
This is the accepted version of the journal article:

Rosas Mendoza, Claudia Andreina; Sikora, Anna; Jorba i Esteve, Josep; [et al.].
«Dynamic tuning of the workload partition factor and the resource utilization
in data-intensive applications». Future Generation Computer Systems, Vol. 37
(July 2014), p. 162-177. DOI 10.1016/j.future.2013.12.002

This version is available at https://ddd.uab.cat/record/288058

under the terms of the license

https://ddd.uab.cat/record/288058

Dynamic Tuning of the Workload Partition Factor and
the Resource Utilization in Data-intensive Applications

Claudia Rosasa, Anna Sikoraa, Josep Jorbab, Andreu Morenoc, Antonio
Espinosaa, Eduardo Césara

aComputer Architecture and Operating Systems Department,
Universitat Autònoma de Barcelona. 08193, Bellaterra. Spain

bEstudis d’Informatica, Multimedia i Telecomunicacio,
Universitat Oberta de Catalunya, 08018 Barcelona, Spain.

cEscola Universitaria Salesiana de Sarria, 08017 Barcelona, Spain

Abstract

The recent data deluge needing to be processed represents one of the major chal-
lenges in the computational field. This fact led to the growth of specially-designed
applications known as data-intensive applications. In general, in order to ease the
parallel execution of data-intensive applications input data is divided into smaller
data chunks that can be processed separately. However, in many cases, these ap-
plications show severe performance problems mainly due to load imbalance, inef-
ficient use of available resources, and improper data partition policies. In addition,
the impact of these performance problems can depend on the dynamic behavior
of the application.

This work proposes a methodology to dynamically improve the performance
of data-intensive applications based on: (i) adapting the size and the number of
data partitions to reduce overall execution time; and (ii) adapting the number of
processing nodes to achieve an efficient execution. We propose to monitor the
application behavior for each exploration (query) and use gathered data to dy-
namically tune the performance of the application. The methodology assumes
that a single execution includes multiple related queries on the same partitioned
workload.

The adaptation of the workload partition factor is addressed through the def-

Email addresses: crosas@caos.uab.es (Claudia Rosas), ania@caos.uab.es
(Anna Sikora), jjorbae@uoc.edu (Josep Jorba), amoreno@euss.cat (Andreu Moreno),
aespinosa@caos.uab.es (Antonio Espinosa), eduardo@caos.uab.es (Eduardo
César)

Preprint submitted to Future Generation Computer Systems October 23, 2013

inition of the initial size for the data chunks; the modification of the scheduling
policy to send first data chunks with large processing times; dividing of the data
chunks with the biggest associated computation times; and joining of data chunks
with small computation times. The criteria for dividing or gathering chunks are
based on the chunks’ associated execution time (average and standard deviation)
and the number of processing elements being used. Additionally, the resources
utilization is addressed through the dynamic evaluation of the application perfor-
mance and the estimation and modification of the number of processing nodes that
can be efficiently used.

We have evaluated our strategy using as case of study a real and a synthetic
data-intensive application. Analytical expressions have been analyzed through
simulation. Applying our methodology, we have obtained encouraging results
reducing total execution times and efficient use of resources.

Keywords:
Load balancing, Dynamic tuning, Data-intensive applications, Divisible Load
Theory (DLT)

1. Introduction

Nowadays, one of the biggest challenges in the computational field is the con-
tinuous growth of data that needs to be processed. The data flow coming from
sensors, results of biological and physical experiments [1], and even from the in-
formation generated by users, are surpassing the capacities of the systems and
algorithms recently designed. This led to a new type of applications known as
data-intensive applications [2], or big-data computing [3].

In the era of data-intensive applications, computational systems are not only
intended to compute but also to store and manage data. Given the current volume
of data, those tasks increase the challenge and complexity of developing a suitable
solution. Moreover, the efficient data processing is not only a matter of having a
large number of processing units because it also depends on characteristics of the
workload of the application.

In order to improve performance, there are many studies that have obtained
good results, ranging from approaches that analyze the effectiveness of I/O sys-
tems, to the design of appropriate strategies to define and access data structures
[4]. In many cases, it has been necessary to divide the workload of data-intensive
applications into smaller data chunks (according to Divisible Load Theory, DLT
[5]) to ensure that the workload of the application can be manageable. This has

2

been done to reduce the size of the workload and enable parallelism, but once the
workload has been divided, other issues rises like those related to disk access or
load balancing.

The execution of data-intensive applications that involves a large number of
queries or iterations, may lead to variations in the overall execution time between
iterations. For this reason, performance analysis and load balancing techniques
must be adapted to particular characteristics of the application. In most cases,
given the variability between (or within) iterations, performance analysis must
be carried out at run time. This is an extremely complex process because it is
carried out during the execution of the application without incurring in excessive
overheads. If not, the proposed solution may be obsolete from one iteration to the
other.

Most load balancing methods, such as factoring [6][7], are based on the idea
of distributing the workload of the application in chunks of decreasing size. For
the purpose of improving total computation time of scientific applications, these
methods try to determine a good partition factor to obtain the chunks. When
doing this, parameters such as computation time, communication time, and overall
performance of the application are taken into consideration.

This work proposes a methodology that dynamically identifies and tunes load
imbalances in parallel data-intensive applications. This proposal is oriented to:
applications that perform several related explorations or queries1 on a large work-
load; and the possibility of arbitrarily dividing or concatenating the workload of
the application into data chunks of different size. These assumptions are sound
because large-scale data processing usually consists on launching several related
explorations on the data, and processing can be performed on data chunks of ar-
bitrary size.

To improve performance in parallel data-intensive applications with arbitrar-
ily divisible workloads, our methodology considers: (i) the adaptation of the par-
tition factor for the workload to reduce overall execution time and avoid load
imbalances; and (ii) the modification of the number of processing nodes that can
be used efficiently. This proposal works for homogeneous clusters and uses an
application performance model that allows for dynamically adjusting the tuning
parameters according to the current application behavior.

The methodology is based on monitoring the computation time of generated

1We consider terms: exploration, query and iteration as synonyms; and they may be used
interchangeably along this work.

3

data chunks to determine the order in which they should be scheduled in future
explorations. The proposal includes the dynamic division and gathering of data
chunks (when the partitioning cost is low); and the possibility of dynamically
choosing among previously generated partitions (when the partition cost is too
high). In both cases, the calculation of the partition factor will take into considera-
tion the communication cost, memory use, and the number of available computing
nodes (besides the computation time).

Our methodology assumes that a single execution includes multiple related
explorations on the same partitioned workload. Thus, previously collected data
for one exploration can be used to dynamically adapt the number of resources
(processing nodes) for subsequent explorations. As our method is based on the
execution of applications in homogeneous clusters of workstations, the compu-
tation capacity is constant and, in most cases, the disk and network latency are
stable. Moreover, in order to make easier the initial design we used a shared
nothing [8] processing approach. Under this approach, each node (consisting of
processor, local memory, and disk resources) shares nothing with other nodes in
the cluster.

Summarizing, our strategy proposes:

a) Generating multiple representative workload partitions prior to the execu-
tion of the application when the cost of partitioning data is too high.

b) Monitoring computation time of every exploration or query on every data
chunk.

c) Ordering and allocation of data chunks along the execution of the applica-
tion according to their associated computation times.

d) Tuning of the partition factor of the data chunks with the highest (partition-
ing) and lowest (grouping) associated computation time according to the
observed efficiency (relation between computation time and the number of
computation nodes).

e) Distributing newly generated data chunks in subsequent explorations.

f) Estimating the number of processing nodes to be effectively used by the
application.

The evaluation of our proposal has been carried out in a real and widely used
data-intensive application: the computation/data-intensive bioinformatics tool Ba-
sic Local Alignment Sequence Tool (BLAST) [9], as well as on a distributed merge

4

sort. Results obtained from both applications are encouraging in terms of total ex-
ecution time reduction and efficient use of resources.

Moreover, an analytical simulator has been used to evaluate the analytical ex-
pressions of the methodology. These expressions are used to estimate the modifi-
cations in the size of the data chunks and in the number of processing nodes to be
used. In order to analyze the behavior of the methodology we used the simulation
for a wider range of scenarios.

The rest of the paper is organized as follows. First, Section 2 provides an
overview of related work. Next, Section 3 describes the proposed methodology
for balancing the load and improving performance of data-intensive applications.
Section 4 shows the most relevance characteristics of the selected scenarios to
evaluate our methodology: (i) a real data-intensive application, the bioinformatics
tool BLAST; (ii) a synthetic application based on a distributed sorting algorithm;
and (iii) an analytical simulator of data-intensive applications. In addition, Section
4 explains the reasons for using these applications to test the proposed method-
ology. Section 5 where the experimental evaluation is described and results are
discussed. Finally, Section 6 shows the conclusions and outlines future work.

2. Related Work

A divisible workload is such that can be divided into several independent
pieces or chunks of arbitrary size to be processed in parallel by a set of com-
pute nodes. The Divisible Load Theory (DLT) [5] was introduced in the late
1980s. Later on, DLT has branched in many new directions covering scheduling
problems and performance modeling for various types of computational environ-
ments, such as Grid and Cloud systems [10], systems with memory limitations
[11] or with computation time restrictions [12].

Some approaches, as the presented in [13], consider models of adaptive divis-
ible load based on Genetic Algorithms in order to improve scheduling tasks on
large scale data grids. In their work, they have decided the size of the portion of
workload to be allocated to each processor to minimize the turnaround time of a
job.

Others works, such as [14], have performed a wide study on the complexity
of multi-round divisible load scheduling. They have considered a Master/Worker
approach using heterogeneous platforms and have answered how the load should
be partitioned in order to minimize the time to complete the last unit of work.

Many of these studies have used the linear programming models proposed in
the first publications of DLT to represent the scheduling problem as a system of

5

linear equations. These equations are evaluated at run time to decide the appro-
priate amount of load to deliver at each processing node. On the contrary, our
proposal uses analytical expressions to estimate both the size of the load to be
delivered and the appropriate number of resources to be used. Previous works
also consider factors, such as: variable startup times of the processing nodes [12],
different types of interconnection networks [15] or, in recent publications, Map
Reduce computations [16] that are outside the scope of this work.

Regarding the dynamic tuning of performance parameters, the works proposed
in [17] and [18] have introduced the use of a load balancing strategy named fac-
toring [6][7] to modify the size of the data chunks distributed among the workers.
In the first proposal, the authors have detailed a performance model for Mas-
ter/Worker applications that comprises two stages: one stage for load balancing,
and the other to adapt the number of workers.

Later, they have defined a strategy for dynamically improving the performance
of pipeline applications [19]. This strategy improves the throughput of applica-
tions by gathering the fastest pipe stages and replicating the slowest ones. In this
work, we further extend the basis proposed by [17], [18] and [19] to parallel data-
intensive applications with arbitrarily divisible loads.

Finally, there are some works that consider the processing characteristics of
data-intensive applications for developing dynamic load balancing strategies, such
as [20] and [21]. The first is focused on multicast problems for data-intensive
applications on the Cloud, while the second developed resource allocation and
scheduling strategy to minimize the total time spent on processing data. Although
these works have considered partitioning data, it is mainly focused on data local-
ity.

3. Methodology for improving performance in data-intensive applications

The main contribution of this work is the introduction of a methodology for
improving the performance of data-intensive applications through dynamic load
balancing and adaptation of the number of used resources. Specifically, the method-
ology determines: (i) the number of data chunks in which the workload is divided;
(ii) the scheduling strategy for data chunks; and (iii) the number of processing
nodes to be used. This methodology has been developed making the following
assumptions:

1. The initial workload of the application can be arbitrary partitioned into in-
dependent data chunks.

6

Partitioning Phase

Data set
Partitioning

Adjust
tuning

parameters

Divisible Load Monitoring Tuning
Update metrics

Change parameters

Partition factor modification

Application dependent During application’s execution

Measurement

Evaluation

Dynamic Analysis Phase

Figure 1: General description of the load balancing methodology.

2. The application performs a set of related explorations or queries on the
workload, e.g. the application searches similarities for several related pro-
teins on a large database, or looks for related strings on the web.

3. The performance of the application varies significantly (according to the
input data), justifying the use of a dynamic performance analysis/tuning
approach.

4. The characteristics of the input data are unknown at the beginning.

The methodology has been designed for homogeneous clusters because they
provide steadiness in systems’ parameters, such as processing capacity and disk
and network latency, simplifying the model definition.

The proposed methodology, represented on figure 1, includes a partitioning
phase and a dynamic analysis phase. In the partitioning phase, the initial work-
load is divided into smaller pieces, and multiple alternative partitions are gener-
ated whether the cost of generating new partitions during the application execution
is too high. The aim of our approach is to take advantage of the adaptation made
in [18] to the load balancing policy, named factoring [6][7]. The modification pro-
posed in [18] is based on distributing the workload in chunks of decreasing size to
keep execution balanced. Along these lines, if the cost of dynamically generating
new partitions is acceptable, the policy will be applied at execution time. How-
ever, the workload’s partitioning cost can be high for data-intensive applications.
If this happens, we propose to generate multiple partitions before executing the
application and then, during the execution choose which of them is the most ap-
propriated one. In the dynamic analysis phase, performance metrics are collected
and the performance model is evaluated. Both tasks are carried out dynamically in
order to determine which tuning parameters must be adjusted for the next explo-

7

Table 1: Summary of notation
Notation Description
Nf number of data chunks.
Nq number of explorations (queries).
Nw maximum number of processing nodes available.
j data chunk identifier (0 < j < Nf).
i exploration identifier (0 < i < Nq).
n number of active processing nodes (0 < n Nw).
size data chunk size (in MByte).
� communication cost by MByte (BW�1).
Cij computation cost (in secs) for the ith

exploration and the jth data chunk.
Ci total computation time (in secs) for the ith expl.⇣

Ci =
PNf

j=1 Cij

⌘

µi average computation time (in secs) for the ith expl.h
µi = (

PNf

j=1 Cij)/(Nf)
i

�i standard deviation of computation time (in secs).
⇢n performance index for n number of workers.
Tsi total sequential computation time for the ith expl.⇣

8i 2 Nq : Tsi =
PNf

j=1 Cij

⌘

Tmaxi maximum computation time for ith expl.
Tideal ideal computation time for a parallel execution.
y number of divisions for data chunks with

Cij > Tideal.
Tgroupid computation time for the grouped data chunks.
Nwmax maximum number of workers⇣

Nwmax = Tsi
Tmaxij

⌘

SP scheduling policy.

ration. In this phase, the performance of the application is improved at run time
by tuning three performance parameters: (i) the workload partition factor (num-
ber of data chunks); (ii) the scheduling policy; and (iii) the number of resources
(processing nodes) used. In order to perform a dynamic tuning, measurements
relative to execution time has to be collected at run time. Then, collected data is
evaluated using the performance model and, based on the results of the evaluation,
the performance parameters are tuned. The notation used in our methodology is
described in Table 1.

The dynamic analysis phase is summarized in the flowchart presented in figure
2. Here, the main tasks performed in the dynamic analysis phase are highlighted:
(i) measurement; (ii) model evaluation; and (iii) tuning. The execution of the

8

｝

i = 1?

Default Values

‣n = Nw;
‣Nf = max(Nf);
‣SP = FCFS.

Start

Dynamic Analysis
Phase

Measure Phase
Run App(ij)

Collect metrics

Update historical

Cij; μCi; σCi; Tideal

j = 1

j ++

j ≤ Nf?i ++

yes

no

Update policies

SP = FCFS ∧ HFF
no

yes

End

end

start

i = Nq?
Model evaluation and tuning

‣Nwmax = Tsi/Tmaxij;
‣(λ*size*n-1) < μCi;
‣min(tqi(n) ∧ ρ) ⇒ update n;

‣Ci > Tideal ⇒ partitioning;

‣Ci < Tideal ⇒ grouping.

no

yes

update
Nf

Figure 2: Dynamic analysis phase of the load balancing methodology.

application starts with a set of default values for both the partition factor and the
number of processing nodes. The selection of these values is based on the criteria
described in subsection 3.1. These values can be modified at run time because
they affect the overall performance of the application.

Data chunks associated computation time is collected in the measurement
phase. In the first exploration, a First Come First Serve scheduling policy is used
because there is no information about data chunks’ computation time. Starting
from the second exploration, once the computation times has been collected, the
scheduling policy is updated to a Heaviest Fragments First approach (sending data
chunks according to their processing times in decreasing order). After this point,
gathered data is evaluated in the model evaluation phase; and the corresponding
modifications in the execution of the application are introduced in the tuning phase
(if necessary). Through this process, the workload partition factor and the number
of processing nodes can be adjusted. The tuning of such performance parame-
ters is carried out to minimize the total execution time while keeping an efficient
use of resources. The application’s workload might have been partitioned prior
to execution, but the tuning of these parameters will be done dynamically and
continuously at run time.

9

3.1. Selection of the initial workload partition factor
In general, the workload of data-intensive applications can be split into smaller

data chunks. Nevertheless, to select how many data chunks should be generated,
i.e. the workload partition factor, is a non-trivial endeavor. The difficulty resides
in how to choose a trade-off between a well balanced executions and low execution
times. If applications are executed using a large number of data chunks (i.e. a
high partition factor) it may be easier to avoid load imbalances. However, the
replication of the serial fraction of each chunk may introduce some overhead in
the total execution time.

First, an initial common partition factor for all data chunks is established. This
factor is based on: (i) hardware parameters, such as the available physical mem-
ory, the network bandwidth, and the number of available resources (nodes); and
(ii) application parameters, such as the total size of the workload, its partitioning
cost (time), and the number of explorations. Particularly, the partitioning cost de-
termines whether all partitions or only the initial ones, are going to be generated
before the execution of the application. In the first case, the proposed methodol-
ogy will dynamically choose the best partition factor among those available, while
in the second case it will generate the best partition dynamically.

Once data chunks has been generated using the defined size, the application
can be executed. After executing the application, and given the characteristics of
data-intensive applications, it can be seen that even when all data chunks have the
same size, the average computation time by data chunk may vary. We use this
variation to determine the modifications of the size of the data chunks.

We propose to start the computation using a relatively high partition factor
(determined by system and application characteristics described above) because
there is no initial information about the cost of processing each data chunk. In this
way, the methodology initially tries to meet the load balancing goal by distributing
smaller data chunks.

3.2. Selecting a scheduling policy
The application starts with predefined default values for the tuneable parame-

ters: a high number of workers, limited by the number of nodes available in the
cluster, and a high workload partition factor (as shown in figure 3(a)). As we
mentioned before, our methodology assumes that the explorations are related to
each other and they are processed sequentially. Once an exploration has been pro-
cessed, the execution time for each data chunk is stored and historical statistics
updated.

10

T

Nf

size

80 1 2 3 4 5 6 7 9

1 1 1 1 1 1 1 1 1 1

3 9 1 7 2 40 4 6 5 3

Ci = computation time of data chunk

(a) Initial Workload

Nw

time

5

4

3

2

1

2
4

40
5

9
1

7
3

6
7

5
8

4
6

3
0

3
9

1

2

(b) First Come First Serve Policy

T

Nf 45 1 3 7 8 6 0 9 2

40 9 7 6 5 4 3 3 2 1

Ci = computation time of data chunk

1 1 1 1 1 1 1 1 1 1size

(c) Workload sorted in decreasing order

Nw

time

5

4

3

2

1 40

9

7

6

5 4

3

3

2

1

4

5

1

3

7

8 6

0

9

2

(d) Heaviest Fragments First Policy

Figure 3: Comparison between scheduling policies.

In the first iteration (exploration), a First Come First Serve scheduling policy
is used because there is no information about data chunks’ computation time (as
shown in figure 3(b)). Then, starting from the second exploration, data chunks are
ordered and scheduled according to their associated processing time. Data chunks
are ordered from the heaviest (those with highest processing time) to the lightest
ones (with the lowest processing time) as shown in figure 3(c). When a worker
requests a chunk, it receives the heaviest non-processed chunk. This scheduling
method is known as HFF (Heaviest Fragments First) [22].

Additionally, when monitoring the behavior of the application using the initial
workload partition factor, two kinds of data chunks are identified: (i) those whose
computation time Cij is above the average computation time of the exploration
µi; and (ii) those data chunks whose computation time Cij is below the average
computation time of the exploration µi. Data chunk with the maximum compu-
tation time is labeled as Tmaxi . In a parallel execution using a fixed number of
processing nodes, any node that finishes before the worker processing the data
chunk labeled as Tmaxi will be idle until that worker finishes, resulting in an inef-
ficient execution (as shown in figure 3(d), where total execution time will not be
lower than the time of the data chunk number 5).

11

3.3. Adjusting the Partition Factor
Besides scheduling, the proposed methodology also adapts dynamically the

partition factor with the aim of balancing the load among workers (this strategy
has been named HFF + factor). The methodology considers: (i) repartitioning the
data chunk(s) with highest associated computation time; and (ii) gathering data
chunks with low associated computation times. The main criteria to decide when
to partition, or when to group, is given by estimating the best possible computation
time. In this particular case, ideal time (Tideal, shown in expression (1)), is given
by the relation between the serial computation time of the entire workload, Tsi;
and the total number of available processing nodes Nw.

Consequently, monitoring the execution time of the data chunks Cij allows to
calculate the average computation time µi and standard deviation �i, which are
used for deciding the chunks that should be partitioned and the chunks that should
be grouped.

Tideal =
Tsi

Nw
=

(µi ⇤Nf)

Nw
(1)

3.3.1. Partitioning
When executing a data-intensive application in parallel, the total execution

time Ci is given by the last worker that finishes processing. Usually, this delay is
given by processing data chunks with large execution times. In order to reduce this
time and balance the execution, we propose to break this (or these) data chunk(s)
into smaller pieces, and reallocate them among the available processing nodes.

In this work, we chose a conservative approach to partition data chunks in or-
der to prevent unnecessary reallocation of data chunks with short execution times.
A threshold, defined by expression (2), is used to determine whether a data chunk
should be partitioned or not. We defined this restriction because, in some cases,
after repartitioning a data chunk, its computation time does not scale linearly; i.e.
if the data chunk has a computation time T , and it is divided into 2 new pieces, the
computation time associated to the pieces does not necessarily is going to be T/2.
This behavior has been observed through experimentation, and this non-linearity
characteristic depends on both the algorithm and the data.

Cij > Tideal (2)

With the objective of reducing the gap between data chunks with large execution
time, and the ideal time Tideal, there is a need to estimate the computation time for
partitioned data chunks. In this sense, a statistic of order Nw (shown in expression

12

(3)) is used to estimate the upper bound for computation time of the new data
chunks. This estimation is based on the average computation time, the standard
deviation of the data chunks computation times, and the number of processing
nodes used.

E = µi + �i ⇤
p
Nw/2 (3)

For statistical purposes and with the objective of enabling the estimation of the
number of new partitions, we have introduced appropriate modifications to ensure
consistency of 3), resulting on the expression (4).

E =

✓
Cij

y

◆
+

✓
�i

y

◆
⇤
r

Nw

2
(4)

In this expression, the average computation time of data chunks which meets the
time restriction (2) will be given by the relation between their associated com-
putation time Cij and the number of new data chunks generated y. Similarly,
standard deviation of new data chunks will be represented as the relation between
the standard deviation of processing the whole workload and the number of newly
generated pieces. These assumptions are sound because the mean value of the
sampling distribution of means is exactly the same as the population mean; and
the variance of the sampling distribution of variances equals the population vari-
ance divided by the sample size.

✓
Cij

y

◆
+

✓
�i

y

◆
⇤
r

Nw

2
 Tideal (5)

Finally,to define the number of new data chunks to be generated, y must be calcu-
lated from expression (5), leading to expression (6).

y =
Nw ⇤

⇣
Cij + �i ⇤

q
Nw
2

⌘

(µi ⇤Nf)
(6)

For example, if an exploration is executed using the following values for the num-
ber of processing nodes and partition factor, Nw = 5 and Nf = 10, the resulting
scheduling may look as the one in figure 4(a). In this case, there are data chunks
with different associated computation times, and the data chunk with the largest
computation time (about 40 time units) can be easily identified. In this example
the corresponding values for the average computation time, the standard deviation,
and the expected ideal time are µi = 8, �i = 11.49, and Tideal = 16.

13

Nw

time

5

4

3

2

1 40

9

7

6

5 4

3

3

2

1

4

5

1

3

7

8 6

0

9

2

μi = 8.00

Tideal = 16.00

σi = 11.49

(a) Previous execution

T

Nf 45 1 3 7 8 6 0 9 2

40 9 7 6 5 4 3 3 2 1

C’i = new computation time of data chunk

50 51

??

52 53

??

1
4

1
4

1
4

1
4size 1 1 1 1 1 1 1 1 1

????

(b) Partitioning

Nw

time

5

4

3

2

1

8
52

7
53

12
50

16
51

9
1

5
8

2

4

4
6

1

2

6
7

3
9

7
3

3
0

Tideal = 16.60

σi = 4.21

μi = 6.38

(c) Measuring

T

Nf

size

41 3 7 8 6 0 9 250 51 52 53

1
4
1
4

1
4
1
4 1 1 1 1 1 1 111

9 7 6 5 4 3 3 2 18 716 12

(d) Sorting

Figure 4: Partitioning data chunks with the highest execution times.

After evaluating the restriction given by expression (2), and solving y from
expression (6), the resulting value for the number of pieces in which data chunk
j = 5 should be partitioned is y = 4 (as shown in figure 4(b)). However, the
computation times for the new data chunks are unknown. Then, a subsequent
exploration is used for labeling new data chunks with their associated computation
times. In order to avoid possible load imbalances, new data chunks are scheduled
when their original data chunk was expected to be sent (figure 4(c)). The new
chunks can be labeled and rearranged in decreasing order of computation time,
for the next exploration (as shown in figure 4(d)).

3.3.2. Grouping
Partitioning the workload in small data chunks may improve load balancing

but can also produce overheads on scheduling, communication and computing.
Consequently, we propose to evaluate the application performance at run time
and, whether is convenient to group or distribute bigger data chunks to avoid these
overheads.

For every data chunk that can be grouped, the grouping strategy will stop when
the sum of the associated computation time of the data chunk exceeds Tideal. How-
ever, by doing this, too many data chunks with a similar computation time may be

14

Nw

time

5

4

3

2

1 16

12

9

8

7 7

6

5

14

3

3

2
52

53

51

50

1 8 4

6 2

7 9

3 0

Tideal = 16.60

σi = 4.21

μi = 6.38

(a) Previous Execution

1

2
C’i = new computation time of data chunk

T

Nf

size

51 ^ 650

1
4 1

41

3 3 2 116 ??

1 ^ 8

2

??

52 ^ 7

??

3 ^ 53

??

11 1

0 49

1 1
4 1 1

4

(b) Grouping

Nw

time

5

4

3

2

1

16
51 ^ 6

16
50

Tideal = 16.60

σi = 6.68

μi = 9.22

14

3 ^ 53
14 3

0

1 ^ 8

2

1

52

14

3
9

2
4

(c) Measuring

1

2
= new computation time of data chunk

T

Nf

size

51 ^ 650

1
4 1

41

3 3 2 116 16

1 ^ 8

2

14

52 ^ 7

14

3 ^ 53

14

11 1

0 49

1 1
4 1 1

4

(d) Sorting

Figure 5: Grouping data chunks with the shortest execution times.

generated. If this happens, the number of data chunks with short computation time
will not be enough to fill the blanks left by imbalances along the exploration. Due
to this situation, we considered a more precise approach to estimate the total time
for the grouped data chunks. This has been achieved by defining a time threshold
for such data chunks (as shown in expression (7)). Thus, computation time of new
data chunks is kept way below ideal time enabling us to dispose of data chunks
small enough to fill gaps on execution time and facilitate a balanced execution.

Tgroup Tideal (7)

For the sake of clarity in the example, data chunks are left in the same order as in
previous execution (as shown in figure 5(a)). Then, bigger data chunks are created
by grouping “smaller” data chunks (those data chunks with the lowest execution
times) while the restriction defined in expression 7 is not met. We evaluate the
possible resulting computation time when grouping, i.e. Tgroup, by adding the
computation time of the selected data chunks. For this particular example, we
group data chunks 51 and 6, 1 and 8, 52 and 7, and 3 and 53 (as shown in figure
5(b)) because the sum of their computation times is below the defined threshold.
Later, similarly to partitioning strategy, new data chunks are executed when their
maximum of their original data chunks would have been executed (as represented

15

in figure 5(c)) to label the data chunks with their new associated computation
time. In this manner they can be sorted in decreasing order for the following
explorations (figure 5(d)).

3.4. Estimation of the number of resources being used
After tuning the partition factor, and once the load is as balanced as possible,

we can assess the number of resources (processing nodes) that are going to be
used. It is possible to determine the maximum number of processing nodes n that
can be used, accordingly to the measured processing time for each data chunk,
and expressions (8) and (9).

n Tsi
Tmaxij

(8)

Expression (8) is used to calculate the maximum number of workers which may be
processing efficiently. It is possible to infer from (8) that the minimum execution
time for an exploration is limited by the chunk with the maximum processing
time. Expression (9) is used to calculate the maximum number of processing
nodes (workers) that can be managed by the master. If a worker finishes before
the master has distributed chunks to every other worker that worker must wait.

n
PNf

j=1 Cij

� ⇤ size ⇤Nf
(9)

In addition, the methodology must be able to estimate the application execution
time for an exploration using a certain number of workers, in order to decide if this
parameter should be changed. This estimation is done through expression (10),
which takes into consideration the time needed for sending the first chunk to all
workers (�⇤size⇤(n�1)) and the computation done by one worker ((�⇤size)+µi)
on every chunk it expects to receive (Nf/n).

tqi(n) = [� ⇤ size ⇤ (n� 1)] + (Nf/n) ⇤ [(� ⇤ size) + µi] (10)

The criteria for deciding the appropriated number of workers has been defined
as an index relating the estimated execution time (tqi(n)) and the efficient use
of the resources. Efficiency is defined by (11) as the relation between the mean
computation time for each chunk (µi), which is the time each node has been doing
useful work, and the total time the node has been available (tqi(n)).

Efn =
µi ⇤Nf

n ⇤ tqi(n)
(11)

16

Consequently, expression (12) was designed to find the number of workers that
minimizes both the exploration execution time and the efficiency loss.

⇢n =
tqi(n)

Ef(n)
=

n ⇤ tq2i (n)
µi ⇤Nf

(12)

Summarizing, the number of processing nodes (n, workers) used by the applica-
tion is delimited by the minimum values of (8), (9) and (12).

In order to be able to dynamically tune these factors, the following parameters
must be monitored: network parameters, such as bandwidth and setup overhead;
communication parameters, such as message size; and computation parameters,
such as CPU utilization. In this way, the loop shown in figure 1 is closed, cov-
ering the process of dynamic monitoring, analysis, and tuning a data-intensive
application with divisible workload.

4. Case studies of Data-Intensive Applications

The proposed methodology has been designed considering dedicated clusters
working under a shared nothing [8] processing approach. This means that each
node consisting of processor, local memory, and disk resources shares nothing
with other nodes in the cluster. Additionally, analyzed data-intensive applications
have been developed under a Master/Worker paradigm, where each worker is as-
signed to a different processing node and they do not communicate between them.

The methodology has been evaluated using: (i) a real and widely used data-
intensive application, BLAST (subsection 4.1); (ii) a synthetic application based
on the merge sort algorithm (subsection 4.2); and (iii) an analytical simulator
(subsection 4.3). Each scenario has been selected to analyze different stages of
the methodology. First, BLAST was used as main case of study to check the
performance gain for real applications when applying our proposal. Then, we
used a synthetic application to facilitate the analysis of the workload partition
factor adaption at run time (because, in comparison with BLAST, the partitioning
process is faster). Finally, the analytical simulator evaluates the methodology in a
wide range of scenarios.

4.1. Basic Local Alignment Search Tool
As a real application, we choose BLAST (Basic Local Alignment Sequence

Tool) [9] for assessing our proposal because: (a) it is one of the most widely used
bioinformatics tools, and (b) it satisfies the assumptions presented in Section 3.

17

BLAST searches for regions of similarity in biological queries (nucleotides
or proteins). It calculates the statistical significance of matches comparing the
entrance query with large databases of sequences, such as GenBank or Swiss-
Prot. Based on heuristics, BLAST algorithm improves up to 10 times the exact
match Smith-Waterman Algorithm [23].

BLAST is both a CPU and a data-intensive application. This application
presents long and irregular processing times due to data characteristics, and it
processes biological databases up to 50 GB size –and growing– that can be arbi-
trarily divided into non-dependent data chunks (in BLAST literature these chunks
are called fragments).

Most parallel BLAST versions, such as mpiBLAST [24] and ScalaBLAST [4],
have been developed using the Master/Worker paradigm and they take advantage
of the parallelism of the systems using database partitioning. In general, the data
is partitioned and the generated database fragments are distributed between all
available workers. Next, each worker searches for similarities between the input
sequence and the database fragment. Finally, it returns the obtained results to the
master, which collects all the results and concatenates them into one output file.

In the case of BLAST, the application may present load imbalances given
by variations in the computation time. In this application, these variations are
caused by the content of the data chunks because the more similarities BLAST
encounters in a data chunk, the more time is required for processing a fragment.
In consequence, BLAST represents a good candidate to benefit for our proposal.
Overall performance improvements obtained from applying our methodology to
this real scenario are shown in Section 5.1.

4.2. Distributed sorting algorithm
The main characteristic of any sorting algorithms is the difference in compu-

tation time when processing unsorted and sorted files. Additionally, many algo-
rithms as merge sort include modifications to enable sorting large input files in
a short period of time. These two characteristics, together with the possibility of
arbitrarily dividing the file to be sorted into smaller pieces, have led us to develop
a distributed version of the algorithm.

This application is used to analyze the effect of dynamically modifying: (i)
the scheduling policy; (ii) the size of the data chunks2; and (iii) the number of
processing nodes used. This application has been developed as a Master/Worker

2By repartitioning or grouping those meeting the restrictions defined in subsection 3.3

18

and its input data files (of unsorted items) are generated using the gensort program
[25]. These files contain items represented as lines of 100 ASCII characters. The
size of generated files is of up to 32 GB.

In order to introduce variability in the computation time associated to some
of the data chunks in the workload, unsorted and sorted data chunks has been
randomly combined in the workload. The distribution was performed following
the scheduling policies described in subsection 3.2. Moreover, to keep integrity in
the results, after each worker performed a distributed merge sort in the received
data chunks, and once all its data chunks has been sorted, the workers merge their
processed data chunks into a bigger file.

This application facilitates the analysis of the results of applying the proposed
methodology, because it enables the modification of the size of the data chunks at
run time without introducing additional processing overhead.

4.3. Analytical simulator
The aim of the proposed methodology is to achieve balanced executions for

data-intensive applications by tuning performance parameters such as, the work-
load partition factor and the number of processing nodes used. In order to do
this, some analytical expressions were defined to choose the appropriate values
for these parameters. Nevertheless, the evaluation of the appropriate functioning
of the methodology is a big challenge. In many cases, the evaluation of a per-
formance improvement proposal requires a lot of work to implement, debug and
execute the analysis environment.

In this sense, an analytical simulator has been implemented to evaluate the
load balancing methodology (described in Section 3) in a wide range of scenarios.
The developed tool allows us to observe and analyze the influence of the perfor-
mance parameters in the execution of the application. For example, we were able
to see how certain variations in data chunks processing time, and how changes in
the partition factor affect the performance of the application. Thus, the simulator
is able to reproduce such situations.

As a first step, the simulator has been fed with different scenarios of input
data. These initial data included the following parameters: the execution time
of every data chunk (in seconds); the size of the data chunks (in megabytes);
the communication time per megabyte and the number of processing nodes. The
result from the simulation process is the total execution time of the application
(expressed in seconds) for each scenario.

The simulator has been designed to reproduce a Master/Worker paradigm. Ad-
ditionally, we defined a synchronous communication pattern between the master

19

and workers; i.e., a data chunk cannot be sent until the sending of the previous
data chunk has finished. The communication time was modeled as the product of
the size of the data chunk by the communication time per MB. Thus, it is possible
to estimate the time for sending every data chunk.

The expression (10) has been used to model the total execution time of the
application in the simulator. Since the response time in most of the scenarios is
almost negligible, this time (the time of sending the results once the worker has
finished processing its data chunks) was not considered in the total execution time.
Moreover, the model assumes that the total execution time is determined by the
last worker to finish its computation.

Summarizing, the simulator has been developed to: (i) quickly assess the pro-
posed methodology in a great number of scenarios; (ii) reproduce the general
behavior of data-intensive applications with divisible load; and (iii) to observe
and evaluate the performance improvement capability of the methodology in such
applications. These aspects will be fully evaluated in the subsection 5.3.

5. Case studies evaluation

In order to evaluate the two phases of the methodology described in Section 3
a set of experiments using representative scenarios of data-intensive applications
were designed. First, the proposed methodology was evaluated using real bioin-
formatic (BLAST) and merge sort applications, and the corresponding results are
presented and discussed in subsections 5.1 and 5.2. Then, in subsection 5.3 we
present the main simulation results.

5.1. Applying the methodology to BLAST
The aim of these experiments is to evaluate the performance of real executions

of BLAST when: (i) changing the scheduling policy to Heaviest Fragments First
(subsection 5.1.1); (ii) tuning the size of data chunks according to the performance
of the application (subsection 5.1.2); and (iii) varying the number of processing
nodes to determine the best number of nodes (subsection 5.1.3).

Experimental environment: The experiments were carried out in a cluster
of workstations with 32 processing nodes, with 12GB of memory per node. Each
node consists of two dual core Intel Xeon 5160 at 3 Ghz, 667Mhz FSB, with 4MB
of L2 Cache. The version of BLAST used is the ncbi-blast-2.2.23 [26].

Scenarios: BLAST has been executed using three different workloads: a
heavy workload (tagged Slow), using queries with many similarities with the da-
tabase; a medium workload (tagged Common), decreasing the number of similar-

20

ities; and a light workload (tagged Fast), reducing even more the number of simi-
larities. All queries contain biological sequences of the same size (1MB each):

• Slow: a 1,036,416 chars long sequence, literally chopped from the last part
of the nt database. This piece was selected due to its long associated execu-
tion time (a couple of hours in our computing platform).

• Common: a 1,076,380 chars long sequence, created from randomly selected
lines from the nt database. This sequence has an associated execution time
in the order of minutes.

• Fast: a sequence of 1,015,156 chars, taken from the yeast DNA database.
This sequence has fast associated execution times of only a few seconds.

5.1.1. Selection of the scheduling policy
According to our methodology, the time spent on each fragment should be

recorded because we need to use this information for scheduling data chunks for
the following sequences of the query. Here, the partition factor was set to Nf =
128, because: (i) it gives enough information about data chunks processing times;
(ii) it allows a higher load balancing; and (ii) it is not difficult to graphically see
the time associated to each fragment.

Results obtained for 16 workers, Nw = 16 using the selected partition factor
and applying the FCFS scheduling are shown in figure 6(a). Load imbalance can
be clearly observed, and it is caused by a data chunk with large computation time
that have been scheduled at the end of the execution. At the right side of the
graphic (figure 6(b)) are presented the results of a similar execution of BLAST
applying the Heaviest Fragments First, (HFF) scheduling policy. The advantage
of using the HFF instead of FCFS is clear because HFF would enable reductions
of up to 40% in total execution time.

5.1.2. Adjusting the Partition Factor
The objective of these experiments is to evaluate the performance of a real

scientific application when tuning the workload partition factor. For the initial
exploration, Nf = 128 and Nw = 32 were chosen, obtaining a total execution time
of Ci = 5, 263.51 seconds, an average execution time of µi = 599.08 seconds, a
standard deviation of �i = 670.86, and an expected ideal time equal to 2, 396.33
seconds. These results and the computation time of BLAST computations over
each data chunk are shown in figure 7(a). Figure 7(b) presents results of a new
partitioned workload after gathering and dividing the data chunks. In this case,

21

 0

 1500

 3000

 4500

 6000

 7500

 9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 (

se
co

n
d

s)

Node Number

(a) Processing time for blastn, Slow query,
Nw = 16, Nf = 128 and FCFS.

 0

 1500

 3000

 4500

 6000

 7500

 9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
im

e
 (

se
co

n
d

s)

Node Number

(b) Processing time for blastn, Slow query,
Nw = 16, Nf = 128 and FCFS & HFF.

Figure 6: Performance of BLAST using Heaviest Fragment First (HFF) scheduling policy.

Nf is reduced from 128 to 64 and the total execution time is equal to 2, 910.03
seconds (a reduction in the total execution time of up to 55%).

The behavior of the HFF scheduling policy was evaluated with and without
adapting the size of the data chunks distributed to the BLAST execution (workload
partition factor modification). The evaluation was performed ranging the number
of workers, Nw, from 4 to 32. Obtained total execution times were compared
with the expected ideal time for each case; results are showed in figure 8. The
difference between tuning or not the size of the data chunks is clearly shown in
this figure. When applying partitioning and grouping strategies, BLAST’s total
execution is greatly reduced.

Once the load balancing has been achieved using the HFF scheduling policy
and the workload partition factor modification, the focus can be shifted to assess
the resource utilization.

5.1.3. Estimating the Number of Resources
To show the advantages of tuning the number of workers used by the applica-

tion, BLAST was executed using five different partition factors Nf = {128, 256,
512, 1024, 2048}; and five different numbers of workers Nw = {2, 4, 8, 16, 32}.
The value of � was measured experimentally as the inverse of the network band-
width (⇡ 112.5MB/s, which is the expected best-case data bandwidth measured
between two nodes for a Gigabit Ethernet network). The average sizes of the data
chunks for the selected partition factors are shown in Table 2.

Figure 9(a) shows the evaluation of expression tqi (10) for each value of Nw

using the Slow scenario, figure 9(b) shows the real execution time of BLAST, and

22

 0

 1000

 2000

 3000

 4000

 5000

 6000

 8 1
6

 2
4

 3
2

 4
0

 4
8

 5
6

 6
4

 7
2

 8
0

 8
8

 9
6

 1
04

 1
12

 1
20

T
im

e
 (

se
co

n
d

s)

Fragment Identifier

Average Time
Ideal Time

(a) Initial processing time by data chunk

 0

 1000

 2000

 3000

 4000

 5000

 6000

 8 1
6

 2
4

 3
2

 4
0

 4
8

 5
6

 6
4

T
im

e
 (

se
co

n
d

s)

Fragment Identifier

Average Time
Ideal Time

(b) Processing time by tuned data chunks

Figure 7: Variation of processing time by data chunk.

 0

 2000

 4000

 6000

 8000

 10000

 12000

4 8 16 32

T
im

e
 (

se
co

n
d

s)

Number of Workers

Ideal Time

HFF

HFF + factor

Figure 8: Performance improvement in total processing time when using HFF scheduling policy
+ workload partition factor adaptation (HFF + factor).

figure 9(c) shows the real execution time after tuning the partition factor. It can
be observed that when the restrictions defined by expressions (8) and (9) are met,
differences in total execution time are lower than a 5% (for most of the cases).
Therefore, as expected, expression (10) can be used to estimate the execution
time of the application. Results shown in the figures present the improvement that
can be obtained from tuning the number of workers up to 87.5% when varying
from 2 to 16 workers in all the cases. These results are sound because they are
similar to those that will be shown in subsection 5.3.3 where the use of more than
16 workers do not reduce total execution time.

Table 2: Data chunks and chunks sizes
Nf 128 256 512 1024 2048

size [MB] 55.8 28.2 13.9 7.0 3.5

23

 1000

 10000

 100000

2 4 8 16 32

T
im

e
 (

se
co

n
d

s,
 lo

g
1
0

)

Number of Workers

128
256
512

1024
2048

(a) Expected (via analytical expressions)
processing time for Slow type query, Nf

variation and FCFS & HFF scheduling
policies.

 1000

 10000

 100000

2 4 8 16 32

T
im

e
 (

se
co

n
d

s,
 lo

g
1
0

)

Number of Workers

128
256
512

1024
2048

(b) Real processing time for Slow type
query, Nf variation and FCFS & HFF
scheduling policies.

 1000

 10000

 100000

2 4 8 16 32

T
im

e
 (

se
co

n
d

s,
 lo

g
1
0

)

Number of Workers

128
256
512

1024
2048

(c) Real processing time with Slow type
query, Nf variation and FCFS & HFF +
factor scheduling policies.

Figure 9: Comparison between Expected and Real execution times.

The cases where the estimated execution time greatly differs from the real
execution time can be explained through the constraints indicated by expressions
(8) and (9). For example, in the case of 128 data chunks, the chunk with the
highest processing time has an associated computation time of 5,245.61 seconds
(Tmaxij , in Table 3). Then, when the number of workers is changed from 16 to
32 there is no improvement in total execution time because of the data chunk with
the highest execution time. Consequently, increasing the number or processing
nodes will not reduce the total execution time.

For a partition factor Nf = 128, the result from evaluating the expression (8)
is: (76, 598.19/5, 245.61) = 15. This value (the maximum number of workers
that should be active) indicates that beyond 15 workers the total execution time

24

Table 3: Maximum number of workers (Nwmax) for Slow queries.
Nf µCi [sec] Tsi [sec] Tmaxi [sec] Nwmax

128 598.42 76,598.19 5,245.61 15
256 350.57 89,747.16 3,842.51 23
512 209.64 107,317.37 2,648.39 41

1024 125.06 128,061.95 1,417.55 90
2048 71.79 147,018.66 860.31 171

 0

 1500

 3000

 4500

 6000

128 256

T
im

e
 (

se
co

n
d

s)

Fragmentation Degree

Best possible execution time
Real execution time for Nw value tuned

Figure 10: Execution for Slow query, using Nw = 15 for Nf = 128, and Nw = 23 for Nf = 256.

will remain the same. For the case of 256 data chunks, the maximum number
of workers that can be used is 23 as shown in Table 3. Figure 10 illustrates this
discussion by showing for Nf = 128 and Nf = 256 the best possible execution
time and the real (measured) execution time.

In addition, the Slow scenario and a partition factor Nf = 128 were used to
illustrate the use of expression (12) for tuning the number of workers. Figure 11
shows the performance index ⇢n for 2, 4, 8, 16 and 32 workers. It can be seen
that there is no efficiency loss (the curve does not start to climb) for the selected
scenarios, and therefore more workers could be added. However, if the number of
workers is increased, there will be no gain in total execution time (because of the
data chunk with the highest computation time) and more workers will remain idle
for a longer period of time. This idleness is translated as an efficiency loss.

Once the workload partition factor is adjusted the time limitations imposed
by data chunks with large computation time are softened. In consequence, more
processing nodes can be used to execute BLAST without losing efficiency. For
32 workers and a partition factor Nf = 128, obtained results have reported up
to 50% of reduction in the overall execution time when applying the proposed

25

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

2 4 8 16 32

P
e

rf
o

rm
a

n
c
e

 I
n

d
e

x

Number of Workers

Performance Index

Figure 11: Performance index for Slow query and Nf = 128.

 0

 1500

 3000

 4500

 6000

128 256

T
im

e
 (

se
co

n
d

s)

Fragmentation Degree

HFF
HFF + factor

Figure 12: Execution with Slow query, for Nw = 32 using HFF and HFF + factor.

methodology (as shown in figure 12). However, for a partition factor Nf = 256 it
can be seen a slight increment in the total execution time when adapting the size
of the data chunks. This overhead appears from the serial fraction of the original
data chunks. An implicit serial fraction, coming from BLAST’s algorithm, is
replicated when the computation times of the data chunks are summarized. As
more data chunks are, the more overhead is introduced.

5.2. Evaluation of the methodology for a distributed merge sort
To evaluate the influence of the workload partition factor in the performance

of the application we implemented a distributed sorting algorithm using merge
sort. The implementation follows the assumptions made in Section 3 about data-
intensive applications. This application can sort medium size input files (e.g. sev-
eral tens of GB); the files can be split into smaller data chunks; and the chunks are
processed by worker nodes under a round-robin approach.

26

The experimentation evaluates the behavior of the application when: (i) chang-
ing the initial distribution strategy (subsection 5.2.1); (ii) modifying the size of the
data chunks (subsection 5.2.2); and (iii) adding more processing nodes (subsec-
tion 5.2.3). An input file of up to 32 GB was generated using the gensort program
[25] and was divided into 128 data chunks. This number of pieces was selected
because of the experimental environment described in section 5.1, which is large
enough to guarantee that all workers will have data chunks to process. Addition-
ally, a 25% of data chunks were already sorted when introduced in the workload.
The combination of sorted and unsorted data chunks generates variability among
their associated computation times.

5.2.1. Selection of the scheduling policy
As a first step, the behavior of the application was analyzed when changing

the scheduling policy. Data chunks were distributed using the First Come First
Serve (FCFS) and the Heaviest Fragments First (HFF) approaches. For a number
of worker Nw = 32 resulting total execution times are shown in figures 13(a) and
13(b). In figure 13(a) data chunks were distributed without any pre-defined order;
while in figure 13(b), data chunks with highest execution times were delivered
first.

From the reported results, it can be concluded that changing only the distribu-
tion policy will not solve the load imbalance problem for this application. This
situation persists because there is a final merge time that is not considered when
distributing data chunks. A final merge is performed by each worker with the re-
ceived data chunks and it is influenced by the total number of pieces this worker
has received. If a worker has processed too many data chunks with low computa-
tion times, this performance improvement may disappear when merging the final
file.

5.2.2. Adjusting the Partition Factor
The purpose of this experiment is to evaluate the performance of the applica-

tion when adapting the size of the data chunks. This functionality was introduce
with the aim of: (i) reduce the execution time of data chunks with high process-
ing times; or (ii) reduce the number of data chunks with low computation times
by sending less pieces of greater size. The experiment has been performed us-
ing the scenario described in the previous section. This has been done to allow
comparisons between the results presented in figure 13 and figure 14.

Results presented in figure 14 show a more balanced execution in comparison
with non-adapting the workload partition factor. This improvement is obtained

27

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 5 9 13 17 21 25 29

T
im

e
 (

se
co

n
d

s)

Node Number

(a) Execution with distributed merge sort,
for Nf = 128 and Nw = 32 using FCFS.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 5 9 13 17 21 25 29

T
im

e
 (

se
co

n
d

s)

Node Number

(b) Execution with distributed merge sort,
for Nf = 128 and Nw = 32 using HFF.

Figure 13: Load imbalances with FCFS and HFF scheduling policies.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 5 9 13 17 21 25 29

T
im

e
 (

se
co

n
d

s)

Node Number

Figure 14: Execution for distributed merge sort, for Nf = 128 and Nw = 32 using HFF + factor.

after grouping and allocation data chunks of almost the same size for each worker.
By doing this, the variability introduced by the final merge becomes constant and
the workers are processing almost the same amount of time.

5.2.3. Estimating the Number of Resources
The intent of this experiment is to analyze the behavior of the distributed sort-

ing algorithm when adding more processing nodes. This experiment was carried
out using the initial workload described before and total execution time when
changing the number of workers was collected. The value of Nw shown ranges
from 16 to 58 workers to facilitate interpretation and the results are presented in
figure 15.

Obtained results show a reduction in the total execution time when adding
more processing nodes. Additionally, it can be ascertain a constant reduction in
total execution times when applying all the stages of the proposed methodology:

28

 0

 100

 200

 300

 400

 500

 600

 700

16 20 24 28 32 36 40 44 48 52 56

T
im

e
 (

se
co

n
d

s)

Number of Workers

FCFS
HFF

HFF + factor

Figure 15: Comparison between FCFS, HFF and HFF + factor, when varying the number of
processing nodes for Nf = 128.

(i) changing distribution policy, (ii) adapting the size of the data chunks, and (iii)
adding more processing resources. Consequently, a fast and efficient execution is
achieved.

5.3. Evaluation through Analytical Simulation
The analytical simulator has been implemented using the model described in

Section 4.3. In subsection 5.3.1 is evaluated the effectiveness of the proposed
methodology for the distribution policy when introducing different degrees of er-
ror in the predictions of the data chunks processing times. Then, the effect of
tuning the workload partition factor in the overall performance of the applications
is described in subsection 5.3.2. Finally, in subsection 5.3.3 is shown how the
methodology leads to a more efficient use of resources.

5.3.1. Introducing error in data chunks processing time predictions
The proposed load balancing methodology is based on sending first those data

chunks with higher processing times. To accomplish this, the history of the ex-
ecution time measured for each data chunk is gathered and then this information
is used to decide the scheduling order. However, predictions are likely to fail in
some degree, and expected results might differ because the execution time of the
same data chunk may vary from iteration to iteration.

The purpose of these experiments is to evaluate how the total execution time is
being affected when a certain degree of error is introduced to the prediction of the
processing time associated to each data chunk. In order to do this, the simulation
environment was set to consider a partition factor equal to 128 and a number of
workers equal to 64.

29

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

T
im

e
 d

iff
e

re
n

ce
(s

e
co

n
d

s)

Standard deviation (per one of the mean)

Figure 16: Total execution time differences between the FCFS and the HFF data scheduling poli-
cies when introducing errors.

The input data of the simulator has been generated following a normal dis-
tribution from an initial dataset obtained from real measurements. Then a certain
degree of variation is introduced in the computation times of each data chunk. The
greater this degree of variation, the greater the variability in the time associated to
the data chunk.

The new dataset has been evaluated for two different scenarios: (i) FCFS: the
data chunks are not sorted; and (ii) HFF: the data chunks are sorted by processing
time in decreasing order. The simulation process was repeated 500 times and the
results are the average values of execution time for both cases.

Introducing variability in the processing times of each data chunk tends to
degrade the performance of the HFF strategy. The variability causes the chunk
disorder and hence loads imbalances for the next exploration (query or iteration).

We have estimated the average and its corresponding 90% confidence intervals
(where the probability to be inside is 90%). Confidence intervals cannot been
obtained with traditional parametric methods (like the t-Student based one [27])
because results usually do not have a normal distribution. We have verified it with
the normality test of Anderson-Darling [27] and we have used the nonparametric
statistics to obtain the confidence intervals. To this aim we have chosen the Efron
variant based on percentile from the Bootstrap methods [28].

Figure 16 shows the average of the differences between the executions times
for both strategies. It can be seen that as the variability increases the performance
of the HFF strategy collapses.

5.3.2. Evaluating performance when adjusting the partition factor
In order to show the performance improvement when changing the size of

the data chunks, the simulator was used to evaluate the analytical expressions

30

presented in subsection 3.3. Simulations were performed under the following
conditions:

• An initial partition factor Nf = 128.

• Nw values ranging from 10 to 80.

• Two different scenarios: Heaviest Fragments First with and without work-
load partition factor modification (HFF + factor and HFF, respectively).

• Execution time of data chunks were generated following a normal distribu-
tion based on measurements obtained from real executions of BLAST.

The results presented in figure 17 show the behavior of the simulator for the se-
lected scenarios. It can be seen the difference between the maximum execution
time Tmaxij obtained with and without applying the tuning strategy for the work-
load partition factor. These results show that the execution time limitation im-
posed by data chunks with large computation times can be soften or diminished
through the division of those data chunks. It is worth noticing that once this bar-
rier has been removed, the total execution time of the application can be reduced
by adding more workers.

Since in all the experiments the history of the computation time measured for
each data chunk is used for adapting the partition factor, when measurements vary
from one exploration to another predictions are likely to fail in some degree.

As previously done, the variation in total execution time is analyzed. This
variation is caused when a certain degree of error is introduced (changing the
size of data chunks). The simulation environment was set to use Nf = 128 and
Nw = 64, and a certain degree of variation in the time of each element of the
set was introduced. The greater this percentage of variation introduced in the
computation time of each data chunk, the greater the variability obtained for each
new data chunk. The generated dataset is evaluated for the scheduling policy HFF
with and without adapting the workload partition factor. The simulation process
was repeated 500 times and the results are the average values of computation time
for both cases.

Introducing variability in the computation time of data chunks tends to de-
grade the performance of the HFF strategy. In figure 18 we can observe that time
degradation is significantly reduced when adapting the size of the data chunks. In
general, when data chunks with large computation times are divided into smaller
data chunks, their associated computation time is greatly reduced.

31

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

10 18 26 32 40 48 56 64 72 80

T
im

e
(s

e
co

n
d

s)

Number of workers

HFF
HFF + factor

Figure 17: Performance improvement when changing data chunks sizes

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
(s

e
co

n
d

s)

Standard deviation (per one of the mean)

HFF
HFF + factor

Figure 18: Performance improvement when introducing variability

5.3.3. Estimating the Number of Resources
In the previous subsections, three scheduling policies were analyzed when

the variability of the execution time increases: (i) FCFS; (ii) HFF; and (iii) HFF
+ factor. In this section is analyzed the behavior of all strategies when varying
the number of workers. Simulations were performed under the same conditions
described in the previous section, and the results are shown in figure 19.

In figure 19(a) it can be seen the reduction in total execution time when ap-
plying the scheduling policies. From the comparison of all the strategies it can
be observed that FCFS reports the worst performance results and HFF + factor
reports the best results. Since data chunks with large computation times are not
a major restriction for the HFF + factor strategy, it shows a more flexible behav-
ior and scales well when adding more processing resources (as shown in figure
19(b)). On the contrary, the performance of FCFS and HFF scheduling strategies
is quickly degraded by the time restriction imposed for data chunks with large
computation time.

32

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
im

e
(s

e
co

n
d

s)

Number of workers

FCFS
HFF

HFF + factor

(a) Total execution time when varying the
number of workers for the FCFS, HFF and
HFF + factor scheduling policies

 0

 5000

 10000

 15000

 20000

 25000

 30000

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

P
e

rf
o

rm
a

n
c
e

 I
n

d
e

x

Number of Workers

FCFS

HFF

HFF + factor

(b) Performance index when varying the
number of workers for the FCFS, HFF and
HFF + factor scheduling policies

Figure 19: Performance evaluation of the FCFS, HFF and HFF + factor data scheduling policies
when varying the number of workers

Finally, if we compare the simulation results and experimental results are
compared, it can be seen a consistent improvement in the performance of data-
intensive applications given by: (i) changing the scheduling policy to HFF; (ii)
adapting the size of the data chunks; and (iii) tuning the number of processing
nodes that can be used. Also, the simulator enables the analysis of the method-
ology behavior for a larger range of situations. In the same way, when adjusting
the number of workers, it is possible to identify the limit in which the addition of
resources has to be stopped in order to keep an efficient execution.

6. Conclusions and Future Work

The continuous growth of data coming from sensors, biological and physical
experiments, and information generated by users, needing to be processed, has led
to the design of new methods to satisfy its processing requirements. Concepts as
data-intensive or big-data computing have risen in the last few years, and along
with these terms, approaches like dividing the workload of the applications into
smaller pieces (data chunks), have become more common. With all this in mind,
the number of performance problems related to load balancing also has increased.

We have addressed the problem of load balancing through a methodology for
balancing the load of a subset of data-intensive applications. In particular, we
considered applications that perform multiple related explorations (queries) on
the same workload. The methodology includes the dynamic adaptation of the
partition factor or, for the case of high partitioning costs, the generation of mul-

33

tiple workload’s divisions using different partition factors before executing the
application, and then the dynamic selection of the most adequate one according
to the current conditions. This phase of the methodology proposes to change, at
run time, the size of the data chunks by dividing or gathering specific pieces ac-
cording to application performance. This has been achieved by monitoring each
exploration, and by using collected data to determine the corresponding modifica-
tions in the partition factor.

The tuning parameters included in the methodology are the workload partition
factor, the distribution of generated data chunks among the application processes,
and the number of resources (nodes) to be used by the application. This work
introduces a detailed discussion about all the parameters.

The methodology has been tested using a real and a synthetic data-intensive
application: the widely known bioinformatics tool BLAST and a distributed ver-
sion of merge sort. BLAST handles a broader number of queries over large-scale
biological databases and the Merge sort can order large text files. In addition, the
main aspects of the proposal were implemented and evaluated through an analyt-
ical simulator. Also using simulation, it was possible to analyze the behavior of
the methodology on a wide range of scenarios. The results obtained have shown
the capability of the methodology to improve the performance of data-intensive
applications with divisible load; such as BLAST.

The improvements achieved were determined by three main reasons. First, by
changing from a First Come First Serve (FCFS) scheduling policy, to a Heaviest
Fragments First approach (HFF). Secondly, by adapting the partition factor of the
workload at run time to reduce the time constraint imposed by data chunks with
highest computation times. Third, by adapting the number of workers being used,
to avoid inefficient executions in which there are idle workers for long time.

Obtained results are promising in terms of reducing total execution time and
efficient use of processing resources for different scenarios of data-intensive ap-
plications. Furthermore, these results show that the proposed methodology can be
widely use to improve performance in real data-intensive applications.

This work, as any work covering several aspects within a certain field of sci-
ence gives rise to a wide range of affordable discussion lines and future work. One
of the most interesting lines is the applicability and extension of the methodology
to be used in virtualized environments, specifically those as Cloud. In MapRe-
duce [29], jobs can be chained or may operate on multiple data sets, presenting a
similar approach to the iterations in the studied applications. Consequently, these
scenarios match our proposal.

Hadoop, the open source implementation of MapReduce, has several ways of

34

coordinating multiple jobs together, including sequential chaining and executing
them according to predefined dependencies [30], which might be enriched by us-
ing dynamic tuning techniques such as the one we are proposing.

Additionally, implementing cost functions to ease the estimation of the num-
ber and characteristics of the processing nodes to be contracted. Since virtual-
ized environments offer highly heterogeneous systems, and certain economic re-
strictions, we should take into consideration these factors before launching data-
intensive applications. In general, platforms such as Hadoop and Amazon Elastic
MapReduce 3 have shown an efficient and powerful system to create highly scal-
able applications with many aspects of parallel computing automatically provided.
In this sense, our proposal could take advantage of the mechanisms for managing
node failures, data and jobs allocation provided by current Cloud platforms to
avoid load imbalances, and to use available resources efficiently; thus, extending
the usability of our model. At this stage, heterogeneity and scalability issues have
not been considered in our work.

Acknowledgment

This research has been supported by the MICINN Spain, under contract TIN2007-
64974 and TIN2011-28689.

References

[1] M. Cannataro, D. Talia, P. K. Srimani, Parallel data intensive computing in
scientific and commercial applications, Parallel Computing 28 (5) (2002)
673 – 704. doi:10.1016/S0167-8191(02)00091-1.

[2] R. E. Bryant, Data-Intensive Supercomputing: The Case for DISC, Tech.
rep., Carnegie Mellon Univ. (May 2007).

[3] R. E. Bryant, R. H. Katz, E. D. Lazowska, Big-Data Computing, White pa-
per, Computing Research Association (2008).

[4] C. Oehmen, J. Nieplocha, ScalaBLAST: A Scalable Implementation of
BLAST for High-Performance Data-Intensive Bioinformatics Analysis,
IEEE Trans. Parallel Distrib. Syst. 17 (2006) 740–749.

3http://aws.amazon.com/elasticmapreduce/

35

[5] V. Bharadwaj, D. Ghose, T. G. Robertazzi, Divisible Load Theory: A New
Paradigm for Load Scheduling in Distributed Systems, CLUSTER ’03 6
(2003) 7–17.

[6] S. F. Hummel, E. Schonberg, L. E. Flynn, Factoring: a method
for scheduling parallel loops, Commun. ACM 35 (8) (1992) 90–101.
doi:10.1145/135226.135232.

[7] I. Banicescu, V. Velusamy, Load balancing highly irregular computations
with the adaptive factoring, Parallel and Distributed Processing Symposium,
International 2 (2002) 87–98. doi:10.1109/IPDPS.2002.1015661.

[8] A. Middleton, Hpcc systems: Data intensive supercomputing solutions,
White paper, LexisNexis Risk Solutions (2011).

[9] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic Local Align-
ment Search Tool, J Mol Biol 215 (October 1990) 403–410(8).

[10] S.-S. Boutammine, D. Millot, C. Parrot, An adaptive scheduling method for
grid computing, in: Euro-Par 2006 Parallel Processing, Vol. 4128, Springer
Berlin, Heidelberg, 2006, pp. 188–197.

[11] M. Drozdowski, P. Wolniewicz, Divisible load scheduling in sys-
tems with limited memory, Cluster Computing 6 (1) (2003) 19–29.
doi:10.1023/A:1020910932147.

[12] S. Chuprat, S. Baruah, Scheduling divisible real-time loads on clusters with
varying processor start times, in: Proceedings of the 2008 14th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA ’08, IEEE Computer Society, Washington, DC, USA,
2008, pp. 15–24. doi:10.1109/RTCSA.2008.23.

[13] M. Othman, M. Abdullah, H. Ibrahim, S. Subramaniam, Adaptive divisible
load model for scheduling data-intensive grid applications, in: Proceedings
of the 7th international conference on Computational Science, Part I: ICCS
2007, ICCS ’07, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 446–453.
doi:10.1007/978-3-540-72584-8 59.

[14] Y. Yang, H. Casanova, M. Drozdowski, M. Lawenda, A. Legrand, On the
Complexity of Multi-Round Divisible Load Scheduling, Research Report
RR-6096, INRIA (2007).

36

[15] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, Y. Yang, Schedul-
ing divisible loads on star and tree networks: Results and open
problems, IEEE Trans. Parallel Distrib. Syst. 16 (3) (2005) 207–218.
doi:10.1109/TPDS.2005.35.

[16] J. Berlińska, M. Drozdowski, Scheduling divisible mapreduce computations,
Journal of Parallel and Distributed Computing 71 (3) (2011) 450 – 459.
doi:10.1016/j.jpdc.2010.12.004.

[17] E. César, A. Moreno, J. Sorribes, E. Luque, Modeling master/worker appli-
cations for automatic performance tuning, Parallel Comput. 32 (7) (2006)
568–589. doi:10.1016/j.parco.2006.06.005.

[18] A. Moreno, E. César, A. Guevara, J. Sorribes, T. Margalef, E. Luque,
Dynamic Pipeline Mapping (DPM), in: Proceedings of the 14th interna-
tional Euro-Par conference on Parallel Proc., Euro-Par ’08, Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 295–304. doi:http://dx.doi.org/10.1007/978-
3-540-85451-7 32.

[19] A. Moreno, E. César, J. Sorribes, T. Margalef, E. Luque, Task distribution
using factoring load balancing in master–worker applications, Inf. Process.
Lett. 109 (16) (2009) 902–906. doi:10.1016/j.ipl.2009.04.014.

[20] T. Chiba, M. den Burger, T. Kielmann, S. Matsuoka, Dynamic load-balanced
multicast for data-intensive applications on clouds, in: Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, CCGRID ’10, IEEE Computer Society, Washington, DC, USA,
2010, pp. 5–14. doi:10.1109/CCGRID.2010.63.

[21] L. Glimcher, V. Ravi, G. Agrawal, Supporting load balancing for
distributed data-intensive applications, in: High Performance Comput-
ing (HiPC), 2009 International Conference on, 2009, pp. 235 –244.
doi:10.1109/HIPC.2009.5433204.

[22] C. Rosas, A. Morajko, J. Jorba, E. César, Workload Balanc-
ing Methodology for Data-Intensive Applications with Divisible Load,
in: SBAC-PAD ’11, IEEE Computer Society, 2011, pp. 48–55.
doi:http://doi.ieeecomputersociety.org/10.1109/SBAC-PAD.2011.15.

[23] T. F. Smith, M. S. Waterman, Identification of common molecular subse-
quences., J Mol Biol 147 (1) (1981) 195–197.

37

[24] A. E. Darling, L. Carey, W. Feng, The Design, Implementation, and Evalua-
tion of mpiBLAST, in: Inproc. of ClusterWorld 2003, no. 0, 2003.

[25] C. Nyberg, Sort Benchmark Data Generator and Output Validator (2011).
URL http://www.ordinal.com/gensort.html

[26] NCBI, Blast homepage, http://blast.ncbi.nlm.nih.gov/ (March 2012).

[27] M. F. Triola, Elementary Statistics, Addison-Wesley Longman, Incorpo-
rated, 2006.

[28] A. C. Davinson, D. Hinkey, Bootstrap Methods and their Application, Cam-
bridge Series in Statistical and Probabilistic Mathematics, 1997.

[29] J. Dean, S. Ghemawat, Mapreduce: simplified data process-
ing on large clusters, Commun. ACM 51 (1) (2008) 107–113.
doi:10.1145/1327452.1327492.
URL http://doi.acm.org/10.1145/1327452.1327492

[30] C. Lam, Hadoop in action, Manning Publications Co., 2010.

38

