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Abstract

Optimistic beliefs affect important areas of economic decision making, yet direct
knowledge on how belief biases operate remains limited. To better understand these
biases I conduct an experiment examining beliefs about binary events with financial
stakes. By varying financial prizes in outcomes, as well as incentive payments for accu-
racy, the experiment is able to distinguish between two leading theories of optimistic
belief formation that differ in their assumptions about how such beliefs are constrained.
The optimal expectations theory of Brunnermeier and Parker (2005) models beliefs as
being constrained through the future costs of holding incorrect beliefs, while the af-
fective decision making model of Bracha and Brown (2012) argues that beliefs are
constrained by mental costs of distorting reality. The results suggest that people hold
optimistically biased beliefs, and comparative statics indicate that these beliefs are not
constrained by increasing the costs of making inaccurate judgments. In fact, the results
support the theory of Bracha and Brown (2012), as observed bias is increasing in the
size of incentive payments for accuracy.
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1 Introduction

Optimistic beliefs play an important role in decision making, yet a lack of direct evidence

hinders the ability of researchers to model these biases. Accurately modeling optimism is

critical for developing theory and informing policy. Beliefs affect decisions such as saving for

retirement, starting a new business, or investing in the stock market.1 This has motivated

theorists to challenge the benchmark rational model of decision making under uncertainty.

While substantial theoretical progress has been made, rigorous tests of existing theory and

direct evidence about optimism are scarce.2 The contribution of this paper is to provide

this direct evidence, and distinguish between two leading ways to model optimism.

Early thinkers such as Bentham (1789) discussed the pleasures associated with holding

positive expectations about the future. Contemporary theories of optimism have incor-

porated the idea that individuals get utility from anticipation of the future. Akerlof and

Dickens (1982) implicitly use this framework in their model of cognitive dissonance when

they consider the benefits to workers of having reduced fear about the probability of an

accident at the workplace. There must also be costs to holding optimistic beliefs, as ex-

perience suggests people do not always hold extreme beliefs. In contrast to the relative

consensus regarding the benefits of optimism, there is disagreement in theory over how the

costs should be modeled.

Two approaches have been taken in the literature to model the costs of holding op-

timistic beliefs. First, holding distorted beliefs may lead an individual to make worse

decisions. This approach is taken by Brunnermeier and Parker (2005) (henceforth BP):

optimal expectations trade off the anticipatory benefits of optimism with the costs of worse

decision making. Here optimal beliefs are not directly constrained by reality. In contrast,

the second approach is to model a direct cost of distorting reality. As individual optimism

strays further from the “truth”, it becomes increasingly costly to internally justify holding

these beliefs. In the theory of affective decision making, Bracha and Brown (2012) (hence-

forth BB) model a strategic game between an emotional process and a rational process,

that emphasizes these direct costs of distorting reality.

To illustrate the difference between the two approaches, consider the topic of Oster et al.

1Evidence that optimistic beliefs play a role in these situations can be found in Puri and Robinson
(2007), Landier and Thesmar (2009), and Easterwood and Nutt (1999) respectively.

2Within psychology, there exist some direct experimental tests of optimism, however participants in
these experiments are typically not provided financial incentives for accurate responses, and these studies
are often not designed with the aim of distinguishing or testing theory. See for example Vosgerau (2010).

1



(2013), who study the beliefs of patients at risk for Huntington Disease (HD), a degenerative

neurological disorder that significantly reduces life expectancy.3 Using a time series of

objective risk status as well as subjective risk perceptions, they find that individuals are

optimistic about their risk of having HD and subsequently are less likely to be tested for

the disease. Patterns in the data are not consistent with a standard rational model, but

are consistent with the optimal expectations model of BP.4

According to the BP model, the costs of holding optimistic beliefs are the consequences

of high risk individuals making uninformed life decisions, i.e. behaving as if they were

low risk. These costs are, subconsciously, weighed against the benefits, determining the

optimal level of bias. On the other hand, in BB, as an individual becomes more and more

optimistic about his risk status for HD, his beliefs are stretched further from reality. In

determining the optimal belief, it becomes harder for the individual to believe he is of very

low risk, e.g. in face of evidence from doctors who are telling him he is at high risk for

HD.5

The differences in how BB and BP model the costs of holding optimistically biased

beliefs lead to very different policy prescriptions for de-biasing individuals. The model of

BP argues that the only way to reduce optimism bias is by altering the consequences of

actions taken while holding distorted beliefs. The BB model is suggestive that information

campaigns that raise the costs of distorting reality have the potential to be effective. In

the case of HD, the model of BP implies that forcing high risk individuals to confront their

risk status will not affect testing rates, whereas in BB this will increase the direct costs of

distorting beliefs, leading to higher testing rates.6

This paper distinguishes between these two models by eliciting beliefs of individuals

about binary events in which they have a financial stake. The elicitation procedure in-

duces truthful reporting of beliefs for individuals, regardless of whether they are standard

Rational Expectations (RE) agents, BP agents, or BB agents. Individuals are given an

3The average age of onset of HD is 40.
4Oster et al. (2013) also provide evidence that other models of belief bias such as the information aversion

model of Koszegi (2003) do not fit the patterns in the data. It is worth emphasizing, while they do not
consider the model of Bracha and Brown (2012), it is also consistent with the patterns in the data.

5A subtle but important note is that in both models the optimizing cost benefit analysis is not the
outcome of a conscious decision, but occurs at a subconscious level. If one is aware of the self deception,
this would work to eliminate any benefits from optimism in the first place.

6This statement is only true when such information campaigns contain no new information that might
be incorporated into beliefs in both models. In this sense the idea is similar to using graphic images of car
crashes to prevent teenage drunk driving.
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income stake in an event, and must report the probability this event occurs. The two

comparative statics involve varying the level of income, and varying the incentive payment

for accurate reporting. The elicitation procedure follows the Becker-DeGroot-Marschak

(BDM) method applied to lotteries, henceforth referred to as the lottery method, which

is attractive for two key reasons. First, the procedure is incentive compatible for any risk

preferences7, and second, it theoretically generates opposite comparative static predictions

for the two models of interest.8 Increasing the income stake exacerbates optimism bias in

both BP and BB models, which is unsurprising as both model the benefits to optimism

similarly. However, increasing the incentive payment for accuracy results in a lower bias

for BP agents, but a higher bias for BB agents.

To preview the intuition for this result, in BB, increasing incentive payments does not

alter the costs of distorting reality, but affects anticipatory benefits as expected payoffs

in the experiment increase. In BP, the cost of making worse decisions is precisely the

loss in expected payment from reporting a biased belief, which dominates any anticipatory

benefits.

Finally, as a qualitative test of the predictions of BB, I examine probability reports

across different domains. Two events involve a random process that is “objective”, in the

sense that there exists consensus that baseline probabilities exist and can be calculated.9

The events differ in how cognitively demanding it is to determine the baseline probability.

The other two events do not have obvious baseline probabilities that can be calculated, and

may depend on subject ability. BB make the qualitative prediction that as events become

less objective, costs of distortion will change, while BP predict no change in the costs of

distortion, and thus no change in the degree of bias.

To preview the results, I find evidence of optimistic beliefs across all domains and

treatments. Giving subjects a large financial stake in an event leads to an increase in bias,

consistent with both models. I also find that giving subjects larger incentive payments

for accurate reports leads to an increase in optimism bias, a prediction made uniquely by

the model of BB. BP make a somewhat more intuitive, but opposite prediction that larger

7The method used in this experiment has a dominant strategy equilibrium of truth-telling that does
not require the assumption of Expected Utility (EU) (see Karni (2009)). This is not to be confused with
using the BDM method to elicit willingness-to-pay for a lottery, where incentive compatibility necessarily
requires the assumption of EU (see Karni et al. (1987) or Horowitz (2006)).

8Other elicitation procedures, such as the quadratic scoring rule (QSR) require the assumption of risk
neutrality, but further, do not generate opposite comparative static predictions necessary for this study.

9I am not aware of a rigorous definition of objective in this context. One can see Gilboa and Schmeidler
(2001) for a definition, which agrees with the characterization in this paper.
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incentive payments for accuracy will lead to less bias, which is rejected in the data. Also

consistent with BB, is that, qualitatively, the degree of bias is increasing as the random

process that determines events become less objective.10

The next section outlines related literature and experimental evidence of optimism in

psychology and economics. I then introduce the experiment in the form of a stylized model

and derive the theoretical comparative static results outlined above. I next discuss the

experimental design, followed by results, and a concluding discussion.

2 Related Literature

2.1 Experimental

There are a number of experiments testing or seeking to understand models of belief bias,

often in the realm of overconfidence. Such models are related in the sense that they assume

individuals benefit from holding positive views about their self-image or ability, compared

with models of optimism that assume benefits to holding positive views about the future.11

There are a number of situations where overconfidence and optimism overlap, for example

the prospect of getting a future salary increase may be a signal of high ability that also is

a direct increase in income.

In many experiments on overconfidence, the focus is not only on prior beliefs, but also

on how subjects update their beliefs about personal qualities such as intelligence. These

experiments are motivated by models of biased information seeking, and/or biased infor-

mation processing. Some evidence that individuals might overweight positive information

is found in studies by Mobius et al. (2014) and Eil and Rao (2011).12 Both papers also find

a positive relationship between seeking information about ability when such information is

likely to confirm prior beliefs.

In contrast to experiments that examine overconfidence, Mayraz (2014) examines beliefs

over outcomes and finds some evidence of optimistic beliefs in a novel experiment where

sessions were divided into “farmers” and “bakers” and income depends on a hypothetical

10This statement of course is not directly testable, as I do not have a rigorous definition of the objectivity
of a random process.

11Models of overconfidence include Benabou and Tirole (2002) and Köszegi (2006) among others.
12There are studies that do not find such asymmetries in updating, for example Grossman and Owens

(2012) finds no such pattern (however they look at absolute rather than relative performance), while Ertac
(2011) actually finds the opposite pattern. In a companion paper, Coutts (2015) finds no evidence of biased
information processing.
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price of wheat. While the motivation is most similar to this paper, in the current experiment

I use an incentive compatible elicitation procedure with no opportunities for hedging.

Additionally I ensure that randomization of the primary treatment is at the individual

level, ensuring subjects’ earning expectations are invariant to the treatment.13 Further,

the experiment of this paper maintains a close connection to theoretical work on optimism

bias, which will lay the groundwork for the design and interpretation of results.

2.2 Theoretical

For most theoretical work on optimism bias, individuals benefit from holding optimistic

beliefs as they derive utility from anticipation of the future.14 Akerlof and Dickens (1982)

was one of the earliest models to motivate such beliefs in economics, describing the decision

of a worker to choose, incorrectly, to believe that the probability of an accident in his

workplace is low.15 Loewenstein (1987) explicitly outlined a model of anticipatory benefits

to consumption, theorizing that this could explain why individuals might optimally delay

consumption.

The idea that individuals might get utility from anticipation was further explored by

Caplin and Leahy (2001) who modeled choice behavior in such a world, as well as Landier

(2000) who introduced a model where anticipatory feelings were nurtured through a biased

information process.16 A more recent model similar in spirit to Landier (2000) is found in

Mayraz (2014). In his Priors and Desires model, individuals bias perceived probabilities of

various states proportional to the relative attractiveness of the states. Increasing payoffs

in a given state increases the bias, while there are no costs associated with optimism in the

model.17

13A design concern is that if subjects have earnings expectations for their time in the lab, they can back
out moments of the distribution of a random event, and this can generate beliefs that appear optimistic.
In Section 4 I explain how I overcome this potential confound.

14Other models of belief bias are related including models of biased memory, biased information seeking,
or other benefits to ego-preserving beliefs, such as motivation or social signalling, as described in Benabou
and Tirole (2002). In the experiment, there is no memory component and the structure of receiving
information is exogenous. Additionally the treatment parameters are given exogenously, and not related to
personal qualities.

15Specifically, there are psychological costs of fear increasing in the probability an accident will occur.
Here, anticipation is over losses, and hence there are anticipatory benefits to believing such states are less
likely.

16Related is Koszegi (2010) who modeled an individual optimizing simultaneously beliefs and behavior,
defining a personal equilibrium concept.

17Formally the model is agnostic over whether individuals are optimistic, realist (rational), or pessimistic.
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Most relevant are the two key theories of this experiment, those of Brunnermeier and

Parker (2005) (BP) and Bracha and Brown (2012) (BB). The next section describes these

theories in detail.18

3 Theory

In this section I summarize two different theories of biased beliefs that generate differ-

ent, testable predictions in the experiment. Next, I will describe the experiment, in the

form of a stylized model, and discuss implications for the two theories. The final task

is to characterize optimal beliefs under each of these models and summarize the relevant

comparative statics that distinguish the two theories from each other, and from standard

rational expectations (RE).

3.1 Summary of Brunnermeier and Parker (2005) (BP)

In the optimal expectations framework of BP, the key tradeoff is between the anticipatory

benefits agents receive from holding optimistic beliefs and the costs of these beliefs due to

worse decision-making. I consider a two period model with consumption occurring only

in the second period, an identical setting to the stylized model I will introduce in Section

3.3.19

The first period involves individuals choosing an action that only affects second period

consumption.20 Utility is given by u(·), an increasing, twice differentiable function that is

independent of time. There are a finite number of n states S ≡ {s1, ..., sn} with state sj

occurring with objective probability πj . Consumption in state sj is given by cj . Denote π̂j

as the subjective probability an individual assigns to state sj .

18A large literature exists examining the theory of decisions under uncertainty/ambiguity. An entry level
overview can be found in Etner et al. (2012). Bracha and Brown (2012) provide an axiomatic characteriza-
tion of their model, showing that an alternative interpretation of the model is that it captures ambiguity
seeking behavior. In particular the model is identical to the variational preferences model of Maccheroni et
al. (2006) (MMR), when Axiom A.5 (uncertainty aversion) is replaced with uncertainty seeking. The differ-
ence in attitudes towards uncertainty/ambiguity may arise from differences in source: in BB the ambiguity
is endogenous, in MMR it is exogenous.

19BP additionally allow a role for memory, where individuals may retrospectively gain utility by remem-
bering past consumption. When there are only two periods and consumption only occurs in the second
period, memory plays no role in well-being.

20This setup is identical to the Portfolio Choice example presented by BP Section II. They include a
discount factor β but it does not affect the decision problem, so I omit it in the present exercise.
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The agent behaves as if he were a standard expected utility maximizer, but facing

subjective probabilities {π̂}21 rather than the objective probabilities RE agents are assumed

to face, {π}. In particular, the agent solves the following optimization problem, choosing

a vector of actions x, where gj(x) is a mapping from actions to state specific consumption.

The agent makes choices in period 1, but does not consume until period 2.

max
x

∑

sj∈S

π̂j · u
(

cj
)

(1)

s.t. cj = gj(x) ∀j

The optimal solution to this problem is x∗({π̂}), which leads to consumption in each

state, c∗j ({π̂}). This gives optimal consumption in every state, given probabilities {π̂}.

Thus far, the individual is a standard expected utility maximizer given optimal beliefs:

{π̂}.

I now turn to the fundamental component of the BP model, the selection of these

optimal beliefs, {π̂}. Total welfare is a weighted average of anticipation given beliefs in

the first period, and actual consumption in the second period. To avoid degenerate beliefs,

I follow Oster et al. (2013), Spiegler (2008)22, and Bridet and Schwardmann (2014), and

allow for the possibility that utility from anticipation is lower than utility from actual

consumption.23 Mathematically, I introduce a degree of anticipation parameter γ ∈ [0, 1].

γ = 1 is the modeling assumption in BP, while lower levels of γ correspond to lower benefits

to optimism, with γ = 0 representing a benchmark RE agent.

Given optimal consumption from Equation 1 above, utility from anticipation in the

first period is:

21I use the notation {π̂} to represent the n× 1 vector of probabilities {π̂1, ..., π̂n}.
22Spiegler (2008) similarly nest BP as a special case of weighting anticipation by α and consumption by

1−α. He shows that more generally there exists α∗ such that beliefs are degenerate. In many applications
when the costs of holding extreme beliefs is not negative and large in absolute value, α∗ ≤ 1

2
.

23That is, I allow for the intuitive possibility that today, the thought of consuming a pizza tomorrow
(measured today) gives me a lower amount of pleasure than what I get from actually eating the pizza
tomorrow (measured tomorrow).
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γ ·
∑

sj∈S

π̂j · u
(

c∗j ({π̂})
)

(2)

In the second time period utility is actual consumption, which occurs with the objective

probabilities {π}:

∑

sj∈S

πj · u
(

c∗j ({π̂})
)

(3)

Optimal expectations are those that maximize the time average of lifetime utility, sub-

ject to satisfying standard laws of probability.24 Here this is the average of anticipation

in the first period and actual consumption in the second period. Substituting in optimal

consumption (as a function of beliefs) c∗j ({π̂}), optimal expectations, {π̂}, are the solution

to the maximization problem:

max
{π̂}

1

2
· γ ·

∑

sj∈S

π̂j · u
(

c∗j ({π̂})
)

+
1

2
·
∑

sj∈S

πj · u
(

c∗j ({π̂})
)

(4)

subject to (i)

n
∑

j=1

π̂j = 1, (ii) π̂j ≥ 0, and (iv) π̂j = 0 if πj = 0

Note that these subjective expectations are chosen once and only once. In a multi-

period model this is equivalent to an agent being endowed with optimal priors, and using

Bayes’ rule to update beliefs over time.

Looking at Equation 4, setting γ = 0 eliminates all benefits to holding biased beliefs.

The solution is {π̂} = {π}, i.e. the standard beliefs of an RE agent.

3.2 Summary of Bracha and Brown (2012) (BB)

In this model, choice and beliefs are determined simultaneously by the outcome of an

intrapersonal game between two cognitive processes, a rational and an emotional process.

The key difference between the models of BB and BP are the constraints on optimistic

24In particular, from BP: (i)
∑n

j=1 π̂j = 1 (ii) π̂j ≥ 0 for all j and (iv) π̂j = 0 if πj = 0. Note the last
assumption means that individuals cannot assign positive subjective probability to zero probability events.
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Figure 1: Mental Cost Function

Sample mental cost function, J∗(·), of holding distorted beliefs, π̂, in BB model for two
states. π is the true probability of one of the states.

beliefs. In BB a mental cost function J∗({π̂}) constrains beliefs for the emotional process,

whereas in BP it is solely the costly decision errors that result from holding biased beliefs.25

I maintain the same setup as in the earlier section, in particular the same utility function

u(·) and n states, sj ∈ S, with πj the objective probability of state sj . The emotional

process chooses a subjective probability vector {π̂} that maximizes the following, which

takes choices by the rational process x, and consequently cj as given.26

max
{π̂}

∑

sj∈S

π̂j · u
(

cj
)

− J∗({π̂}) (5)

J∗({π̂}) is a function of Legendre-type: strictly convex, essentially smooth function on

the interior of the probability simplex ∆.27 The function reaches a minimum at {π̂} = {π},

and is such that in the limit as π̂j goes to either 0 or 1 (for any πj ∈ (0, 1)), J∗({π̂})

approaches infinity at a higher rate than the utility function, guaranteeing that holding

extreme beliefs is never optimal. An example of the two state case can be seen in Figure

25The consequences of making worse decisions also factor into the BB model, through the interaction
between the rational and the emotional process.

26In BP optimal beliefs are chosen under the assumption that the agent makes choices after being endowed
with these beliefs. Here by contrast, beliefs and choices are simultaneously chosen.

27For more details, see Bracha and Brown (2012).
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1.

The intuition for such a cost function is based on evidence from the psychology lit-

erature, that people use mental strategies such as biased search to justify their beliefs.

As desired beliefs are further away from the “truth” search costs to support these beliefs

become greater.

The rational process maximizes expected utility given beliefs {π̂}, which is identical

to Equation 1 in the summary of the BP model in the previous section. Note that un-

like the BP model, the rational process does not observe beliefs, as they are determined

simultaneously by the intrapersonal game.

max
x

∑

sj∈S

π̂j · u
(

cj
)

s.t. cj = gj(x) ∀j

Each of these two payoff functions determine the best response functions. The inter-

section of the best response functions are the Nash equilibria of the game. BB show that

there are an odd number of locally unique pure strategy Nash equilibria.

3.3 Theoretical Predictions

I now outline a stylized model of the experiment and later will characterize optimal behavior

for the three types of agents: BP, BB, and the benchmark RE. There is a binary event of

interest, E which occurs with true probability π ∈ (0, 1) or does not occur with probability

1 − π. First nature determines whether E occurs, next an agent is asked to report a

probability π̃ that event E occurs, critically having no information about the occurrence

of E.28 π̃ corresponds to action x in the previous section.

Payoffs are determined in the following way, which is described in Figure 2. In order to

ensure that agents do not wish to hedge their probability reports, the world is partitioned

into two disjoint states, the accuracy state and the prize state.29 With probability ǫ ∈ (0, 1)

28The reason that outcomes are determined before agents give probability reports is to maintain con-
sistency with a secondary component of the experiment that involved updating, given signals. Providing
signals required that these outcomes were known in advance.

29Hedging will be present whenever utility is not linear, for example with a concave utility function and
a positive stake in an event an individual would prefer to report a lower than truthful π̃, since this will
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Figure 2: Timing of Stylized Model

π 1− π

{0, a}∗

ǫ

P + ā

1− ǫ

{0, a}∗

ǫ

ā

1− ǫ

Nature E

Report π̃

t = 0

t = 1

t = 2

*In the accuracy state the payoff is either 0 or a, depending on the

reported belief π̃ and whether E occurred, according to the lottery method.

Nature determines outcome of binary event E. Individual submits report π̃ without know-
ing outcome of E, and payoff is determined according to the lottery method elicitation
procedure.

the individual is paid solely according to her reported belief π̃ about whether event E

occurred using the incentive compatible lottery method to elicit beliefs with an accuracy

payment of a > 0 (accuracy state).30

In the second state occurring with probability 1−ǫ, the individual receives a guaranteed

payment ā ≥ a31 and receives an additional P ≥ 0 if E occurs, but receives nothing extra

if E does not occur (prize state). Her report of π̃ is no longer relevant in this prize state.

The lottery method is incentive compatible even for non-risk neutral agents32, and is

implemented as follows. The individual is asked to submit a report π̃, the probability that

event E is realized. A random number r is drawn from any distribution with full support

smooth consumption over the different states of the world. Karni and Safra (1995) show that without this
partition, no elicitation procedure exists that induces truthful reporting, a fact that is sometimes overlooked
in the experimental literature; see Armantier and Treich (2013).

30To be clear, two types of hedging are of concern in this experiment. The first is hedging across accuracy
and prize states, which is solved through partitioning. The second is hedging within the accuracy state,
which is solved through use of the lottery method.

31The payment of ā is to ensure that the prize state is always preferred to the accuracy state.
32See Karni (2009) for a more detailed description of lottery method, though the method itself has been

described in a number of earlier papers.
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on [0, 1], here I use the uniform distribution. If the individual’s estimate π̃ ≥ r she is paid

an amount a > 0 if E occurs, and 0 if E does not occur. If π̃ < r, she plays a lottery that

pays out a with probability r, and 0 otherwise. It is relatively simple to show that truthful

reporting dominates any other report by the agent.33

In addition to the lottery method having the benefit of being incentive compatible,

unlike other proper-scoring rules such as the quadratic scoring rule, the method also has

advantages in terms of the theoretical predictions. Later in this section I will generate com-

parative static predictions for both BP and BB models. Using the lottery method allows

one to unambiguously distinguish the two models using the comparative static predictions,

a result that is not true of proper scoring rules in general.

The optimal probability report for the benchmark RE agent34 can be solved alge-

braically for this stylized model:35

max
π̃

{

ǫ ·

[

π̃ ·

(

π · u
(

a
)

+ (1− π) · u
(

0
)

)

+
(

1− π̃
)

·

(

1 + π̃

2
· u
(

a
)

+ (6)

(

1−
1 + π̃

2

)

· u(0)

)]

+ (1− ǫ) ·

[

π · u
(

P + ā
)

+ (1− π) · u
(

ā
)

]}

Note that P does not factor in to the optimization since π̃ has no bearing on this state

of the world.36 Hence I arrive at π̃RE = π for RE agents. I now turn to the question of

incentive compatibility for BP or BB agents. Before directly solving these agents’ problems,

I must impose more structure on the scope of what random elements of the experiment

might be subject to distorted beliefs.

An important assumption maintained throughout this paper is that individuals only

distort the primary probability of interest: the outcome of the binary event E occurring

with probability π. In particular, the experimental design ensured that the determination of

secondary random elements of the experiment were highly transparent, including the nature

of how the accuracy versus the prize state is determined, and subjects had experience with

the lottery method and uniform distribution.37

33Note that a number of other methods commonly employed in the literature are not incentive compatible,
including proper scoring rules such as the quadratic scoring rule. See Armantier and Treich (2013) for theory
and experimental evidence of the performance of some of these rules.

34Here RE agents are assumed to have EU.
35For r ∼ U [0, 1], the probability r < π̃ = F (π̃) = π̃ and E[r|r > π̃] =

∫
1

π̃
rdF (r)

1−F (π̃)
= 1+π̃

2
.

36This result assumes independence between the prize and accuracy states.
37A literal interpretation of Brunnermeier and Parker (2005) would lead an individual to optimally believe
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Having said this, in Appendix A I take steps to show how the theoretical predictions

might be affected if subjects distort the probability of being in the accuracy state (with

baseline probability ǫ), or distort perceptions of the distribution for how r (in the lottery

method) is drawn. There I introduce sufficient conditions such that the key theoretical

results in this paper continue to hold, even permitting this extension.

Given the assumption that only the probability of the outcome of E is distorted, I

arrive at Proposition 1.

Proposition 1. An agent in the experiment truthfully reports her belief, regardless of

whether she is a BP, BB, or RE agent.

Proof. Denote the belief of a BP agent by π̂BP , the belief of a BB agent by π̂BB, and

a standard RE agents by π̂RE = π. Since ǫ > 0 the report π̃ is relevant to all agents,

while it has already been established that the lottery method is incentive compatible,

using the uniform distribution. In BP, agents choose actions as standard EU maximizers,

given optimal beliefs. In BB, the rational process also makes decisions as a EU maximizer,

given beliefs from the emotional process. Thus the objective problem for BP agents and the

rational process of a BB agent will look nearly identical to Equation 6, only now accounting

for distorted beliefs π̂ ∈ {π̂BP , π̂BB} rather than the truth π.

max
π̃

{

ǫ ·

[

π̃ ·

(

π̂ · u
(

a
)

+ (1− π̂) · u
(

0
)

)

+
(

1− π̃
)

·

(

1 + π̃

2
· u
(

a
)

+ (7)

(

1−
1 + π̃

2

)

· u(0)

)]

+ (1− ǫ) ·

[

π̂ · u
(

P + ā
)

+ (1− π̂) · u
(

ā
)

]}

Setting the resulting first order condition to zero yields:

ǫ ·

[

(

u(a)− u(0)
)

· (π̂ − π̃∗)

]

= 0

Leading to the optimal report π̃∗ = π̂.

Thus, regardless of whether an agent is a BP, BB, or RE type, she will truthfully report

a coin flip with payoff of one dollar if heads and ninety-nine cents if tails, that heads would occur with
absolute certainty. I argue this is not the context that the model is meant to apply to. Rather, individuals
must face events that have some element of subjectivity in order for any bias to emerge.
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her belief π̂. The next section characterizes what optimal beliefs are for BP agents, followed

by BB agents.

3.3.1 Optimal Beliefs in Brunnermeier and Parker (2005) (BP)

In the BP model, utility at time t = 1 will be solely the anticipation of second period

income realizations (i.e. over earning P + ā if E occurs, ā otherwise) and anticipation over

the elicitation payment (i.e. over potentially earning a). Recall γ ∈ [0, 1] is the weight

on utility from anticipation, with γ = 0 corresponding to a standard RE agent. Utility at

time t = 1 is thus:

γ

[

ǫ ·

(

π̃ · (π̂ · u(a) + (1− π̂) · u(0)) + (1− π̃) ·

(

1 + π̃

2
· u(a)+ (8)

(1−
1 + π̃

2
) · u(0)

))

+ (1− ǫ) ·

(

π̂ · u(P + ā) + (1− π̂) · u(ā)

)]

Utility at time t = 2 from second period consumption depends on the true probability,

π:

ǫ ·

(

π̃ · (π · u(a) + (1− π) · u(0)) + (1− π̃) ·

(

1 + π̃

2
· u(a)+ (9)

(1−
1 + π̃

2
) · u(0)

))

+ (1− ǫ) ·

(

π · u(P + ā) + (1− π) · u(ā)

)

From Proposition 1 it is known that π̃ = π̂. Substituting this value in, the optimal

choice of π̂ is the maximization of 8 + 9, and is solved by:

π̂BP =























π if γ = 0.

min

{

π
1−γ

+ (1−ǫ)γ
ǫ(1−γ) ·

u(P+ā)−u(ā)
u(a)−u(0) , 1

}

if 0 < γ < 1.

1 if γ = 1.

(10)

Note that beliefs are restricted to the interval [0, 1]. From Equation 10 it is clear

that this restriction may bind, leading to the optimal belief π̂BP = 1. Optimal beliefs are

increasing in γ, the weight on anticipatory utility. When γ = 0 the utility from anticipation

14



disappears, and optimal beliefs coincide with those of a standard RE agent, π̂BP = π. For

interior solutions, dπ̂BP

dP
> 0 and dπ̂BP

da
≤ 0, with equality only when P = 0. Increasing

the prize payment P increases optimism, while increasing the accuracy payment a reduces

optimism.

3.3.2 Optimal Beliefs in Bracha and Brown (2012) (BB)

Since E is binary, the mental cost function can be written as J∗(π̂, π). It satisfies the

following properties: limπ̂→0 |J
∗′(π̂, π)| = limπ̂→1 |J

∗′(π̂, π)| = +∞ and limπ̂→0 J
∗(π̂, π) =

limπ̂→1 J
∗(π̂, π) = +∞, where J∗′(π̂, π) is the first derivative of J∗(π̂, π). As described

in an earlier section, these properties and the assumption that the mental cost function

approaches infinity at a higher rate than the utility function as π̂ → 0 or π̂ → 1 ensure

that optimal beliefs are always in the interior, π̂BB ∈ (0, 1).

From Proposition 1, the rational process of a BB agent will truthfully report π̃ = π̂.

I thus proceed to the determination of optimal beliefs π̂BB. Optimal beliefs will be de-

termined by the intersection of the best response functions of the emotional and rational

processes. The emotional process must select an optimal belief π̂, given an action (proba-

bility report) π̃ of the rational process.

max
π̂

{

ǫ ·

[

π̃ ·

(

π̂ · u
(

a
)

+ (1− π̂) · u
(

0
)

)

+ (11)

(

1− π̃
)

·

(

1 + π̃

2
· u
(

a
)

+

(

1−
1 + π̃

2

)

· u(0)

)]

+

(1− ǫ) ·

[

π̂ · u
(

P + ā
)

+ (1− π̂) · u
(

ā
)

]

− J∗(π̂, π)

}

Setting the first order condition equal to zero gives the best response function of the

emotional process, given π̃ from the rational process:

ǫ · π̃ ·

(

u
(

a
)

− u
(

0
)

)

+ (1− ǫ) ·

(

u
(

P + ā
)

− u
(

ā
)

)

− J∗′
(

π̂, π
)

= 0

The Nash Equilibrium is the intersection of the best response function of the emotional

and rational process. As has been shown, the best response function of the rational process
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Figure 3: Best Response (BR) Functions

Blank Space

(a) π = 0.1

Blank
Space

(b) π = 0.5

(c) π = 0.9

Blank
Space

(d) Equilibrium for π ∈ (0, 1)

(a) to (c) illustrate sample best response curves for π ∈ {0.1, 0.5, 0.9}, where π̃ is the report
of the rational process (best response in red) and π̂ is the belief of the emotional process
(best response in black). (d) plots optimal beliefs as a function of the true probability
π ∈ (0, 1). The dotted line is the 45◦ line.
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is the truthful report π̃ = π̂. Substituting this into the equation above implicitly defines

optimal beliefs π̂BB, which can be seen in Figure 3 and mathematically in Equation (12).

ǫ · π̂BB ·

(

u
(

a
)

− u
(

0
)

)

+ (1− ǫ) ·

(

u
(

P + ā
)

− u
(

ā
)

)

− J∗′
(

π̂BB, π
)

= 0 (12)

The two leftmost terms in the equation relate to the benefits of belief bias, while the

final term represents the marginal (mental) cost of these beliefs. Regardless of whether this

is modeled as a simultaneous moves game, or a sequential moves game with the emotional

process as the first mover, the equilibrium is identical.38

The optimal belief will be π̂BB ≥ π. J∗(π̂, π) takes a minimum at π̂ = π, and is

decreasing on [0, π] and increasing on [π, 1]. Looking at Equation (12) one can see that

π̂ = π gives a strictly higher payoff than any π̂ ∈ [0, π), since a > 0, P > 0 and J∗(π̂, π) ≥

J∗(π, π) for any π̂ ∈ [0, 1]. The optimum will thus lie in the interval [π, 1].

J∗′
(

π̂, π
)

is continuous, non-negative on [π, 1], equal to zero at π̂ = π and limπ̂→1 J
∗′
(

π̂, π
)

=

+∞. Thus a solution to the above equation exists. Additionally, because J∗
(

π̂, π
)

is strictly

convex, the solution is unique.

The basis of the experiment is changing the parameters P and a which have different

implications for the two models. I now look at comparative static results for the BB agent.

First I look at the change in optimal beliefs with respect to a change in the prize P (where

J∗′′
(

π̂BB, π
)

is the second derivative of J∗(π̂, π)). I perturb Equation (12) around the

equilibrium to examine how optimal beliefs change as a function of P .

dπ̂BB

dP
=

(1− ǫ) · u′(P + ā)

J∗′′
(

π̂BB, π
)

− ǫ ·
(

u
(

a
)

− u
(

0
)) > 0

The denominator of this expression J∗′′
(

π̂BB, π
)

− ǫ ·
(

u
(

a
)

− u
(

0
))

is positive which

follows directly from the second order condition for being at a maximum. Next it is possible

to look at how optimal beliefs change with respect to the accuracy payment a:

38One can show that in Equation 11 if π̃ is replaced with π̂ (the emotional process uses backward induction
to determine the rational process’ best response), the FOC is identical. The equilibrium would not in general
be identical if the rational process moved first.
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dπ̂BB

da
=

ǫ · π̂BB · u′(a)

J∗′′
(

π̂BB, π
)

− ǫ ·
(

u
(

a
)

− u
(

0
)) > 0

dπ̂BB

da
> 0 may seem counter-intuitive, however it is logical upon reflection. The key

is that the payoffs a and P have no effect on the marginal costs of holding biased beliefs

(costs are only present in the mental cost function), they only affect the marginal bene-

fits.39 Under the lottery method of belief elicitation, the probability of receiving payment

a is increasing in the probability of the event being predicted. Increasing a leads to an

increase in the marginal benefit of increasing π̂, but leaves marginal costs unchanged. This

unambiguously increases the BB agent’s optimal belief.

Hypotheses

Equations 10 and (12) are the key equations that inform the experimental

design. In particular, implicit differentiation gives clear comparative static results that

as the financial stake P increases, the degree of bias of π̂ increases under both models.

However, as the accuracy incentive payment a increases, the degree of bias decreases for

BP agents, but increases for BB agents.

It has already been shown that for all three agents, BP, BB, and RE, the optimal π̃∗

will be to truthfully report optimal beliefs π̂∗. Given the comparative static predictions

for BP and BB models, it is possible to vary the parameters P and a in the lab in order

to test the following experimental predictions:40

Hypothesis 1:

dπ̂∗

dP
> 0 for BP and BB agents,

dπ̂∗

dP
= 0 for a RE agent.

39This statement is not true of the BB model in general, as parameters of a game may affect marginal
costs. It is true for this game, because actions correspond to probability reports under the lottery method.

40In BP, these comparative static predictions require that individuals are not at a corner solution for
the level of belief bias. This assumption is easily tested, by checking whether or not subjects’ probability
reports are at the boundary π̃ = 1.
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Hypothesis 2:

dπ̂∗

da
< 0 for an BP agent when P > 0,

dπ̂∗

da
= 0 for a RE agent and an BP agent when P = 0, and

dπ̂∗

da
> 0 for a BB agent.

4 Experimental Design

This experiment was designed to closely fit the stylized model presented in the previous

section that tests the predictions of the Brunnermeier and Parker (2005) (BP) and Bracha

and Brown (2012) (BB) models. The motivation and design with testable hypotheses was

outlined in a grant proposal to the Russell Sage Foundation, prior to the experimental data

collection.41 As the primary outcomes of interest in the experiment are elicited beliefs, I

utilize the design introduced in Section 3.3 that eliminates incentives for non risk-neutral

subjects to hedge payoffs between the accuracy and prize states.42

The experiment utilizes a 3x2 between subjects design, which can be seen in Figure 4.

Three accuracy payment levels, a, were randomized at the session level, low ($3), moderate

($10), or high ($20).43 The accuracy payments were only relevant when subjects ended up

in the accuracy state, revealed at the end of the experiment.

Two prize payment levels, P ∈ {$0, $80}, were randomized at the subject-event level.

These potential payments were only relevant when subjects ended up in the prize state.

Half of subjects had the chance to earn an extra $80 if the event occurred, while the other

half would earn nothing ($0) extra. A fixed payment of ā = $20 was provided conditional

on ending up in the prize state, but independent of the event. ā ≥ a was chosen so that

41Specifically, details of this design were provided in Grant Proposal #98-14-06 for the Russell Sage
Foundation, which outlined that the design would test both BP and BB models.

42This design has been previously utilized with similar aims in Blanco et al. (2010), who also showed
that when incentives to hedge are transparent individuals in experiments do take advantage of hedging
opportunities.

43Sessions were evenly split across the three treatments. Optimal cost-benefit sample ratio calculations
suggested over-sampling low payment relative to high, however this optimal number of additional subjects
was less than the size of an average session.
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Figure 4: Experimental Design

Session

Low

Moderate

High

Prize

$20

{$20, $100}

$20

{$20, $100}

$20

{$20, $100}

Accuracy

{$0, $3}

{$0, $10}

{$0, $20}

50% 50%

Sessions were allocated between low, moderate, and high accuracy payments (the ‘3’ in the ‘3x2’ design).
Within sessions, subjects had a 50% chance of ending up in the Prize state or the Accuracy state. In the
accuracy state ex-ante payments were fixed. In the prize state, half of the subjects could potentially earn
an extra $80 if the event occurred, while the other half would receive no such bonus (the ‘2’ in the ‘3x2’
design).
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the prize state would always be strictly preferred to the accuracy state.44

Subjects faced a sequence of four independent events presented in random order.45 One

of the four events was randomly selected at the end of the experiment for payment. Figure

5 summarizes the four events that all individuals faced. All events had binary outcomes,

and the outcome of each event was always determined before subjects submitted their

probability reports. Of course, subjects did not know the outcome when they submitted

these reports. Two events I consider “objective” (using the earlier definition), and involved

rolls of the dice that differed in how cognitively demanding it was to calculate the underlying

probability. The outcome of these events was determined by chance, and individuals could

not affect these outcomes.

For these dice events, the experiment also examined whether there were any differences

in beliefs when individuals were given control over selecting their own numbers. Half of the

subjects were in this control treatment, while for the other half the computer randomly

selected the numbers for them.46 The motivation for this treatment was to test the hy-

pothesis that individuals given control would be more optimistic about the event occurring,

based on psychological evidence about the “illusion of control”, as in Langer (1975).

For the other two events, decisions taken before the experiment could affect the out-

come. These two events involved respectively, performance on a skill testing quiz, and

estimating the temperature on a randomly selected day in the previous year. Because the

weather and quiz exercises were completed before the experiment began, subjects did not

know their potential prize payment P at the time they completed these tasks.

The quiz event involved whether a subject scored in the top 15% on a five minute skill

testing quiz47 that was taken by all subjects. Subjects were incentivized by being truthfully

informed that achieving a high score on the quiz would result in an increased chance at

earning an extra $80.48 A random subset of students (30%) were selected as a control

44For any individual with non-degenerate beliefs.
45One of the events (easy dice) was fixed as the final event. The other three events were randomly ordered

at the session level.
46The control condition was randomized within subjects, not within events. Hence a subject either had

control over both dice events, or neither. The subjects were only aware of their own arrangement, and had
no knowledge that any other arrangement existed.

47The quiz was a multiple choice quiz consisting of math and verbal questions. To determine whether
a subject was in the top 15% they were compared to a reference group of students taking the same quiz
during pilot sessions.

48Subject feedback indicated that this was a strong incentive to put in effort on the quiz. Additionally,
out of 219 subjects for which I have choice time data, the fastest person finished in 3 minutes (177 seconds).
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Figure 5: Description of Events

(a) Hard Dice: The computer rolls four
dice. Event occurs when exactly two out
of those four dice was a specified number
(e.g. 4). In the control treatment individ-
uals select this number. The probability of

this is
(

4

2

) (

1

6

)2 ( 5

6

)2
= 150

1296
or approximately

11.57%.

Blank
Space

(b) Easy Dice: The computer rolls two dice.
Event occurs when two different specified
numbers were the only numbers to come up
(e.g. 5-3, or 3-5, 3-3, 5-5). In the control
treatment individuals select the two num-
bers. The probability of this is 4

36
or ap-

proximately 11.11%.

Blank Space

(c) Weather: Event occurs if the individual
correctly estimated the average temperature
on a specified random day in NYC in the pre-
vious year (2013), +/- 5 deg F. In the sample,
25.77% of subjects were in the correct range.

Blank
Space

(d) Quiz: Event occurs if the individual
scored in the top 15% on a skill-testing mul-
tiple choice quiz, relative to students in pilot
sessions (self). For a subset of participants
the event pertained to a random partner’s
performance instead of their own (other).
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group, where the event was tied to the performance of a random anonymous partner in the

room, rather than to their own performance. Finally, the weather event involved correctly

estimating the average temperature on a given, random day in the previous calendar year

(2013) in New York City.49

4.1 Timing and Procedures

This experiment was conducted at New York University (NYU), in New York, at the Center

for Experimental and Social Science (CESS).50 Recruitment was done via the CESS online

system, which notifies undergraduate students by email when an experiment is scheduled.

A total of 318 subjects participated51, in 32 different sessions for an average of 10 subjects

per session. The average subject payment was $24.96 for approximately 75 minutes. All

subjects were given a $10 show up payment in addition to anything earned during the

experiment. Due to the nature of the experimental design, final subject payments including

show up fee ranged from as low as $10, to as high as $110.

In order to address concerns about the difficulty of understanding the lottery method,

approximately half (35 minutes) of the experiment consisted of lengthy instructions, along

with practice sessions on the computer (in z-Tree; Fischbacher (2007)) to help subjects get

used to the elicitation procedure.52

After the detailed practice outlining the lottery method and payment structure, sub-

jects took the five minute skill testing quiz, followed by answering the weather question.53

The reason the quiz and weather questions were placed before elicitation was that it was

important that subjects did not know what stake they would have in an event when an-

swering these questions. If some subjects knew they had a chance at earning $80 for a top

93% (203) of subjects finished in at least 4 minutes out of the 5 minutes maximum.
49Subjects needed to be within a 5 degree Fahrenheit window in order to be correct. As in the quiz

question, subjects were given this question before the experiment began, and were told a correct answer
would lead to an increased chance of earning $80.

50Experimental data collection was conducted under NYU IRB #10-8117.
51The experimental design called for 294 subjects - 98 per accuracy payment group. Sessions were run in

all accuracy payment sessions until this minimum number (98) was reached. In one session (with 8 subjects)
the experimental software crashed, leading to data for only one event. Including this session brings the
total to 326.

52Subject feedback suggested that they had a good understanding of the lottery method by the end of
the practice section.

53The quiz terminated automatically after five minutes, while the weather question prompted individuals
for an answer at the end of two minutes. No subject took longer than two minutes to answer the weather
question.
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performance, while others knew they had no chance at earning $80, exerted effort could be

different.

After the quiz and weather questions, subjects were introduced to their potential stake

in the event, P ∈ {$0, $80}, each equally likely. To ensure this was as transparent as

possible I came around with a bag that was filled with a number of poker chips equal to

the number of subjects in the room.54 Half of the chips were clearly labelled $0, while the

other half were labelled $80. The probability of drawing P = $80 was thus set at 50%,

which corresponds to ǫ = 0.5. One by one subjects would draw a chip from the bag, until

every subject had a chip. The amount of money on the chip determined how much extra,

P , they would earn if in the prize state and the event had occurred.55

This random draw of chips was repeated before each of the four events, which made

it clear that the drawing of P was independent across events. With the exception of the

physical drawing of chips, the rest of the experiment took place on lab computers using the

experimental software z-Tree. Each chip had a unique code that would load the specified

amount into the computer. After all subjects entered this code into the computer, the

event was introduced to all subjects. Subjects were informed that the event did not change

based on whether they drew a $0 or an $80 chip. They then proceeded to have their beliefs

elicited about the event. This procedure was repeated four times, once for every event.

After elicitation for all four events was complete, I came around one final time with two

bags. The first bag contained an equal number of Red (meaning accuracy state) and Blue

(meaning prize state) poker chips, with the total equal to the number of subjects.56 The

chip drawn from this bag determined whether a subject was paid for their decisions during

the elicitation procedure (red, for which they could earn a ∈ {$3, $10, $20} depending on

the session), or was paid according to the prize state (blue) whereby they earned ā = $20

automatically, plus potentially the amount on their prize chip, P ∈ {$0, $80}. The second

bag contained an equal number of chips for each of the four events.57

Across the four events I intentionally chose to investigate belief bias in different do-

mains, leading to differences across events. Of the four, the two dice events are the closest

in similarity. Since in the model of Brunnermeier and Parker (2005) biased beliefs are

54When the number of subjects was odd, an additional poker chip was placed in the bag to make the
number even.

55Additionally that event had to have been randomly selected for payment, of the four.
56Again when the number of subjects was odd, an additional chip was placed in the bag.
57The number of chips in this bag was equal to the smallest multiple of four that was greater than or

equal to the number of subjects.
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constrained only by the accuracy payment a, one would expect that since both dice events

have nearly identical objective probabilities, bias will be identical conditional on a and P .

On the other hand, a straightforward interpretation of Bracha and Brown (2012) suggests

that the mental cost of distorting reality would be greater for the simpler dice event, hence

conditional on a and P the bias on the simpler dice event should be smaller than on the

more difficult dice event.58

A direct comparison between the objective and more subjective events is less straight-

forward, and not possible without further restrictions on the models. Again Bracha and

Brown (2012) predict a higher degree of bias for the subjective events, however this does

not translate into a testable prediction for the experimental data.

5 Experimental Results

Basic demographic data was collected on subjects including gender, university major, age,

as well as standardized questions from psychology designed to measure generalized opti-

mism.59 Summary statistic tables can be found in Appendix B.1, showing that covariates

are balanced across both treatments.

I first present an overview of individual’s initial reports for the probability they believed

a given event would occur, π̃i. Table 1 presents summary statistics for individual priors for

each of the four events, separating the quiz event into whether it involved one’s own score

(self), or a random partner’s score (other). Here the 3x2 treatments are aggregated and

summarized by event. The final row presents these summary reports for all events pooled

together.

It is clear from Table 1 that there is fairly substantial bias across all events. For the two

dice events, defining the “true” probability π is straightforward. For the weather event the

actual proportion of subjects who estimated the correct temperature range, 25.77% was

used. For the quiz π = 15% was used, which was the proportion of subjects who scored

58This statement is not intended to exclude other potential explanations, these are discussed later in the
results section.

59After the experiment subjects were asked four questions taken from the Life Orientation Test - Revised
(LOT-R) a revised version of a test used in psychology to distinguish generalized optimism versus pessimism.
This revised version was developed and subsequently published by Scheier et al. (1994). Their original test
involves 10 questions, however 4 are “fillers” which are not considered when constructing an index. Four
of the six questions remaining were selected for the post-experiment questionnaire.
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Table 1: Summary Statistics About Reported Beliefs (π̃i)

Event “Truth” (π) µπ̃ Upward Bias Q2,π̃ σπ̃ N

Dice Easy 11.11 17.09 53.81% 11.00 15.47 318

Dice Hard 11.57 20.77 79.55% 15.00 18.04 318

Weather 25.77 63.23 145.36% 65.00 20.54 326

Quiz Self 15.00 50.18 234.53% 50.00 27.49 223

Quiz Other 15.00 26.69 77.96% 20.00 17.82 95

All 15.92 36.23 127.60% 30.00 27.91 1280

“Truth” refers to the baseline underlying probability of the event. µπ̃ is the mean of the belief report π̃i,
Q2,π̃ is the median, and σπ̃ is the standard deviation.

in the top 15% relative to a similar reference group.60 Of course, this does not mean that

every subject should report a prior of 15%, due to heterogeneity in test ability.61

That all probability reports are biased upwards is consistent with the predictions of

both models, and of optimism models in general. The qualitative predictions of Bracha

and Brown (2012) appear to be borne out in this table. The average bias for the harder dice

event is higher than that of the easier dice event, and the more subjective events appear to

have larger degrees of bias. However, while these results are suggestive that individuals hold

optimistic beliefs, they are by no means conclusive. Similar patterns could be generated by

models of bounded rationality or costly effort, since errors are unlikely to be symmetrically

distributed. In order to conclusively rule out such other explanations, I now turn to the

results examining the comparative statics.

5.1 Comparative Static Predictions of Optimism Models

This section provides an overview of the empirical strategy, and results for testing the two

major comparative static predictions of both BP and BB.62 For the empirical analysis, the

dependent variable is the reported belief π̃ij of individual i for event j. 1 ≤ j ≤ 5, an

60Subjects were informed the reference group consisted of students just like them, taking the same quiz.
61A side note is that the LOT-R questions often used to measure generalized optimism have no relationship

with probability reports in this experiment.
62The comparative static predictions of BP required an interior solution of π̂BP < 1. Less than 2%

of responses reported extreme beliefs of 100%, indicating that comparative static estimates near zero are
unlikely to have resulted from individuals being at a corner solution.
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integer, is an indicator for the two dice events, the weather event, the quiz event (self) and

finally the quiz event (other), in that order.

5.1.1 Testing Hypothesis 1: Does optimism bias increase with the prize stake

Pij?

The first comparative static of interest is the coefficient β1 on a dummy variable for whether

the individual was given a prize stake Pij > 0 for a given event j.

π̃ij = β1 · 1{Pij > 0}+
∑

1≤j≤5

γj · Ej + η · Si · E4 + αk + ǫij (13)

The dependent variable π̃ij is the reported belief of the subject regarding the percent

chance of an event occurring, coded between 0 and 100. The independent variable of

interest is an indicator of whether or not the subject had an $80 prize stake in the event,

1{Pij > 0}. Ej is an event specific fixed effect, αk is a session level fixed effect, and ǫij

is an idiosyncratic error for each probability report. In the analysis standard errors are

clustered at the individual level.

Heterogeneity in ability will be an important factor in the determination of the prob-

ability that one believes they scored in the top 15%. To account for this heterogeneity, I

interact score on the quiz with the fixed effect for the quiz (self) event.63 Si is the subject’s

score on the quiz, E4 = 1 only if the event was the quiz (self) event. Since the quiz was

conducted before the experiment began, subjects did not know whether they would face

P = $80 or P = $0, so there is no concern about endogeneity of Pij .

Regarding the weather event, there is no significant relationship between how far off

one’s temperature estimate was from the truth and the probability that individual believed

they were within 5 degrees of the truth so I do not include this interaction in the table.64

Recall that both models predict that individuals given a positive financial stake in an

event will believe the event to be more likely to occur, i.e. β1 > 0. This is in contrast to

the standard RE model where β1 = 0. I now examine whether there are patterns in the

63The fit is not substantially improved with non-linear estimates nor non-parametric estimates. Reassur-
ingly, the results are unchanged using a non-linear or non-parametric relationship so I control for test score
using a linear relationship.

64In other words, unlike the quiz, reported beliefs are not correlated with reality. Including it does not
affect the results.
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data consistent with the comparative statics in Hypothesis 1.

Table 2 examines the comparative static predictions for each of the three accuracy

groups, as well as for the aggregate data. From this table it is evident that having a

prize stake is only significant in the low accuracy payment (a = $3) sessions, where β1

is significant and positive at the 1% level. Due to the presence of non-normality in the

residuals, two-tailed p-values calculated using Fisher’s exact test are included in Table 2,

and do not substantively alter any inferences.65

The effect size of β1 for a = $3 is sizeable, and corresponds to a 5.82 percentage point

increase in the prior probability reported by an individual, or a 17% increase from the

mean probability report in those sessions. For the other accuracy payment sessions, and

the aggregate data, the effect of stakes is not significant. On the whole, there is evidence

of optimism bias when individuals are given a prize stake in the event, but only when

accuracy payments are low.

Looking at the coefficient on quiz score for the Quiz (self) event, overall scoring an

additional point on the quiz resulted in an approximately 2.2 percentage point increase

in the probability reported of scoring in the top 15%. Put another way, a one-standard

deviation increase in test score results in a 5.8 percentage point increase in the belief

about the probability of scoring in the top 15%. Interestingly, the relationship between

quiz score and beliefs about scoring in the top 15% seems to be strongest at the lowest

accuracy payment ($3), and gets weaker as the accuracy payments increase. A similarly

counterintuitive pattern of beliefs being less connected to reality can be observed looking at

the event-level fixed effects: increasing accuracy payments is related to increases in average

probability reports for these events. The next section examines Hypothesis 2 which will

specifically address patterns of beliefs in response to variation in accuracy payment levels.

65Further details are provided in Appendix C.
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Table 2: Impact of Financial Prize on Beliefs (Testing Hypothesis 1)

All Events

Regressor Acc = $3 Acc = $10 Acc = $20 All

{P = $80} (β1) 5.824 -0.190 -2.090 1.320

(2.149)*** (1.680) (2.158) (1.190)

[P-Value] [0.008]*** [0.910] [0.335] [0.268]

{P-Value Fisher Exact} {0.004}⋆⋆⋆ {0.918} {0.288} {0.240}

Easy Dice (γ1) 10.636 10.120 16.665 8.415

(5.511)* (3.757)*** (2.538)*** (3.659)**

Hard Dice (γ2) 11.902 12.310 24.324 12.075

(5.776)** (3.906)*** (2.667)*** (3.711)***

Weather (γ3) 54.360 55.737 65.285 54.438

(5.944)*** (4.606)*** (2.820)*** (4.000)***

Quiz (Self) (γ4) 24.040 32.134 60.096 33.218

(7.303)*** (5.877)*** (5.790)*** (4.806)***

Quiz (Other) (γ5) 14.191 15.776 36.321 17.982

(6.100)** (4.184)*** (4.496)*** (3.985)***

Score × Quiz (Self) (η) 3.685 2.618 -0.771 2.172

(1.023)*** (0.959)*** (1.251) (0.647)***

Session Fixed Effects (α) YES YES YES YES

N 424 436 420 1280

R2 0.490 0.556 0.529 0.513

Difference is significant at * 0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level.
Constant omitted as

∑5
j=1 Ej = 1. R2 corrected for no-intercept.
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5.1.2 Testing Hypothesis 2: Does optimism bias change with accuracy stakes?

I next turn to examining Hypothesis 2, regarding the accuracy payments a. Hypothesis 2

made opposing predictions for the two models regarding increases in accuracy payments.

The model of Brunnermeier and Parker (2005) (BP) predicts that as the accuracy payment

a increases, individuals will respond to the increased incentive for accuracy and report less

biased probabilities. The model of Bracha and Brown (2012) (BB) predicts that as a

increases, individuals will actually report more biased probabilities as the likelihood of

receiving the accuracy payment is increasing in the probability the event occurs.

The empirical estimation of Hypothesis 2 is similar to Equation (13), here β2 is the

coefficient of interest, demonstrating the relationship between accuracy incentive payment

a and beliefs π̃ij . Since a was randomized at the session level, I do not include session fixed

effects.

π̃ij = β2 · a+
∑

1≤j≤5

γj · Ej + η · Si · E4 + ǫij (14)

Table 3 presents the results from the specification in Equation (14). Examining this

table, one can see that increasing the accuracy payments tends to increase optimism, a

prediction uniquely made by BB but one that is inconsistent with BP. For the entire sample

the coefficient on β2 is significant at the 1% level, with the same result examining p-values

using Fisher’s (two-tailed) exact test.66

Note that here it is possible that a fraction of subjects were reporting “pessimistic”

priors (π̃ij < πj), such that optimism bias coincides with becoming more accurate.67 How-

ever, the comparative static predictions of both models are independent of the prior belief,

such that Equation (14) is correctly specified for the question of interest. Nonetheless, in

Appendix B.2 I examine the same question for only subjects with upwardly biased priors.

Not surprisingly, given the sizeable bias in probability reports across all sessions (as seen

in Table 1), the increase in the accuracy payment does in fact result in even more bias.

Again it is important to control for Quiz score. Since subjects effort on the quiz could

be affected by the accuracy payment, one concern is that these results are in part driven by

higher test scores that resulted from higher effort exerted when accuracy payments were

66Again, Appendix C describes in further detail the procedure taken for this test.
67In the data, only 22% of subjects had pessimistic or unbiased probability reports.
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larger. However, the effect remains significant controlling for test scores, and in fact is still

significant when the entire Quiz (Self) event is removed from the analysis.68

That larger accuracy payments are associated with more biased probability reports

seems entirely driven by events for which subjects had no prize stake. For this group, the

average effect is quite substantial. Increasing the lottery method’s payment by $2.25 would

result in a 1 percentage point increase in the reported belief. Increasing stakes from $3 to

$20 has the effect of increasing beliefs by 7.5 percentage points. This is actually larger than

the average effect of having a prize stake of $80 in the event (which was 5.82 percentage

points).

As a final note, the model in BP predicts that when there is No Stake, bias should

not change as accuracy payments are varied. However this is rejected at the 1% level.

Overall, the BP model cannot explain the patterns generated in the experiment, while the

BB model comparative static predictions do match the observed data.

68It is also reassuring that, as shown in Appendix B.1, test scores do not significantly differ across
treatments.
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Table 3: Impact of Accuracy Payment on Beliefs (Testing Hypothesis 2)

All Events

Regressor No Stake Stake = $80 All

Accuracy Payment (β2) 0.444 0.052 0.250

(0.116)*** (0.145) (0.094)***

[P-Value] [0.000]*** [0.720] [0.008]***

{P-Value Fisher Exact} {0.000}⋆⋆⋆ {0.659} {0.002}⋆⋆⋆

Easy Dice (γ1) 11.146 17.660 14.345

(1.575)*** (2.428)*** (1.491)***

Hard Dice (γ2) 15.327 20.810 18.030

(1.811)*** (2.321)*** (1.503)***

Weather (γ3) 57.772 63.199 60.493

(2.091)*** (2.234)*** (1.590)***

Quiz (Self) (γ4) 35.878 42.811 39.400

(4.993)*** (4.416)*** (3.303)***

Quiz (Other) (γ5) 21.429 26.456 23.967

(2.653)*** (2.951)*** (2.025)***

Score × Quiz (Self) (η) 2.367 1.831 2.110

(0.992)** (0.838)** (0.645)***

Session Fixed Effects NO NO NO

N 646 634 1280

R2 0.528 0.469 0.495

Difference is significant at * 0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level.
Constant omitted as

∑5
j=1 Ej = 1. R2 corrected for no-intercept.
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5.2 Discussion of Results

Looking at the comparative static predictions from Hypotheses 1 and 2, it is clear that

the BB model seems to fit the pattern of results observed, while the BP model cannot

account for these patterns. Providing subjects with larger payments for giving accurate

responses does not reduce optimistic bias, but has the opposite effect. Such results provide

evidence that the level of bias is not constrained by the financial costs that result from

poor decisions taken in the experiment (i.e. the expected monetary loss from reporting

an inaccurate belief). Instead the results support the theory of BB which emphasizes the

direct costs of distorting reality in belief determination.

These results are consistent with the experiment of Mayraz (2014), who found evidence

of optimistic belief formation when eliciting beliefs about hypothetical future stock prices.

In his experiment, half of the sessions involved subjects whose income was increasing in

future price, while the other half involved subjects whose income was decreasing in the

price. Using a logarithmic scoring rule (LSR), he found that subjects were optimistically

biased, and that this bias was larger when accuracy payments increased, as in the current

study. Under the LSR, the BB model does not make unambiguous predictions for how

optimistic bias will change, but to my knowledge it is the only model of optimistic belief

formation that is not inconsistent with the results of Mayraz (2014).

Looking back to the results in this paper, from the data in Tables 2 and 3, it is clear

that not all treatments are positive and statistically significant, as would be predicted in

the theory of BB. In particular, when accuracy payments are moderate ($10) or high ($20),

from Table 2 one can see that β1 is slightly negative, though not significantly different from

zero. In Table 3, when the prize P is large ($80) the estimated β2 is positive, but very

small and not statistically significant.

Small but positive effects for these treatments are to be expected if subjects are nearing

the limit of their ability to distort reality. If this is true, because of the shape of the mental

cost function J∗(·), increasing the benefits to optimistic belief formation will only result

in minor changes to optimal beliefs. This can account for the findings in Table 3 (Column

2), but cannot explain the findings in Table 2 (Columns 2 and 3).

One explanation is that probability reports are subject to idiosyncratic error, or that

there is unobserved heterogeneity in the mental cost function J∗(·).69 One could also

69In a between subjects design, if this heterogeneity is not balanced across treatments, it can lead to
erroneous negative estimates (non-statistically significant), as observed in the data. A different explanation
can be found if one extends the model to allow subjects to also distort perceptions about the probability of
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examine a different empirical specification that nests the two hypotheses, as well as allows

for interactions between the Prize and Accuracy payments. Appendix D investigates this

approach, and finds that the coefficients on both the Prize and Accuracy treatments are

positive and significant for the entire sample, while the interaction term is negative and

significant at the 5% level.

5.3 The Illusion of Control?

As described earlier, 50% of subjects were required to select numbers themselves for the

events involving rolls of the dice. For example, the hard dice event involved rolling four

dice, and occurred when a given number came up in exactly two of the four rolls. Subjects

in the control treatment70 were asked to select this number, while those not in the control

treatment had their number selected by the computer.71

Giving subjects a sense of control was intended to examine the “illusion of control”

finding of Langer (1975). The illusion of control is a tendency to overestimate one’s ability

to exert influence over events. Here, the hypothesis is that individuals with control will

believe that the dice event of interest is more likely than individuals who do not have

control over selecting the numbers.

Table 4 examines this hypothesis, and investigates potential interactions between con-

trol and accuracy or prize payments. From this table it is possible to see that control does

not lead to more optimistic estimates of the probability of events. However, the interac-

tion with the prize stake is borderline significant. Although not significant at conventional

levels, in fact in Appendix E I show that specifically for the dice events only, the effect

found in testing Hypothesis 1 is entirely driven by subjects with control.

ending up in the accuracy state (ǫ) and distorting perceptions about the distribution used in the elicitation
procedure. In Appendix A.2, I take steps to show how these comparative static results change when allowing
agents more flexibility in what probabilities they can hold biased beliefs over. These results demonstrate
how comparative static predictions of the BB model are unchanged when a is low and/or P = $0. However
it is possible that for P = $80 and larger a, these results are no longer unambiguously positive, which may
explain these findings in the data.

70These subjects had control over selecting their numbers, not to be confused with the standard control
group terminology.

71Subjects were only told of their treatment, and were not aware of other subjects’ conditions. For the
easy dice event there were two numbers selected.
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Table 4: Examining the Illusion of Control

All Events

Regressor

Control × Dice -1.638 -3.243 -1.679 -1.121

(1.544) (1.682)* (1.561) (2.841)

{P = $80} (β1) 1.295 0.476

(1.191) (1.378)

Control × Dice × {P = $80} 3.332

(2.401)

Accuracy Payment (β2) 0.250 0.262

(0.094)*** (0.111)**

Control × Dice × Acc Payment -0.051

(0.193)

Easy Dice (γ1) 9.275 9.747 15.171 15.035

(3.760)** (3.786)*** (1.740)*** (1.877)***

Hard Dice (γ2) 12.936 13.361 18.857 18.720

(3.813)*** (3.835)*** (1.761)*** (1.929)***

Weather (γ3) 54.495 54.937 60.496 60.359

(4.002)*** (4.023)*** (1.591)*** (1.744)***

Quiz (Self) (γ4) 33.275 33.820 39.402 39.271

(4.801)*** (4.822)*** (3.308)*** (3.354)***

Quiz (Other) (γ5) 18.041 18.524 23.970 23.835

(3.982)*** (4.022)*** (2.023)*** (2.060)***

Score × Quiz (Self) (η) 2.172 2.142 2.110 2.110

(0.648)*** (0.646)*** (0.645)*** (0.645)***

Session Fixed Effects (α) YES YES NO NO

N 1280 1280 1280 1280

R2 0.514 0.515 0.495 0.496

Difference is significant at * 0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level.
Constant omitted as

∑5
j=1 Ej = 1. R2 corrected for no-intercept.

35



5.4 Alternative Explanations

In the previous section I argued that the results are consistent with the model of Bracha

and Brown (2012). This section is intended to examine whether the patterns observed

might be consistent with other theoretical models.

First, a number of explanations may be consistent with probability reports that are

biased upwards. Because probabilities are naturally restricted to lie in [0, 1], and because

in the experimental design π < 1
2 , it is plausible that errors will be right skewed, consistent

with the experimental results.

In particular, models of costly effort and/or attention might generate these patterns.

However, they are unable to explain the comparative static results. Costs of effort are

structurally unrelated to prize payments, while increasing payments for accuracy will in-

crease the returns to effort. As a result, effort should increase, and probability reports

should become less biased. This is contrary to the observation that dπ̂
da

> 0. Similarly

for models of inattention, increasing accuracy payments a or prize payments P would be

expected to increase attention, and thus decrease bias. This is the opposite of what is

observed.

Two explanations that could potentially generate the comparative static findings are

“Buckling under pressure” or “Satisficing”. First, it is possible that individuals might make

more errors when the stakes are higher, for example because they do not perform well under

pressure. Thus, if subjects can earn $20 from the lottery method, they feel pressure about

earning this relatively large amount of money and this leads them to make mistakes. Such

behavior could generate similar patterns to those observed in the experiment. However, I

also have an independent measure of performance under pressure, subjects’ scores on the

Quiz. And in fact, while there are no statistically significant differences between the three

accuracy payment sessions, quiz scores are one half-point higher in the $10 and $20 sessions

relative to the $3 sessions. Such findings seem to rule out that subjects find it difficult to

perform under pressure.

The second explanation is that subjects might only have preferences over earning a

minimum amount of money during the experiment, and once this reference level of income

is (ex-ante) reached they may no longer find it worthwhile to exert effort. Thus for the $20

accuracy sessions, subjects might have expectations of earning enough money such that

they are content to exert little effort, while for the $3 sessions they are faced with low

expected earnings and are willing to exert more effort to increase their expected pay-out.

36



While I have no way to directly refute the predictions of such a model, it is possible

to examine subject choice time as a proxy for effort. On average subjects in the $3 and

$10 sessions took about 32 seconds to submit their probability report, while those in $20

sessions took about 29 seconds, a non-statistically significant difference. Subjects did

however spend about 5 seconds longer on their report when they had an $80 Stake in the

event, a difference significant at the 10% level. If choice time is a proxy for effort then it

would seem that subjects did not exert less effort when the stakes or accuracy payments

were higher, which such a model would suggest.

As a final comment on the viability of costly effort models to explain patterns in the

data, I note that the experimental design did not provide any advantages to finishing any

of the tasks faster. Subjects who made probability reports faster than their peers had to

wait until the next task, and were not permitted to engage in any other activities. If there

are costs of boredom, these should work to ensure that subjects were focused on probability

reports when they had the opportunity.

5.4.1 Relation to Models from Decision Theory

This experiment is also related to decision theoretic models that seek to explain deviations

from expected utility. Focusing only on the accuracy state, the lottery method used to elicit

probability reports in this experiment is theoretically equivalent to pairwise comparisons of

two lotteries. The first lottery pays out a if the event of interest happens, and 0 otherwise

(denote this lottery by (a, π̂). The second lottery is an objective lottery that pays out a

with probability r ∈ [0, 1], denoted by (a, r). The subject must select an r such that for

all values of r ≥ r she would prefer (a, r) to (a, π̂).

The result in this experiment is that r changes with the value of a. In particular r is

increasing in a. This result is primarily driven in the condition when there was no prize

stake, i.e. P = 0. For completeness, the comparison is between the lottery (a, ǫ · π̂; 20, 1−ǫ)

versus the lottery (a, ǫ · r; 20, 1− ǫ).72 Again the puzzle is that r is increasing with a.

The interesting feature is that the loss function is symmetric, that is shifting r higher

results in the exact same expected loss as shifting r lower by the same amount. This means

that models of loss aversion, disappointment aversion, or regret would predict no change

in decision making as a is varied.73

72This notation (a, ǫ · π̂; 20, 1− ǫ), refers to a reduced compound lottery that pays a with probability ǫ · π̂,
0 with probability ǫ · (1− π̂), and 20 with probability 1− ǫ.

73See models from Tversky et al. (1991), Gul (1991), and Loomes and Sugden (1982) respectively for
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On the other hand, certain classes of preferences that pertain to behavior under ambigu-

ity can potentially explain these patterns.74 In particular, if subjects’ degree of ambiguity

seeking is increasing in the financial stakes, then these preferences could generate the pat-

terns observed in the experimental data. This should not be too surprising, as the model

of BB axiomatized is analogous to the variational preferences model of Maccheroni et al.

(2006), with ambiguity seeking rather than ambiguity averse agents.

6 Conclusion

This experiment examined two models of optimistic belief formation, the optimal expec-

tations model of Brunnermeier and Parker (2005) (BP), and the affective decision making

model of Bracha and Brown (2012) (BB). Both models differ in how optimistic beliefs

are constrained, highlighting intuitive mechanisms: BP states that biased beliefs lead to

poor outcomes through sub-optimal decisions. A key feature of BB is that there are direct

mental costs of distorting reality.

The experiment exploits these differences and shows that optimistic beliefs are prevalent

across different domains. When individuals are given a large financial stake in an event, I

find evidence that bias increases, consistent with both models. However, larger incentive

payments for accurate reports leads to an increase in biased beliefs, a prediction made

uniquely by BB. The BP model makes the opposite prediction, which is rejected in the

data.

Additionally these results are consistent with the related work of Mayraz (2014), who

also found that higher accuracy payments led to a larger degree of bias.75 The present

experiment builds on this result, and shows that across a variety of events, with an incentive

compatible elicitation procedure, this result is a more robust phenomenon, and can be

explained in terms of the BB model.

The implications of these results are that direct costs of distorting beliefs matter for

their determination. Oster et al. (2013) have shown that optimism is likely an important

factor in understanding low rates of testing for Huntington Disease (HD). A question for

examples.
74Typically theoretical work seeks to model choices through the frame of ambiguity aversion or pessimism,

rather than optimism. An example is the model of Gumen et al. (2012).
75In Mayraz (2014) the predictions of BB are not unambiguous as in the present experiment, however

a positive association is not inconsistent with their model. The predictions of BP are rejected in Mayraz
(2014) as well.
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policy is how to increase testing rates for the disease. This experiment has shown that there

may be benefits to public health campaigns targeting at risk individuals, and educating

them on their true risk status. In contrast, as Oster et al. (2013) discuss, the BP model

provides only limited prescriptions for policy makers, such as drawing attention to how

behavioral changes may lower the expected costs of having HD.

One question is whether the results of this experiment will hold more generally when

the stakes are much higher, relative to those used in the lab. The costs of not being tested

for HD likely substantially exceed the stakes in the experiment. Further work might show

whether these results can be replicated for higher stakes.

The results also are highly relevant to work on belief elicitation in experiments. Slightly

counter-intuitively, the conclusion of this experiment shows that beliefs will be most accu-

rate precisely when incentives for accuracy are low. If incentives are too high, they may

detract from other components of the experiment, and the incentive payments themselves

may lead subjects to form biased beliefs.76

Finally this experiment contributes to empirical work that documents preferences over

ambiguity. The axiomatic characterization of the BB model provides a direct link to models

of ambiguity seeking behavior. It remains an open question to understand why preferences

appear ambiguity averse in some contexts, but ambiguity seeking in others. Empirical work

will be essential to answering this question.

Appendix

A Theoretical Extension: Allowing Subjects to Distort Other Probabil-

ities in the Model

In this section I relax the assumption that agents treat ǫ and the distribution used to

determine the lottery method payout as given. Let ǫ̂ be the biased probability that an

individual assigns to ǫ, and let F̂ be the distorted distribution that the random number r

in the accuracy state is drawn from. The first step will be to show under what conditions

truthful reporting is still optimal. In this respect I will make the following assumptions.

Assumption 1. For a BP agent ǫ̂ ≥ ǫ > 0

76It is worth mentioning that there may be other reasons why higher incentive payments can be detri-
mental. Gächter and Renner (2010) show that incentivizing beliefs can alter behavior in public goods
games.
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Assumption 2. For a BP agent F̂ has full support on [0, 1], and for all r ∈ [0, 1], F̂ (r) ≥

F (r), where F is a well-behaved CDF with full support on [0, 1] and r ≥ F (r) for all

r ∈ [0, 1]. Additionally the PDF of this distribution, f is non-decreasing on [0, 1].

These assumptions are to ensure that a BP agent never believes that possible states

of the world are impossible.77 In order to guarantee a solution exists I assume there is

some lower bound ǫ, which may in fact be extremely small, but non-zero.78 Similarly I

assume that there exists a bound on how skewed the distribution F̂ can be, where F is

understood to be a highly right-skewed distribution that first order stochastically dominates

the uniform distribution on [0, 1]. These assumptions will not be required for a BB agent

since the mental cost function J∗(·) is such that the costs of holding such extreme beliefs

will ensure such beliefs are never optimal.

Proposition 2. Given Assumptions 1 and 2, an agent in the experiment truthfully reports

her belief, regardless of whether she holds BP, BB, or RE beliefs.

Proof. Here I refer to the proof of Proposition 1 for BB and RE agents. Consider only

BP agents. At this stage the individual takes ǫ̂ and π̂ as given, and maximizes first period

utility. Assumption 1 guarantees that the report π̃ is relevant to the individual (if ǫ̂ = 0

then the individual believes there is no chance of receiving payment for his report, and

hence is at liberty to report anything). Assumption 2 guarantees that the lottery method

is incentive compatible. With both these assumptions, the optimal report is π̃ = π̂ for a

BP agent.

Given that BB, BP, and RE agents all truthfully report their subjective beliefs, I now

turn to what optimal subjective beliefs π̂ and ǫ̂ will be. This is separated into two sections,

first for BP agents followed by BB agents.

A.1 Optimal Beliefs in Brunnermeier and Parker (2005)

First note that the prize state strictly dominates the accuracy state, since the prize state

guarantees that wealth is at least ā regardless of whether E occurs or not, while in the

77Intuitively the reason for Assumption 1 is that if an individual were 100% certain that her probability
report in the experiment would not matter she no longer has any incentive to report truthfully. Similarly
for Assumption 2 if she believed that there were gaps in the support of the distribution of drawing a random
number r she would be indifferent between reporting any probability within such a gap.

78Such an assumption is plausible in light of evidence that individuals appear to treat near-zero and zero
probabilities as very different. Early evidence of this “certainty effect” can be found in the original Prospect
Theory of Kahneman and Tversky (1979).
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accuracy state there is a probability of earning nothing, and the most the individual can

earn is a ≤ ā. Thus according to Brunnermeier and Parker (2005) the optimal biased belief

for ǫ would be to select a belief as low as possible. Because of Assumption 1, the optimal

belief will be ǫ̂BP = ǫ.

Since r ∼ U [0, 1], the true probability that r < π̃ is π̃ and E[r|r > π̃] = 1+π̃
2 . For a BP

agent believing that r ∼ F̂ [0, 1] the probability r < π̃ = F̂ (π̃) and E
F̂
[r|r > π̃] =

∫ 1
π̃
rdF̂ (r)

1−F̂ (π̃)
.

Consider two distributions with full support on [0, 1], F̂ and F̂ ′.

Proposition 3. If F̂ first order stochastically dominates F̂ ′, the BP agent weakly prefers

to believe F̂ rather than F̂ ′.

Proof. Given a BP agent truthfully reports his belief, the only relevance for this distribution

is the expected value of r whenever r > π̂. Thus the agent prefers that the probability

(1 − F̂ (π̂)) ·
∫ 1
π̃
rdF̂ (r)

1−F̂ (π̂)
=
∫ 1
π̃
rdF̂ (r) be as large as possible. Since first order stochastic

dominance ensures that
∫ 1
π̃
rdF̂ (r) ≥

∫ 1
π̃
rdF̂ ′(r) for any π̂, the BP agent weakly prefers to

believe F̂ .

Proposition 3 combined with Assumption 2 means that if the individual holds biased

beliefs about the distribution of r, she will select the optimal biased belief that r ∼ F̂ = F .79

Thus optimal beliefs will be ǫ̂BP = ǫ and F̂BP = F , which critically, do not depend on the

belief about the event E occurring, π̂. I now present the analog to Equations 8 and 9 in

the more general framework. Utility at time t = 1 is:

γ

[

ǫ ·

(

F (π̃) · (π̂ · u(a) + (1− π̂) · u(0))+(1− F (π̃)) ·

(

∫ 1
π̃
rdF (r)

1− F (π̃)
· u(a) + (1−

∫ 1
π̃
rdF (r)

1− F (π̃)
) · u(0)

)

)

(15)

+(1− ǫ) ·

(

π̂ · u(P + ā) + (1− π̂) · u(ā)

)]

Utility at time t = 2 from second period consumption depends on the true probabilities

and distributions, which is unchanged hence I reproduce Equation 9:

79F also has the property that f is non-decreasing. Intuitively (and loosely speaking) a BP agent prefers
such distributions.
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ǫ ·

(

π̃ · (π · u(a) + (1− π) · u(0)) + (1− π̃) ·

(

1 + π̃

2
· u(a)+

(1−
1 + π̃

2
) · u(0)

))

+ (1− ǫ) ·

(

π · u(P + ā) + (1− π) · u(ā)

)

As before I substitute π̃ = π̂, substituting this value in, the optimal choice of π̂ is the

maximization of Equations (15) + 9, and is implicitly solved by:

γǫ · F (π̂BP )− π̂BP ǫ+ πǫ+ (1− ǫ)γ ·
u(P + ā)− u(ā)

u(a)− u(0)
= 0 (16)

As in Equation 10 a solution to the maximization problem exists, however the solution

may be at a corner. This includes the situation where γ = 1, ǫ = ǫ and F (π̂BP ) = π̂BP

which I ignore here since this situation was covered in the less general model. I now focus

on finding an interior solution. Note that there may be up to two interior solutions, however

the lower π̂BP is the maximum.80

Next I show that the comparative statics are identical to the less general model. First

consider the derivative with respect to P :

dπ̂BP

dP
=

(1− ǫ)γ · u′(P+ā)
u(a)−u(0)

ǫ− γǫ · f(π̂BP )
> 0 (18)

Next consider the derivative with respect to a:

dπ̂BP

da
= −

(1− ǫ)γ · u(P+ā)−u(ā)
(u(a)−u(0))2

u′(a)

ǫ− γǫ · f(π̂BP )
< 0 (19)

Where the denominator in both expressions is positive from the second order conditions

for a maximum. Thus, even when allowing a BP agent to distort the probability about

80The second order condition is:

γǫ · f(π̂BP )− ǫ (17)

f(0) = 0 and by Assumption 2 f is non-decreasing. Hence there is one inflection point, there are at most
two interior optima, the first of which is a maximum while the second is a minimum. If there is only one
interior optimum it will be a maximum.
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being in the accuracy or prize state (ǫ) or to distort the distribution from which the lottery

method draws a random number from r ∼ F the comparative static results continue to

hold.

A.2 Optimal Beliefs in Bracha and Brown (2012)

First, I make an assumption regarding beliefs in Bracha and Brown (2012) regarding sep-

arability of the mental costs of distorting beliefs. Namely I assume that:

Assumption 3. If two events E1 and E2 are stochastically independent, then the mental

cost of distorting the probability of an outcome in E1, J
∗
E1
(·) is independent of the mental

cost of distorting the probability of an outcome in E2, J∗
E2
(·). Moreover, I require that

changes in the event E1 do not affect the cost function J∗
E2
(·), and vice-versa, so that the

mental cost functions are additively separable in the objective function of the emotional

process.

Recall again that J∗(x̂, x) is strictly convex, which will ensure uniqueness. I now turn

to how a Bracha and Brown (2012) agent might behave if she also distorts her perception

of the distribution under which the lottery method operates, as well as the probability of

the accuracy state ǫ. In order to allow this I must make some restrictions in order to make

the theory tractable. In particular I assume that agents believe that r used in the lottery

method is drawn from a beta distribution, with parameters α̂ and β = 1. In this way,

α̂ = α = 1 corresponds to the uniform distribution, which is the “true” distribution used.

I assume the standard Bracha and Brown (2012) cost function, but a slightly different

interpretation. α is a parameter, not a probability, but this interpretation allows a reduced

form simplification that is tractable.

Specifically J∗
α(α̂, α) takes a minimum at α̂ = α = 1 and limα̂→0 J

∗
α(α̂, α) = limα̂→K

J∗
α(α̂, α) = ∞ for some K > 1. The only change in defining this function is that previously

K = 1 whereas now K > 1. The beta distribution is particularly intuitive for agents with

biased beliefs as the PDF of the beta distribution with β = 1 is monotonic. When good

outcomes are paid out from a lottery with probability r ∼ Beta(α̂, 1), optimistic agents

prefer α̂ > 1, while pessimistic agents would prefer α̂ < 1.

The updated objective function of the emotional process (U) is (where the PDF of

Beta(α̂, 1) is α̂xα̂, and the CDF is xα̂):
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max
π̂,ǫ̂,α̂

U (π̂, ǫ̂, α̂, P, a, ā) = max
π̂,ǫ̂,α̂

{

ǫ̂ · π̃α̂ ·

(

π̂ · u
(

a
)

+ (1− π̂) · u
(

0
)

)

+

(

1− π̃α̂
)

·

( α̂
α̂+1 ·

(

1− π̃α̂+1
)

1− π̃α̂
· u
(

a
)

+

(

1−
α̂

α̂+1 ·
(

1− π̃α̂+1
)

1− π̃α̂

)

· u(0)

)]

+

(1− ǫ̂) ·

[

π̂ · u
(

P + ā
)

+ (1− π̂) · u
(

ā
)

]

− J∗
π(π̂, π)− J∗

ǫ (ǫ̂, ǫ)− J∗
α (α̂, α)

}

Next I solve for the three FOCs and substitute in π̂ for π̃. Thus these three first order

conditions hold with equality, and make up the equilibrium of the BB model.

First, the FOC for π̂ is:

ǫ̂ · π̂α̂ ·

(

u
(

a
)

− u
(

0
)

)

+ (1− ǫ̂) ·

(

u
(

P + ā
)

− u
(

ā
)

)

− J∗′

π

(

π̂, π
)

= 0

The FOC for ǫ̂ is:

α̂+ π̂α̂+1

1 + α̂
·

(

u
(

a
)

− u
(

0
)

)

+ u(0)−

[

π̂ · u
(

P + ā
)

+ (1− π̂) · u
(

ā
)

]

− J∗′

ǫ (ǫ̂, ǫ) = 0

Finally the FOC for α̂ is:

ǫ̂ ·

[(

1− π̂α̂+1

(1 + α̂)2
+

log π̂ · π̂α̂+1

1 + α̂

)

·

(

u
(

a
)

− u
(

0
)

)]

− J∗′

α (α̂, α) = 0

Next, it will be useful for notation to use the following cross partial derivatives where

possible for the analysis:
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d2U

dπ̂dǫ̂
=π̂α̂ ·

(

u
(

a
)

− u
(

0
)

)

−

(

u
(

P + ā
)

− u
(

ā
)

)

d2U

dπ̂dα̂
=ǫ̂ · log π̂ · π̂α̂ ·

(

u
(

a
)

− u
(

0
)

)

< 0

d2U

dǫ̂dα̂
=

(

1− π̂α̂+1

(1 + α̂)2
+

log π̂ · π̂α̂+1

1 + α̂

)

·

(

u
(

a
)

− u
(

0
)

)

> 0

I next totally differentiate all three equations with respect to the accuracy payment a.

For notation, I denote Gπ as the equation from the FOC with respect to π̂, and similarly

Gǫ and Gα for the other two. This differentiation gives:

dGπ

da
=ǫ̂ · π̂α̂ · u′

(

a
)

+
d2U

dπ̂dα̂
·
dα̂

da
+

d2U

dπ̂dǫ̂
·
dǫ̂

da
+

d2U

d2π̂
·
dπ̂

da
= 0

dGǫ

da
=u′(a) ·

(

α̂

α̂+ 1
+

1

α̂+ 1
π̂α̂+1

)

+
d2U

dǫ̂dα̂
·
dα̂

da
+

d2U

dπ̂dǫ̂
·
dπ̂

da
− J∗′′

ǫ ·
dǫ̂

da
= 0

dGα

da
=ǫ̂ ·

(

1− π̂α̂+1

(1 + α̂)2
+

log π̂ · π̂α̂+1

1 + α̂

)

· u′
(

a
)

+
d2U

dǫ̂dα̂
·
dǫ̂

da
+

d2U

dπ̂dα̂
·
dπ̂

da
+

d2U

d2α̂
·
dα̂

da
= 0

The solution to this system of equations gives the comparative static for dπ̂BB

da
:

dπ̂BB

da
= D−1

π ·

[

ǫ̂ · π̂α̂ · u′
(

x
)

+
d2U

dπ̂dα̂
·
ǫ̂ ·
(

1−π̂α̂+1

(1+α̂)2
+ log π̂·π̂α̂+1

1+α̂

)

· u′
(

x
)

−d2U
d2α̂

+

( d2U
dπ̂dα̂

· d2U
dǫ̂dα̂

−d2U
d2α̂

+
d2U

dπ̂dǫ̂

)

·

u′(x) · π̂α̂+1 + d2U
dǫ̂dα̂

·
ǫ̂·

(

1−π̂α̂+1

(1+α̂)2
+ log π̂·π̂α̂+1

1+α̂

)

·u′
(

x
)

− d2U
d2α̂

J∗′′
ǫ − d2U

dǫ̂dα̂

2
·

(

− d2U
d2α̂

)−1

]

Where Dπ = −d2U
d2π̂

−
d2U
dπ̂dα̂

2

− d2U
d2α̂

−

(

d2U
dπ̂dα̂

· d
2U

dǫ̂dα̂

− d2U
d2α̂

+ d2U
dπ̂dǫ̂

)2

·

(

J∗′′
ǫ − d2U

dǫ̂dα̂

2
·

(

− d2U
d2α̂

)−1)−1

> 0.

The sign of the denominator follows from the second order conditions.

Letting κ =
1−π̂α̂+1

(1+α̂)2
+ log π̂·π̂α̂+1

1+α̂

− d2U
d2α̂

,
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dπ̂BB

da
=

(

Dπ · u′(x)

)−1[

ǫ̂ · π̂α̂ +
d2U

dπ̂dα̂
· ǫ̂ · κ+

d2U
dπ̂dα̂

· d
2U

dǫ̂dα̂

− d2U
d2α̂

+ d2U
dπ̂dǫ̂

J∗′′
ǫ − d2U

dǫ̂dα̂

2
·

(

− d2U
d2α̂

)−1 ·

(

π̂α̂+1 +
d2U

dǫ̂dα̂
· ǫ̂ · κ

)]

(20)

While this term is no longer unambiguously positive as in the main paper, I will make

an assumption that will restore this earlier result when P = 0. I assume:

Assumption 4. π̂ ≥ π = 0.016 and J∗′′
α > ǫ̂ ·

(

u (a)− u (0)
)

These assumptions are sufficient to guarantee that that secondary or higher order effects

do not override direct affects. Equation (20) contains a direct effect of increasing a (the

first term), as well as secondary effects (π̂ responds to optimal changes in α and ǫ). The

first part of this assumption requires that the biased probability π̂ be not too small. 1.6% is

an upper bound on the restriction, assuming that all other choice probabilities ǫ̂ and α̂ are

stacked against giving the comparative static result.81 In the context of the experiment,

this assumption is not restrictive at all. Only 24/1280 observations report a belief less than

1.6%. The second part of the assumption requires that the the mental cost function for

distorting α is suitably convex. In particular, the second derivative is assumed to be as

large as ǫ̂ ·
(

u(a)− u(0)
)

.82 This condition is more likely to be satisfied when a is smaller.

Given Assumption 4, the comparative static result dπ̂
da

> 0 continues to hold, even

permitting agents to distort the probability of ǫ and the distribution used in the elicitation

procedure. Note again, that Assumption 4 is a sufficient but not necessary condition for

this result, and only guarantees this result when when P = 0.

Finally, I am similarly able to compute the second comparative static dπ̂BB

dP
.

dπ̂BB

dP
=

(

Dπ

)−1[

(1− ǫ̂) · u′
(

P + ā
)

− π̂ · u′(P + ā) ·

d2U
dπ̂dǫ̂

+
d2U
dπ̂dα̂

· d
2U

dǫ̂dα̂

− d2U
d2α̂

J∗′′
ǫ − d2U

dǫ̂dα̂

2
·

(

− d2U
d2α̂

)−1

]

(21)

811.6% was solved computationally, using numerical methods. Mathematically the reason for this lower
bound is because as π̂ → 0, log(π̂) → −∞, which amplifies second order effects.

82This condition is very similar to the automatically satisfied condition that J∗′′

π > ǫ̂ ·
(

u (a)− u (0)
)

.
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Again, for the comparative static results in the main paper to continue to hold for this

extension it will be necessary to provide assumptions that will ensure that secondary effects

do not overrule direct effects. Here, when P = 80, it is likely that d2U
dπ̂dǫ̂

< 0.83 In this case

the final term multiplying −π̂ · u′(P + ā) will be negative, making the entire second term

positive. As a result dπ̂BB

dP
> 0. In contrast, when P = 0, given Assumption 4, the final

term multiplying −π̂ · u′(P + ā) will be positive. However, this term can also be shown to

be less than π̂ in absolute value. Thus one further condition is sufficient to always ensure

that this comparative static will be positive, namely that 1− ǫ̂ ≥ π̂2. Since ǫ̂ ≤ 1
2 , because

individuals prefer the prize state, one can guarantee the result with:

Assumption 5. π̂ ≤ 0.707.

It is important to note that the size of the term multiplying −π̂ ·u′(P + ā) is decreasing

in a, such that the comparative static is likely to hold for low values of a, but is less likely

to hold when a is large. This could potentially explain the negative coefficients of the

estimated data.

To summarize the theory in this section, when extending the models to allow individuals

to distort other probabilities, the results continue to go through under some assumptions.

For the BP model, the key assumption is that individuals must not believe that states

of the world are impossible. For BB the key assumptions provide sufficient conditions to

ensure that direct effects are not overturned by second or higher order effects. Regarding

the comparative static of dπ̂BB

da
> 0 it is likely to hold when P = 0, which matches the data.

For dπ̂BB

dP
> 0, this is likely to hold when a is low, which is precisely where the strongest

effect was found in the data. These theoretical predictions match the findings in the data,

and offer an alternative explanation of why some estimated coefficients are negative in the

results.

B Supplemental Tables

B.1 Summary Statistics

Table 5 describes summary statistics at the event level, comparing the No Stake versus $80

Stake condition, in order to check that the covariates are balanced across both treatments.

The table shows that there are no significant differences across any of the observed variables.

83If it is not negative, the rest of the paragraph explains the conditions necessary for it to be positive.
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The table also details information about participants, approximately 41% of subjects are

male and 19% are economics or mathematics majors.

Table 5: Summary Statistics: Randomization of P ∈ {$0, $80}

$0 Stake $80 Stake Diff Total

Male 0.399 0.415 -0.016 0.407

Age 20.788 20.639 0.148 20.714

Test Score 3.931 3.704 0.227 3.821

Econ/Math Major 0.180 0.203 -0.023 0.192

Optimism Index 13.082 13.054 0.028 13.068

$100 gamble 0.696 0.713 -0.017 0.705

N 642 630 - 1272†

Difference is significant at * 0.1; ** 0.05; *** 0.01 using multiple sample test of means (allows heterogeneous
covariance). † N varies slightly by demographic variable.

Variable Descriptions: Test Score is absolute score on quiz (max score 10, minimum -5). Opti-
mism index from 0-16, higher indicates more optimistic on LOT-R style test. $100 Gamble indicates
preference for 50-50 chance at $100 over $20 with certainty.

Table 6 examines these same summary statistics grouped according to the accuracy

payments at the session level. Here the observation unit is the individual which accounts

for why the number of observations differs from the previous table. Note that the two

variables “Test Score” and “Optimism Index” could vary endogenously with the level of

accuracy incentives, as subjects may alter their effort on the test or change their reported

optimism level depending on the size of the accuracy payment. Nonetheless, there appears

to be no differences in any of these variables across the three accuracy payment treatments.

The final column tests for equality of means across all three accuracy payment groups.

None of the differences are significant at conventional levels. Overall the randomization

at the session level appears to have been successful, as the observed covariates appear

balanced across different sessions.
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Table 6: Summary Statistics: Randomization of Accuracy Payments

Accuracy: $3 $10 $20 All P-Value All

Male 0.467 0.354 0.394 0.407 0.258

Age 20.858 20.753 20.533 20.714 0.346

Test Score 3.538 3.966 3.962 3.821 0.402

Econ/Math Major 0.198 0.206 0.171 0.192 0.799

Optimism Index 13.217 12.639 13.314 13.068 0.269

$100 gamble 0.689 0.680 0.743 0.705 0.556

N† 106 107 105 318 -

Difference is significant at * 0.1; ** 0.05; *** 0.01. P-Value for multiple sample test of means (allows
heterogeneous covariance). † N varies slightly by demographic variable.

Variable Descriptions: Test Score is absolute score on quiz (max score 10, minimum -5). Opti-
mism index from 0-16, higher indicates more optimistic on LOT-R style test. $100 Gamble indicates
preference for 50-50 chance at $100 over $20 with certainty.

B.2 Hypothesis 2: Biased Priors Only

Here Table 7 examines Hypothesis 2 restricting the sample to only individuals who re-

ported upwardly biased probability reports.84 This examines the question of whether the

optimistic bias observed in Table 3 is partly accounted for by subjects becoming more

accurate. In fact, it can be seen that the results are very similar only looking at the biased

sample, indicating that the optimism bias is leading subjects to report probabilities even

further from the truth as accuracy payments increase.

84Specifically, observations at the individual-event level are included only if they reported probabilities
greater than the objective probabilities reported in Table 1.
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Table 7: Impact of Accuracy Payment on Beliefs (Testing Hypothesis 2)

All Events: Only individuals who reported biased priors

Regressor No Stake Stake = $80 All

Accuracy Payment (β2) 0.474 -0.038 0.215

(0.122)*** (0.162) (0.107)**

Easy Dice (γ2) 20.915 33.238 26.753

(1.965)*** (3.418)*** (2.001)***

Hard Dice (γ2) 26.021 31.216 28.622

(2.276)*** (2.825)*** (1.886)***

Weather (γ3) 60.476 66.925 63.792

(2.001)*** (2.337)*** (1.644)***

Quiz (Self) (γ4) 43.116 49.946 46.529

(4.804)*** (4.545)*** (3.320)***

Quiz (Other) (γ5) 23.387 31.301 27.558

(2.749)*** (3.268)*** (2.223)***

Score × Quiz (Self) (η) 1.427 1.084 1.288

(0.966) (0.815) (0.633)**

Session Fixed Effects NO NO NO

N 464 459 923

R2 0.472 0.394 0.425

Difference is significant at * 0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level.
Constant omitted as

∑5
j=1 Ej = 1. R2 corrected for no-intercept. Sample restricted to include only

individual-event observations reporting optimistically biased priors.

50



C P-Values Using Fisher’s Exact Test

In the primary analysis of Tables 2 and 3, the p-values resulting from standard errors

calculated using OLS may not be exact. Tests of normality on the residuals suggest that

they are not normally distributed (p-value 0.0000), an indication that OLS is no longer the

most efficient estimator, though it remains unbiased.

To address this issue, I use the permutation method introduced by Fisher (1936) to

calculate exact p-values. The intuition for this method (see Ernst (2004) for a discussion) is

relatively straightforward. The method suggests a hypothetical reassignment of the binary

treatment variable (here Pij), keeping the proportion treated constant. In theory, one

could calculate all of the permutations of the treatment, and look at the size of the average

treatment effect for each permutation. After completing this one can calculate how rare the

actual treatment effect is relative to the random reassignment procedure. The proportion

of hypothetical treatment effects using the permutation method that exceed the actual

treatment effect provides an exact p-value.

Because there were 1,280 individual-event observations, with 634 of those treated, the

number of permutations is very large: 1280!
634!646! , a difficult task for the contemporary personal

computer. In practice, I used the computer to draw 1,000,000 permutations that assign at

random a treatment Pij such that the proportion of treated observations matches exactly

the proportion treated in the experiment.85

D Alternative Empirical Specification

A different empirical specification can be tested which examines the effects of both param-

eters, β1 and β2, as well as an interaction term β3:

π̃ij = β1 · 1{Pij > 0}+ β2 · a+ β3 · a · 1{Pij > 0}+
∑

1≤j≤5

γj · Ej + η · Si · E4 + ǫij . (22)

In theory, neither the BB or BP model provide unambiguous comparative statics for

β3. Table 8 presents results for the specification of Equation (22). The empirical results

are consistent with the previous discussion, with the coefficients on the Prize and Accu-

racy treatments being positive and significant. The interaction term, β3 is negative and

85As a result of computing constraints, for computing the permutations on the entire sample I used
800,000 permutations. For the five remaining sub-sample calculations I used 1,000,000 permutations.
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significant at the 5% level, which is not surprising given the earlier presentation of tests of

hypotheses 1 and 2 independently.
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Table 8: Interaction Between Stakes and Accuracy

All Events

Regressor All

Prize Payment (β1) 5.608

(2.327)**

Accuracy Payment (β2) 0.446

(0.116)***

Prize × Accuracy Interaction (β3) -0.393

(0.184)**

Easy Dice (γ1) 11.571

(1.560)***

Hard Dice (γ2) 15.253

(1.614)***

Weather (γ3) 57.671

(1.748)***

Quiz (Self) (γ4) 36.578

(3.362)***

Quiz (Other) (γ5) 21.100

(2.100)***

Score × Quiz (Self) (η) 2.124

(0.642)**

Session Fixed Effects NO

N 1280

R2 0.498

Difference is significant at * 0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level.
Constant omitted as

∑5
j=1 Ej = 1. R2 corrected for no-intercept.
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E Effect of Control for Dice Events

Table 9 examines the same test of Hypothesis 1 in Table 2 Column 1 for the sample where

the accuracy payment is $3, but restricted only to the two events involving rolls of the dice.

One can see that, for the dice events, the positive effect of having an $80 stake is entirely

driven by individuals who have control over selecting numbers of their choice to come up

for the dice events.

Table 9: Examining the Illusion of Control

Dice Events Only. Accuracy Payment = $3

Regressor No Control Control

{P = $80} (β1) -0.977 8.435

(3.287) (3.811)**

Easy Dice (γ1) 16.232 17.729

(6.711)** (10.771)

Hard Dice (γ2) 16.751 19.358

(7.036)** (11.725)

Session Fixed Effects (α) YES YES

N 108 104

R2 0.076 0.197

Difference is significant at * 0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level.
Constant omitted as

∑5
j=1 Ej = 1. R2 corrected for no-intercept.
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