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Abstract: The set of optimal matchings in the assignment matrix allows to define a 

reflexive and symmetric binary relation on each side of the market, the equal-partner binary 

relation. The number of equivalence classes of the transitive closure of the equal-partner 

binary relation determines the dimension of the core of the assignment game. This result 

provides an easy procedure to determine the dimension of the core directly from the entries 

of the assignment matrix and shows that the dimension of the core is not as much 

determined by the number of optimal matchings as by their relative position in the 

assignment matrix. 
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Resum: El conjunt d'assignacions òptimes d'un joc d'assignació ens permet definir una 

relació binària, reflexiva i simètrica, en cada costat del mercat. El nombre de classes 

d'equivalència de la clausura transitiva d'aquesta relació determina la dimensió del core del 

joc. Aquest resultat ens dóna un procediment senzill per determinar la dimensió del core 

d'un joc d'assignació, només a partir de les entrades de la seva matriu. Això mostra que la 

dimensió del core d'aquests mercats depèn no tant del nombre d'assignacions òptimes que 

tenen sinó de la posició relativa d'aquestes assignacions òptimes dins la matriu. 

 
 

 
 



1 Introduction

The assignment game (Shapley and Shubik, 1972) is a cooperative model for a two-

sided market where side payments are allowed. In this market a product that comes

in indivisible units is exchanged for money, and each participant either supplies or

demands exactly one unit. The units need not be alike and the same unit may have

different values for different participants. From these valuations, a matrix can be

written, A = (aij)(i,j)∈M×M ′ , which reflects the profit that can be obtained by each

buyer-seller pair if they trade.

Shapley and Shubik prove that the core of the assignment game is nonempty,

and has a lattice structure. It is a closed and convex polyhedral whose dimension

is typically the cardinality of the short side of the market, but may be less in the

presence of degeneracies, that is, special arithmetical relations among the matrix

entries aij .

The aim of our paper is to characterize the dimension of this core only in terms

of the assignment matrix. To do that, we must identify the aforementioned arith-

metical relations among the matrix entries. In doing so we realize that the dimension

decreases by the existence of arithmetical relations not only among the entries of

the original assignment matrix but also of a related matrix, its buyer-seller exact

representative. The buyer-seller exact representative of a given assignment market

is introduced in Núñez and Rafels (2002) as the matrix with the entries as high as

possible among those that define an assignment game with the same core. It is then

no surprising that in the buyer-seller exact representative the number of optimal

matchings might increase. In fact, we will see that the optimal matchings of this

buyer-seller exact representative capture all the arithmetical relations that determine

the dimension of the core. What is important is that all these relations can also be

read from the relative position of the (fewer) optimal matchings of the initial market.

The dimension of the core of an assignment market gives information about how

large the core is and, in some sense, how much variate are the possibilities of coop-

eration in the market. Its parallel in discrete models of matching markets without

monetary transfers might be the computation of the number of stable matchings.
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In this ordinal setting, it remains an open question to find a formula for the max-

imum number of stable matchings as a function of the number of agents of each

type. Thompson (1981) and Balinski and Gale (1987) answer what they consider the

analogous question for the cardinal case. They find an upper bound for the number

of extreme core points as a function of the number of agents of each type:
(
2m
m

)
,

where m is the size of the short side of the market. The dimension of the core is

a complementary measure of how large the core is. Of course, when the number of

extreme points is maximal, the dimension is also as high as it can be. But we may

have a maximal core dimension with less number of extreme core points.

As far as we know, the dimension of the core of an assignment market has not

been studied in depth. There is a result in a very particular case which seems to

relate this problem to the number of optimal matchings: in Sotomayor (2003) it is

proved that if an assignment market has a unique core allocation (a zero-dimensional

core) then it must have more than one optimal matching. But we show in this paper

that the dimension of the core of the assignment game is not as much related to the

number of optimal matchings of the market as to the position of these matchings.

We will argue at the end of the paper that for each possible dimension there is an

upper bound for the number of optimal matchings but, quite surprisingly, with only

two optimal matchings all intermediate core dimensions can be achieved.

To reach our results, we define an equivalence relation on the set of buyers (and

another one on the set of sellers) only depending on the position of the optimal

matchings, and prove that the number of equivalence classes determines the dimension

of the core. In the context of assignment games, also Solymosi and Raghavan (1994)

identify the dimension of some specific sets of payoffs with the number of certain

equivalence classes. What validates our procedure is that our equivalence relation

does not make use of the space of payoffs, that is the core, but only of the original

matrix entries.

In Section 2, the basic concepts regarding the assignment model are recalled. In

Section 3, and given an arbitrary assignment matrix, the equal-partner binary relation

is defined on each side of the market, by means of the set of optimal matchings. Its
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transitive closure, which we name the chained equal-partner equivalence relation, is

analyzed in depth, since it plays an essential role in the results. When the assignment

matrix is doubly dominant diagonal the equal-partner relations are already transitive,

as shown in Section 4. The characterization of the dimension of the core in terms

of the number of equivalence classes of the chained equal-partner relation is proved

in Section 5. The proof of the above result relies on the fact that our equivalence

relation defines the same equivalence classes both on the original market and on its

buyer-seller exact representative. Section 6 concludes.

2 Preliminaries

A two-sided assignment market (M, M ′, A) is defined by a finite set of buyers M of

cardinality |M | = m , a disjoint finite set of sellers M ′ of cardinality |M ′| = m′ , and

a nonnegative matrix A = (aij)(i,j)∈M×M ′ where aij represents the profit obtained

by the mixed–pair (i, j) ∈ M × M ′ if they trade. A square assignment market

(M, M ′, A) is one with as many buyers as sellers.

Given an assignment market (M,M ′, A) we look for an optimal matching between

the two sides of the market. A matching µ ⊆ M × M ′ between M and M ′ is

a bijection from some M0 ⊆ M to some M ′
0 ⊆ M ′ such that |M0| = |M ′

0| =

min{|M |, |M ′|} . We write (i, j) ∈ µ as well as j = µ(i) and i = µ−1(j) . We denote

the set of matchings between M and M ′ by M(M,M ′) . We say a buyer i ∈ M is

not assigned by µ if (i, j) 6∈ µ for all j ∈ M ′ (and similarly for sellers).

We say a matching µ ∈M(M,M ′) is optimal for the two-sided market (M,M ′, A)

if for all µ′ ∈ M(M,M ′) , we have
∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij , and denote the set

of optimal matchings by M∗
A(M,M ′) . Given S ⊆ M and T ⊆ M ′ , we denote by

M(S, T ) and M∗
A(S, T ) the set of matchings and optimal matchings of the submar-

ket (S, T, A|S×T ) defined by the subset S of buyers, the subset T of sellers and the

restriction of A to S × T . If S = ∅ or T = ∅ , then the only possible matching is

µ = ∅ and by convention
∑

(i,j)∈∅ aij = 0 .

Shapley and Shubik associate to any assignment market (M,M ′, A) an assign-

ment game (M ∪M ′, wA) where the set of players is the union of the sets of buyers
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and sellers and the characteristic function is defined as follows. Given S ⊆ M and

T ⊆ M ′ , wA(S ∪ T ) = max{∑(i,j)∈µ aij | µ ∈ M(S, T )} (notice that a coalition

formed only by sellers or only by buyers has worth zero).

With this definition, they prove that the core, C(wA) , of an arbitrary assignment

game (M ∪ M ′, wA) is nonempty and can be represented in terms of any optimal

matching µ ∈ M∗
A(M, M ′) . Once fixed any such optimal matching, (u, v) ∈ RM ×

RM ′
is in the core if and only if ui ≥ 0 for all i ∈ M , vj ≥ 0 for all j ∈ M ′ ,

ui + vj ≥ aij for all (i, j) ∈ M ×M ′ , ui + vj = aij if (i, j) ∈ µ and ui = 0 if i ∈ M

is not matched by µ , while vj = 0 if j ∈ M ′ is not matched by µ .

Moreover, the core has a lattice structure with two special extreme points: the

buyers–optimal core allocation, (u, v) , where each buyer attains his maximum core

payoff, and the sellers–optimal core allocation, (u, v) , where each seller does.

From Demange (1982) and Leonard (1983) we know that the maximum core payoff

of any player coincides with his or her marginal contribution:

ui = wA(M ∪M ′)− wA((M ∪M ′) \ {i}) for all i ∈ M , and

vj = wA(M ∪M ′)− wA((M ∪M ′) \ {j}) for all j ∈ M ′.
(1)

From (1), once fixed µ ∈M∗
A(M, M ′) , and taking into account that ui+vµ(i) = aiµ(i) ,

since (u, v) ∈ C(wA) , we get that the minimum core payoff of a buyer i who is

matched by µ is

ui = aiµ(i) + wA((M ∪M ′) \ {µ(i)})− wA(M ∪M ′) , (2)

while ui = 0 if i is not assigned by µ . Similarly the minimum core payoff of a seller

j who is matched by µ is

vj = aµ−1(j)j + wA((M ∪M ′) \ {µ−1(j)})− wA(M ∪M ′) . (3)

An assignment game with as many buyers as sellers is such that each agent has

a null minimal core payoff if and only if it has dominant diagonal (Solymosi and

Raghavan, 2001), that is to say, given any µ ∈M∗
A(M, M ′) , for all i∗ ∈ M , ai∗µ(i∗) ≥

ai∗j for all j ∈ M ′ and ai∗µ(i∗) ≥ aiµ(i∗) for all i ∈ M .

An agent is said to be active when his or her payoff in the core is not constant,

while non-active agents are those with a constant core payoff.
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Definition 1 Let (M ∪M ′, wA) be an assignment game and let (u, v) and (u, v)

be the sellers-optimal core allocation and the buyers-optimal core allocation. A buyer

i ∈ M is active if and only if ui > ui , and a seller j ∈ M ′ is active when vj > vj .

Throughout this paper, without loss of generality, we assume that A is square

by adding null rows or columns if necessary. Notice that this does not modify the

dimension of the core.

Given a set X , a binary relation on X is an ordered pair (X, R) where R ⊆
X ×X . For any x, y ∈ X , we denote (x, y) ∈ R by xR y and say that the element

x is related to the element y . A binary relation (X, R) is reflexive if for all x ∈ X

we have xR x ; it is symmetric if for all x, y ∈ X , xR y implies y R x ; and it is

transitive if for all x, y, z ∈ X , xR y and y R z imply xR z . A binary relation on

X satisfying the three above properties is named an equivalence relation on X . Any

equivalence relation on a set induces a partition of this set by means of its equivalence

classes. For all x ∈ X , the class of x is x̄ = {y ∈ X | y R x } .

There is a standard procedure to associate to any reflexive and symmetric binary

relation R on X an equivalence relation. This procedure is known as the transitive

closure of R which is denoted by R̄ . For all x, y ∈ X we say x R̄ y if there exist

k1, k2, . . . , kr elements in X such that xR k1 , ki R ki+1 for all i ∈ {1, 2, . . . , r− 1}
and kr R y . The transitive closure represents the minimum that we have to add to a

reflexive and symmetric relation in order to obtain an equivalence relation. Of course,

for any equivalence relation R we have R̄ = R .

3 The chained equal-partner equivalence relation

We introduce two related binary relations on each side of the market (M,M ′, A) .

First, the equal-partner binary relation is defined in such a way that a pair of buyers

(or a pair of sellers) are related if they have the same partner by two optimal match-

ings. The equal-partner relations are reflexive and symmetric but might not be tran-

sitive (see matrix A1 below). We then consider their transitive closures and name

them the chained equal-partner equivalence relations. The chained equal-partner
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equivalence relation is the keystone to determine the dimension of the core of the

assignment market (see Theorem 12). This is the reason why we begin studying its

properties.

Definition 2 Let (M,M ′, A) be a square assignment market. The chained equal-

partner equivalence relation R̄A on the set of buyers is the transitive closure of the

relation RA on M defined by: for i1, i2 ∈ M , i1RAi2 if and only if there exist

µ1, µ2 ∈M∗
A(M, M ′) such that µ1(i1) = µ2(i2) .

Similarly, the chained equal-partner binary relation R̄′
A on the set of sellers is

the transitive closure of the relation R′
A on M ′ defined by: for j1, j2 ∈ M ′ , j1R

′
Aj2

if and only if µ−1
1 (j1) = µ−1

2 (j2) for some µ1, µ2 ∈M∗
A(M, M ′) .

We name RA and R′
A the equal-partner relations on M and M ′ respectively.

Assuming that the assignment matrix is square and taking into account that then

each optimal matching is a bijection between M and M ′ , reflexiveness of these

relations follows easily. These relations are also symmetric by definition, but may fail

to be transitive. For this reason, we add to each equal-partner relation those pairs

that are connected by a chain of agents on their same side of the market such that

each two consecutive agents on the chain have a common partner by some pair of

optimal matchings. This completion leads to the equivalence relations R̄A and R̄′
A .

We denote by IA
1 , IA

2 , ..., IA
r the equivalence classes of R̄A and by JA

1 , JA
2 , ...,

JA
s the equivalence classes of R̄′

A .

The number of equivalence classes is a relevant information for our purposes.

This number does not depend as much on the number of optimal matchings as on

the relative position of these optimal matchings. To argue this point, let us consider

the following two assignment markets with four agents on each side:

1’ 2’ 3’ 4’

A1 :

1

2

3

4

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

and

1’ 2’ 3’ 4’

A2 :

1

2

3

4

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1
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Both markets have two optimal matchings. The market defined by matrix A2 has

one optimal matching placed on the main diagonal and the other one on the secondary

diagonal. For matrix A1 one optimal matching is also on the main diagonal while

the other one is placed just below it and in the up-right corner.

The equal-partner binary relation RA1 is not transitive: 1RA12 and 2RA13 , but

buyer 1 is not related to buyer 3 by RA1 . However, transitivity holds for the relation

RA2 , that is RA2 = R̄A2 .

Moreover, despite the fact that both matrices have the same number of optimal

matchings, their corresponding chained equal-partner equivalence relations define dif-

ferent sets of equivalence classes. The equivalence relation R̄A1 defined on M has

only one equivalence class, IA1
1 = {1, 2, 3, 4} (similarly, R̄′

A1
has only one equiva-

lence class that is JA1
1 = {1′, 2′, 3′, 4′} ), while R̄A2 defines two equivalence classes,

IA2
1 = {1, 4} and IA2

2 = {2, 3} (and similarly JA2
1 = {1′, 4′} and JA2

2 = {2′, 3′} are

the equivalence classes of R̄′
A2

).

Next proposition states that, as it happens in the matrices above, each equivalence

class in M is mapped onto the same equivalence class in M ′ by any of the possible

optimal matchings.

Proposition 3 Let (M,M ′, A) be a square assignment market and let {IA
p }r

p=1 and

{JA
q }s

q=1 be the equivalence classes of the chained equal-partner relations R̄A and

R̄′
A , respectively. Then,

1. r = s and

2. for all p ∈ {1, . . . , r} there exists a unique q ∈ {1, . . . , s} such that, for all

µ ∈M∗
A(M, M ′) , µ(IA

p ) = JA
q .

Proof: Statement 1) follows from statement 2) and the fact that µ is a bijection.

To prove statement 2), let us take an equivalence class IA
p of R̄A and choose any

element i0 ∈ IA
p . Choose also an optimal matching µ∗ ∈ M∗

A(M, M ′) and take

q ∈ {1, 2, . . . , s} such that µ∗(i0) ∈ JA
q . Notice that for all other µ ∈ M∗

A(M, M ′) ,

µ(i0)R
′
Aµ∗(i0) and thus

µ(i0) ∈ JA
q for all µ ∈M∗

A(M, M ′) . (4)
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We will first prove that µ(IA
p ) ⊆ JA

q for all µ ∈ M∗
A(M,M ′) . Take i ∈ IA

p ,

i 6= i0 and let us see that µ(i) ∈ JA
q for all µ ∈ M∗

A(M,M ′) . Since i0RAi , there

exist i1, i2, . . . , ik ∈ M such that i0RAi1 , i1RAi2 , . . ., ikRAi . From i0RAi1 follows

that there exist µ0, µ1 ∈ M∗
A(M,M ′) with µ0(i0) = µ1(i1) which implies, by (4),

µ1(i1) ∈ JA
q and consequently, since µ1(i1)R

′
Aµ(i1) for all µ ∈ M∗

A(M,M ′) , we

obtain µ(i1) ∈ JA
q for all µ ∈ M∗

A(M, M ′) . By repeating the same argument, we

iteratively obtain that µ(i2), µ(i3), . . . , µ(ik) and µ(i) belong to JA
q for all µ ∈

M∗
A(M, M ′) .

Let us check now that JA
q ⊆ µ(IA

p ) for all µ ∈ M∗
A(M,M ′) . Take j ∈ JA

q and

any µ ∈M∗
A(M, M ′) . From µ(i0) ∈ JA

q it follows that there exist j1, j2, . . . , jk ∈ M ′

such that µ(i0)R
′
Aj1 , j1R

′
Aj2 ,. . ., jkR

′
Aj . Since µ(i0)R

′
Aj1 , there exist i1 ∈ M and

µ0, µ1 ∈ M∗
A(M, M ′) such that i1 = µ−1

0 (j1) = µ−1
1 (µ(i0)) . Then, µ1(i1) = µ(i0)

which means that i1RAi0 and consequently i1 ∈ IA
p . Moreover, µ0(i1) = j1 =

µ(µ−1(j1)) , and this implies that i1RAµ−1(j1) , that is to say µ−1(j1) ∈ IA
p or,

equivalently, j1 ∈ µ(IA
p ) . By repeatedly applying the same argument we obtain

j2, . . . , jk and j also belong to µ(IA
p ) for all µ ∈M∗

A(M,M ′) . 2

As a consequence of this lemma, from now on the equivalence classes will be

numbered in such a way that µ(IA
k ) = JA

k , for all k = {1, 2, . . . , r} . Notice that cor-

responding equivalence classes on both sides of the market have the same cardinality.

Moreover, each equivalence class of R̄A and R̄′
A consists of either only active

agents or only non-active agents (see Definition 1).

Lemma 4 Let (M ∪M ′, wA) be a square assignment game and let {IA
k }r

k=1 be the

equivalence classes of R̄A , while {JA
k }r

k=1 are the equivalence classes of R̄′
A .

1. If i0 ∈ IA
k is active, then all i ∈ IA

k are active.

2. If j0 ∈ JA
k is active, then all j ∈ JA

k are active.

Proof: Assume on the contrary that i0 ∈ IA
k is active and i1 ∈ IA

k is non-active.

Then i0R̄Ai1 . Assume without loss of generality that i0RAi1 . Then there exist

µ1, µ2 ∈ M∗
A(M, M ′) such that µ1(i0) = µ2(i1) = j . Since (u, v) ∈ C(wA) , this

means that ui1 + vj = ai1j and ui0 + vj = ai0j , and if we substitute vj from the first

10



equation into the second one, we get ui0 + (ai1j − ui1) = ai0j . Taking into account

that ui1 = ui1
, since i1 is a non-active agent, and (u, v) ∈ C(wA) , we obtain

ai0j = ui0 + (ai1j − ui1
) = ui0 + vj . (5)

Moreover, from (u, v) ∈ C(wA) , we also have that ui0
+ vj = ai0j and together with

equation (5) it follows that ui0
= ui0 , which contradicts i0 being active. The proof

of statement 2) is similar and thus left to the reader. 2

In addition to this, any optimal partner of an active agent must also be active

(if µ(i0) is non-active, then from ai0µ(i0) = ui0
+ vµ(i0) = ui0

+ vµ(i0) and ai0µ(i0) =

ui0 + vµ(i0) follows i0 is non-active). Similarly, an optimal partner of a non-active

buyer is also non-active. Thus, if IA
k is a class of active (non-active) buyers, µ(IA

k )

is a class of active (non-active) sellers, for any µ ∈M∗
A(M,M ′) .

From the lemma above, we have the same number of classes of active (non-active)

agents on each side of the market. We delay until Corollary 11 in Section 5 the proof

of the fact that the non-active agents on each side of the market form a unique equiv-

alence class. This is obtained there as a straightforward consequence of Proposition

8.

The partition in equivalence classes has some consequences on the structure of the

core. We see now that the payoffs to two buyers on the same class have a constant

difference in all core allocation. A similar statement could be done for the sellers.

Lemma 5 Let (M ∪M ′, wA) be a square assignment game and let {IA
k }r

k=1 be the

equivalence classes of R̄A .

1. If i1, i2 ∈ IA
k for some k ∈ {1, 2, . . . , r} , then ui1 −ui2 is constant in C(wA) .

2. If i1, i2 ∈ IA
k for some k ∈ {1, 2, . . . , r} , then, for all µ ∈ M∗

A(M,M ′) ,

ui1 + vµ(i2) is constant in C(wA) .

Proof: 1) First, if i1RAi2 , there exist µ1, µ2 ∈ M∗
A(M, M ′) such that µ1(i1) =

µ2(i2) . This implies that for all (u, v) ∈ C(wA) , ui1 + vµ1(i1) = ai1µ1(i1) and ui2 +

vµ2(i2) = ai2µ2(i2) and, as a consequence, ui1 − ui2 = ai1µ1(i1) − ai2µ2(i2) . Secondly,

if i1R̄Ai2 , there exist k1, k2, . . . , kr ∈ M such that i1RAk1 , k1RAk2 , . . ., krRAi2 .
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Then we can write ui1 − ui2 = (ui1 − uk1) + (uk1 − uk2) + · · ·+ (ukr − ui2) and since

each of these differences is constant in C(wA) we obtain that ui1 − ui2 is constant

in C(wA) .

2) By part 1), ui1 − ui2 is constant in C(wA) . Then, ui1 + vµ(i2) = ui2 + vµ(i2) +

(ui1 − ui2) = ai2µ(i2) + (ui1 − ui2) is also constant in C(wA) . 2

The above lemma shows that the equivalence relations R̄A and R̄′
A imply some

connection between the core payoffs of some agents and thus it is not surprising that

these equivalence classes turn out to determine the dimension of the core. In fact,

the converse of statement (1) in the above lemma also holds, that is, if two buyers

have a constant difference of payoffs in all core allocation, then they belong to the

same class. But this will be seen in Corollary 10 as a consequence of a main result

of Section 5 that states that the equivalence classes remain invariant among all the

assignment markets with the same core. Before reaching this point, we must analyze

those assignment markets where the equal partner relation is already transitive, with

no need of considering its transitive closure R̄A .

4 The doubly dominant diagonal case

An assignment game (M ∪M ′, wA) with as many buyers as sellers has doubly domi-

nant diagonal (Solymosi and Raghavan, 2001) if and only if, for any µ ∈M∗
A(M, M ′) ,

aij + akµ(k) ≥ aiµ(k) + akj for all i, j, k ∈ M 2. This definition does not depend on the

chosen optimal matching µ ∈M∗
A(M, M ′) . In Núñez and Rafels (2002) it is proved

that, for a square assignment game, having doubly dominant diagonal is equivalent to

being buyer-seller exact, that is to say, to satisfying that each matrix entry is attained

in some core allocation: for all i ∈ M and all j ∈ M ′ there exists (u, v) ∈ C(wA)

such that ui + vj = aij . Thus, if a square assignment game has doubly dominant

diagonal, no matrix entry can be raised without modifying the core of the game.

2The names of dominant diagonal and doubly dominant diagonal make more sense if the optimal

matching is placed on the diagonal of the assignment matrix. But since these two properties of the

matrix characterize properties of the core of the game, and the core does not depend on the selected

optimal matching, they can be stated in terms of any optimal matching.
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We are now interested in some additional properties of the core of an assignment

game with doubly dominant diagonal in relation with the defined equivalence classes.

The next technical lemma shows that in a buyer-seller exact assignment game, or an

assignment game with doubly dominant diagonal, if one core constraint is tight at all

core allocations, then the corresponding mixed-pair coalition must be paired in some

optimal matching. In fact, all mixed-pair (i, j) ∈ IA
k × JA

k belongs to some optimal

matching.

Lemma 6 Let (M ∪ M ′, wA) be a square assignment game with doubly dominant

diagonal, and let {IA
k }r

k=1 and {JA
k }r

k=1 be the equivalence classes of R̄A and R̄′
A

respectively. Then the following statements are equivalent:

1. (i, j) ∈ IA
k × JA

k for some k ∈ {1, 2, . . . , r} .

2. ui + vj = aij for all (u, v) ∈ C(wA) .

3. There exists µ ∈M∗
A(M,M ′) such that (i, j) ∈ µ .

Proof: The implication 3) ⇒ 1) follows easily since if j = µ(i) and i belongs to

some class IA
k , then, by Lemma 3, µ(i) belongs to µ(IA

k ) = JA
k . As for 1) ⇒ 2) ,

if (i, j) ∈ IA
k × JA

k we have that, once fixed µ ∈ M∗
A(M,M ′) , j = µ(i′) for some

i′ ∈ IA
k . Then, by Lemma 5, ui + vµ(i′) = ui + vj is constant in C(wA) . Now, since

(M ∪M ′, wA) is buyer-seller exact, ui + vj = aij for all (u, v) ∈ C(wA) .

It only remains to prove 2) ⇒ 3) . Assume ui + vj = aij for all (u, v) ∈ C(wA)

and take some µ ∈ M∗
A(M, M ′) . If (i, j) ∈ µ we are done. If (i, j) 6∈ µ , consider

then µ(i) ∈ M ′ and µ−1(j) ∈ M . Then,

ui + vµ(i) + uµ−1(j) + vj = aiµ(i) + aµ−1(j)j , for all (u, v) ∈ C(wA)

and together with ui +vj = aij for all (u, v) ∈ C(wA) it follows that uµ−1(j) +vµ(i) =

aiµ(i) + aµ−1(j)j − aij for all (u, v) ∈ C(wA) . This means that uµ−1(j) + vµ(i) is

also constant in C(wA) , but, since A is buyer-seller exact, we know that there

exists (u′, v′) ∈ C(wA) such that u′µ−1(j)
+ v′µ(i) = aµ−1(j)µ(i) . As a consequence,

aiµ(i) + aµ−1(j)j − aij = aµ−1(j)µ(i) .

13



We can now define a new matching

µ′ = {(i, j), (µ−1(j), µ(i))} ∪ {(k, µ(k)) | for all k ∈ M, k 6= i, k 6= µ−1(j)}

and prove it is optimal for A , since

∑

k∈M

akµ(k) = aiµ(i) + aµ−1(j)j +
∑

k∈M\{i,µ−1(j)}
akµ(k)

= aij + aµ−1(j)µ(i) +
∑

k∈M\{i,µ−1(j)}
akµ(k) =

∑

k∈M

akµ′(k) .

Since (i, j) ∈ µ′ , the proof is finished. 2

A consequence of the above lemma is that, when the assignment game has doubly

dominant diagonal, the equal-partner relation RA is already transitive, and there is

no need of the transitive closure.

Theorem 7 Let (M ∪ M ′, wA) be a square assignment game. If A has doubly

dominant diagonal, then the equal-partner binary relation is transitive, that is, R̄A =

RA .

Proof: Let us see that under the assumption that A is doubly dominant diagonal, if

i1, i2 ∈ M satisfy i1R̄Ai2 , then i1RAi2 . From i1R̄Ai2 follows that i1, i2 belong to the

same equivalence class IA
k , for some k ∈ {1, 2, . . . , r} . Take some µ ∈M∗

A(M, M ′) ,

and consider j1 = µ(i1) . Now, (i2, j1) belongs to IA
k × JA

k , and then, from Lemma

6, we know there exists µ′ ∈ M∗
A(M, M ′) such that (i2, j1) ∈ µ′ . Thus, µ(i1) =

j1 = µ′(i2) , which means i1RAi2 . 2

To have a doubly dominant diagonal is a sufficient condition for the transitivity

of RA , but it is not necessary. Consider the matrix

A:

1’ 2’ 3’

1

2

3

1 1 0

0 1 1

1 0 1

and notice that RA is transitive although A does not have a doubly dominant

diagonal, since a13 + a22 = 1 < a12 + a23 = 2 .
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It is proved in Núñez and Rafels (2002) that for all assignment game (M∪M ′, wA)

there exists a unique buyer-seller exact assignment game with the same core. This is

denoted by (M ∪M ′, wAr) , it is named the buyer-seller exact representative of the

initial game, and it is defined by

ar
ij = max

(u,v)∈C(wA)
ui + vj , for all (i, j) ∈ M ×M ′ . (6)

Moreover, any matching that is optimal for A is also optimal for Ar , but Ar may

have more optimal matchings than A . It follows that (M ∪M ′, wA) is buyer-seller

exact if and only if A = Ar .

Since C(wA) = C(wAr) , both markets have the same core dimension and thus

the buyer-seller exact representative will be crucial to determine the dimension of

C(wA) .

Once fixed any optimal matching µ ∈ M∗
A(M, M ′) , and being |M | = |M ′| , the

entries in matrix Ar can be obtained in two different ways. The first one (see p. 430

in Núñez and Rafels, 2002) makes use of the characteristic function of the assignment

game and it is useful to be applied to numerical examples:

ar
ij = aiµ(i) + aµ−1(j)j + wA(M ∪M ′ \ {µ−1(j), µ(i)})− wA(M ∪M ′) . (7)

The second way to obtain the buyer-seller exact representative Ar , which can also

be found in the paper cited above, is of a more theoretical nature and only makes

use of the matrix entries: ar
ij = max{aij, ãij} , where, for all (i, j) ∈ M ×M ′ ,

ãij = max
k1,k2,...,kr∈M\{i,j}

different

{aiµ(k1) + ak1µ(k2) + · · ·+ akrj − (ak1µ(k1) + · · ·+ akrµ(kr))} . (8)

This means that each mixed-pair coalition {i, j} evaluates what it could achieve by

cooperating with some optimally matched pairs on the basis that these pairs will be

paid what they obtain in the fixed optimal matching, and then takes the maximum

between this worth and aij . Expression (8) will be useful in the proof of Proposition

8.

Since the buyer-seller exact representative Ar is doubly dominant diagonal, by

Theorem 7 its equal-partner binary relation is already transitive, R̄Ar = RAr . Also,

by Lemma 6 it is easy to identify by means of its equivalence classes which core
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constraints are tight at all core allocations and, as a consequence, the dimension of

C(wAr) . In the next section we see that also the chained equal-partner equivalence

relation R̄A of the initial assignment game determines the dimension of its core.

5 The dimension of the core

As announced before, the dimension of the core of the assignment market will be

determined by the number of equivalence classes of the chained equal-partner relation.

We have seen in the previous section that, for the buyer-seller exact representative

Ar , the equal-partner relation is already transitive. However, to use the equal-partner

relation of Ar to characterize the dimension of C(wA) we first need to prove that

both games not only have the same core but also the same set of equivalence classes.

Proposition 8 Let (M ∪ M ′, wA) and (M ∪ M ′, wB) be two square assignment

games. If C(wA) = C(wB) , then R̄A = R̄B and R̄′
A = R̄′

B .

Proof: From expression (6) follows that two assignment games with the same core

have the same buyer-seller exact representative. Thus, it is enough to prove that, if

(M ∪M ′, wAr) is the buyer-seller exact representative of (M ∪M ′, wA) , then for all

i1, i2 ∈ M , i1R̄Ai2 if and only if i1R̄Ari2 ; and similarly, for all j1, j2 ∈ M ′ , j1R̄
′
Aj2

if and only if j1R̄
′
Arj2 . We only prove the first statement above since the second

one is proved analogously. The “only if” part is straightforward since any optimal

matching for A is also optimal for Ar . Let us then prove the “if” part.

Assume i1, i2 ∈ M with i1R̄Ari2 and not i1R̄Ai2 . This means that i1 and i2

belong to two different equivalence classes of M by the relation R̄A . By Lemma 5,

given µ ∈ M∗
A(M,M ′) , and taking into account that M∗

A(M, M ′) ⊆M∗
Ar(M, M ′) ,

we get that ui1 + vµ(i2) is constant in C(wAr) .

Now, since Ar is buyer seller exact, this means that there exists (u, v) ∈ C(wAr)

such that ui1 + vµ(i2) = ar
i1µ(i2) . But we have just seen that ui1 + vµ(i2) is constant

in C(wAr) and thus, ui1 + vµ(i2) = ar
i1µ(i2) for all (u, v) ∈ C(wAr) . Recall (8) for the

expression of ar
i1µ(i2) in terms of the assignment matrix.
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Case 1: If ar
i1µ(i2) = ai1µ(i2) , then from ui1 + vµ(i1) + ui2 + vµ(i2) = ai1µ(i1) + ai2µ(i2) we

obtain

ui2 + vµ(i1) = ai1µ(i1) + ai2µ(i2) − ai1µ(i2) , (9)

which shows that ui2 +vµ(i1) is also constant for all core allocation of (M ∪M ′, wAr) .

Thus, for all (u, v) ∈ C(wAr) ,

ui2 + vµ(i1) = ar
i2µ(i1) . (10)

By (8) it may happen that ar
i2µ(i1) = ai2µ(i1) and then, by substitution in (9)

ai1µ(i1) + ai2µ(i2) = ai1µ(i2) + ai2µ(i1) . This means that µ′ = {(i1, µ(i2)), (i2, µ(i1))} ∪
{(i, µ(i)) | i ∈ M \ {i1, i2}} is also optimal for A and since µ(i1) = µ′(i2) we get

i1RAi2 , in contradiction with the assumption.

If ar
i2µ(i1) 6= ai2µ(i1) , again by (8) we know that there exist k1, k2, . . . , kr ∈ M \

{i1, i2} and different such that ar
i2µ(i1) = ai2µ(k1) + ak1µ(k2) + · · ·+ akrµ(i1) − ak1µ(k1) −

ak2µ(k2) − · · · − akrµ(kr) . By substitution in (10), and taking into account (9), we get

ai2µ(k1) + ak1µ(k2) + · · ·+ akrµ(i1) + ai1µ(i2) =

ai1µ(i1) + ai2µ(i2) + ak1µ(k1) + · · ·+ akrµ(kr) .
(11)

As a consequence, the matching

µ′ = {(i2, µ(k1)), (k1, µ(k2)), (k2, µ(k3)), . . . , (kr, µ(i1)), (i1, µ(i2))}
∪{(i, µ(i)) | i ∈ M \ {i1, i2, k1, k2, . . . , kr}}

is also optimal for A .

Now, since µ′(i1) = µ(i2) , we get i1R̄Ai2 , in contradiction with the assumption.

Case 2: If ar
i1µ(i2) 6= ai1µ(i2) , then by (8) we have that for all (u, v) ∈ C(wAr)

ui1 +vµ(i2) = ar
i1µ(i2) = ai1µ(k1)+ak1µ(k2)+· · ·+akrµ(i2)−ak1µ(k1)−ak2µ(k2)−· · ·−akrµ(kr)

for some k1, k2, . . . , kr ∈ M \ {i1, i2} and different.

As a consequence, for all (u, v) ∈ C(wA) ,

ui1 + vµ(i2) = ai1µ(k1) +
r−1∑
j=1

akjµ(kj+1) + akrµ(i2) −
(

r∑
j=1

(ukj
+ vµ(kj))

)
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and then,

ui1 + vµ(i2) +
r∑

j=1

(ukj
+ vµ(kj)) = ai1µ(k1) +

r−1∑
j=1

akjµ(kj+1) + akrµ(i2) .

Since ui1 + vµ(k1) ≥ ai1µ(k1) , ukr + vµ(i2) ≥ akrµ(i2) and ukj
+ vµ(kj+1) ≥ akjµ(kj+1) for

all j ∈ {1, 2, . . . , r− 1} , we obtain that all these core constraints are tight at all core

allocations. To unify notation let us write (k̃0, k̃1, . . . , k̃r, k̃r+1) = (i1, k1, . . . , kr, i2) .

Then, since i1 = k̃0 and i2 = k̃r+1 belong to different equivalence classes by the

relation R̄A , there must be two consecutive buyers in this chain (k̃0, k̃1, . . . , k̃r, k̃r+1)

whose equivalence class by R̄A differ. Let us say these are k̃j and k̃j+1 , for some

j ∈ {0, 1, . . . , r} . Moreover, uk̃j
+ vµ(k̃j+1)

= ak̃jµ(k̃j+1)
for all (u, v) ∈ C(wA) , which

means that ar
k̃j k̃j+1

= ak̃j k̃j+1
. This implies, by Lemma 6, that k̃j and k̃j+1 belong

to the same class by the relation R̄Ar , that is, k̃jR̄Ar k̃j+1 . We are thus on the

assumptions of Case 1, that is, k̃j and k̃j+1 play the same role as i1 and i2 in Case

1, and thus we reach k̃jR̄Ak̃j+1 , in contradiction with the assumption. 2

By the above lemma, for all assignment games with the same core the equiva-

lence relation R̄A , and consequently the partition in equivalence classes, is the same.

Thus, whenever we want to analyze some core property of these markets in terms of

this equivalence relation, we can restrict to their buyer-seller exact representatives.

For this representative, the chained equal-partner relation coincides with the equal-

partner relation, which is already transitive. This is shown in the next corollary.

Corollary 9 Let (M ∪M ′, wA) be an assignment game with as many buyers as sell-

ers. Then R̄A = RAr , where (M ∪M ′, wAr) is the buyer-seller exact representative.

Proof: Take an arbitrary assignment game (M ∪ M ′, wA) , not necessarily with

doubly dominant diagonal. We have R̄A = R̄Ar = RAr , where the first equality

follows from Proposition 8 and the second one from Theorem 7. 2

A second consequence is that the statements of Lemma 5 are in fact characteri-

zations of the chained equal-partner equivalence relation.

Corollary 10 Let (M ∪ M ′, wA) be a square assignment game and let R̄A be its

chained equal-partner relation on M . If i1, i2 ∈ M , then the following statements

are equivalent.
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1. i1R̄Ai2 .

2. ui1 − ui2 is constant in C(wA) .

3. ui1 + vµ(i2) is constant in C(wA) for all µ ∈M∗
A(M,M ′) .

And similarly for the relation R̄′
A on M ′ .

Proof: The implication (1) ⇒ (2) is part (1) of Lemma 5. As for (2) ⇒ (3) , notice

that if ui1 −ui2 is constant in C(wA) then, for all µ ∈M∗
A(M,M ′) , ui1 − (ai1µ(i2)−

vµ(i2)) is also constant in C(wA) , which implies (3).

To see (3) ⇒ (1) recall first that M∗
A(M, M ′) ⊆M∗

Ar(M, M ′) . Observe now that

if, for some µ ∈M∗
A(M, M ′) , ui1+vµ(i2) is constant in C(wA) , then ui1+vµ(i2) is also

constant in C(wAr) . Since Ar is buyer-seller exact, we have that ui1+vµ(i2) = ar
i1µ(i2)

for all (u, v) ∈ C(wAr) . Now, by Lemma 6, there exists µ′ ∈M∗
Ar(M, M ′) such that

(i1, µ(i2)) ∈ µ′ . This means that µ′(i1) = µ(i2) and thus i1RAri2 . Finally, by

Proposition 8, we get i1R̄Ai2 . 2

A consequence of the above corollary is that all non-active agents on the same

side of the market belong to the same equivalence class. This happens because every

non-active agent has a constant payoff in the core.

Corollary 11 Let (M∪M ′, wA) be a square assignment game. All non-active buyers

(sellers) belong to the same equivalence class of the chained equal-partner relation R̄A

( R̄′
A ).

Now we know that there is at most one equivalence class formed by non-active

agents on each side of the market, we denote by IA
0 and JA

0 the class of non-active

buyers and sellers respectively. Notice that IA
0 and JA

0 might be empty.

Finally, next theorem states that the dimension of the core equals the number of

equivalence classes formed by active agents on one side of the market. Recall that the

dimension of the core as a convex polytope C is the dimension of the minimal affine

variety, Aff(C) , in which it is contained. See Rockafellar (1970) for the definitions

and properties of convex sets.
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Theorem 12 Let (M∪M ′, wA) be a square assignment game and let the equivalence

classes of R̄A be IA
0 , IA

1 , . . . , IA
r , where IA

0 is the (possibly empty) class of non-active

buyers. Then, dim C(wA) = r .

Proof: By Proposition 8, we assume without loss of generality that A is buyer-

seller exact. We will prove first that dim C(wA) ≤ r . Take any optimal matching

µ . For all (u, v) ∈ C(wA) and all (i, j) ∈ µ we have that ui + vj = aij . Thus

dim C(wA) = dim CM(wA) ≤ m , where CM(wA) is the projection of C(wA) to the

space of payoffs to the buyers. Moreover the payoff in the core of any non-active

agent is constant; this is, for all i ∈ IA
0 , ui is constant for all (u, v) ∈ C(wA) . This

means that dim C(wA) ≤ |IA
1 ∪ IA

2 ∪ · · · ∪ IA
r | , where recall that |IA

1 ∪ IA
2 ∪ · · · ∪ IA

r |
stands for the cardinality of the set IA

1 ∪ IA
2 ∪ · · · ∪ IA

r .

By Lemma 5, for all equivalence class IA
k , k ∈ {1, 2, . . . , r} , and any two agents

in this class, i1, i2 ∈ IA
k , it holds that ui1 − ui2 is constant for any (u, v) ∈ C(wA) .

This implies dim C(wA) ≤ r .

To prove the converse inequality, take (u, v) in the relative interior of C(wA) .

Recall that x ∈ Aff(C) belongs to the relative interior of C , ri(C) , if and only

if there exists ε > 0 such that B(x, ε) ∩ Aff(C) ⊂ C , where B(x, ε) is the ball

centered at x with radius ε > 0 . Recall also that the relative interior of a non-empty

convex set is also non-empty. Then, since all assignment game has a non-empty core,

ri(C(wA)) 6= ∅ .

Since we are assuming that A is buyer-seller exact, by Lemma 6 we know that

a core constraint ui + vj ≥ aij is tight at all core allocations if and only if (i, j) ∈
IA
k × JA

k , for some k ∈ {1, 2, . . . , r} . Then, (u, v) in the relative interior of C(wA)

means that ui > 0 for all i ∈ M \ IA
0 , vj > 0 for all j ∈ M ′ \ JA

0 and ui + vj > aij

for all (i, j) 6∈ ⋃r
k=1(I

A
k × JA

k ) .
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Now, for all k ∈ {1, 2, . . . , r} take εk > 0 small enough such that the point

(uk, vk) belongs to the core, where

uk
i = ui + εk ∀i ∈ IA

k ,

vk
j = vj − εk ∀j ∈ JA

k ,

uk
i = ui ∀i ∈ M \ IA

k ,

vk
j = vj ∀j′ ∈ M ′ \ JA

k .

If we denote by conv{u, u1, u2, . . . , ur} the convex hull of the points u , u1 , u2, . . . , ur

of Rm , we have that CM(wA) ⊇ conv{u, u1, u2, . . . , ur} and thus dim CM(wA) ≥
dim conv{u, u1, u2, . . . , ur} . For all k ∈ {1, 2, . . . , r} , let wk be the vector in Rm

with origin in u and extreme point in uk , that is wk
i = εk for all i ∈ IA

k and

wk
i = 0 otherwise. Then, dim conv{u, u1, u2, . . . , ur} is the rank of the set of vectors

{w1, w2, . . . , wr} and this is r . 2

As an application of the above theorem, consider the two markets with matrices

A1 and A2 introduced in page 8. In both markets the buyers-optimal core allocation

is (u, v) = (1, 1, 1, 1; 0, 0, 0, 0) and the sellers-optimal core allocation is (u, v) =

(0, 0, 0, 0; 1, 1, 1, 1) , as can be easily obtained from (1), (2) and (3). Thus, all agents

are active. The assignment game (M ∪M ′, wA1) has only one equivalence class (by

the chained equal-partner relation) on each side of the market. As a consequence it

has a one-dimensional core. On the other side, the chained equal-partner relation on

any side of the market defined by A2 has two equivalence classes. Then, the core of

the corresponding assignment game is two-dimensional.

Some more comments relating the dimensionality of the core with the position of

the optimal matchings on the assignment matrix are given in the next section.

6 Some concluding remarks

Some other straightforward consequences follow from the partitioned form of the

assignment matrix given by the equivalence classes. For instance, once fixed a set

of agents M ∪ M ′ , for all t ∈ {0, 1, . . . , m} , there exists a matrix A such that

dim C(wA) = t . That is, all possible dimensions are effectively achieved. To see
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that, you only have to built a m×m matrix with t non-zero diagonal blocks, each

diagonal block being a constant and positive matrix and all blocks out of the diagonal

being null.

Moreover, it may well happen that a submarket has a core with a dimension that

is higher than the dimension of the core of the initial assignment market. The reason

is that in general the submarket does not preserve the optimal matchings of the initial

market and thus the number of equivalence classes may increase.

We may also ask if there is any relationship between the number of optimal match-

ings and the dimension of the core. As a first answer we obtain that an assignment

market with all agents active is full dimensioned, that is dim C(wA) = m , if and

only if there is only one optimal matching. This happens because, if only one op-

timal matching exists, then each equivalence class is a singleton. Moreover, if the

optimal matching is not unique, then at least two agents will be related by the equal-

partner relation, and then the number of equivalence classes will be less than m ,

since at least one class will contain more than one agent.

As the dimension of the core decreases, its relationship with the number of optimal

matchings is not so tight. One could think that as the dimension diminishes, the

number of optimal matchings increases. But this is not exactly the case.

With only two optimal matchings, and assuming again that all agents are active,

the dimension of the core may take any value from 1 to m − 1 . To obtain an

assignment game with a core of dimension k ∈ {1, 2, . . . , m − 1} you only have

to define a matrix with these two optimal matchings: µ = {(i, i) | i ∈ M} and

µ′ = {(i, i) | 1 ≤ i ≤ k − 1} ∪ {(i, i + 1) | k ≤ i ≤ m − 1} ∪ {(m, k)} . Then the

equivalence classes on the set of buyers are IA
r = {r} for all r ∈ {1, 2, . . . , k − 1}

and IA
k = {k, k + 1, . . . , m} .

Thus, there is not a lower bound to the number of optimal matchings depending

on the dimension of the core. However, it is true that, as the dimension decreases

the upper bound for the number of optimal matchings increases.

To argue this assertion, notice that if the matrix has doubly dominant diagonal,

and once assumed that the agents on the same equivalence class are consecutive, all
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matching contained in the diagonal blocks is optimal. This is to say, all matching

µ ∈ MAr(M, M ′) such that for all (i, j) ∈ µ there exists k ∈ {1, 2, . . . , r} with

(i, j) ∈ IA
k × JA

k is an optimal matching for Ar . Thus, the number of equivalence

classes of an assignment market (M ∪ M ′, wA) , together with the cardinality of

these classes, determines the number of optimal matchings of the buyer-seller exact

representative Ar , which is
∏r

k=1 |IA
k |! . But the number of optimal matchings of the

initial market (M ∪M ′, wA) may be less than that.

Thus, for a given structure of the r equivalence classes,
∏r

k=1 |IA
k |! is an upper

bound for the number of optimal matchings. Among all the markets with m agents

on each side and r equivalence classes, the maximum possible number of optimal

matchings is (m− r +1)! , which is attained at a doubly dominant matrix with r−1

singleton equivalence classes and another one with m− r +1 agents. Thus, when all

agents are active, an attainable upper bound for the number of optimal matchings

when the core is r-dimensional is (m− r + 1)!

Also, from a given structure of the equivalence classes, a lower bound for the

number of optimal matchings of (M ∪M ′, wA) can be deduced: for each equivalence

class IA
k not reduced to a singleton, the submatrix A|IA

k ×JA
k

must have at least

two optimal matchings. As a consequence, the result in Sotomayor (2003) is easily

obtained: if the core of a market with at least two agents on each side reduces to

only one point, then the optimal matching cannot be unique. The reason is that if

the core is zero-dimensional then all the agents on each side of the market belong to

the same equivalence class (the one formed by non-active agents), and this cannot be

achieved with only one optimal matching.

Finally, from the description of the equivalence classes of the transitive closure of

the equal-partner relation we can recognize when the kernel of an assignment game

coincides with the core. The kernel is another set-solution concept for coalitional

games with transferable utility which was introduced by Davis and Maschler (1965).

Taking into account that the kernel of an assignment game is included in the core

(Driessen, 1998), we know by Granot and Granot (1992) that the kernel of an as-

signment game coincides with the core if and only if there does not exist an agent
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with non-constant payoff in the core that is matched with the same partner in all

optimal matching. We can now say that this happens if and only if no equivalence

class formed by active agents is a singleton.

Corollary 13 Let (M ∪ M ′, wA) be an assignment game with as many buyers as

sellers, and let {IA
k }r

k=0 and {JA
k }r

k=0 be its equivalence classes by the relations R̄A

and R̄′
A , where IA

0 and JA
0 are the possibly empty classes of non-active agents. The

kernel coincides with the core if and only if |IA
k | > 1 for all k ∈ {1, 2, . . . , r} .
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