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Abstract

To model discrete-time finite-state uncertain processes, we argue for the use of a global belief model in the form
of an upper expectation that is the most conservative one under a set of basic axioms. Our motivation for these
axioms, which describe how local and global belief models should be related, is based on two possible inter-
pretations for an upper expectation: a behavioural one similar to Walley’s, and an interpretation in terms of
upper envelopes of linear expectations. We show that the most conservative upper expectation satisfying our
axioms, that is, our model of choice, coincides with a particular version of the game-theoretic upper expecta-
tion introduced by Shafer and Vovk. This has two important implications: it guarantees that there is a unique
most conservative global belief model satisfying our axioms; and it shows that Shafer and Vovk’s model can be
given an axiomatic characterisation and thereby provides an alternative motivation for adopting this model,
even outside their game-theoretic framework. Finally, we relate our model to the upper expectation resulting
from a traditional measure-theoretic approach. We show that this measure-theoretic upper expectation also sat-
isfies the proposed axioms, which implies that it is dominated by our model or, equivalently, the game-theoretic
model. Moreover, if all local models are precise, all three models coincide.

Keywords: upper expectations, uncertain processes, coherence, game-theoretic probability,
measure-theoretic probability, global uncertainty model

1. Introduction

There are various ways to describe discrete-time uncertain processes, such as Markov processes, mathemat-
ically. For many, measure theory is and has been the preferred framework to describe the uncertain dynamics of
such processes [1–3]. Others have used martingales or a game-theoretic approach [4–6]. However, the common
starting point for all these approaches are the local belief models. They describe the dynamics of the process
from one time instant to the next and they are typically learned from measurements or elicited from experts. For
instance, in some specific cases, one typically may have information about ‘the probability of throwing heads on
the next coin toss’, ‘the expected number of goods that are sold by a certain shop on a single day’, ‘the probability
of rain tomorrow’, ... In a measure-theoretic context, such local belief models are presented in the form of prob-
ability charges or probability measures on the local state space; in a game-theoretic context, sets of allowable
bets are used. The latter belong to a family of so-called imprecise probability models [7–9], e.g. upper and lower
previsions (or expectations), sets of desirable gambles, credal sets... Such imprecise probability models gener-
alise traditional precise models, in the sense that they allow for indecision and for a representation that only
expresses partial knowledge about the probabilities. In order to allow for imprecision in a measure-theoretic
context, we will often consider sets of probability measures (or charges) on the local state space. Then, if local
state-spaces are assumed to be finite, as in our case, the game-theoretic and measure-theoretic local descrip-
tions are mathematically equivalent. This will be clarified in Sections 2 and 3.

In practice however, we are typically interested in more general inferences such as ‘the (lower and upper)
expected number of tosses until the first tails is thrown’, ‘the (lower and upper) probability of being out of stock
on a given day’, ... It is less straightforward how we should directly learn about such more complicated infer-
ences and, even if we could in principle do so, it is often not possible or feasible to gather sufficient information
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because of time and budget limitations. Hence, the question arises: ‘How and to which extent, can we extend
the information captured in the local models towards global information about the entire process?’.

Measure theory relies on countable additivity to do this elegantly, and this results in a mathematically power-
ful, but rather abstract framework. The mathematical arguments are often encumbered by measurability con-
straints, and it is not always clear how to extend classical measure-theoretic notions to an imprecise probabilities
setting. On the other hand, Shafer and Vovk’s game-theoretic framework defines global upper expectations con-
structively using the concept of a ‘supermartingale’. Though it allows us to directly model imprecision and does
not require measurability constraints, the involved upper expectations thus far lack a characterisation in terms
of mathematical properties. This impacts the generality of their model in the negative, since it can therefore
only be motivated from a game-theoretic point of view.

We propose a different, third approach. Our aim is to establish a global belief model, in the form of a con-
ditional upper expectation, that extends the information contained in the local models by using a number of
mathematical properties. Notably, this model will not be bound to a single interpretation. Indeed, its character-
ising properties can be justified starting from a number of different interpretations. We consider and discuss two
of the most significant ones in Section 4; a behavioural interpretation that is more in line with a game-theoretic
approach to uncertainty, and an interpretation in terms of upper envelopes of linear expectation operators. We
then define the desired global model as the most conservative—the unique model that does not contain any ad-
ditional information—under this particular set of properties. In other words, it is the so-called natural extension
[7, 9, 10] under this set of properties.

Care should be taken here though. While the concept of natural—that is, most conservative—extension is
well-established in the field of imprecise probabilities, it usually refers to the natural extension under coherence.
The advantage of this notion of coherence, and the related natural extension, is that it can be applied to general
uncertainty models. However, the scope and properties of the resulting extension can sometimes be rather
weak. A first issue with natural extension under coherence is that it traditionally only allows us to work with
bounded variables. The problem of how to extend this method to a broader class of variables was addressed in
[9, Chapter 13], yet, only for the class of unbounded real-valued variables, whereas we wish to consider extended
real-valued variables as well. There is a second, more profound issue though, which is that the natural extension
under coherence lacks some basic continuity properties that we feel are desirable. For example, in our context of
uncertain processes, natural extension under coherence would lead to a global upper expectation that does not
necessarily satisfy upward monotone convergence, even if we were to restrict attention to bounded variables.1

Furthermore, and related to this, the corresponding inferences are often very conservative, or even vacuous. If
we would only be interested in bounded variables and uncertain processes with a finite time horizon, all of these
issues would not come to the fore, and the natural extension under coherence would then be a valuable model;
see for example [11]. However, in our—vastly—more general setting, where we will be looking at extended real-

valued variables and uncertain processes with infinite time horizons, we find this model unsatisfactory for the
reasons described above. We will therefore not be considering the natural extension under coherence (alone);
instead, we will consider the natural extension under a different set of axioms. Unlike the coherence axioms, our
axioms are specifically designed with the purpose of extending local models in the context of uncertain processes
(with infinite time horizons). As we will see, the resulting natural—most conservative—extension yields more
satisfying results when it comes to the mathematical properties of the resulting global model.

In Section 5, we give an alternative characterisation of our most conservative model by showing that it is
the unique operator that satisfies a specific set of properties. This alternative characterisation is particularly
interesting from a technical point of view, since it allows us to establish our main result in Section 6: that our

1The experienced (or interested) reader can verify this using the following example (the notation and terminology is introduced further
on in the paper). Interestingly, it shows that upward monotone convergence fails even for increasing sequences of n -measurable gambles
that converge to a limit that is itself a gamble. Fix any x ∈X and let Qs ( f ) := f (x ) for all s ∈X ∗; this means that in every situation, the next
state will be x with (lower) probability 1. Consider now the increasing sequence { fn }n∈N of n -measurable gambles defined, for all n ∈ N,
by fn (ω) := 0 if ωi = x for all i ∈ {1, · · · , n} and fn (ω) := 1 for all otherω ∈ Ω. Then it can be checked that the value of the natural extension
under coherence is 0 for all gambles fn , but that it is 1—and therefore vacuous—for the limit f := limn→+∞ fn . This means that the (upper)
probability of observing a state that is not x in the first n steps, for any n , is zero, but that the upper probability of ever observing such a
state is 1. We are indebted to Matthias C. M. Troffaes for this example—or rather, a very similar one that inspired it. He presented it in a talk
at WPMSIIP 2013 in Lugano, and recently also discussed it with us in private communication; it seems to be unpublished though.
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model coincides with a version of the game-theoretic upper expectation introduced by Shafer and Vovk [4, 5]. On
the one hand, this serves as an additional motivation for our model. On the other hand, it establishes a concrete
axiomatisation for the game-theoretic upper expectation. Section 8 aims at strengthening the relevance of the
most conservative model that results from our axioms by listing its most salient properties.

In the final section, we couch our findings in a more measure-theoretic language. As a first step, we put
forward a sensible way of applying measure theory in our imprecise probabilities setting. To do this, we draw
inspiration from earlier work done in our group [12]. Subsequently, we show that the measure-theoretic up-
per expectation this results in, satisfies the axioms presented in Section 4 and is therefore always dominated by
the most conservative one satisying these axioms—which is our model. Moreover, the fact that this model, en-
tirely based on measure-theoretic principles, also satisfies our proposed axioms, is to be seen as an additional
motivation to adopt them. Furthermore, in a context where all local models are precise, meaning that every
single one of them can be represented by a single probability mass function on the local state space, both upper
expectations—and hence, also the game-theoretic one—turn out to be one and the same model.

As a final remark, we want to mention that our current work extends upon an earlier conference contribution
[13]. The added material is mainly gathered in the penultimate section; it concerns the study of how our model
is related to a possible measure-theoretic model. Apart from that, another important difference with the confer-
ence contribution lies in how local models are extended in order to become consistent with the game-theoretic
approach; see the first part of Section 6 and compare this with [13, Section 2].

2. Upper Expectations

We denote the set of all natural numbers, without 0, by N, and let N0 := N ∪ {0}. The set of extended real
numbers is denoted by R := R∪ {+∞,−∞} and is endowed with the usual order and the usual order topology
(corresponding to the two-point compactification ofR). The set of positive real numbers is denoted byR>0 and
the set of non-negative real numbers byR≥0. We also adopt the usual conventions for the addition between the
reals and +∞ and −∞, and the conventions that +∞−∞=−∞+∞=+∞ and 0 · (+∞) = 0 · (−∞) = 0.

Informally, we consider a subject who is uncertain about the value that some variable Y assumes in a non-
empty set Y . More formally, we call any map on Y a variable ; our informal Y is a special case: it corresponds
to the identity map onY . A subject’s uncertainty about the unknown value of Y can then be represented by an
upper expectation E: an extended real-valued map defined on some subset D of the set L (Y ) of all extended
real-valued variables on Y . An element f ofL (Y ) is simply called an extended real variable. We say that f is
bounded below if there is some real c such that f (y )≥ c for all y ∈Y , and we say that f is bounded above if− f

is bounded below. We call a sequence { fn}n∈N0
of extended real variables uniformly bounded below if there is a

real c such that fn (y ) ≥ c for all n ∈ N0 and y ∈ Y . An important role will be reserved for elements f ofL (Y )
that are bounded, meaning that they are bounded above and below. Bounded real-valued variables on Y are
called gambles on Y , and we useL (Y ) to denote the set of all of them. The set of all bounded below elements
ofL (Y ) is denoted byL b(Y ).

Consider now the special case that E is defined on at least the set of all bounded real-valued variables; so
L (Y )⊆D . Then we call E boundedly coherent [7–9] if it satisfies the following three coherence axioms:

C1. E( f )≤ sup f for all f ∈L (Y ); [upper bound]

C2. E( f + g )≤ E( f ) +E(g ) for all f , g ∈L (Y ); [sub-additivity]

C3. E(λ f ) = λE( f ) for all λ ∈R≥0 and f ∈L (Y ). [non-negative homogeneity]

In the particular case where D = L (Y ), we will simply say that E is coherent. For any (boundedly) coherent
E, if we let E be the conjugate lower expectation defined by E( f ) := −E(− f ) for all f ∈ −D , then the following
additional properties follow from C1–C3:

C4. f ≤ g ⇒ E( f )≤ E(g ) for all f , g ∈L (Y ); [monotonicity]

C5. inf f ≤ E( f )≤ E( f )≤ sup f for all f ∈L (Y ); [bounds]
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C6. E( f +µ) = E( f ) +µ for all µ ∈R and all f ∈L (Y ); [constant additivity]

C7. for any f ∈L (Y ) and any sequence { fn}n∈N0
inL (Y ): [uniform continuity]

lim
n→+∞

sup | f − fn |= 0 ⇒ lim
n→+∞

E( fn ) = E( f ).

Proof. We only prove C5, which clearly implies that E is real-valued onL (Y ), and the remaining properties then
follow from the standard argumentation in [7, Section 2.6.1.].

First, note that E(0) = 0 because of C3 and our convention that 0 · (+∞) = 0 · (−∞) = 0. Therefore, for all
f ∈ L (Y ), it follows from C2 that 0 ≤ E( f ) + E(− f ), or equivalently, that −E(− f ) ≤ E( f ). Applying C1 to both
sides, we find that inf f =−sup(− f )≤−E(− f )≤ E( f )≤ sup f . The result now follows readily from the definition
of E.

A gamble f is typically interpreted as an uncertain reward or gain that depends on the value that Y takes in
Y ; if Y takes the value y , the (possibly negative) gain is f (y ). Then, according to Walley’s behavioural interpret-
ation [7], the upper expectation E( f )of a gamble f is a subject’s infimum selling price for the gamble f , implying
that, for any α > E( f ), the subject is willing to accept the gamble α− f .2 Axioms C1–C3 are then called ration-
ality axioms, since they ensure that these selling prices are chosen rationally. Alternatively, any coherent upper
expectation onL (Y ) can equivalently be represented by a set of linear expectations onL (Y ): coherent upper
expectations on L (Y ) that are self-conjugate, meaning that E( f ) = −E(− f ) for all f ∈ L (Y ). More precisely,
it follows from [7, Section 3.3.3] that any coherent upper expectation E on L (Y ) is the upper envelope of the
set of all linear expectations on L (Y ) that are dominated by E; so E( f ) = sup

�

E( f ) : (∀g ∈ L (Y ))E(g ) ≤ E(g )
	

,
where E ranges over the linear expectations onL (Y ). Moreover, according to [9, Theorem 8.15], linear expect-
ations onL (Y ) are in a one-to-one relation with probability charges on the power setP (Y ) of Y , being maps
p :P (Y )→ R≥0 that are finitely additive and where p (Y ) = 1 and p (;) = 0. Such probability charges are more
general than the more conventional probability measures, which additionally require σ-additivity and typic-
ally also that the domain should be restricted to a σ-algebra on Y . However, when Y is finite, this distinction
disappears, and we can simply limit ourselves to working with probability mass functions on Y ; these can be
seen as probability charges or measures restricted to the domain of all singletons. In that case, we have that
E( f ) =
∑

y ∈Y f (y )p (y ) for any linear expectation E on L (Y ) and any f ∈ L (Y ), where p is the unique prob-
ability mass function on Y defined by p (y ) := E(1y ) for all y ∈ Y . Here, we used 1A to denote the indicator

of A ⊆ Y : the gamble on Y assuming the value 1 on A and 0 elsewhere, and where we will not distinguish in
notation between y and {y }. Hence, ifY is finite, any coherent upper expectation E onL (Y ) can alternatively
be represented by the corresponding set of probability mass functions

PE :=
¦

p ∈ P :
�

∀ f ∈L (Y )
�
∑

y ∈Y

f (y )p (y )≤ E( f )
©

, (1)

where P denotes the set of all probability mass functions onY . It then follows from [14, Theorem 2]3 that

E( f ) =max
§
∑

y ∈Y

f (y )p (y ) : p ∈ PE

ª

for all f ∈L (Y ). (2)

This alternative representation of a coherent upper expectation will be our starting point in Section 9, where we
aim to establish a measure-theoretic global belief model in the form of an upper expectation.

It follows from the discussion above that, in general, (boundedly coherent) upper expectations can be inter-
preted in at least two possible ways: in a direct behavioural manner in terms of selling prices for gambles, or
as a supremum over—an upper envelope of—a set of linear expectations. As will be discussed in Section 6, the

2Strictly speaking, the interpretation as infimum selling price only guarantees that there areα> E ( f )arbitrarily close to E ( f ) for which our
subject accepts α− f (by definition of the infimum). Our claim that this is true for all α> E ( f ) is based on an additional implicit assumption
that if a subject is willing to sell a gamble for some price, then she is also willing to sell that gamble for any higher price.

3More specifically, Equation (2) does not follow from [14, Theorem 2] itself, but rather from the last paragraph of its proof.
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behavioural interpretation allows us to motivate the game-theoretic approach proposed by Shafer and Vovk. On
the other hand, an interpretation in terms of upper envelopes of linear expectations seems more natural from
a measure-theoretic point of view, where probability measures or mass functions are regarded as the primary
objects for describing uncertainty. Linear expectations are then typically obtained by integration and limiting
the domain to measurable functions. In this paper, we will not allow ourselves to be bound to any of these two
interpretations. Instead, we will motivate the defining properties of our proposed global belief model in terms
of either of these interpretations.

3. Upper Expectations in Discrete-Time Uncertain Processes

We consider a discrete-time uncertain process : a sequence X1, X2, ..., Xn , ... of uncertain states, where the state
Xk at each discrete time k ∈ N takes values in a fixed non-empty setX , called the state space. We will assume
that this state spaceX is finite. Let a situation x1:n be any string (x1, ..., xn ) ∈X 1:n :=X n of possible state values
with finite length n ∈N0. In particular, the unique empty string x1:0, denoted by �, is called the initial situation:
X 1:0 := {�}. We denote the set of all situations byX ∗ := ∪n∈N0

X1:n . We will also use the generic notations s and
t to denote situations. Furthermore, when we write x1:n ∈X

∗, we implicitly assume that n ∈N0.
To model our uncertainty about the dynamics of an uncertain process, we associate, with every situation

x1:n ∈ X
∗, a coherent upper expectation Qx1:n

on L (X ). This upper expectation expresses a subject’s beliefs
about the uncertain value of the next state Xn+1, when she has observed that X1 = x1, X2 = x2, · · · , Xn−1 = xn−1

and Xn = xn . Hence, it gives information about how the process changes from one time instant to the next.
We will therefore also refer to Qx1:n

as the local model or the local upper expectation associated with x1:n . We

gather all local models in an imprecise probability tree : a function Q• that maps any situation s ∈ X ∗ to its
corresponding coherent upper expectation Qs . Hence, such an imprecise probability tree Q•, which we will also
simply denote by Q, represents the dynamics of the uncertain process as a whole.

As discussed in the previous section, we consider two possible ways of interpreting the coherent upper ex-
pectations Qs : in terms of upper envelopes of linear expectations and in terms of betting behaviour. The latter
is, by nature, more oriented towards a game-theoretic approach, whereas the interpretation in terms of upper
envelopes of linear expectations will seem more natural for a reader with a measure-theoretic background. In
fact, since X is assumed to be finite, the coherent upper expectation Qs , for any s ∈ X ∗, can be represented
equivalently by the set Ps := PQs

of probability mass functions on X , related to it by Equations (1) and (2). In
measure-theoretic contexts, this representation in terms of Ps is then typically preferred over the representation
in terms of Qs .

The mathematical equivalence between the different approaches—the game-theoretic, the measure-theoretic
and ours—on a local level is crucial, because only then, we can meaningfully compare the differences of their
associated uncertainty models on a global level. Indeed, though it is locally only a matter of interpretational
differences, it is not immediately clear how these different approaches relate on a global level, where we look at
the entire dynamics of the process and no longer only at the transition from one time instant to the next. Each
approach will extend the local models using different concepts, assumptions and methods, resulting in possibly
different global models. Our upper expectation approach will use a limited set of simple properties, that, as we
will argue, are desirable for a global model to have, under both of the interpretations we consider. Before we
proceed to do so, we finish this section by introducing some further notation about uncertain processes.

An infinite sequence x1 x2 x3 · · · of state values is called a path, which we denote byω := x1 x2 x3 · · ·. We gather
all paths in the sample space Ω :=X N. For any pathω := x1 x2 · · · ∈Ω, the situation x1:n := x1 x2 · · ·xn that consists
of its first n state values is denoted byωn ∈ X1:n . The state value xn at time n is denoted byωn ∈ X . An event

A ⊆Ω is a collection of paths, and in particular, the cylinder event Γ (x1:n ) := {ω ∈Ω :ωn = x1:n } of some situation
x1:n ∈X

∗, is the set of all pathsω ∈Ω that ‘go through’ the situation x1:n .
A variable on Ω is called a global variable and we gather all extended real(-valued) global variables in the

set V :=L (Ω). Similarly, we let Vb :=L b(Ω) and V :=L (Ω). For any natural k ≤ ℓ, we denote by Xk :ℓ the global
variable defined by Xk :ℓ(ω) := (ωk , ...,ωℓ) for allω∈Ω. As such, the state Xk := Xk :k at time k can also be regarded
as a global variable. Moreover, for any natural k ≤ ℓ and any map f :X ℓ−k+1→R, we will write f (Xk :ℓ) to denote
the global extended real variable defined by f (Xk :ℓ) := f ◦ Xk :ℓ . We call a global extended real variable f n-

measurable for some n ∈N0, if it only depends on the initial n state values; so f (ω1) = f (ω2) for any two paths
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ω1 and ω2 such that ωn
1 = ω

n
2 . We will then use the notation f (x1:n ) for its constant value f (ω) on all paths

ω ∈ Γ (x1:n ). Clearly, the indicator Ix1:n
:= 1Γ (x1:n )

of the cylinder event Γ (x1:n ) for x1:n ∈ X
∗ is an n-measurable

variable. Finally, we call any f ∈V finitary if it is n-measurable for some n ∈ N0. We gather all finitary gambles

inVfin.

4. In Search of a Global Belief Model

Any extended real-valued map E :V×X ∗→R: ( f , s ) 7→ E( f |s ) will be called a global upper expectation. The
corresponding global lower expectation E: V×X ∗ → R: ( f , s ) 7→ E( f |s ) is then defined by conjugacy: E( f |s ) :=
−E(− f |s ) for all f ∈ V and all s ∈ X ∗. These lower and upper expectations also give rise to upper and lower
probabilities. In particular, for any event A ⊆ Ω and any s ∈ X ∗, P(A|s ) := E(1A |s ) is the upper probability of
A conditional on s and, similarly, P(A|s ) := E(1A |s ) is the lower probability of A conditional on s . Throughout
this work, however, we will focus almost entirely on (global) upper expectations, and will regard (global) lower
expectations and upper and lower probabilities as derived notions.

Given an imprecise probability tree Q that associates a local upper expectation Qs with every situation s ∈X ∗,
we aim to define a global upper expectation E that extends the information included in these local models in a
‘rational’ manner. To do so, we impose the following properties, where we adopt the notation that E( f |X1:n ) :=
E( f |·) ◦X1:n for all f ∈V and all n ∈N0, and where limits of variables are intended to be taken pointwise.

P1. E( f (Xn+1)|x1:n ) =Qx1:n
( f ) for all f ∈L (X ) and all x1:n ∈X

∗.

P2. E( f |s ) = E( f Is |s ) for all f ∈Vfin and all s ∈X ∗.

P3. E( f |X1:n )≤ E(E( f |X1:n+1)|X1:n ) for all f ∈Vfin and all n ∈N0.

P4. f ≤ g ⇒ E( f |s )≤ E(g |s ) for all f , g ∈V and all s ∈X ∗.

P5. For any sequence { fn}n∈N0
of finitary gambles that is uniformly bounded below and any s ∈X ∗:

lim
n→+∞

fn = f ⇒ lim sup
n→+∞

E( fn |s )≥ E( f |s ).

To motivate P1–P5, we need to attach some interpretation to E. We will consider two particular ones, similar to
what we have done for the (boundedly) coherent upper expectations in Section 2.

We start from the interpretation of a global gamble f ∈V as an uncertain reward depending on the uncertain
pathω that the uncertain process takes inΩ. However, it is not clear what this means operationally if the gamble
f depends on the entire length of the path. Indeed, the gamble f depends on an infinite number of subsequent
state values, so there is no point in time when we can determine the actual reward linked to the gamble f . The
same interpretational problem arises when considering unbounded or extended real variables (on a general set
Y such as Ω). The simple interpretation of an uncertain reward does not suffice there because the reward it-
self can be unbounded or infinite, which is unrealistic—or even meaningless—in operational practice. For this
reason, we prefer to only attach a direct operational meaning to the value E( f |s ) of a global upper expectation
E for a finitary gamble f ∈ Vfin conditional on a situation s ∈ X ∗. Such finitary gambles can be given an oper-
ationally meaningful behavioural interpretation as uncertain rewards because they take real values4 and only
depend on the state at a finite number of time instances.

We distinguish the following two ways for interpreting the global upper expectation E( f |s )of a finitary gamble
f ∈Vfin conditional on a situation s ∈X ∗:

• Behavioural interpretation. It is a subject’s infimum selling price for f contingent on the event Γ (s ), implying
that,5 for any α> E( f |s ), she is willing to accept the uncertain reward associated with the gamble Is (α− f ).

4One could also question the meaning of a direct behavioural interpretation for some specific (real-valued) gambles. For instance, how
do we exchange money if the gamble’s value is equal toπ? In this case, we can only give an indirect interpretation in terms of simpler gambles
that are ‘sufficiently’ close.

5The comment in Footnote 2, applies here as well, suitable adapted to the conditional setting.
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• Interpretation as an upper envelope. It is the supremum value of E( f |s ), where E belongs to some given setE
of conditional linear expectation operators: E( f |s ) = sup{E( f |s ) : E ∈E}.

Since P1–P3 only apply to finitary gambles, a direct justification for these axioms can be given quite easily in
each of the above interpretations. Property P1 requires that the global model E should be compatible with the
local models Qs . The desirability of this property is self-evident, no matter which interpretation is used. Prop-
erty P2 requires that the upper expectation of a finitary gamble f conditional on s should only depend on the
value of f on the paths ω ∈ Γ (s ). This property is clearly desirable when using the behavioural interpretation,
because Is (α− f )only depends on the restriction of f to Γ (s ). It is also quite evident that this property is desirable
for an upper envelope of conditional linear expectations, because P2 should in particular also hold for such con-
ditional linear expectations themselves. Similarly, that P3 should hold under the upper envelope interpretation,
is motivated by the fact that conditional linear expectations satisfy P3 with equality—then better known as the
law of iterated expectations; an upper envelope of conditional expectations is therefore guaranteed to satisfy
P3, under the assumption that P4 holds for conditional linear expectations. In order to see that property P3 is
also desirable according to the behavioural interpretation, one requires a conditional version of the notion of
coherence that we discussed in Section 2 [7, 9, 10].6 Explaining in more detail why this is the case, and what this
conditional notion of coherence exactly entails, would however lead us too far.

Having attached an interpretation to finitary gambles and their conditional upper expectations, we now pro-
ceed to do the same for more general variables. We have already argued that no direct operational meaning can
be given to such variables. However, this should not be taken to imply that an uncertainty model should not be
able to deal with them. In fact, they can serve as useful abstract idealisations of (sequences of) variables that can
be given a direct operational meaning. In particular, we will regard any extended real variable f that is bounded
below and that can be written as the pointwise limit limn→+∞ fn of some sequence of finitary gambles { fn}n∈N0

,
as an abstract idealisation of fn for large n . We gather these limits in the set

Vb,lim :=
§

f ∈Vb : f = lim
n→+∞

fn for some sequence { fn}n∈N0
inVfin

ª

.

Since P5 applies to precisely these kinds of variables, this axiom can be justified by extending the above ideal-
isation from the variables f to their upper expectations E( f |s ). Basically, since f is an abstract idealisation of fn

for large n , E( f |s ) should be an abstract idealisation of E( fn |s ) for large n . The practical benefit of this is that we
can then use E( f |s ) to reason about E( fn |s ) for a generic large value of n , without having to specify the specific
value of n . The problem, however, is that the sequence

�

E( fn |s )
	

n∈N0
may not converge. What we then do know

for sure, however, is that as n approaches infinity, E( fn |s )will oscillate between the limit superior and inferior of
the sequence
�

E( fn |s )
	

n∈N0
. Since we want E( f |s ) to serve as an idealisation of E( fn |s ) for generic large values of

n , E( f |s ) should therefore definitely not exceed the limit superior, as this would result in an unwarranted loss of
‘information’, in the sense that E( f |s ) would be too high—this will be clarified shortly. We therefore impose P5.

The final property that we impose is P4, which states that E should be monotone. For finitary gambles f

and g , this follows easily from either of our two different interpretations for E( f |s ) and E(g |s ). Under a beha-
vioural interpretation, since the reward associated with g is guaranteed to be at least as high as that of f , the
same should be true for a subject’s infimum selling prices for these two gambles. Under an interpretation in
terms of upper envelopes of expectations, monotonicity of the envelope is implied by the monotonicity of each
of the individual expectations. If f and g are more general variables—so not necessarily finitary gambles—the
motivation for P4 is that, still, higher rewards—even if abstract and idealized—should correspond to higher up-
per expectations. It is also worth noting that the combination of P4 and P5 implies that E is continuous with
respect to non-decreasing sequences of finitary gambles. In a measure-theoretic context, this kind of continuity
is usually obtained as a consequence of the assumption of σ-additivity [1, 15].

We will show in Section 6 that P1–P5 are consistent, in the sense that if the local models Qs are coherent,
there always is at least one global upper expectation E satisfying P1–P5. However, there may be more than one
global upper expectation E satisfying P1–P5. In that case, the best thing to do, we believe, is to choose the most

6There are several versions of conditional coherence [7, 9, 10], however, in the case where variables take values in a finite set, all these
different versions are mathematically equivalent.
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conservative model among those that satisfy P1–P5, as choosing any other would mean adding ‘information’ that
is not simply implied by our axioms. We will denote this most conservative global upper expectation by EA and
let EA be its conjugate lower expectation. As we will see in Section 6, EA is guaranteed to exist, and furthermore
coincides with a particular version of the game-theoretic upper expectation defined by Shafer and Vovk [4, 16].

Of course, in order for our definition of EA to make sense, we need to know what it means for an upper ex-
pectation E ′ to be more conservative than some other upper expectation E. We here take this to mean that E ′

is higher than E. So higher upper expectations are more conservative, or less informative. This is why, in our
motivation for P5, we said that a too high E( f |s ) corresponds to an unwarranted loss of ‘information’. That it
is indeed reasonable to regard higher expectations as more conservative, can again be motivated using either
of the two interpretations that we considered before. Under the behavioural interpretation, higher upper ex-
pectations mean higher selling prices, which is clearly more conservative. Using an interpretation in terms of
upper envelopes of expectations, higher upper expectations correspond to larger sets of expectations, so weaker
constraints on expectations, which is again less informative and hence more conservative.

Having said all this, we would like to stress that—despite our extensive use of them to motivate our axioms—
none of the results that we are about to develop hinge on any particular interpretation for upper expectations.
Other interpretations could also be adopted, or perhaps even no interpretation at all. All that is needed is that
we agree on P1–P5 and on the fact that higher upper expectations are more conservative.

5. An Axiomatisation of E A

For a given imprecise probability tree Q, letE1−2(Q) denote the set of all global upper expectations satisfying
P1–P2, and similarly forE1−4(Q) andE1−5(Q). In this section, we introduce sufficient conditions for a global upper
expectation E to be the most conservative among all upper expectations inE1−5(Q). We start by considering the
domain of finitary gambles and then, step by step, extend the domain and introduce additional conditions on
E, in such a way that it becomes the most conservative on this extended domain.

For any situation x1:n ∈ X
∗ and any (n + 1)-measurable (global) gamble f , we use f (x1:n ·) to denote the

gamble on X that assumes the value f (x1:n+1) in xn+1 ∈ X , and then use f (x1:n Xn+1) as a shorthand for the
global gamble f (x1:n ·)◦Xn+1. The following lemma establishes compatibility with the local models in a stronger
way than P1 does.

Lemma 1. Consider any E ∈E1−2(Q). Then, for any situation x1:n ∈X
∗ and any (n + 1)-measurable gamble f ,

E( f |x1:n ) =Qx1:n
( f (x1:n ·)).

Proof. Fix any x1:n ∈ X
∗ and any (n + 1)-measurable gamble f . Note that f (x1:n Xn+1)Ix1:n

= f Ix1:n
and hence,

because of P2, E( f |x1:n ) = E( f Ix1:n
|x1:n ) = E( f (x1:n Xn+1)Ix1:n

|x1:n ) = E( f (x1:n Xn+1)|x1:n ). P1 therefore implies that,

indeed, E( f |x1:n ) =Qx1:n
( f (x1:n ·)).

To make sure that some particular upper expectation E ∈ E1−4(Q) is a most conservative upper expectation on
the domain of all finitary gambles, we impose on it the following property, known as the law of iterated upper

expectations [4, 17]:

P3=. E( f |X1:n ) = E(E( f |X1:n+1)|X1:n ) for all f ∈Vfin and all n ∈N0.

Proposition 2. Consider any E ∈E1−4(Q) that satisfies P3=. Then, for any E ′ ∈E1−4(Q), we have that

E( f |s )≥ E ′( f |s ) for all f ∈Vfin and all s ∈X ∗.

Proof. For any p ∈N0 and any (p+1)-measurable gamble g , we let QX1:p
(g ) be the p -measurable gamble defined

by QX1:p
(g )(ω) :=Qωp (g (ωp ·)) for allω ∈Ω. Note that QX1:p

(g ) is indeed a gamble because of (bounded) coherence
[C5] and the fact that g is a gamble. Then, because both the operators E and E ′ satisfy P1 and P2, it follows from
Lemma 1 that

E ′(g |X1:p ) =QX1:p
(g ) = E(g |X1:p ). (3)
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Now fix any f ∈Vfin and any x1:m ∈X
∗. Since f is finitary, it is n-measurable for some n ∈N0. We can assume

that m+2< n without loss of generality, because f is obviously also p -measurable for every p ≥ n . Now, it follows
from Equation (3) and the fact that QX1:n−1

( f ) is an (n−1)-measurable gamble, that E ′( f |X1:n−1) = E( f |X1:n−1) is an
(n−1)-measurable gamble. Subsequently, we can apply Equation (3) once more, where E ′( f |X1:n−1) = E( f |X1:n−1)

now takes the role of g , in order to find that E ′(E ′( f |X1:n−1)|X1:n−2) = E(E( f |X1:n−1)|X1:n−2) is an (n−2)-measurable
gamble. Then we can continue in the same way, to finally obtain that

E ′(E ′(· · ·E ′( f |X1:n−1) · · · |X1:m+1)|x1:m ) = E(E(· · ·E( f |X1:n−1) · · · |X1:m+1)|x1:m ).

By repeatedly applying P3 and P4, we infer that E′(E ′(· · ·E ′( f |X1:n−1) · · · |X1:m+1)|x1:m )≥ · · · ≥ E ′(E ′( f |X1:m+1)|x1:m )≥

E ′( f |x1:m ). Hence, plugging this back into the previous expression, we have that

E ′( f |x1:m )≤ E(E(· · ·E( f |X1:n−1) · · · |X1:m+1)|x1:m ).

On the other hand, since E satisfies P3=, we infer that E(E(· · ·E( f |X1:n−1) · · · |X1:m+1)|x1:m ) = · · ·= E(E( f |X1:m+1)|x1:m )

= E( f |x1:m ). So indeed, we find that E ′( f |x1:m )≤ E( f |x1:m ).

Next, we consider the domain Vb,lim ⊂ V of all extended real variables that are bounded below and that can be
written as the pointwise limit of a sequence of finitary gambles. The following condition, together with P3=, turns
out to be sufficient for an upper expectation E to be a most conservative one on the domain of Vb,lim amongst
all upper expectations in E1−5(Q).

P6. For any f ∈ Vb,lim and any s ∈ X ∗, there is some sequence { fn}n∈N0
of n-measurable gambles that is uni-

formly bounded below and that converges pointwise to f , such that moreover lim supn→+∞E( fn |s )≤ E( f |s ).

Note that, for an upper expectation E ∈ E1−5(Q), the inequality lim supn→+∞E( fn |s ) ≤ E( f |s ) in P6 is in fact an
equality because of P5.

Proposition 3. Consider any E ∈E1−5(Q) that satisfies P3= and P6. Then, for all E ′ ∈E1−5(Q), we have that

E( f |s )≥ E ′( f |s ) for all f ∈Vb,lim and all s ∈X ∗.

Proof. Fix any f ∈Vb,lim, any s ∈ X ∗ and any E ′ ∈ E1−5(Q). According to P6, there is some sequence { fn}n∈N0
of

n-measurable gambles that is uniformly bounded below and that converges pointwise to f in such a way that
lim supn→+∞E( fn |s )≤ E( f |s ) and therefore, due to P5, also that

lim sup
n→+∞

E( fn |s ) = E( f |s ). (4)

Because all fn are finitary gambles and both E and E ′ are upper expectations in E1−4(Q), with E additionally
satisfying P3=, we can apply Proposition 2 to find that

lim sup
n→+∞

E ′( fn |s )≤ lim sup
n→+∞

E( fn |s ). (5)

Furthermore, since { fn}n∈N0
is a sequence of finitary gambles that is uniformly bounded below and that con-

verges pointwise to f , P5 implies that E ′( f |s )≤ lim supn→+∞E ′( fn |s ). Combining this with Equations (4) and (5),
we find that, indeed, E ′( f |s )≤ E( f |s ).

Finally, we consider the entire domainV. Now, in order for an upper expectation onV to be the most conservat-
ive one, it suffices to additionally impose the following property, as we will show presently.

P7. For any f ∈V and any s ∈X ∗,

E( f |s ) = inf
¦

E(g |s ) : g ∈Vb,lim and g ≥ f
©

.
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Theorem 4. Consider any E ∈E1−5(Q) that satisfies P3=, P6 and P7. Then, for all E ′ ∈E1−5(Q), we have that

E( f |s )≥ E ′( f |s ) for all f ∈V and all s ∈X ∗.

Proof. Fix any f ∈V, any s ∈X ∗ and any E ′ ∈E1−5(Q). According to P7, we have that

E( f |s ) = inf
¦

E(g |s ) : g ∈Vb,lim and g ≥ f
©

.

Then, using Proposition 3, we get

inf
¦

E ′(g |s ) : g ∈Vb,lim and g ≥ f
©

≤ inf
¦

E(g |s ) : g ∈Vb,lim and g ≥ f
©

= E( f |s ).

Since, for any g ∈Vb,lim such that f ≤ g , we have that E ′( f |s )≤ E ′(g |s ) because E ′ satisfies P4, it follows that

E ′( f |s )≤ inf
¦

E ′(g |s ) : g ∈Vb,lim and g ≥ f
©

≤ E( f |s ),

which completes the proof.

We conclude that, according to Theorem 4, if there is some upper expectation E ∈ E1−5(Q) that satisfies P3=,
P6 and P7, it must be the unique most conservative upper expectation in E1−5(Q), and it must therefore be the
global belief model EA that we are after. So it now only remains to show that there is at least one—then necessarily
unique—global upper expectation in E1−5(Q) that additionally satisfies P3=, P6 and P7.

6. Game-Theoretic Upper Expectations

In this section, we show that a particular version of the game-theoretic upper expectation developed by
Shafer and Vovk [4, 5] belongs to E1−5(Q) and furthermore satisfies P3=, P6 and P7, which will then—because
of Theorem 4—imply the existence of the unique EA we are in pursuit of. This game-theoretic upper expectation
relies on the concept of a supermartingale,7 which is a capital process—the evolution of a subject’s capital—that
is obtained by betting against a ‘forecasting system’. The forecasting system—called ‘Forecaster’ in Shafer and
Vovk’s framework—determines for each situation a collection of allowable bets that a subject—called ‘Skeptic’
in Shafer and Vovk’s framework—can choose from. These allowable bets define Forecaster’s uncertainty model
and are also captured by our notion of an imprecise probability tree. We should point out though that Shafer
and Vovk also allow for more general settings where local models need not be boundedly coherent, where state
spaces can be infinite and where Forecaster his commitments—that is, the allowable bets for Skeptic—in each
situation need not be announced beforehand, but may also depend on previous moves by Skeptic. In that re-
spect, our discussion here will be more particular and limited.

As before, we start from an imprecise probability tree that specifies a local coherent upper expectation Qs on
L (X ) for every situation s ∈X ∗. However, in their most recent work [5, Part II], Shafer and Vovk start from local
models Es that are defined on the extended domainL (X ) of all extended real local variables, and they require
these local models Es to satisfy a modified version of the bounded coherence axioms C1–C3, generalised to ex-
tended real variables. Concretely, for any s ∈X ∗, they impose the following properties on the upper expectation
Es onL (X ) that models the corresponding local beliefs:

E1. Es (c ) = c for all c ∈R;

E2. Es ( f + g )≤ Es ( f ) +Es (g ) for all f , g ∈L (X );

E3. Es (λ f ) =λEs ( f ) for all λ ∈R>0 and all f ∈L (X );

7Shafer and Vovk drew inspiration from Jean Ville, whose work [18] constitutes the first major steps towards a theory of probability where
(super)martingales, instead of probability measures, function as the fundamental, primary objects.
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E4. f ≤ g ⇒ Es ( f )≤ Es (g ) for all f , g ∈L (X ).

E5. limn→+∞Es ( fn ) = Es

�

limn→+∞ fn

�

for any non-decreasing and non-negative sequence { fn}n∈N0
inL (X ).

Hence, in order to place ourselves squarely in their framework, we need to extend the domain of our local models
Qs from L (X ) to L (X ) in such a way that they satisfy E1–E5. For any f ∈ L (X ) and any c ∈ R, let f ∧c and
f ∨c be the variables in L (X ) respectively defined by f ∧c (x ) :=min{ f (x ), c } and f ∨c (x ) :=max{ f (x ), c } for all
x ∈X . We propose the following two continuity properties for an upper expectation Q↑

s
onL (X ) that extends

a coherent upper expectation Qs onL (X ):

C8. Q↑
s
( f ) = limc→+∞Q ↑

s
( f ∧c ) for all f ∈L b(X );

C9. Q↑
s
( f ) = limc→−∞Q ↑

s
( f ∨c ) for all f ∈L (X );

Properties C8 and C9 are respectively called continuity with respect to upper and lower cuts (or, alternatively,
bounded above and below support). According to [19, Proposition 10 (ii)–(iii)] such an extension Q↑

s
always

exists and is moreover unique. The upper expectation Q↑
s

is also an appropriate extension, in the sense that it
satisfies E1–E5; this follows from [19, Proposition 10] together with [19, Proposition 1].8 Hence, in order to adhere
to Shafer and Vovk’s approach, we can—and will—adopt this particular extension Q ↑

s
of Qs for each situation

s ∈X ∗ in the following game-theoretic reasoning.
A mapM :X ∗ → R is called a supermartingale if it satisfies Q ↑

s
(M (s ·))≤M (s ) for all s ∈ X ∗, whereM (s ·)

denotes the variable inL (X ) that assumes the valueM (s x ) for all x ∈X . As mentioned earlier, a supermartin-
galeM can be interpreted as a capital process that results from betting against a forecasting system. In order
for this to make sense, such an interpretation will only be attached to supermartingales that are bounded below,
meaning that there is some real c such thatM (s ) ≥ c for all s ∈X ∗. This represents the constraint that we can
never borrow an infinite or even unbounded amount of money. To see that a bounded below supermartingale
M can indeed be interpreted as described above, we first need to know how a forecasting system allows us to
play. In our case, the allowable bets in any given situation s ∈ X ∗ are those variables f ∈ L b(X ) for which
Q↑

s
( f ) ≤ 0—we will come back to this shortly. Now, ifM (s ) is real, then the condition that Q↑

s
(M (s ·)) ≤ M (s )

is equivalent to the condition that Q↑
s
(M (s ·)−M (s ))≤ 0 because Q↑

s
satisfies constant additivity on the domain

L b(X ); see [19, Proposition 3(E8)]. Hence, the incremental changeM (s ·)−M (s )of the capital processM in the
situation s indeed represents an allowable bet. If on the other handM (s ) = +∞ (the case whereM (s ) = −∞
is impossible because we assumedM to be bounded below), the condition that Q↑

s
(M (s ·)) ≤ M (s ) does not

impose any constraints onM (s ·). The interpretation that the incrementM (s ·)−M (s ) represents an allowable
bet is, in this case, somewhat questionable. However, one could argue that, since the processM has reached
the maximum possible value—that is, +∞—in the situation s , it cannot increase any further, hence there is no
need for any constraints on the process’ future value.

That the allowable bets f in some situation s ∈X ∗ are characterised by the condition that Q↑
s
( f )≤ 0, agrees

with the behavioural interpretation of (boundedly) coherent upper expectations. To see this, we limit ourselves
to the domain L (X ) and recall that Q ↑

s
( f ) = Qs ( f ), for any f ∈ L (X ), can then be interpreted as a subject’s

infimum selling price for the gamble f . So the subject, being the forecasting system in this case, is willing to
offer the gambles that have negative9 upper expectation. We can then take the subject up on his commitments
by accepting its offer and selecting one such gamble. Moreover, since the upper expectations Qs are assumed to
be (boundedly) coherent, the associated sets of available gambles will also satisfy certain rationality axioms. We
refer to an earlier paper by one of us [11] for a more elaborate discussion of how Walley’s behavioural approach
can be related (in a slightly different context) to the game-theoretic one proposed by Shafer and Vovk.

Our definition of the global game-theoretic upper expectation—and the one considered by Shafer and Vovk—
will be based on bounded below supermartingales, not only because it allows for a sensible interpretation as we
have explained above, but also because of more technical reasons, which we discuss in [19, Section 8]. So let

8To see this, note that the definition of an upper expectation in Reference [19] is different from the one we adopt here.
9In the interest of brevity, we ignore in our discussion of the interpretation the special case where we have zero upper expectation. See

[11] for more details about this special case.
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Mb be the set of all such bounded below supermartingales. For anyM ∈Mb, we then use lim infM to denote
the extended real global variable that assumes the value lim infn→+∞M (ω

n ) in each ω ∈ Ω. We also write, for
any situation s ∈ X ∗ and any two f and g in V, that f ≥s g if f (ω) ≥ g (ω) for all paths ω ∈ Γ (s ). The global
game-theoretic upper expectation EV : V×X ∗→R can now be defined as

EV( f |s ) := inf
¦

M (s ) :M ∈Mb and lim infM ≥s f
©

for all f ∈V and all s ∈X ∗.

The corresponding game-theoretic lower expectation EV is again defined by conjugacy; so EV ( f |s ) :=−EV (− f |s )

for all f ∈ V and all s ∈ X ∗. For a concrete and detailed motivation and interpretation for the operator EV , we
refer to [4, 5, 19]. Essentially, the upper expectation EV( f |x1:n ) can once more be seen as an infimum selling price
for a variable f ∈ V conditional on the fact that we have observed some history X1 = x1, X2 = x2, · · · , Xn = xn of
the process. It is based on the assumption that we should agree to sell f for any starting capitalM (x1:n ) such
that, by appropriately betting against the forecasting system from x1:n onwards, we manage to end up with a
higher capital than what we would receive from f , regardless of the pathω ∈ Ω taken by the process. Indeed, it
is reasonable to state that such a starting capitalM (x1:n ) is worth more than the uncertain (possibly negative)
payoff corresponding to f . The global game-theoretic upper expectation EV ( f |x1:n ) is the infimum over all such
starting capitals.

As we will briefly discuss in Section 7, the global game-theoretic upper expectation EV satisfies various, re-
markably powerful properties. In particular, it satisfies P1–P5, P3=, P6 and P7, which allows us to state our main
result: that EV is the unique most conservative upper expectation EA in E1−5(Q). Our proofs for these results are
heavily based on our work in [19]. The setting there is entirely the same as the one described in this section, with
the exception that we generally do not impose C9 on the local models in [19]. It will soon be clarified why we
have made this distinction; for the moment, it suffices to see that the setting in [19] is more general and therefore,
that the results in [19] obviously remain valid here.

Proposition 5. EV is an element of E1−5(Q) and furthermore satisfies P3=, P6 and P7.

Proof. We prove that EV satisfies P1–P5, P3=, P6 and P7. Axiom P1 follows immediately from [19, Proposition 14]
which, in particular, says that E( f |x1:n ) = Qx1:n

( f (x1:n ·)) for any situation x1:n ∈ X
∗ and any (n + 1)-measurable

gamble f . Indeed, for any h ∈ L (X ), h (Xn+1) is an (n + 1)-measurable gamble, so it follows from [19, Proposi-
tion 14] that EV (h (Xn+1)|x1:n ) =Qx1:n

(h ). To prove P2, observe that lim infM ≥s f if and only if lim infM ≥s f Is
for all f ∈V and allM ∈Mb. The desired equality therefore follows directly from the definition of EV . P3=, and
hence also P3, follows immediately from [19, Theorem 15]. Property P4 follows from [19, Proposition 13(V4)],
which says that EV satisfies the stronger property that E( f |s )≤ E(g |s ) if f ≤s g for all f , g ∈V and all s ∈X ∗.

Furthermore, P6 and P7 follow from, respectively, [19, Theorem 32] and [19, Proposition 28]. Note that, in
these results, the definition of Vb,lim seems to be slightly more general, since it there also includes pointwise
limits of possibly extended real finitary variables. However, according to [19, Proposition 30], any such limit of
extended real finitary variables is in fact also a pointwise limit of n-measurable, and therefore finitary, gambles.
So both our definitions of Vb,lim are equivalent, therefore indeed allowing us to apply the results in [19] here.

Finally, Property P5 follows from [19, Corollary 25], which says that, for any sequence { fn}n∈N0
in Vb that is

uniformly bounded below, EV (lim infn→+∞ fn |s )≤ lim infn→+∞EV ( fn |s ). Indeed, in the special case that { fn}n∈N0

is a sequence of finitary gambles that is uniformly bounded below and converges pointwise to some variable
f ∈Vb, this implies that EV( f |s )≤ lim infn→+∞EV ( fn |s )≤ lim supn→+∞EV ( fn |s ).

Theorem 6. There is a unique most conservative upper expectation EA in E1−5(Q) and it is the global game-

theoretic upper expectation EV . Furthermore, if an upper expectation E in E1−5(Q) satisfies P3=, P6 and P7, then

it is equal to this most conservative upper expectation EA, and therefore also equal to EV .

Proof. Immediately from Theorem 4 and Proposition 5.

7. On the Implications of Theorem 6

Shafer and Vovk define their game-theoretic upper expectations using supermartingales. Their definition
has a constructive flavour and can be given a clear interpretation in terms of capital processes and betting be-
haviour. However, it requires that one allows unbounded and even infinite-valued bets, which we find more
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questionable from a behavioural point of view. Furthermore, a complete axiomatisation of EV is, to the best of
our knowledge, absent from the literature. Theorem 6 addresses both of these issues. First, it provides an ab-
stract axiomatisation for EV using P3=, P6 and P7 in addition to P1–P5. Most importantly, however, Theorem 6
provides an alternative definition— and interpretation—for EV as the most conservative upper expectation EA

under a limited set of intuitive properties: P1–P5. This strengthens the argument in favour of using EV as a global
upper expectation, because it can now be motivated from both a game-theoretic point of view and from a purely
axiomatic point of view. Readers need not even be familiar with the concepts of game-theoretic probability in
order to use EV as global upper expectation. Put simply, they only have to agree on the axioms P1–P5. And even if
they wish to impose additional axioms, then EV would still serve as a conservative upper bound for their desired
(upper) expectation.

Still, recalling our assumptions about the extended local models Q↑
s
, one could regret the fact that we are

only considering a special case of what is generally being done by Shafer and Vovk; an upper expectation Q↑
s

on
L (X ) satisfying E1–E5 does not necessarily have to be an extension of a coherent upper expectation Qs onL (X )
satisfying C8 and C9, see [19, Example 1]. However, this restriction in generality actually turns out to be rather
desirable. Indeed, as we show in [19], compatibility of local and global game-theoretic upper expectations—a
property that we find essential—can only be obtained if we limit ourselves to extended local models Q ↑

s
of the

form that we have described earlier, that is, boundedly coherent and satisfying C8 and C9.
That said, as mentioned before, we do not a priori impose C9 on the local models in [19]. In that paper, we

mainly focus on the mathematical properties of global game-theoretic upper expectations and most of these do
not require C9. Furthermore, by dropping this axiom, we can allow for more general local models than Shafer
and Vovk, who impose E1–E5. Nevertheless, in this less mathematical and more philosophical contribution, we
do impose C9 on the local models because, practically speaking, we always want local and global belief models
to be compatible; see for example Section 4, where we considered it self-evident that P1 should be desirable.
Note however that Theorem 6 actually does not depend on whether the extended local models Q ↑

s
satisfy C9.

On the one hand, because EA only depends on the (boundedly) coherent local models Qs , and on the other
hand, because EV only depends on what the values of the extended local models Q ↑

s
are on the restricted domain

L b(X ). The latter can easily be seen from the fact that EV is defined using supermartingales that are bounded
below; we refer to [19] for more details.

8. Additional Properties

Of course, there is more to an uncertainty model than an axiomatisation or an interpretation, however com-
pelling they may be. In order to be practically useful, its mathematical properties should also be sufficiently
powerful such that inferences can be computed or approximated efficiently. For instance, the popularity of the
Lebesgue integral as a tool for defining expected values, is in part due to its strong continuity properties (e.g.
the Dominated Convergence Theorem [1, 15]). What may perhaps be somewhat surprising, is that despite the
simplicity of our axioms P1–P5, our most conservative model EA also scores well on this count. For example, it
satisfies the following generalisation of bounded coherence. Its proof, as well as the proofs of the other results in
this section, follows immediately from the fact that EA coincides with EV and the fact that these properties hold
for EV , as is shown in [19].

Proposition 7. [19, Proposition 13 and Theorem 15] For all f , g ∈ V, all λ ∈ R≥0, all µ ∈ R, all n ∈ N0 and all

s ∈X ∗, EA satisfies

V1. infω∈Γ (s ) f (ω)≤ E A( f |s )≤ EA( f |s )≤ supω∈Γ (s ) f (ω);

V2. EA( f + g |s )≤ EA( f |s ) +EA(g |s );

V3. EA(λ f |s ) =λEA( f |s );

V4. EA( f +µ|s ) = EA( f |s ) +µ.

V5. EA( f |X1:n ) = EA

�

EA( f |X1:n+1)
�

�X1:n

�

.
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Another important result, better known as Fatou’s Lemma, shows that the upper bound imposed by property
P5 for a global upper expectation E( f |s ) of a variable f ∈ Vb,lim need not be attained by the most conservative
upper expectation EA in E1−5(Q). Interestingly enough, it can be replaced by a generally tighter one, which is
established in the following lemma.

Lemma 8. [19, Corollary 25] For any s ∈X ∗ and any sequence { fn}n∈N0
in Vb that is uniformly bounded below,

EA(lim infn→+∞ fn |s )≤ lim infn→+∞EA( fn |s ).

The following theorem states that EA satisfies continuity with respect to non-decreasing sequences of bounded
below variables and with respect to non-increasing sequences of finitary, bounded above variables.

Theorem 9. [19, Theorem 23 and Theorem 31]

i. For any s ∈ X ∗ and any non-decreasing sequence { fn}n∈N0
in Vb that converges point-wise to a variable

f ∈Vb, we have that EA( f |s ) = limn→+∞EA( fn |s ).

ii. For any s ∈X ∗ and any non-increasing sequence { fn}n∈N0
of finitary, bounded above variables that converges

point-wise to a variable f ∈V, we have that EA( f |s ) = limn→+∞EA( fn |s ).

Apart from the brief overview above, EV = EA also satisfies a weak and a strong law of large numbers, a law
of the iterated logarithm, Lévy’s zero-one law, and many more surprisingly strong properties; we refer the inter-
ested reader to Shafer and Vovk’s work [5, 16] and to ours [19, 20].

9. Measure-Theoretic Belief Models

In contradistinction with the game-theoretic approach, where the central concept is that of a supermartin-
gale, the measure-theoretic approach relies on σ-additive probability measures in order to describe the global
dynamics of an uncertain process. In a precise probabilities context, this global measure is usually obtained by
extending the information that is included in the (precise) local models, now represented by probability mass
functions onX , using Ionescu Tulcea’s extension theorem [1, Theorem 2.9.2]. This consists of two consecutive
steps. First, a probability measure on the algebra generated by all cylinder events is constructed in a straightfor-
ward manner, by combining local (conditional) probabilities using the well-known product rule. Subsequently,
this probability measure is extended to a probability measure on the σ-algebra F generated by all cylinder
events, which, according to Carathéodory’s extension theorem [6, Theorem 1.7], can be done uniquely. Lin-
ear expectations are then typically obtained by Lebesgue integration and by restricting the domain to (random)
variables that are measurable with respect to theσ-algebraF .

This traditional measure-theoretic approach has a few shortcomings however. First of all, it only considers
the special case where each local model is represented by a single probability mass function onX . Hence, we
cannot directly apply it here in our more general, imprecise probabilities setting. Secondly, the domain of the
expectation operators is restricted to measurable (random) variables and therefore, no explicit information is
given about non-measurable variables. Thirdly, by condensing all local probability mass functions into a single
global probability measure, we disregard part of the information that is incorporated in the local probability
mass functions. More specifically, the part that describes the process’ dynamics conditional on the fact that its
path will lie in a set of probability zero (with respect to the global probability measure). Indeed, conditional
probabilities and expectations are typically derived from the global probability measure using Bayes’ rule, yet,
for those cases where the conditioning event has probability zero, the conditional probabilities and expectations
become ill-defined or are chosen arbitrarily; see Appendix A and [1, 3].

In this section, we aim to adapt the traditional measure-theoretic approach to our setting and deal with these
problems in a satisfactory manner. As a first step, we will limit ourselves to the precise case and try to resolve
the last two issues mentioned above. The global probability measure on F , which is the starting point for the
traditional approach, will be replaced by a ‘conditional probability measure’ in the sense of [12, Definition 6].
Essentially, such a conditional measure specifies a probability measure onF for each situation s ∈ X ∗, which
describes the global dynamics of the uncertain process if we are sure that the path ω taken by the process will
pass through this situation s . This will enable us to also meaningfully define linear expectations conditional
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on situations that have probability zero. Subsequently, we will extend the domain of these conditional linear
expectation operators to all global variables V by taking a particular upper integral leading to an upper expect-
ation. As a final step, we allow for imprecision in the local models by considering a set Ps of probability mass
functions onX in each situation s . We can then apply the foregoing course of reasoning for each possible selec-
tion p : s ∈ X ∗ 7→ p (·|s ) of local probability mass functions, where, in each situation s , the selected probability
mass function p (·|s ) belongs to Ps . Hence, instead of a single upper expectation operator, we now obtain a set
of them. The global measure-theoretic upper expectation Emeas will then be defined as the upper envelope of all
such ‘compatible’ upper expectation operators, similar to what is done on a local level.

The resulting operator Emeas will satisfy P1–P5, which implies by Theorem 6 that the upper expectation EA—
and therefore also EV—is an upper bound for Emeas. Moreover, if all local models are precise, all upper expecta-
tion operators EA, EV and Emeas will be shown to coincide.

Precise Probability Trees

In this subsection, we consider a precise probability tree p , that is, a map p : s ∈X ∗ 7→ p (·|s )where each p (·|s )

is a probability mass function onX . Recalling our considerations in Section 2, each mass function p (·|s ) is in a
one-to-one correspondence with a linear expectation Qs onL (X ), so we could just as well have started from an
imprecise probability tree Q where all local models Qs are linear on L (X ). However, we prefer to start with p

because it is in accordance with the traditional measure-theoretic view towards uncertainty, where probability
measures or charges—and therefore also probability mass functions—are considered to be primary objects.

As mentioned above, we aim to construct a conditional probability measure that allows us to condition on
any situation s ∈X ∗ meaningfully. To do so, we follow the same reasoning as proposed in [12, Chapter 3]. First,
we define, for any x1:n ∈ X

∗, a probability charge P(·|x1:n ) on the algebra generated by all cylinder events. This
can be done in a simple and intuitive manner [12, Lemma 14]: for any m ∈N0 and any C ⊆Xm , we let

P(C |x1:n ) :=
∑

z1:m∈C

P(z1:m |x1:n ), where P(z1:m |x1:n ) :=









∏m−1
i=n

p (zi+1|z1:i ) if n <m and z1:n = x1:n

1 if n ≥m and z1:m = x1:m

0 otherwise,

(6)

where we use the shorthand notation P(C |x1:n ) for any C ⊆ Xm to mean P(∪z1:m∈C Γ (z1:m )|x1:n ), and where we
did not make any particular distinction between the notations z1:m and {z1:m}. Since each P(·|x1:n ) defined in
this way is a (finitely additive) probability charge on the algebra generated by all cylinder events [12, Chapter
3], and therefore automatically a σ-addive probability measure on this algebra [3, Theorem 2.3], we can use
Carathéodory’s extension theorem [6, Theorem 1.7] to extend each P(·|x1:n ) to a unique σ-additive measure on
the σ-algebraF generated by all cylinder events. Then, according to [12, Theorem 15], we can gather all such
probability measures P(·|x1:n ) to obtain a single conditional probability measure P :F×X ∗→R [12, Definition 6],
which is coherent in the sense of [12, Definition 5]. This notion of coherence is related to the bounded coherence
condition in Section 2; both notions represent rational behaviour, but, the version used in [12, Definition 5] is
adapted to probability measures and involves conditioning on events.

Before defining our global measure-theoretic (upper) expectation, we first recall the following concepts about
measurability and integration; we refer to Appendix A for a more elaborate introduction. We say that a global
variable f ∈ V is F -measurable if, for all c ∈ R, the set {ω ∈ Ω : f (ω) ≤ c } is F -measurable, meaning that
it is an element of the σ-algebra F . We will commonly use the properties that F -measurability of variables
is preserved under taking maxima or minima (this follows immediately from the fact that the class of all F -
measurable sets is closed under countable unions and intersections [21, Section II.4]) and thatF -measurability
is preserved under pointwise convergence of variables [21, Theorem II.4.2]. Moreover, recall that the Lebesgue
integral
∫

Ω
f dPu [1, 3, 15] with respect to any (unconditional) probability measure Pu on F always exists if f

is F -measurable and either bounded or non-negative. However, for a general F -measurable variable f ∈V,
the integral only exists if min{

∫

Ω
f +dPu,
∫

Ω
f −dPu} < +∞, where f + := f ∨0 and f − := − f ∧0. In that case, we let

∫

Ω
f dPu :=
∫

Ω
f +dPu−
∫

Ω
f −dPu. Then, because the Lebesgue integral is trivially real-valued for a bounded F -

measurable variable (this can for instance be deduced from M1 and M2 in Appendix A), it can easily be seen that
∫

Ω
f dPu also always exists for anF -measurable variable f ∈Vb.
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We now adopt an approach that is similar to what is done in a traditional context, defining expectations as
Lebesgue integrals. An important difference, however, is that we integrate with respect to a probability measure
that depends on the conditioning event. Concretely, we define the measure-theoretic expectation Emeas,p ( f |s )

of an F -measurable variable f ∈ V conditional on the situation s ∈ X ∗ by the Lebesgue integral
∫

Ω
f dP|s

with respect to the (unconditional) probability measure P|s := P(·|s ), provided that
∫

Ω
f dP|s exists. The expecta-

tion Emeas,p (·|�) then corresponds to the unconditional expectation as introduced in traditional measure theory.
The subscript p in Emeas,p is used to remind us that Emeas,p depends on the precise probability tree p . Since
Emeas,p is defined in terms of the Lebesgue integral, it inherits several properties of this integral; again, we refer
to Appendix A for more information. The following is a subset of these properties—simplified and applied to
Emeas,p —that we will need in the main text. We take s ∈ X ∗ to be any situation and implicitly assume that the
considered expectations exist.

M1. Emeas,p (a f + b |s ) = a Emeas,p ( f |s ) + b for allF -measurable variables f ∈V and all a , b ∈R.

M2. f ≤ g ⇒ Emeas,p ( f |s )≤ Emeas,p (g |s ) for allF -measurable variables f , g ∈V.

M8. Consider any non-decreasing sequence { fn }n∈N0
of F -measurable variables inV. If there is anF -measurable

function f ∗ such that Emeas,p ( f
∗|s )>−∞ and fn ≥ f ∗ for all n ∈N0, then

lim
n→+∞

Emeas,p ( fn |s ) = Emeas,p ( f |s ) where lim
n→+∞

fn = f .

M9. Consider any non-increasing sequence { fn }n∈N0
of F -measurable variables inV. If there is anF -measurable

function f ∗ such that Emeas,p ( f
∗|s )<+∞ and fn ≤ f ∗ for all n ∈N0, then

lim
n→+∞

Emeas,p ( fn |s ) = Emeas,p ( f |s ) where lim
n→+∞

fn = f .

Now that our measure-theoretic definitions are in place, we aim at relating the expectation Emeas,p to our
upper expectation operator EA discussed in the earlier sections of this paper. For the sake of clarity, we will
use EA,p to denote our upper expectation EA corresponding to the imprecise probability tree Q associated with
p ; so each Qs is defined by Qs ( f ) :=

∑

x∈X f (x )p (x |s ) for all f ∈ L (X ). We first focus on the domain of all
F -measurable variables in Vb. This seems appropriate because, though we cannot guarantee existence of the
integral
∫

Ω
f dP|s —and therefore also Emeas,p ( f |s )—for a generalF -measurable variable f ∈V, it can always be

guaranteed for anF -measurable variable f ∈Vb, as we have explained earlier. It will turn out that both operators
Emeas,p and EA,p coincide on the domain of allF -measurable variables in Vb.

To prove this, we base ourselves on [5, Theorem 9.3]; a result by Shafer and Vovk—yet the essential idea origin-
ates from Jean Ville—that shows that game-theoretic and measure-theoretic (upper) expectations coincide on
F -measurable gambles, in case we are considering precise probability trees. Proposition 10 below establishes
the equality of EA,p and Emeas,p on this domain and therefore, due to Theorem 6, also of EV and Emeas,p . Though
the proof of Proposition 10 is based on the same principles and ideas as those that underly the proof of [5, The-
orem 9.3], they are stated in a somewhat different setting and, for an unexperienced reader, it may therefore not
be entirely clear how both are related to each other. Moreover, our result here also applies to conditional expect-
ations, whereas [5, Theorem 9.3] only considers the unconditional case. We have therefore decided to include a
self-contained proof of Proposition 10 in Appendix B, starting from Ville’s martingale theorem.

Proposition 10. For anyF -measurable f ∈V and any s ∈X ∗, we have that Emeas,p ( f |s ) = EA,p ( f |s ).

The next result extends the domain of the equality to allF -measurable variables in Vb.

Theorem 11. For anyF -measurable f ∈Vb and any s ∈X ∗, we have that Emeas,p ( f |s ) = EA,p ( f |s ).

Proof. Consider any f ∈Vb that isF -measurable and any s ∈X ∗. Because f is bounded below andF -measurable,
Emeas,p ( f |s ) exists. We can moreover assume that f is non-negative without loss of generality because it is
bounded below and both Emeas,p and EA,p are constant additive with respect to real constants; see M1 and V4.
Consider now the non-decreasing sequence { f ∧n}n∈N0

of upper cuts and note that each f ∧n is bounded and
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F -measurable; this follows from the fact thatF -measurability is preserved under taking minima. Using M8—
which we are allowed to use because Emeas,p ( f

∧0|s ) is real (since f ∧0 is bounded) and because { f ∧n }n∈N0
is non-

decreasing—we have that Emeas,p ( f |s ) = limn→+∞Emeas,p ( f
∧n |s ). As a consequence,

Emeas,p ( f |s ) = lim
n→+∞

Emeas,p ( f
∧n |s ) = lim

n→+∞
EA,p ( f

∧n |s ) = EA,p ( f |s ),

where the second equality follows from Proposition 10 and the third one from Theorem 9(i).

Next, we want to drop the condition ofF -measurability and generalise towards the domain V of all global
extended real variables. So we are looking for an upper expectation operator that appropriately extends Emeas,p

to the entire domainV×X ∗. Inspired by Theorem 11, we simply suggest the following upper integral:

E 1
meas,p ( f |s ) := inf

¦

Emeas,p (g |s ) : g ∈Vb, g isF -measurable and g ≥ f
©

for all f ∈V and s ∈X ∗.

That it is valid to write Emeas,p (g |s ) for any g ∈Vb that isF -measurable, follows from the fact that Emeas,p (g |s ) =
∫

Ω
g dP|s is guaranteed to exist for such a variable. Let us now show that E 1

meas,p is indeed an extension of Emeas,p .

Proposition 12. For any f ∈V and any s ∈X ∗, we have that E 1
meas,p ( f |s ) = Emeas,p ( f |s ) if Emeas,p ( f |s ) exists.

Proof. Suppose that Emeas,p ( f |s ) exists, which means that the variable f isF -measurable and that Emeas,p ( f
+|s )

or Emeas,p ( f
−|s ) is real-valued. By the monotonicity [M2] of Emeas,p , we immediately have that

E 1
meas,p ( f |s ) = inf

¦

Emeas,p (g |s ) : g ∈Vb, g isF -measurable and g ≥ f
©

≥ Emeas,p ( f |s ). (7)

If Emeas,p ( f
+|s ) = +∞ and therefore Emeas,p ( f

−|s ) ∈ R and Emeas,p ( f |s ) = +∞, the desired equality follows trivi-
ally from Equation (7). We proceed to show that this is also the case if Emeas,p ( f

+|s )<+∞.
Consider the non-increasing sequence { f ∨−n }n∈N0

of lower cuts of f . Then, for any n ∈N0, the global variable
f ∨−n is bounded below andF -measurable. Hence,

E 1
meas,p ( f |s ) = inf

¦

Emeas,p (g |s ) : g ∈Vb, g isF -measurable and g ≥ f
©

≤ inf
n∈N0

Emeas,p ( f
∨−n |s ) = lim

n→+∞
Emeas,p ( f

∨−n |s ) = Emeas,p ( f |s ),

where the second equality follows from the non-increasing character of the sequence { f ∨−n }n∈N0
and the mono-

tonicity [M2] of Emeas,p , and the final equality follows from M9, which we can use because f ∨−n ≤ f ∨0 = f + for
all n ∈N0 and Emeas,p ( f

+|s )<+∞ by assumption. Combining this with Equation (7), the desired equality again
follows.

Our next result shows that E 1
meas,p is in fact the most conservative extension of Emeas,p that satisfies P4.

Proposition 13. E 1
meas,p is the most conservative extension of Emeas,p that satisfies P4.

Proof. Fix any f ∈V, any s ∈X ∗ and any E
′

p
:V×X ∗→R that satisfies P4 and that coincides with Emeas,p on its

domain. Then,

E 1
meas,p ( f |s ) = inf

¦

Emeas,p (g |s ) : g ∈Vb, g isF -measurable and g ≥ f
©

= inf
¦

E
′

p
(g |s ) : g ∈Vb, g isF -measurable and g ≥ f

©

≥ E
′

p
( f |s ),

where the second equality follows from the fact that Emeas,p (g |s ) exists for any F -measurable variable g ∈ Vb,
and the inequality follows from the fact that E

′

p
satisfies monotonicity [P4]. Hence, the proposition now follows

immediately from the fact that, due to Proposition 12, E 1
meas,p itself is an extension of Emeas,p and the fact that

E 1
meas,p satisfies P4 because Emeas,p is monotone [M2].
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In Section 4, we argued that P1–P5 are desirable for a global upper expectation and, under those axioms, we
put forward the most conservative upper expectation as our model of choice. Now, Proposition 13 guarantees
that E 1

meas,p is the most conservative extension of Emeas,p only under P4. So it may very well be that E 1
meas,p does

not necessarily satisfy the axioms P1–P5. Since we consider these axioms to be desirable, that would mean that
E 1

meas,p is a too conservative extension of Emeas,p , in the sense that it results in an unwarranted loss of information.
Our following result assures that this is not the case; the extension E 1

meas,p coincides with EA,p and hence, E 1
meas,p

is guaranteed to satisfy P1–P5.

Theorem 14. For any f ∈V and any s ∈X ∗, we have that E 1
meas,p ( f |s ) = EA,p ( f |s ).

Proof. For any f ∈V and any s ∈X ∗, we immediately find that

E 1
meas,p ( f |s ) = inf

¦

Emeas,p (g |s ) : g ∈Vb, g isF -measurable and g ≥ f
©

= inf
¦

EA,p (g |s ) : g ∈Vb, g isF -measurable and g ≥ f
©

≥ EA,p ( f |s ),

where the second equality follows from Theorem 11 and the inequality from the monotonicity [P4] of EA,p . To
show that the converse inequality holds, we will use the fact that EA,p satisfies P7 (this follows from Proposition 5
and Theorem 6).

Consider any g ∈ Vb,lim. Since g is the pointwise limit of a sequence {gn}n∈N0
of finitary gambles gn ∈ Vfin

and since any finitary gamble is clearlyF -measurable, g is the pointwise limit of a sequence ofF -measurable
global gambles. Then it follows that g itself is alsoF -measurable (F -measurability is preserved under pointwise
convergence). Furthermore, by the definition of Vb,lim, g is also bounded below. Hence, Emeas,p (g |s ) exists and
due to Theorem 11, we have that EA,p (g |s ) = Emeas,p (g |s ). Since E 1

meas,p is an extension of Emeas,p by Proposition 12,
this implies that EA,p (g |s ) = E 1

meas,p (g |s ). We conclude that

EA,p ( f |s ) = inf
¦

EA,p (g |s ) : g ∈Vb,lim and g ≥ f
©

= inf
¦

E 1
meas,p (g |s ) : g ∈Vb,lim and g ≥ f

©

≥ E 1
meas,p ( f |s ),

where the first step follows from P7 and the last step follows from the monotonicity [P4] of E 1
meas,p (as established

by Proposition 13).

Theorem 14 does not only show us that E 1
meas,p satisfies P1–P5, but also, and more importantly, that it is the

most conservative global upper expectation satisfying P1–P5. Furthermore, if we combine Theorem 14 with
Proposition 13, it can also easily be seen that it is the most conservative extension of Emeas,p satisfying P1–P5.

Corollary 15. E 1
meas,p is the most conservative extension of Emeas,p that satisfies P1–P5.

Proof. We know from Proposition 13 that E 1
meas,p is the most conservative extension of Emeas,p that satisfies P4.

This implies in particular that E 1
meas,p is more (or at least as) conservative than any extension of Emeas,p that

satisfies P1–P5. Since E 1
meas,p itself satisfies P1–P5 due to Theorem 14, it follows that E 1

meas,p is indeed the most
conservative extension of Emeas,p satisfying P1–P5.

Another interesting consequence of Theorem 14 and Proposition 13 is that EA,p turns out to coincide with
Emeas,p on the entire domain where it is defined, or, in other words, our model EA,p is an extension of the tradi-
tional measure-theoretic expectation Emeas,p .

Corollary 16. For any f ∈V and any s ∈X ∗, we have that EA,p ( f |s ) = Emeas,p ( f |s ) if Emeas,p ( f |s ) exists.

Proof. Immediate consequence of Theorem 14 and Proposition 13.

Now, before we continue to consider the more general case of imprecise probability trees, we briefly want to
come back to our choice of the extension E 1

meas,p . Recall that we defined it as an upper approximation—called
an upper integral—with respect to allF -measurable variables inVb. However, one could rightfully wonder why
we approximate with respect to this particular domain. It turned out to be a suitable choice, as Corollary 15

18



shows, but there was a priori no concrete reason for doing so. We could just as well have adopted the following
alternative upper integral:10

E 2
meas,p ( f |s ) := inf

�

Emeas,p (g |s ) : g ∈V, Emeas,p (g |s ) exists and g ≥ f

�

for all f ∈V and s ∈X ∗.

The upper expectation E 2
meas,p is an extension of Emeas,p because Emeas,p is monotone [M2]. Moreover, it is also

clear that E 2
meas,p ( f |s ) is dominated by E 1

meas,p ( f |s ) for all f ∈ V and all s ∈ X ∗ because the infimum in E 2
meas,p

is taken over an equal or larger set than the set over which the infimum is taken in E 1
meas,p . Hence, one could

be tempted to adopt the upper integral E 2
meas,p instead of E 1

meas,p with the aim of obtaining a more informative
extension—recall that we regard higher upper expectations as less informative. However, it can straightforwardly
be shown that this is only vain hope.

Proposition 17. We have that E 1
meas,p ( f |s ) = E 2

meas,p ( f |s ) for all f ∈V and all s ∈X ∗.

Proof. Fix any f ∈ V and any s ∈ X ∗. That E 1
meas,p ( f |s ) ≥ E 2

meas,p ( f |s ) follows immediately from the fact that
Emeas,p (g |s ) exists for eachF -measurable variable g ∈Vb and therefore, that the infimum in E 2

meas,p ( f |s ) is taken
over a set that is at least as large as the set over which the infimum is taken in E 1

meas,p ( f |s ). On the other hand,
we have that

E 2
meas,p ( f |s ) = inf

�

Emeas,p (g |s ) : g ∈V, Emeas,p (g |s ) exists and g ≥ f

�

= inf

�

E 1
meas,p (g |s ) : g ∈V, Emeas,p (g |s ) exists and g ≥ f

�

≥ E 1
meas,p ( f |s ),

where the second equality follows from Proposition 12 and the inequality follows from the monotonicity of
E 1

meas,p (see Proposition 13).

Hence, both measure-theoretic extensions E 1
meas,p and E 2

meas,p are equal and therefore, by Theorem 14, both
of them coincide with our model EA,p which, on its turn, coincides with the game-theoretic upper expectation EV

according to Theorem 6. In summary, we conclude that, if the local models are precise, all of the three possible
approaches—the game-theoretic, the measure-theoretic and ours—are equivalent.

Imprecise Probability Trees

Let us now turn to the general case where we consider an imprecise probability tree Q for which the local
models Qs are (boundedly) coherent upper expectations that are not necessarily self-conjugate. As we have
explained earlier, these local models can equivalently be represented by sets Ps of probability mass functions on
X , where Ps :=PQs

is related to Qs according to Equations (1) and (2) for all s ∈X ∗. We call a precise probability
tree p : s ∈X ∗ 7→ p (·|s ) compatible with the imprecise probability tree Q and write that p ∼Q if p (·|s ) ∈ Ps for all
s ∈ X ∗. In other words, a compatible precise probability tree p ∼Q corresponds to a possible selection, where
a local probability mass function p (·|s ) is chosen from the set Ps for each situation s ∈ X ∗. Now, for any such
compatible tree p ∼ Q, we can consider the global upper expectation Emeas,p := E 1

meas,p = E 2
meas,p as defined in

the previous section. Hence, instead of a single upper expectation, we now obtain a set of compatible global
upper expectations. We define the global measure-theoretic upper expectation Emeas as the upper envelope over
all such compatible upper expectations:

Emeas( f |s ) := sup
¦

Emeas,p ( f |s ) : p ∼Q
©

for all f ∈V and s ∈X ∗.

This definition is in correspondence with the usual measure-theoretic view towards imprecision where it is re-
garded as partial information about a single, unknown probability measure. Upper (and lower) expectations are

10This upper integral seems to be the one used by Shafer and Vovk in [5, Chapter 9].
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then considered as upper (and lower) bounds on the set of all ‘possible’ linear expectations. A similar, yet uncon-
ditional version of this measure-theoretic upper expectation is also adopted by Shafer and Vovk in [5, Chapter 9].

As we will now show, the measure-theoretic upper expectation Emeas satisfies our axioms P1–P5. This im-
plies, by Theorem 6, that Emeas is always dominated by the global upper expectation EA, and therefore also by EV .
Moreover, that the operator Emeas is entirely based on a measure-theoretic view towards uncertainty, yet turns
out to satisfy our axioms P1–P5, can only be seen as an additional motivation for the use of these axioms.

Theorem 18. The global measure-theoretic upper expectation Emeas is an element of E1−5(Q).

Proof. To show that P1 holds, consider any f ∈L (X ) and any x1:n ∈ X
∗. Since f (Xn+1) is bounded and clearly

F -measurable, we have, for any p ∼Q, that Emeas,p ( f (Xn+1)|x1:n ) exists and therefore that Emeas,p ( f (Xn+1)|x1:n ) =

Emeas,p ( f (Xn+1)|x1:n ), due to Proposition 12. Moreover, using P|x1:n
(xn+1) to denote P|x1:n

(∪z1:n∈X n Γ (z1:n xn+1)) for
any xn+1 ∈X , it is clear that Emeas,p ( f (Xn+1)|x1:n ) =

∑

xn+1∈X
f (xn+1)P|x1:n

(xn+1). It also follows immediately from
the construction (6) of P|x1:n

= P(·|x1:n ) that P|x1:n
(xn+1) = P|x1:n

(x1:n+1) = p (xn+1|x1:n ) for all xn+1 ∈ X and p ∼ Q.
Hence,

Emeas( f (Xn+1)|x1:n ) = sup
¦

Emeas,p ( f (Xn+1)|x1:n ) : p ∼Q
©

= sup
¦

Emeas,p ( f (Xn+1)|x1:n ) : p ∼Q
©

= sup

�

∑

xn+1∈X

f (xn+1)p (xn+1|x1:n ) : p ∼Q

�

= sup

�

∑

xn+1∈X

f (xn+1)p (xn+1|x1:n ) : p (·|x1:n ) ∈ Px1:n

�

=Qx1:n
( f ),

where the last step follows from the relation between Px1:n
and Qx1:n

which is given by Equation (2).
The remaining properties P2–P5 can be easily derived from the definition of Emeas and the fact that, due to

Corollary 15, these properties are satisfied by each compatible Emeas,p . For Properties P2 and P4 this is immediate.
To see that P3 holds, consider any f ∈ Vfin and any n ∈ N0. Note that, for any compatible tree p ∼ Q and any
x1:n ∈X

n , we have that Emeas,p ( f |x1:n )≤ Emeas,p (Emeas,p ( f |X1:n+1)|x1:n ) because Emeas,p satisfies P3. Hence,

Emeas( f |x1:n ) = sup
¦

Emeas,p ( f |x1:n ) : p ∼Q
©

≤ sup
¦

Emeas,p

�

Emeas,p ( f |X1:n+1)|x1:n

�

: p ∼Q
©

≤ sup
¦

Emeas,p

�

Emeas( f |X1:n+1)|x1:n

�

: p ∼Q
©

= Emeas

�

Emeas( f |X1:n+1)|x1:n

�

,

where the second inequality follows from the monotonicity [P4] of Emeas,p and the fact that Emeas,p ( f |z1:n+1) ≤

Emeas( f |z1:n+1) for all p ∼Q and all z1:n+1 ∈X
n+1. The inequality above holds for any x1:n ∈X

n , so we indeed find
that Emeas( f |X1:n )≤ Emeas

�

Emeas( f |X1:n+1)|X1:n

�

. To prove P5, we consider any s ∈X ∗ and any sequence { fn}n∈N0

of finitary gambles that is uniformly bounded below and that converges pointwise to some variable f ∈ V. For
any compatible tree p ∼Q, Emeas,p satisfies P5 and therefore, Emeas,p ( f |s ) ≤ lim supn→+∞Emeas,p ( fn |s ). Then we
also have that

Emeas( f |s ) = sup
¦

Emeas,p ( f |s ) : p ∼Q
©

≤ sup
¦

lim sup
n→+∞

Emeas,p ( fn |s ) : p ∼Q
©

≤ sup
¦

lim sup
n→+∞

�

sup
¦

Emeas,p ′ ( fn |s ) : p ′ ∼Q
©�

: p ∼Q
©

= lim sup
n→+∞

�

sup
¦

Emeas,p ′ ( fn |s ) : p ′ ∼Q
©�

= lim sup
n→+∞

Emeas( fn |s ).

As mentioned before, the result above implies, in combination with Theorem 6, that Emeas is dominated by
our model EA.

Corollary 19. We have that Emeas( f |s )≤ EA( f |s ) = EV ( f |s ) for all f ∈V and all s ∈X ∗.
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Proof. Immediate consequence of Theorem 6 and Theorem 18.

Corollary 19 extends upon an earlier result by Lopatatzidis et al. [12, Theorem 33], which says that Emeas( f |s )≤

EV( f |s ) for all s ∈X ∗ and some specific variables f inVb,lim. The definition of EV in [12] slightly differs from ours
though. The version in [12] is always larger or equal than—so at least as conservative as—ours because they
work with supermartingales that can only take real values; see [19, section 8] for more details. Hence, Corol-
lary 19 certainly implies [12, Theorem 33]. Another existing result that is strongly related to Corollary 19 is due
to Shafer and Vovk [5, Proposition 9.8], which seems to say that Emeas( f |�)≤ EV( f |�) for all bounded below vari-
ables f ∈Vb. Since our result applies to all f ∈V and all s ∈X ∗, our result would in that sense be stronger than
theirs. However, it is not immediately clear whether we can actually draw such conclusions. Unlike in our case,
Shafer and Vovk [5, Section 9.2] do not require that, for each possible situation, a local model should be specified
beforehand. To put it in their terms: Forecaster need not declare to Skeptic beforehand—that is, before the game
starts—which local upper expectations he is going to choose. Instead, Shafer and Vovk only start off with a set
Q of local upper expectations from which, at each situation, Forecaster can choose. Since this setQ is moreover
required to be constant throughout the whole game, this crucially implies that we, as subjects outside the game,
are unable to specify Forecaster’s moves—and hence, the choice of the local upper expectation at each situation.
The global game-theoretic upper expectation will therefore not depend on Forecaster’s moves, but rather only
on the set Q. Moreover, both of their global models—their global game-theoretic upper expectation and their
global measure-theoretic upper expectation—are defined on variables with a domain that differs from Ω. Be-
sides the fact that we find it far from trivial how this whole framework relates to ours here, they also impose
some relatively strong toplogical conditions on the setQ. Hence, all together, in order to draw a fair comparison,
we feel like a closer look is required. We hope to clarify this in our future work.

Moving on, the inevitable question that comes to mind when looking at Corollary 19 is whether the inequal-
ity can be turned into an equality. We are aware of two partial answers. On the one hand, Shafer and Vovk
seem to establish in [5, Theorem 9.7] that Emeas( f |�) = EV ( f |�) for all Suslin gambles f ∈ V; this includes all
F -measurable gambles and is therefore a very strong result. However, here too, as before, their framework dif-
fers substantially from ours and the result requires additional topological assumptions. It is therefore again not
immediately clear if, and how, it translates to our context; we leave this for future work. On the other hand, we
also have a result by Lopatatzidis et al. [12, Theorem 29] that shows that Emeas( f |s ) = EV( f |s ) for all s ∈ X ∗ and
all n-measurable gambles f —and therefore all finitary gambles f in Vfin. Here too, however, the result is not
immediately applicable because —as explained directly after Corollary 19—the version of EV that is used in [12]
differs from ours. We therefore give a self-contained proof instead. Nevertheless, our ideas and techniques are
essentially the same as the ones that were used to obtain [12, Theorem 29].

We start by showing that Emeas satisfies P3=; the desired equivalence result will then follow as an immediate
consequence.

Lemma 20. The upper expectation Emeas satisfies P3=.

Proof. Consider any f ∈Vfin. Let n ∈N0 be such that f is n-measurable—there is at least one such an n because
f is finitary. Then, to establish the fact that Emeas satisfies P3=, it suffices to prove that, for all m ∈N0,

there is some p ∼Q such that Emeas(Emeas( f |X1:m+1)|X1:m ) = Emeas,p ( f |X1:m ). (8)

Indeed, by definition of Emeas, Emeas,p ( f |X1:m )≤ Emeas( f |X1:m ) for all p ∼Q and all m ∈N0, and therefore, expres-
sion (8) implies that Emeas(Emeas( f |X1:m+1)|X1:m ) ≤ Emeas( f |X1:m ) for all m ∈ N0. The converse inequality then
follows from Theorem 18, which says that Emeas satisfies P3.

Let us first show that expression (8) holds for any m ≥ n . Consider any ℓ ≥ n and any x1:ℓ ∈ X
ℓ. Since f

is n-measurable and ℓ ≥ n , f takes a constant value f (x1:n ) on Γ (x1:ℓ), and therefore, we can write that f Ix1:ℓ
=

f (x1:n )Ix1:ℓ
. Hence, for any p ∼Q, since Emeas,p satisfies P2 due to Theorem 14, we have that

Emeas,p ( f |x1:ℓ)
P2
= Emeas,p ( f Ix1:ℓ

|x1:ℓ) = Emeas,p ( f (x1:n )Ix1:ℓ
|x1:ℓ)

P2
= Emeas,p ( f (x1:n )|x1:ℓ) = Emeas,p ( f (x1:n )|x1:ℓ).

where the last step follows from Proposition 12 and the fact that Emeas,p ( f (x1:n )|x1:ℓ) exists because f (x1:n ) is a
constant. Furthermore, since f (x1:n ) is real-valued [because f is a gamble], M1 implies that Emeas,p ( f (x1:n )|x1:ℓ) =
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f (x1:n ). Hence, we have that

Emeas,p ( f |x1:ℓ) = f (x1:n ) for all p ∼Q, all ℓ≥ n and all x1:ℓ ∈X
ℓ. (9)

So, since m ≥ n , the right hand side of Equation (8) is equal to f (X1:n ) = f , whatever the tree p ∼ Q. Moreover,
note that Equation (9) also implies that Emeas( f |x1:ℓ) = f (x1:n ) for all ℓ ≥ n and all x1:ℓ ∈ X

ℓ. Then, since m ≥ n ,
and therefore certainly m + 1≥ n , the left hand side of Equation (8) is equal to

Emeas(Emeas( f |X1:m+1)|X1:m ) = Emeas( f (X1:n )|X1:m ) = Emeas( f |X1:m ) = f ,

where the last step follows once more from the fact that m ≥ n , and that Emeas( f |x1:ℓ) = f (x1:n ) for all ℓ ≥ n and
all x1:ℓ ∈ X

ℓ. Hence, irrespectively of the tree p ∼ Q, both sides of Equation (8) are equal to f —and therefore
equal to each other—for the case that m ≥ n .

For the case that m < n , we will establish expression (8) using a decreasing induction argument in m . The
case where m = n will serve as an induction base; that expression (8) holds for this case was just proved above.
Now suppose that expression (8) is satisfied with m = ℓ where 1≤ ℓ≤ n , meaning that there is some p ∼Q such
that Emeas(Emeas( f |X1:ℓ+1)|X1:ℓ) = Emeas,p ( f |X1:ℓ). First note that this implies that Emeas( f |X1:ℓ) = Emeas,p ( f |X1:ℓ)

because, on the one hand, Emeas( f |X1:ℓ)≤ Emeas(Emeas( f |X1:ℓ+1)|X1:ℓ) due to Theorem 18 which says that Emeas

satisfies P3, and on the other hand, Emeas,p ( f |X1:ℓ) ≤ Emeas( f |X1:ℓ) due to the definition of Emeas. Furthermore,
because f is a finitary gamble, and therefore an F -measurable gamble, Emeas,p ( f |X1:ℓ) exists and therefore, by
Proposition 12,

Emeas( f |X1:ℓ) = Emeas,p ( f |X1:ℓ) = Emeas,p ( f |X1:ℓ).

Moreover, using M1 and M2, and the fact that inf f and sup f are both real (because f is a gamble), it can easily
be inferred that inf f ≤ Emeas,p ( f |X1:ℓ)≤ sup f . So Emeas( f |X1:ℓ) = Emeas,p ( f |X1:ℓ) is a gamble, and more specifically
an ℓ-measurable gamble. Then, fix any x1:ℓ−1 ∈X

ℓ−1 and note that, since Emeas satisfies P1 and P2 by Theorem 18,
we can apply Lemma 1 to obtain that

Emeas(Emeas( f |X1:ℓ)|x1:ℓ−1) = Emeas(Emeas,p ( f |X1:ℓ)|x1:ℓ−1) =Qx1:ℓ−1
(Emeas,p ( f |x1:ℓ−1 ·)).

Then, due to the fact that Px1:ℓ−1
is related with Qx1:ℓ−1

through Equation (2), there is some p ′( · |x1:ℓ−1) ∈ Px1:ℓ−1
such

that

Emeas(Emeas( f |X1:ℓ)|x1:ℓ−1) =Qx1:ℓ−1
(Emeas,p ( f |x1:ℓ−1 ·)) =

∑

xℓ∈X

p ′(xℓ|x1:ℓ−1)Emeas,p ( f |x1:ℓ). (10)

Moreover, since f is n-measurable, we can write that f =
∑

z1:n∈X n f (z1:n )Iz1:n
, and therefore, the Lebesgue integ-

ral Emeas,p ( f |x1:ℓ) for any xℓ ∈X , reduces—by definition; see [1, Section 2.6.1]—to the finite sum

Emeas,p ( f |x1:ℓ) =
∑

z1:n∈X
n

f (z1:n )P|x1:ℓ
(z1:n ) =
∑

z1:ℓ∈X
ℓ

∑

xℓ+1:n∈X
n−ℓ

f (z1:ℓxℓ+1:n )P|x1:ℓ
(z1:ℓxℓ+1:n ),

where the last step simply is a convenient change of notation. Due to Equation (6), we have, for all z1:ℓ ∈ X
ℓ

and all xℓ+1:n ∈ X
n−ℓ, that P|x1:ℓ

(z1:ℓxℓ+1:n ) = 0 if z1:ℓ 6= x1:ℓ and P|x1:ℓ
(z1:ℓxℓ+1:n ) =
∏n−1

i=ℓ
p (xi+1|x1:i ) if z1:ℓ = x1:ℓ.

Substituting these expressions in the equality above, gives us

Emeas,p ( f |x1:ℓ) =
∑

xℓ+1:n∈X
n−ℓ

f (x1:n )P|x1:ℓ
(x1:n ) =
∑

xℓ+1:n∈X
n−ℓ

f (x1:n )

n−1
∏

i=ℓ

p (xi+1|x1:i ).

Then, plugging this back into Equation (10), we obtain that

Emeas(Emeas( f |X1:ℓ)|x1:ℓ−1) =
∑

xℓ∈X

p ′(xℓ|x1:ℓ−1)
∑

xℓ+1:n∈X
n−ℓ

f (x1:n )

n−1
∏

i=ℓ

p (xi+1|x1:i )

=
∑

xℓ:n∈X
n−ℓ+1

f (x1:n )p
′(xℓ|x1:ℓ−1)

n−1
∏

i=ℓ

p (xi+1|x1:i ). (11)
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Now let p ∗ ∼Q be any compatible precise probability tree such that p ∗( · |x1:ℓ−1) = p ′( · |x1:ℓ−1) and p ∗( · |x1:i ) =

p ( · |x1:i ) for all ℓ≤ i ≤ n−1 and all xℓ:i ∈X
i−ℓ+1; it is always possible to choose such a compatible tree p ∗ because

p ∼ Q and p ′( · |x1:ℓ−1) ∈ Px1:ℓ−1
. Then note that, for any xℓ:n ∈ X

n−ℓ+1, the corresponding probability P∗|x1:ℓ−1
(x1:n ),

related with p ∗ through Equation (6), is equal to p ′(xℓ|x1:ℓ−1)
∏n−1

i=ℓ
p (xi+1|x1:i ). Hence, recalling Equation (11),

we infer that

Emeas(Emeas( f |X1:ℓ)|x1:ℓ−1) =
∑

xℓ:n∈X
n−ℓ+1

f (x1:n )P
∗
|x1:ℓ−1

(x1:n ) =
∑

z1:ℓ−1∈X
ℓ−1

∑

xℓ:n∈X
n−ℓ+1

f (z1:ℓ−1 xℓ:n )P
∗
|x1:ℓ−1

(z1:ℓ−1 xℓ:n )

= Emeas,p ∗ ( f |x1:ℓ−1) = Emeas,p ∗ ( f |x1:ℓ−1),

where the second step follows from the fact that P∗|x1:ℓ−1
(z1:ℓ−1 xℓ:n ) = 0 if z1:ℓ−1 6= x1:ℓ−1 due to Equation (6), where

the penultimate step follows from f =
∑

z1:n∈X n f (z1:n )Iz1:n
and the definition of the Lebesgue integral [1, Sec-

tion 2.6.1], and where the last step follows from Proposition 12. Hence, since the equation above holds for any
x1:ℓ−1 ∈ X

ℓ−1, we have established expression (8) for the case where m = ℓ − 1, concluding our proof of the
induction step.

That Emeas, EA and EV are all equal on the domainVfin now follows straightforwardly by combining Lemma 20
with Corollary 19, Theorem 18 and Proposition 2.

Proposition 21. We have that Emeas( f |s ) = EA( f |s ) = EV( f |s ) for all f ∈Vfin and all s ∈X ∗.

Proof. Due to Corollary 19, it suffices to prove that Emeas( f |s ) ≥ EA( f |s ) for all f ∈ Vfin and all s ∈ X ∗. This can
easily be done by combining Theorem 18, Lemma 20 and Proposition 2. Indeed, Theorem 18 says that Emeas

is an element of E1−5(Q) ⊆ E1−4(Q), and Lemma 20 says that Emeas satisfies P3=, so Proposition 2 implies that
Emeas( f |s ) ≥ E ′( f |s ) for all f ∈ Vfin, all s ∈ X ∗ and all E ′ ∈ E1−4(Q). In particular, this implies that Emeas( f |s ) ≥

EA( f |s ) for all f ∈Vfin and all s ∈X ∗ because, by definition, EA ∈E1−5(Q)⊆E1−4(Q).

Whether the equality with Emeas can be extended to a more general domain, remains an open question that
we would like to pursue in our future research. We expect that there is much to learn from the results in [5,
Section 9.2], provided that they can be translated to our setting here.

10. Conclusion

We have put forward a small set of simple axioms P1–P5 and argued that they are desirable for a global upper
expectation in the context of discrete-time finite-state uncertain processes. We have established the existence
of a unique most conservative model under these axioms, and have in addition given sufficient conditions to
uniquely characterise this most conservative model. Using this characterisation, we have shown that our most
conservative upper expectation coincides with a version of the game-theoretic upper expectation used by Shafer
and Vovk, and therefore has particularly powerful mathematical properties, despite the simplicity of our defining
axioms.

We also considered an alternative, more traditional measure-theoretic approach, where we defined a global
belief model using an upper envelope of upper integrals corresponding to compatible precise probability trees.
We have shown that this model satisfies axioms P1–P5 and therefore, that our most conservative model gives
guaranteed upper bounds on the value of this measure-theoretic upper expectation. For precise probability
trees, both models, and consequently also the game-theoretic model, coincide. In the imprecise case, equality
was only established for the domain of finitary gambles, and it remains to be seen whether this can be extended
to a more general domain.

Given our current findings, we belief there are a number of reasons why our global model EA candidates as an
excellent choice when it comes to modelling discrete-time finite-state uncertain processes. First and foremost,
its definition is based on the axioms P1–P5; a set of properties which, in our opinion, are essential for a global
belief model to have. Our model EA is taken to be the most conservative or, equivalently, the least informative
model under these axioms because we do not want to include any further information. In this way, we obtain a
definition that is both convincing and interpretationally clear. Moreover, if one desires her global belief model
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to also have other properties, additional to P1–P5, then our model EA would still serve as a conservative upper
bound for her model. As a second argument, we recall from Section 8 that our model EA possesses rather strong
continuity properties, as well as several fundamental probabilistic laws. Thirdly and lastly, our model EA coin-
cides with the game-theoretic upper expectation EV and dominates the measure-theoretic upper expectation
Emeas. Hence, our model EA plays an important role to anyone: for a person with a game-theoretic background,
the equivalent models EA and EV can be used interchangeably and can therefore benefit from each others proper-
ties; for a person with a measure-theoretic background, our model EA always gives a conservative upper bound
for the model Emeas.

One counterargument that could be given to the plea above, is whether axiom P5 is really desirable or even
justified for a global belief model. Our justification for it is based on the fact that we consider upper expectations
of non-finitary variables to be abstract idealisations of upper expectations of finitary variables. Still, this could be
seen as a rather artificial and unnecessary assumption, similar to the countable additivity property in measure
theory. However, compared to other common continuity properties, e.g. monotone convergence, property P5 is
fairly weak since it only applies to sequences of finitary gambles and only imposes an inequality on the value of
the global upper expectations. Moreover, that both the game-theoretic and the measure-theoretic model satisfy
property P5, can only be seen as additional motivation to adopt it.
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Appendix A. Basic Measure-Theoretic Concepts

A measurable space (Y ,F ) is a couple, where Y is a non-empty set andF is a σ-algebra onY . We say that
A ⊆Y isF -measurable if A ∈F . Such a set A ∈F is also called an (F -measurable) event. We say that an exten-
ded real-valued function f :Y → R isF -measurable if the set f −1(A) := {y ∈ Y : f (y ) ∈ A} isF -measurable for
every A ∈B (R). Here,B (R) denotes the Borel algebra onR, being theσ-algebra generated by all open—or equi-
valently, closed—sets inR. Recall that we consider the usual order topology onR and therefore, the Borel algebra
B (R) can alternatively be generated from the sets {x ∈R: x ≤ c } where c ∈R; see for instance [1, Section 2.2.2].
Then, as we have done in the main text, we can alternatively characterise theF -measurable functions as those
functions f :Y → R such that {y ∈ Y : f (y ) ≤ c } isF -measurable for all c ∈ R [3, Theorem 13.1. (i)]. Typically,
anF -measurable (extended) real-valued function f is also called a random variable.

A probability space (Y ,F , P) is a measurable space (Y ,F ) equipped with a σ-additive probability measure
P onF . We say that an event A ∈F is P-null if P(A) = 0. We will also say that a property about the elements in
Y holds P-almost surely (P-a.s.) if there is a P-null event A ∈ F such that the property holds for all y ∈ Y \ A.
Note that the intersection A ∩ B ∈ F of two P-almost sure events A, B ∈ F , is itself also P-almost sure. Now,
for any probability space (Y ,F , P) and any extended real-valued function f :Y →R that isF -measurable, the
(measure-theoretic) expectation E( f ) of f will be defined using the Lebesgue integral [1, 3, 15]: E( f ) :=

∫

Y
f dP.

As we already mentioned in the main text, this integral is definitely well-defined if f is non-negative and is
otherwise only defined if min{

∫

Y
f +dP,
∫

Y
f −dP} < +∞, with f + = f ∨0 and f − = − f ∧0, in which case we let

∫

Y
f dP :=
∫

Y
f +dP−
∫

Y
f −dP. When we say that ‘E( f ) exists’, we take this to mean that its defining integral

∫

Y
f dP is well-defined. Furthermore, an extended real-valued function f : Y → R is called P-integrable if it is

F -measurable and
∫

Y
| f |dP =
∫

Y
f +dP+
∫

Y
f −dP <+∞.

The (measure-theoretic) conditional expectation E( f |G ) of a non-negative F -measurable extended real-
valued function f with respect to a σ-algebra G ⊆ F , is any extended real-valued function on Y that is G -
measurable and that satisfies

∫

A
f dP =
∫

A
E( f |G )dP or, equivalently,

∫

Y
f 1AdP =
∫

Y
E( f |G )1AdP for all A ∈G . If

f isF -measurable and non-negative, the conditional expectation E( f |G ) exists and is unique up to a P-null set
[1, Section 2.7]. The value of E( f |G ) on a P-null set can be chosen arbitrarily since it will not change the value
of the integral

∫

A
E( f |G )dP =
∫

Y
E( f |G )1AdP; see Property M3 below. Similarly to the unconditional case, the

measure-theoretic conditional expectation E( f |G ) of a generalF -measurable extended real-valued function f

with respect to a σ-algebra G ⊆ F is only defined if min{E( f +|G ), E( f −|G )} < +∞ P-almost surely, and then
E( f |G ) := E( f +|G )−E( f −|G ) up to a P-null set. If f is P-integrable, such a conditional expectation E( f |G ) always
exists; see also [3, Section 34]. We moreover have the following convenient properties.

Lemma 22. For any probability space (Y ,F , P) and any two extended real-valued functions f and g that areF -

measurable, the following properties hold, provided that the considered unconditional or conditional expectations

exist.

M1. E(a f + b ) = a E( f ) + b for all a , b ∈R;

M2. f ≤ g ⇒ E( f )≤ E(g );

M3. f = g P-almost surely ⇒ E( f ) = E(g );

M4. E( f |F ) = f P-almost surely;

M5. E( f |G ∗) = E( f ) where G ∗ = {;,Y };

M6. E(E( f |G2)|G1) = E( f |G1) P-almost surely for every two σ-algebrasG1 ⊆G2 ⊆F .

M7. inf f ≤ E( f |G ) P-almost surely and E( f |G )≤ sup f P-almost surely for anyσ-algebra G ⊆F ;

Proof. Let us first show that M5 follows from [1, Section 2.7.4(E*)]. There, it is stated that E( f |G ∗) = E( f ) holds P-
almost surely. However, sinceG ∗ = {;,Y } and E( f |G ∗) is G ∗-measurable, we find that E( f |G ∗)must be constant.
So if E( f |G ∗) = E( f ) holds P-almost surely, it also holds on the entire domainY .

To prove Property M1, consider [1, Section 2.7.4(D*)]which in particular states that E(a f +b |G ∗) = a E( f |G ∗)+
E(b |G ∗) P-almost surely. Since E(b |G ∗) = b P-almost surely by [1, Section 2.7.4(A*)], we have that E(a f +b |G ∗) =
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a E( f |G ∗)+b P-almost surely, which by M5 implies that E(a f +b ) = a E( f )+b P-almost surely. Since both sides
are constants, M1 follows.

Property M2 follows from [1, Section 2.7.4(B*)], which states that E( f |G ∗) ≤ E(g |G ∗) P-almost surely if f ≤ g

P-almost surely. Indeed, if f ≤ g , then certainly f ≤ g P-almost surely and then [1, Section 2.7.4(B*)] together
with M5 implies that E( f )≤ E(g ) P-almost surely; since both sides are constants, M2 follows.

To prove M3, note that f = g P-almost surely implies that both f ≤ g P-almost surely and f ≥ g P-almost
surely. Then M3 follows by applying the previous reasoning to both of these inequalities. Furthermore, Proper-
ties M4 and M6 are taken directly from [1, Section 2.7.4].

To see that property M7 holds, consider [1, Section 2.7.4(A*)], which in particular says that E(sup f |G ) =

sup f P-almost surely. Combining this with mononicity [1, Section 2.7.4(B*)], and taking into account that the
intersection of two P-almost sure events is itself also P-almost sure, we indeed find that E( f |G )≤ sup f P-almost
surely. The fact that inf f ≤ E( f |G ) P-almost surely can then easily be obtained using the linearity of E(·|G ) [1,
Section 2.7.4(D*)].

Lemma 23. Consider any probability space (Y ,F , P), any σ-algebra G ⊆F and any sequence { fn}n∈N0
of exten-

ded real-valued functions such that fn isF -measurable for all n ∈N0.

M8. If { fn}n∈N0
is non-decreasing and there is anF -measurable function f ∗ such that E( f ∗)>−∞ and fn ≥ f ∗

for all n ∈N0, then

lim
n→+∞

E( fn ) = E( f )where lim
n→+∞

fn = f .

M9. If { fn}n∈N0
is non-increasing and there is anF -measurable function f ∗ such that E( f ∗) <+∞ and fn ≤ f ∗

for all n ∈N0, then

lim
n→+∞

E( fn ) = E( f )where lim
n→+∞

fn = f .

Proof. Both properties can directly be obtained by applying M5 to the properties stated in [1, Theorem 2.7.2]
and observing that both sides of the acquired equations will be constants (allowing us to infer that the equations
always hold, instead of P-almost surely as is the case for the more general versions in [1, Theorem 2.7.2]).

A (discrete) filtration {Fn }n∈N0
on a measurable space (Y ,F ) is a sequence of increasing σ-algebras in F ;

so F0 ⊆ F1 ⊆ · · ·F . We will then also use F∞ to denote the smallest σ-algebra σ(∪n∈N0
Fn ) generated by the

σ-algebras Fn . We say that (Y ,F ,{Fn}n∈N0
) is a filtered measurable space if (Y ,F ) is equipped with a filtra-

tion {Fn}n∈N0
, and moreover say that (Y ,F ,{Fn}n∈N0

, P) is a filtered probability space if it additionally has a
σ-additive measure P onF . A sequence {Nn}n∈N0

of extended real-valued functions on Y is called a measure-

theoretic process in a filtered probability space (Y ,F ,{Fn}n∈N0
, P) if Nn is Fn -measurable for all n ∈ N0. It is

moreover called a measure-theoretic martingale if Nn is real-valued and E(Nn+1|Fn ) = Nn P-almost surely for
all n ∈N0, where the existence of E(Nn+1|Fn ) is an implicit condition. The following two results are fundamental
in establishing a relation between the measure-theoretic and the game-theoretic framework.

Proposition 24 (Lévy’s zero-one law; [2, Theorem 7.4.3]). For any filtered probability space (Y ,F ,{Fn}n∈N0
, P)

and any P-integrable function f , we have that

lim
n→+∞

E( f |Fn ) = E( f |F∞) P-almost surely

Proposition 25 (Ville’s theorem; [4, Proposition 8.14]). For any filtered probability space (Y ,F ,{Fn}n∈N0
, P) and

any A ∈ F∞, we have that P(A) = 0 if and only if there is a non-negative measure-theoretic martingale that con-

verges to +∞ on A.
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Appendix B. Proof of Proposition 10

Proposition 10 will be shown to hold by establishing the equivalence between the global measure-theoretic
and global game-theoretic (upper) expectation on a particular restricted domain and then applying Theorem 6.
Before we relate both global models, however, we first establish the following alternative characterisation for the
unique extension Q↑

s
of the local linear (upper) expectation Qs corresponding to any probability mass function

ps onX :

Lemma 26. Consider any probability mass function ps onX and let Qs be the unique linear expectation onL (X )

corresponding to ps . Then we have that Q↑
s
( f ) =
∑

x∈X f (x )ps (x ) for all f ∈L (X ).

Proof. Let Es :L (X )→ R be defined by Es ( f ) :=
∑

x∈X f (x )ps (x ) for all f ∈ L (X ). We show that Q ↑
s

coincides
with Es . It is clear that this is the case on the domainL (X ) of all gambles onX ; this follows immediately from
the fact that Q ↑

s
is an extension of Qs together with the fact that Es ( f ) =

∑

x∈X f (x )ps (x ) =Qs ( f ) for all f ∈L (X ).
To see that both coincide onL b(X ), consider any f ∈L b(X ) and observe that

Q ↑
s
( f )

C8
= lim

c→+∞
Q↑

s
( f ∧c ) = lim

c→+∞

∑

x∈X

f ∧c (x )ps (x ) =
∑

x∈X

lim
c→+∞

f ∧c (x )ps (x ) =
∑

x∈X

ps (x ) lim
c→+∞

f ∧c (x )

=
∑

x∈X

ps (x ) f (x ) = Es ( f ),

where the second equality follows from the fact that f ∧c ∈ L (X ) for any c ∈ R and, as we have just shown, Q↑
s

and Es coincide onL (X ); where the third equality follows from the fact thatX is finite and that, for all x ∈X ,
f ∧c (x )ps (x ) is real and non-decreasing in c ; where the fourth equality follows from the fact that ps (x )≥ 0 for all
x ∈ X and our convention that 0 · (+∞) = 0; and where the last equality follows from the definition of Es . In
an analogous way, we show that Q↑

s
and Es coincide on their entire domainL (X ): consider any f ∈L (X ) and

note that

Q ↑
s
( f )

C9
= lim

c→−∞
Q↑

s
( f ∨c ) = lim

c→−∞

∑

x∈X

f ∨c (x )ps (x ) =
∑

x∈X

lim
c→−∞

f ∨c (x )ps (x ) =
∑

x∈X

ps (x ) lim
c→−∞

f ∨c (x )

=
∑

x∈X

ps (x ) f (x ) = Es ( f ),

where the second equality follows from the fact that f ∨c ∈L b(X ) for any c ∈R and, as we have just shown, Q↑
s

and Es coincide onL b(X ); where the third equality follows from the fact thatX is finite, our convention that
+∞−∞ = −∞+∞ = +∞ and that, for all x ∈ X , f ∨c (x )ps (x ) is in R∪ {+∞} and non-decreasing in c ; the
fourth equality follows from the fact that ps (x ) ≥ 0 for all x ∈ X and our convention that 0 · (−∞) = 0; and the
last equality follows from the definition of Es .

Henceforth, for any precise probability tree p and any s ∈X ∗, we will always let Q↑
s

be this unique extension

of the linear expectation Qs corresponding to the probability mass function p (·|s ). We will then say that a map
M :X ∗ → R is a game-theoretic supermartingale with respect to a precise probability tree p ifM is a game-
theoretic supermartingale with respect to the local upper expectations Q ↑

s
.

Furthermore, for any precise probability tree p : s ∈X ∗ 7→ p (·|s ), we let P :F ×X ∗→R be the corresponding
conditional probability measure as discussed in Section 9, where F is the σ-algebra generated by all cylinder
events. Recall that, for any s ∈ X ∗, the map P(·|s ) = P|s is then a probability measure on F . This allows us to
apply the concepts and results in Appendix A here, by considering the probability space (Ω,F , P|s ), for any s ∈X ∗.
For notational convenience, we will let E|s ( f ) be the Lebesgue integral

∫

Ω
f dP|s with respect to the measure

P|s for all F -measurable f ∈ V and all s ∈ X ∗ such that
∫

Ω
f dP|s exists. So E|s ( f ) is an alternative notation

for Emeas,p ( f |s ). We introduce this notation because it allows us to write E|s ( f |G ) to denote a G -measurable
function representing the measure-theoretic expectation of f conditional on a σ-algebra G ⊆ F , as defined
in Appendix A. Furthermore, we equip the measurable space (Ω,F ) with the filtration {Fn }n∈N0

where, for any
n ∈N0,Fn is theσ-algebra generated by all cylinder events Γ (x1:n )where x1:n ∈X

n . Note that, for any n ∈N0, an
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Fn -measurable function is then an n-measurable variable because the cylinder events Γ (x1:n ) form the atoms
of Fn and X is finite. Hence, any measure-theoretic process {Nn}n∈N0

in (Ω,F ,{Fn}n∈N0
) is a sequence of n-

measurable variables. This allows us to writeNn (x1:n ) for any n ∈ N0 and any x1:n ∈ X
n to mean the constant

value ofNn on allω∈ Γ (x1:n ).

Lemma 27. Consider any x1:n ∈ X
∗, any precise probability tree p and let P be the corresponding conditional

probability measure. Then, for any non-negative measure-theoretic martingale {Ni }i∈N0
in the filtered probability

space (Ω,F ,{Fm}m∈N0
, P|x1:n

), there is a non-negative game-theoretic (super)martingale11M with respect to the

tree p such that lim infM ≥x1:n
lim infi→+∞Ni and moreoverM (x1:n ) =N0(�).

Proof. Fix any non-negative measure-theoretic martingale {Ni }i∈N0
and letM :X ∗→R be defined by

M (z1:m ) :=









Nm (z1:m ) if n ≤m , z1:n = x1:n and P|x1:n
(z1:m )> 0;

+∞ if n ≤m , z1:n = x1:n and P|x1:n
(z1:m ) = 0;

Nn (x1:n ) otherwise,

for all z1:m ∈X
∗.

We show thatM is a non-negative game-theoretic supermartingale such thatM (x1:n ) =N0(�) and lim infM ≥x1:n

lim infi→+∞Ni .
Let us first show thatM (z1:m ) ≥ Q↑

z1:m
(M (z1:m ·)) for all z1:m ∈ X

∗ and therefore, thatM is a game-theoretic
supermartingale. Recall that, because {Ni }i∈N0

is a non-negative measure-theoretic martingale, we have that
{Ni }i∈N0

is a sequence of non-negative real i -measurable variables such that E|x1:n
(Ni+1|Fi ) = Ni P|x1:n

-almost
surely for all i ∈N0 (note that the considered expectations exist because {Ni }i∈N0

is non-negative). For all i ∈N0

and all A ∈Fi , since E|x1:n
(Ni+1|Fi ) andNi only differ on a P|x1:n

-null set, we have that
∫

A
E|x1:n

(Ni+1|Fi )dP|x1:n
=

∫

A
Ni dP|x1:n

because of M3. In particular, this implies that
∫

Γ (z1:m )

E|x1:n
(Nm+1|Fm )dP|x1:n

=

∫

Γ (z1:m )

Nm dP|x1:n
for any m ∈N0 and any z1:m ∈X

m .

Moreover, since Γ (z1:m ) ∈ Fm , it follows from the definition of the measure-theoretic conditional expectation
that
∫

Γ (z1:m )
Nm+1dP|x1:n

=
∫

Γ (z1:m )
E|x1:n

(Nm+1|Fm )dP|x1:n
. Combining both equalities, we find that

∫

Γ (z1:m )

Nm+1dP|x1:n
=

∫

Γ (z1:m )

Nm dP|x1:n
=Nm (z1:m )

∫

Γ (z1:m )

dP|x1:n
=Nm (z1:m )P|x1:n

(z1:m ),

where the second equality follows from M1 and the fact thatNm is constant and real on the cylinder event Γ (z1:m ).
Moreover, becauseNm+1 is (m + 1)-measurable and real-valued, the term on the left hand side of the equation
above reduces to the finite sum

∑

zm+1∈X
Nm+1(z1:m+1)P|x1:n

(z1:m+1), allowing us to conclude that

Nm (z1:m )P|x1:n
(z1:m ) =
∑

zm+1∈X

Nm+1(z1:m+1)P|x1:n
(z1:m+1) for any m ∈N0 and any z1:m ∈X

m . (B.1)

Consider now first any m ≥ n and any z1:m ∈X
m such that z1:n = x1:n and P|x1:n

(z1:m )> 0. It then follows from
the definition ofM that

M (z1:m )P|x1:n
(z1:m ) =Nm (z1:m )P|x1:n

(z1:m )
(B.1)
=
∑

zm+1∈X

Nm+1(z1:m+1)P|x1:n
(z1:m+1)

=
∑

zm+1∈X

M (z1:m+1)P|x1:n
(z1:m+1)

=
∑

zm+1∈X

M (z1:m+1)P|x1:n
(z1:m )p (zm+1|z1:m )

= P|x1:n
(z1:m )
∑

zm+1∈X

M (z1:m+1)p (zm+1|z1:m ) = P|x1:n
(z1:m )Q

↑

z1:m
(M (z1:m ·)),

11As shown in the proof, the inequalityM (z1:m )≥Q ↑z1:m
(M (z1:m ·)) is actually an equality, for all z1:m ∈X

∗. Combining this with the non-
negativity ofM and the characterisation of the upper expectations Q ↑z1:m

that we established in Lemma 26, it can then be deduced that−M
is also a game-theoretic supermartingale. In this case, we can therefore actually callM a game-theoretic martingale.
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where the third equality follows becauseNm+1(z1:m+1)only differs fromM (z1:m+1) if P|x1:n
(z1:m+1) = 0 [because n ≤

m + 1 and z1:n = x1:n ] and our convention that 0 · (+∞) = 0, where the fourth equality follows from Equation (6)
together with the fact that n < m + 1 and z1:n = x1:n , and where the last equality follows from the expression
for Q ↑

z1:m
that we established in Lemma 26. Recall that P|x1:n

(z1:m ) > 0, so we can devide both sides by P|x1:n
(z1:m )

to obtain thatM (z1:m ) = Q ↑
z1:m
(M (z1:m ·)). As a consequence, the condition thatM (z1:m ) ≥ Qz1:m

(M (z1:m ·)) is
satisfied for all z1:m ∈X

∗ such that m ≥ n , z1:n = x1:n and P|x1:n
(z1:m )> 0.

Second, consider any z1:m ∈ X
∗ such that m ≥ n , z1:n = x1:n and P|x1:n

(z1:m ) = 0. Then we also have that
P|x1:n

(z1:m+1) = 0 for any zm+1 ∈X because Γ (z1:m+1) ⊂ Γ (z1:m ), and it therefore follows from the definition ofM
thatM (z1:m ) =M (z1:m+1) = +∞ for all zm+1 ∈X . Hence, using Lemma 26, we find that

Q↑
z1:m
(M (z1:m ·)) =
∑

zm+1∈X

M (z1:m+1)p (zm+1|z1:m ) = +∞=M (z1:m ),

which establishes that indeedM (z1:m ) ≥ Q ↑
z1:m
(M (z1:m ·)). So we have thatM (z1:m ) ≥ Q↑

z1:m
(M (z1:m ·)) for all

z1:m ∈X
∗ such that m ≥ n and z1:n = x1:n .

Thirdly, consider any other situation z1:m ∈X
∗. That is, consider any z1:m ∈X

∗ such that n >m or z1:n 6= x1:n .
It then follows from the definition ofM thatM (z1:m ) =Nn (x1:n ) and, as we will now show, that alsoM (z1:m+1) =

Nn (x1:n ) for all zm+1 ∈ X . Our assumption about z1:m tells us that there are two cases: either n ≤m and z1:n 6=

x1:n , either n >m . If n ≤m and z1:n 6= x1:n , then also n ≤m + 1 and therefore, due to the definition ofM , we
find thatM (z1:m+1) =Nn (x1:n ) for all zm+1 ∈ X . If n >m , then either n >m + 1 or n =m + 1. If n >m + 1 or,
equivalently, n 6≤ m + 1, then it is once more clear from the definition ofM thatM (z1:m+1) = Nn (x1:n ) for all
zm+1 ∈ X . If n = m + 1, then for any zm+1 ∈ X , we either have that z1:m+1 = x1:n or that z1:m+1 6= x1:n . In the
latter case, it is clear, again due to the definition ofM , thatM (z1:m+1) =Nn (x1:n ). Otherwise, so if z1:m+1 = x1:n ,
the definition ofM also implies thatM (z1:m+1) =M (x1:n ) = Nn (x1:n ) because P|x1:n

(x1:n ) = 1 > 0 according to
Equation (6). We conclude that, indeed,M (z1:m ) = Nn (x1:n ) andM (z1:m+1) = Nn (x1:n ) for all zm+1 ∈ X . It
now follows trivially from Lemma 26 thatM (z1:m ) = Q ↑

z1:m
(M (z1:m ·)), and therefore definitely thatM (z1:m ) ≥

Q↑
z1:m
(M (z1:m ·)).

So we have proved thatM (z1:m ) ≥Q ↑
z1:m
(M (z1:m ·)) for all z1:m ∈X

∗ and therefore, thatM is indeed a game-
theoretic supermartingale with respect to the tree p . Moreover,M is non-negative because {Ni }i∈N0

is non-
negative. That lim infi→+∞M (ω

i ) ≥ lim infi→+∞Ni (ω) holds for all ω ∈ Γ (x1:n ), follows immediately from the
fact thatM (ωi ) ≥ Ni (ω

i ) =Ni (ω) for any ω ∈ Γ (x1:n ) and any i ≥ n , where the inequality is simply implied by
the definition ofM together with the fact thatωn = x1:n and i ≥ n . It still remains to show thatM (x1:n ) =N0(�).

We only need to prove thatN0(�) =Nn (x1:n ), since the desired equality then trivially follows from the defin-
ition ofM and the fact that P|x1:n

(x1:n ) = 1 > 0 due to Equation (6). To do so, consider any z1:m ∈ X
∗ such that

m < n and z1:m = x1:m . Note that, by Equation (6), we then have that P|x1:n
(z1:m ) = 1. Moreover, it should also be

clear from Equation (6) that P|x1:n
(z1:m+1) = 1 if zm+1 = xm+1 [because then z1:m+1 = x1:m+1 and m + 1 ≤ n ] and

that P|x1:n
(z1:m+1) = 0 otherwise [because then z1:m+1 6= x1:m+1]. Hence, plugging this back into (B.1), we find that

Nm (z1:m ) =Nm+1(z1:m xm+1). Since this holds for any z1:m ∈ X
∗ such that m < n and z1:m = x1:m , it follows that

Nm (x1:m ) =Nm+1(x1:m+1) for all m < n . This clearly implies thatN0(�) =N1(x1) = · · ·=Nn (x1:n ).

In the following proof, we will write, for any two f , g ∈ V, any s ∈ X ∗ and any (unconditional) probability
measure P′ onF , that f =s g P-almost surely—and similarly for≥s and≤s —if the event {ω ∈ Γ (s ) : f (ω) 6= g (ω)}

is P-null. Note that then f =s g P-almost surely if f = g P-almost surely.

Proof of Proposition 10. Fix anyF -measurable f ′ ∈V and any x1:n ∈X
∗. It suffices to show that Emeas,p ( f

′|x1:n ) =

EV( f
′|x1:n ); the desired equality is then automatically implied by Theorem 6. First observe that, because f ′ is

bounded andF -measurable, Emeas,p ( f
′|x1:n ) = E|x1:n

( f ′) exists. We will now prove that Emeas,p ( f |x1:n ) = EV( f |x1:n )

for the non-negative F -measurable gamble f := f ′ − inf f ′ (the variable f is indeed a gamble because f ′ is a
gamble and therefore inf f ′ ∈R), which then implies that Emeas,p ( f

′|x1:n ) = EV( f
′|x1:n ) because Emeas,p (·|x1:n ) and

EV both satisfy the constant additivity property; see M1 and V4.
We first show that EV( f |x1:n )≤ Emeas,p ( f |x1:n ). To do so, we will prove that there is some c ∈R such that, for

all ε > 0, there is a bounded below game-theoretic supermartingaleM ε with respect to the tree p such that
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M ε(x1:n ) = Emeas,p ( f |x1:n ) + εc and lim infM ε ≥x1:n
f . Indeed, the desired inequality then follows immediately

from the definition of EV .
Consider the filtered probability space (Ω,F ,{Fm}m∈N0

, P|x1:n
) and the corresponding measure-theoretic ex-

pectation E|x1:n
= Emeas,p (·|x1:n ). Since f is bounded andF -measurable, it is surely P|x1:n

-integrable (the Lebesgue
integral of a bounded F -measurable function is real-valued), and therefore, by Proposition 24 in Appendix A,
we have that

lim
m→+∞

E|x1:n
( f |Fm ) = E|x1:n

( f |F∞) P|x1:n
-almost surely.

Note thatF∞ =σ(∪m∈N0
Fm ) =F is the smallest σ-algebra generated by all cylinder events, which, by M4, im-

plies that E|x1:n
( f |F∞) = f , P|x1:n

-almost surely. Hence, since the intersection of two P|x1:n
-almost sure events is

itself also P|x1:n
-almost sure, we have that limm→+∞E|x1:n

( f |Fm ) = f P|x1:n
-almost surely. Moreover, note that the

conditional expectations E|x1:n
( f |Fm ) can be chosen in such a way that the sequence {E|x1:n

( f |Fm )}m∈N0
is a non-

negative measure-theoretic martingale in the filtered probability space (Ω,F ,{Fm}m∈N0
, P|x1:n

). Indeed, each
E|x1:n

( f |Fm ) is real-valued and non-negative P|x1:n
-almost surely because of M7 and the fact that f is bounded

and non-negative. So, since the value of the measure-theoretic conditional expectation can be chosen arbitrar-
ily on a null set, E|x1:n

( f |Fm ) can be chosen such that it is real-valued and non-negative everywhere. Moreover,
because of M6, we have that E|x1:n

�

E|x1:n
( f |Fm+1)|Fm

�

= E|x1:n
( f |Fm ) P|x1:n

-almost surely for all m ∈ N0, where
E|x1:n

�

E|x1:n
( f |Fm+1)|Fm

�

exists because E|x1:n
( f |Fm+1) isF -measurable and non-negative. So let {E|x1:n

( f |Fm )}m∈N0

be a version of the conditional expectations that forms a non-negative measure-theoretic martingale. We can
then use Lemma 27 to infer the existence of a non-negative game-theoretic supermartingaleM 0 with respect
to the tree p such that lim infM 0 ≥x1:n

lim infm→+∞E|x1:n
( f |Fm ) andM 0(x1:n ) = E|x1:n

( f |F0)(�). Then, because
limm→+∞E|x1:n

( f |Fm ) = f P|x1:n
-almost surely and therefore also limm→+∞E|x1:n

( f |Fm ) =x1:n
f P|x1:n

-almost surely,
we have that lim infM 0 ≥x1:n

f P|x1:n
-almost surely. Moreover, we have thatM 0(x1:n ) = E|x1:n

( f |F0)(�) = E|x1:n
( f ),

due to the fact thatF0 = {;,Ω} and property M5. So, we can conclude thatM 0 is a non-negative game-theoretic
supermartingale with respect to p such thatM 0(x1:n ) = E|x1:n

( f ) = Emeas,p ( f |x1:n ) and lim infM 0 ≥x1:n
f P|x1:n

-
almost surely.

As our final step towards obtainingM ε, consider Proposition 25 and note that it ensures that there is a non-
negative measure-theoretic supermartingale {Nm}m∈N0

in (Ω,F ,{Fm}m∈N0
, P|x1:n

) that converges to +∞ on all
paths ω ∈ Γ (x1:n ) such that lim infM 0(ω) < f (ω). Indeed, the set of all such paths ω has probability zero be-
cause lim infM 0 ≥x1:n

f P|x1:n
-almost surely. Let c :=N0(�), which is real-valued because {Nm}m∈N0

is a measure-
theoretic supermartingale. By Lemma 27, we find that there is a non-negative game-theoretic supermartingale
M ′ with respect to p such that lim infM ′ ≥x1:n

lim infm→+∞Nm andM ′(x1:n ) =N0(�) = c . Since {Nm}m∈N0
con-

verges to +∞ on all paths ω ∈ Γ (x1:n ) such that lim infM 0(ω) < f (ω), it follows thatM ′ also converges to +∞
on all such pathsω. Consider now any ε > 0 and letM ε be the process defined byM ε(s ) :=M 0(s )+εM

′(s ) for
all s ∈X ∗. ThenM ε is clearly non-negative—and therefore bounded below—and it is a game-theoretic super-
martingale because of [19, Lemma 12].12 Furthermore, note that lim infM ε(ω)≥ f (ω) for allω ∈ Γ (x1:n ). Indeed,
if lim infM 0(ω)≥ f (ω) for someω∈ Γ (x1:n ), then also lim infM ε(ω)≥ f (ω) because ε andM ′ are non-negative.
If lim infM 0(ω) < f (ω) for some ω ∈ Γ (x1:n ), thenM ′, and therefore also εM ′, converges to +∞, which, to-
gether with the non-negativity ofM 0, implies thatM ε converges to+∞ onω. Hence, also in this case, we have
that lim infM ε(ω)≥ f (ω) so we can conclude that lim infM ε ≥x1:n

f . Moreover, recall thatM ′(x1:n ) = c ∈R and
thatM 0(x1:n ) = E|x1:n

( f ), so we have thatM ε(x1:n ) =M 0(x1:n ) + εM
′(x1:n ) = E|x1:n

( f ) + εc = Emeas,p ( f |x1:n ) + εc .
Hence,M ε satisfies all the desired conditions and we conclude that indeed EV( f |x1:n )≤ Emeas,p ( f |x1:n ).

Then we are left to show the remaining inequality EV( f |x1:n ) ≥ Emeas,p ( f |x1:n ). However, this can be easily
deduced from the already obtained inequality and the self-conjugacy of Emeas,p . Indeed, E|x1:n

(− f ) exists because
− f is F -measurable and bounded, so we can apply M1 to find that Emeas,p ( f |x1:n ) = E|x1:n

( f ) = −E|x1:n
(− f ) =

−Emeas,p (− f |x1:n ). Since we have already shown that EV (g |x1:n )≤ Emeas,p (g |x1:n ) for allF -measurable g ∈V, we
have in particular that EV(− f |x1:n )≤ Emeas,p (− f |x1:n ), which implies that Emeas,p ( f |x1:n ) = −Emeas,p (− f |x1:n ) ≤

12Alternatively, instead of using [19, Lemma 12], one could also easily deduce this using the alternative expression for the local models Q ↑s
that we established in Lemma 26.
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−EV(− f |x1:n ) = EV ( f |x1:n ) ≤ EV( f |x1:n ), where the last inequality follows from V1 and the fact that EA = EV—and
therefore also EA= EV—because of Theorem 6.
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