

speech input, are executed in Italian using Loquendo VoxNauta 7.0 as VSP. The third dialogue is based 

on the IVR used in the multi-access service for the management of diabetes mellitus patients (M2DM) 

project [5]. The goal of this dialogue is to enquire information regarding insulin and glucose self-

measurements by diabetic patients. The dialogue adapts its interaction according to patient’s therapy. The 

fourth dialogue provides assistance to patients undergoing peritoneal dialysis. It interacts to obtain 

information concerning the home dialysis process and the health status. The dialogue adapts its 

interaction according to patient’s expertise, answers and history as shown in Figure 8. The expertise level 

is calculated on the average of “no match” and “no input” events registered during a call. The patient’s 

history gathers the clinical information, the answers on previous calls and the typology of the dialysis 

therapy.   
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Figure 8 Sample of adapting questions across calls for the tele-dialysis dialogue prototype. 

 

 

The last dialogue was designed to communicate the daily therapy to patients under OAT, and to verify 

that the patient has understood correctly the therapy. This dialogue is being designed with the Mondino 

Neurological Hospital of Pavia (Italy). 

 

Other metrics were used to measure the completeness and usability of AdaRTE, demonstrating that the 

framework covers all of the features previously introduced in Section 4 and indicating the level of 

complexity of the dialogues that can be implemented in the framework. Conceptually, the metrics were 

classified in database complexity (D), language-model complexity (L), application-complexity (C), and 

front-end complexity (F) as shown under the column “type” of Table III.  For instance, the EHR designed 

for the Homey system has 78 tables and it is only accessed 6 times during the dialogue. The explanation 

for this fact is that the Homey database (like the OAT) is a shared resource, accessed by other interfaces 

besides the vocal one.  In order to evaluate the complexity of the language model, the internal 

representation of generated and recognized speech were considered.  The former indicates whether or not 

the dialogue exploits the SISR object-based mechanisms for the semantic representation of recognition 

results, while the latter describes whether or not the dialogue uses an object-oriented approach to generate 

the output messages. Grouping prompts into objects turned out to be an especially effective programming 

technique: often the same utterance should be conveyed in several styles with slight linguistic variations 

(brief or verbose, singular or plural, request to repeat, etc.). Representing the utterance with the instance 

of an object allows the programmer to add more variations as the need arises, still handling the object as a 

unit. 
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The number of custom grammars conveys an idea of the domain-specific grammars implemented in each 

dialogue. It is important to mention that many built-in grammars, offered by the VB e.g. numbers, 

boolean, etc., were adopted and other custom grammars were re-used in dialogues.    

 

The number of code lines of the whole dialogue, the length of the embedded scripts, and the number of 

blocks provide an estimate of the level of complexity of each dialogue application.  Of course, the 

estimate is just a rough indication, because the dialogue code can usually be simplified by expert 

developers and, on the other hand, expanded by liberal use of comments.  The number of ECMAScript 

code lines indicates how much the implemented dialogues took advantage of the benefits of the dynamic 

procedural interpreter; such code is mainly used for external resources access and decision making.  

Table IV compares the code-line counts for the previous proprietary context-based implementation of the 

Homey system with the AdaRTE-based reengineering. Despite being essentially the same application, a 

large amount of procedural code was formerly required for a relatively small number of database 

accesses, which retrieved the patient’s profile at the beginning of the dialog and stored call outcomes at 

its conclusion. This was mainly due to the fact that database access mechanisms were not part of the 

dialog primitives. Also, lots of code were required for user profiling, because the simple procedural 

interpreter was somewhat unsuited for the evaluation of the complex criteria required for adaptability 

(e.g. decision making to alter the dialog flow with respect to user ability, checking ranges with respect to 

previous readings, and so on).  

Table III depicts another metric, i.e. the number of blocks adopted by each dialogue, grouped by block 

type. All the implemented dialogues used questions, prompts, scripts and exception handlers’ blocks. Not 

surprisingly, information-gathering and patient-monitoring applications (dialogues 1-4) have a larger 

fraction of question blocks with respect to the OAT dialog, which is primarily an information-providing 

application, in which prompt blocks are prominent. The no-match and no-input are Exception blocks, 

relevant for controlling these VB exceptions.  

 

Type Metrics COPD Homey Diabetes Dialysis OAT 

D Number of DB access 19 6 26 13 10 

D Number of DB tables 12 78 17 31 12 

L 

Internal representation of 

speech/semantics No Yes Yes Yes Yes 
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L 

Internal representation of 

generated speech No No No No Yes 

L Number of custom grammars 0 13 15 18 3 

C Total code lines 1127 781 2088 2415 882 

C Number of subdialogues 15 21 49 35 9 

C 

 

 

 

Number of 

blocks 

 

 

 

Questions 46 33 41 62 8 

Prompts 34 11 76 31 27 

Scripts 17 14 39 58 17 

Exception 

handler 1 8 62 32 5 

Containers 0 1 0 0 0 

No-match/ 

No-Input 0 6 62 30 4 

C Ecmascript code lines 636 396 1225 1526 623 

F Modality (Voice/DTMF) DTMF Voice Voice Both Voice 

F N-best/skip-list adoption No Yes No No No 

Table III  The metrics used to represent the complexity of the developed dialogues were grouped into:  D 

= Database Complexity, L= Language Model Complexity, C= Application complexity and F=Front-end 

complexity. 

 

Type Metrics 
Homey: 

Custom 

Homey: 

AdaRTE 

D Number of DB access 2 6 

D Number of DB tables 78 78 

L 

Internal representation of 

speech/semantics Yes Yes 

L 

Internal representation of 

generated speech No No 

L Number of custom grammars ~ 100 13 

C Total code lines 10132 781 

C Number of subdialogues 26 21 

C 

 

 

 

Number of 

blocks 

 

 

 

Questions - 33 

Prompts - 11 

Scripts - 14 

Exception 

handler 

- 

8 

Containers - 1 

No-match/ 

No-Input 

- 

6 

C Procedural code lines 8776 396 

F Modality (Voice/DTMF) Voice Voice 

F N-best/skip-list adoption No Yes 

Table IV  A comparison between the custom context-based Homey dialog and the AdaRTE-based 

prototype reimplementation. 

 

The front-end complexity was measured considering the modality and the adoption of the confidence 

thresholds and n-best lists. The HOMEY dialogue, for example, activated the n-best confirmation strategy 

inside question blocks. Thus, in case of ASR misrecognition, the utterance will be added into the skip-list 
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that contains elements to be discarded by the ASR in future recognitions during the whole confirmation 

process of the question under discussion.  

 

5.2 Examples 

 

Practical examples of the implementation of dialogues are presented in Figures 9 to 12. Figure 9 displays 

the “root” subdialogue, main, of the COPD dialogue description. Note that it invokes the main topics to 

be addressed in the dialogue by subdialogue call blocks.  Figure 10 presents the hierarchical structure of 

the subdialogues that make up the Dialysis dialogue and their flow.  Figure 11 and 12 provide examples 

of script blocks; they define functions that retrieve some patient’s data from the database. Figure 11 

shows a basic method for placing a query: a structured query language (SQL) query statement is 

constructed and delivered directly to the database via the Java Database Connectivity (JDBC) API [38]. 

In contrast, Figure 12 shows a more sophisticated approach adopted in the OAT dialogue, which uses the 

Hibernate persistence framework to access the databases [39]. A persistence framework abstracts the 

mechanics of the query language, binding database entities to programming language objects. 

 

Figure 9 Top-level dialog sequence (COPD example). 
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Figure 10 Hierarchical structure of subdialogues in the dialysis vocal application. 

 

Figure 11Procedural code of a script block that access a database through the JDBC API 

(authentication). 
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Figure 12  Procedural code in a script block of the OAT dialogue.  This code retrieves an object 

representing the patient (―result‖), given their personal identification number (―pin‖). The actual work 

is performed by a method of the Java commodity object ―gDialogUtil‖, which accesses the database by 

means of the Hibernate persistence framework. 

 

6 Discussion 
 

 

We presented five health-care dialogues that have been implemented in AdaRTE. Whilst implementing 

these applications, developers profited from the features for rapid prototyping reuse, adaptable decision 

support and best-practices provided by the framework. Through these dialogues it has been proved that 

the framework fully supports these features. Moreover, the completeness and usability of the framework 

has been measured by describing the complexity of realistic applications that could be implemented with 

it.  

 

In conclusion, the research and development effort provided an operative solution for rapid prototyping of 

health dialogues, with a level of functionality that is not attained by current frameworks supporting more 

complex theoretical approaches to dialogue. These frameworks should consider not only the intrinsic 

complexity of dialogue modelling, but also the special requests in the medical domain, in order to offer a 

leaner development of robust and efficient dialogues. This is an important direction for future research in 

computational linguistics and medical informatics.  
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7 Future enhancements 
 

 

 

Currently, we have a strong commitment on the integration of a more elaborated semantic interpretation 

by integrating AdaRTE with an NLP application that supports lexicalized grammars to increase 

expressivity  [40].  In this way, not only recognition would not depend on the grammars supported by 

VBs, but also more natural interactions will be supported improving the patient’s perception of dialogues.  

 

Inclusion of spoken interfaces optimization techniques or best practices into custom-developed systems is 

not straightforward. A big advantage in using an interpretable and high-level dialogue representation 

language like the one proposed in this work is that more “dialogue practices” can be incorporated 

seamlessly into the underlying dialogue interpretation, removing the burden from the dialogue developer. 

 

Furthermore, extended support to the management of voice projects is foreseen, where a project involves 

a dialogue and its composing subdialogues, together with definitions of templates. High level templates 

serve as guidelines in the development of abstract tasks, e.g. for assessing the patient’s psychological 

stage (useful e.g. for behaviour-change interventions based on psychologically-motivated models). 

 

The AdaRTE system was foreseen not only as a reliable platform for dialogue deployment, but also as a 

framework for incorporating advanced features of speech recognizers as they become available, including 

increased support to adaptability, and natural language understanding and generation. For instance, so far 

AdaRTE supports the same amount of mixed initiative provided by the underlying VoiceXML interpreter. 

This could be enhanced by introducing stochastic-based grammars in the VSPs in order to increment the 

variety of possible expressions and the specialized medical terminology. Similarly, a more elaborated 

semantics representation could be considered in future frameworks for easy deployment of dialogues in 

health.  
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8 Conclusion 
 

 

We have presented a dialogue-interpretation architecture for rapid dialog prototyping. The corresponding 

engine addresses current barriers to the realization of elaborate telephone-based interactions. AdaRTE 

differs significantly from other frameworks because it is targeted at the requirements of the chronic-care 

domain, which typically requires adaptable dialogs with complex structures and enquiry data collection 

tasks. The new methodology offers developers a high level of flexibility, by allowing dynamically access 

through the procedural execution environment surrounding the interpreter. At the same time, dialogs can 

be coded and inspected by developers which are not specifically trained in web-based technologies.  

 

The expressiveness of the dialogue representation yielded an important reduction of the time invested in 

developing a number of real-world prototypes. We have implemented five health-care dialogue 

prototypes and showed that development times were remarkably optimized with respect to earlier 

development methodologies. Finally, AdaRTE is a standard-compliant architecture for the incremental 

adoption and experimentation with advanced dialog formalisms. 
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