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Abstract

Reducing energy consumption is an increasingly important issue in cloud computing, more
specifically when dealing with a large scale cloud. Minimizing energy consumption can sig-
nificantly reduce the amount of energy bills, and the greenhouse gas emissions. Therefore, many
researches are carried out to develop new methods in order toconsume less energy. In this paper,
we present an Energy-aware Multi-start Local Search algorithm (EMLS-ONC) that optimizes
the energy consumption of an OpenNebula based Cloud. Moreover, we propose a Pareto Multi-
Objective version of the EMLS-ONC called EMLS-ONC-MO dealing with both the energy con-
sumption and the Service Level Agreement (SLA). The objective is to find a Pareto tradeoff
between reducing the energy consumption of the cloud while preserving the performance of Vir-
tual Machines (VMs). The different schedulers have been experimented using different arrival
scenarios of VMs and different hardware configurations (artificial and real). The results show
that EMLS-ONC and EMLS-ONC-MO outperform the other energy-and performance-aware
algorithms in addition to the one provided in OpenNebula by asignificant margin on the consid-
ered criteria. Besides, EMLS-ONC and EMLS-ONC-MO are proved to be able to assign at least
as many VMs as the other algorithms.

Keywords:
Energy-aware scheduling, cloud computing, resource allocation, OpenNebula, cloud manager,
multi-start local search.

1. Introduction

Cloud computing is an emerging computer science paradigm ofdistributed computing in
which applications, data and infrastructures are proposedas a service that can be consumed in a
ubiquitous, flexible and transparent way. Cloud computing brings with it such benefits via cloud
managers which hide to the user some complex and challengingissues such as scheduling. How-
ever, the solutions to these issues provided in cloud managers are often limited. For instance, the
scheduling approach proposed in many cloud managers like OpenNebula is limited regarding
the criteria taken into account. Despite the increasing impact of the energy on many applications
Preprint submitted to Future Generation Computer Systems May 16, 2013



[1], cloud managers are still rarely designed around the energy consumption reduction concept.
In this paper, we address energy- and performance-aware scheduling of different VM configura-
tions over cloud infrastructures. We propose a multi-startparallel local search heuristic for cloud
managers especially for OpenNebula.

According to an Amazon’s estimate [2], the energy-related costs amount represents 42%
of the total data center budget, and includes both direct power consumption 19% and cooling
infrastructure 23%, these values are normalized with a 15 years amortization. It clearly appears
that minimizing energy consumption is an important and challenging issue to deal with.

Some works [3, 4] have been conducted for energy reduction purposes over the previous hard-
ware architectures. However, the cloud transition and the generalization of the usage of cloud
managers, let the integration of the previous approaches difficult. Indeed, the new optimization
approaches have to be as seamless as possible, which was not the case of the previous ones. The
reason, is the exclusivity that relates these techniques totheir model. They are in general made
for specific tasks and specific hardware (DVFS).

Furthermore, the evolutions brought by the cloud managers skipped the upgrade process of
the energy-aware techniques for this new concept. Indeed, among the cited opportunities offered
by cloud managers, only very few ones are energy-aware basedor propose options conducting
to energy savings. Moreover, to the best of our knowledge, none of the existing approaches use
a powerful technique such as metaheuristic for scheduling.Besides, none of the existing real-
world clouds, managed by OpenNebula or not, take natively into account energy-saving concerns
or any other dealt with criteria in their assignment policies. Therefore, the general objective of
our work is to deal with all these lacks.

In this paper, we present new approaches that tackle the energy consumption and the VMs
performance issues within a realistic cloud infrastructure. We chose as a case study to use Open-
Nebula as a software management solution. Thus, we propose anew scheduler embedded in
OpenNebula.

A virtual machine (VM) is a software based machine emulationtechnique to provide a de-
sirable, on demand computing environment for users. Our scheduler is based on a multi-start
local search metaheuristic that provides a better scheduling by dispatching the incoming virtual
machines (VMs) according to the minimum energy consumption. We also propose a Pareto bi-
objective version of this scheduler that addresses both theenergy consumption criterion and the
performance of the VMs.

Both algorithms that we propose use information related to each host provided by the hyper-
visor to find the best VM assignment. Our approaches aim to reach the previous cited objectives
while assigning the maximum number of VMs. The multi-start metaheuristic [5] allows the ex-
ploration of a huge number of potential solutions of the problem. This maximizes the chances to
discover the best ones. The main contributions of this paperare the following:

• An energy reduction scheduler (EMLS-ONC) embedded in the OpenNebula cloud man-
ager.

• New energy and VMs performance evaluation models for VM assignment on cloud.

• An experimental study of the different assignment scenarios between the default sched-
uler provided in OpenNebula, other energy-aware based approach and the EMLS-ONC
algorithm.

• A Pareto bi-objective version of EMLS-ONC (EMLS-ONC-MO) dealing with both energy
and VMs performance.
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• An experimental study of a real deployment of EMLS-ONC over 200 physical machines
of the GRID’5000 grid infrastructure.

The remainder of the paper is organized as follows. In Section 2 we present the related work.
Section 3 presents the application, system, energy and performance models investigated in our
problem modeling. Our approaches are presented in Section 4. The results of our experimental
study are discussed in Section 5. The conclusion is drawn in Section 6.

2. Related Work

After a race to performance, utility and cloud computing paradigms are facing the energy is-
sue. To reduce energy consumption, various issues such as resource management at both software
and hardware levels must be addressed. Software approachesare mainly based on virtualization
or task consolidation. Virtualization consists in runningon a single computer multiple operating
systems as if they are running on separate computers or merging several physical computers to
form a single virtual one. Hardware approaches use the opportunity offered by manufacturers in
modern processors to adjust the voltage and frequency. Thisadjustment may consist in varying
the processor performance and thus its energy consumption.

Figure 1: Classification of system-level energy reduction techniques

Therefore, several works have been proposed in the field of energy-aware computing. The
proposed approaches are based either on software or hardware layer of the system (i.e. system-
level) (see Figure 1). Most of the energy-aware approaches tackle this issue by referring and
focusing on scheduling dedicated applications. Those methods belong to the hardware branch
of the system-level tree. In [6, 3], a hardware technique (DVFS) consisting in varying the CPU
frequency in order to minimize the energy consumption is proposed. The drawback of this type
of methods is the assumption on the existence of a tight coupling between tasks and resources.

Regarding the software methods, the task consolidation is an effective method to increase
resource utilization for energy consumption reduction purposes. Task consolidation is the process
of assigning a setN of n tasks (service requests or simply services) to a setR of r resources
without violating time constraints. This technique aims tomaximize resource utilization while
minimizing energy consumption. Indeed, a resource allocation strategy that takes into account
resource utilization should lead to better energy efficiency.

The paper [7] exposes some of the complexities in performingconsolidation for power opti-
mization, and proposes some research directions to addressthe involved challenges. In [4], the
authors present two energy-conscious task consolidation heuristics ECTC and MaxUtil. These
two heuristics aim to maximize resource utilization. They explicitly take into account the en-
ergy consumption of both used and idle processors. The proposed heuristics assign each task to

3



the resource on which the required energy consumption for executing the task, is explicitly or
implicitly minimized without performance degradation of that task.

Another way to reduce cloud computing energy footprints is proposed in [8]. The authors
present a reinforcement learning approach to deal with the optimization of two main criteria:
performance and power consumption. All the previous presented works aim to reduce the energy
consumption in single data centers or in geographically concentrated multiple servers except the
works proposed in [9] and in [10]. In [9] the author deals withenergy consumption reduction
in large-scale computational grids like Grid’5000 by switching off idle nodes in a clever way,
while the work in [10] deals with a geographically distributed cloud federation, where a Pareto
multi-objective genetic algorithm is proposed to address the energy consumption, gas emissions
and pricing issues.

Another type of works models the assignment problem of VMs asa bin packing where the
VMs are the objects to pack and the machines the boxes. [11] proposes an architecture called
pMapper that helps to assign applications taking into account both the power and performance
cost. The algorithm is based on a First Fit Decreasing (FFD) algorithm. FFD and its variants
have been proved in a comparing study [12] to perform well among the other heuristics for VM
assignment. However, the major issue with this type of algorithms is the lack of diversity. Indeed,
they provide the global optimum (best solution) only for landscapes with a single local optimum.
However, the scheduling problem changes according to the different VM arrivals. Thus, sig-
nificant modifications of the solution landscape may occur creating different local optima. It is
then necessary to explore other local optima using metaheuristics such as the approach that we
propose in this paper to enhance the scheduling.

Lately, a significant evolution in the field of parallel and distributed computing led to a mas-
sive usage of clouds. Therefore, virtualization and consolidation techniques have been integrated
to this new model through middlewares called cloud managers, such as Openstack [13], Open-
Nebula [14], Eucalyptus [15], Nimbus [16], etc.

The problem is that the major works including cloud managers, address only cloud broking
on a three-tier model (client, broker, provider), where theobjective is to optimize the needs of
both the broker and the client. The contributions are focused on the VM placement strategies
for the broker. Indeed, they do not give interest to the assignment process that happens within
the cloud infrastructure on the side of the provider. The works in [17] and [18] give a good
illustration of that point. In [17], the authors present a study where they compare the VM place-
ment mechanisms over a multi-provider and multi-site cloud. They prove that a multi-cloud
deployment gives better performances and minimizes the costs. However, energy issues are not
addressed in this paper. The same goes for [18] where the focus is put on different scheduling
strategies for an optimal deployment across multiple clouds and none of the optimization criteria
concerns the energy savings.

Therefore, these works should be extended to take into account energy reduction in cloud
managers. Snooze [19] is the first cloud manager that includes an energy criterion. The virtual
machines that compose the cloud have the ability to switch off when they are idle. However, very
few works like [20] propose an approach that assigns and schedules the VMs according to this
criterion. In [20], the VM scheduling algorithm is based on the DVFS technique to reduce the
energy consumption of a single OpenNebula virtualized cluster. The idea behind this work is to
reduce the clock frequency of the cluster as low as possible to fit exactly the VMs requests.

The major lack of the approach proposed in [20] is that it deals only with one cluster and not
with a large number of machines that compose a cloud in general. In addition, this work makes
an assumption on the hardware configuration of the machines that compose the cloud, assuming
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that they are equipped with DVFS.
To deal with all the misses mentioned before, we propose a scheduler for cloud managers.

We chose OpenNebula because it is one of the best known cloud managers. The scheduler uses a
multi-start local search (EMLS-ONC) to optimize the energyon a distributed cloud infrastructure
managed by OpenNebula. In our approach we integrated our scheduler in OpenNebula taking
place of its default one. This was made possible, since the software is open source. In addition,
because of the integration, our approach can be deployed at the same time with OpenNebula on
a real distributed infrastructure to schedule VMs. It is also important to take into account the
performances of the assigned VMs as done in [11]. Indeed, only few works dealing with energy
focus on the impact of this reduction on the VM performances.Therefore, we also propose in
this work a Pareto multi-objective version of EMLS-ONC called EMLS-ONC-MO that deals
with both the energy consumption of the infrastructure and the VM performances.

3. Distributed Cloud Scheduling Model

3.1. System Model

Our model is based on an Infrastructure As A Service (IAAS) cloud model managed by
OpenNebula. We deal with a two-tier architecture with in each side respectively a distributed
cloud provider and clients. The clients have a direct accessto the cloud resources by requesting
them from the provider. The service proposed by the cloud provider in our approach offers VMs
to the clients in order to run their applications. The role ofour approach is to help the provider
to optimize two criteria in his/her cloud management while proposing its services.

The cloud considered in our model can very from few installedhosts to a multi-cluster dis-
tributed cloud. The goal of this approach is to find the best assignment of the VMs on the hosts
which compose the cloud. We use for this a multi-start local search metaheuristic. The objective
is to assign a maximum number of VMs while optimizing two criteria: energy consumption and
performance of the assigned VMs. The location of the defaultOpenNebula’s scheduler and its
replacement by our EMLS-ONC (or EMLS-ONC-MO) scheduler is shown in Figure 2.

The optimization of the criteria is due to the diversity offered by the heterogeneity of the
hosts that compose the cloud. The heterogeneity means different CPU, memory and storage
capacities. It means also different CPU frequencies and different CPU usage on each host. This
offers multiple assignment possibilities which contribute to a reduction in energy and a gain in
performance.

Figure 2: Overall architecture of Opennebula including theEMLS-ONC (or EMLS-ONC-MO) scheduler location
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3.2. Energy Model
The energy consumption of a cloud results from IT equipments(network, storage and com-

puting) and from auxiliary equipments (lighting, cooling ...). Our approach is computation ori-
ented, the most of the energy consumption results then from the intensive computation. Thus,
in our work we do not consider lighting equipments since their impact on the energy consump-
tion is negligible. However, the impact of the cooling energy consumption is significant and is
directly related to the computing energy consumption. We also do not use DVFS in our model to
save energy. In other words, our approach does not pay attention on how the energy is optimized
within the processor itself. Our scheduler is designed to beas seamless as possible to fit all the
processor infrastructure with and without the DVFS feature. Our scheduler aims to prove the
advantage of the hardware heterogeneity offered by the clouds in the energy reduction.

Our processor energy model is derived from the power consumption model in Complemen-
tary Metal-Oxide Semiconductor (CMOS) [21, 22]. The power consumptionP of a CMOS-based
microprocessor is defined in Equation (1).

P = ACV2 f + I leakV + Pshort (1)

whereA is the number of switches per clock cycle,C is the total capacitance load,V is the supply
voltage,f is the frequency,I leak is the leakage current andPshort is the power dissipation resulted
from switching from a voltage to another in case of a DVFS activation. This latter is not influent
in our study as we do not use the DVFS method.

We notice thatA andC are constant values we can then name themα (a constants product is
a constant). The second part of the equation represents the static consumption, this value is also
constant, we name itβ. In addition, in CMOS processors the voltage can be expressed as a linear
function of frequency [23, 24],V2 f is replaced byf 3. The equation becomes Equation (2).

P = α f 3
+ β (2)

The main assumption of our energy model is based on the following observation: the highest
the CPU usage is (see Figure 3), the hottest the CPU’s temperature is (see Figure 5) and faster
the cooling fan turns (see Figure 4). In all the figures, the blue and the red lines designate the
information about the devices usage and temperature respectively with and without using the
cool’n’quiet technology [25]. As result of this observation we notice that the CPU usage is a
major parameter, and teaches a lot about the system energy behavior. In addition, our model
can handle up to 100 VMs in each scheduling cycle (see Section4.5), this can quickly become
CPU intensive for the hosts of the cloud. Indeed, a loaded host means a higher CPU usage, which
changes the temperature of the host’s devices and in that waythe cooling system behavior. There-
fore, the energy needed for the VMs computation is only a partof the total energy consumption.
In this work, we use only the CPU energy to make decisions about the VM assignments. As
a consequence, we should have more significant energy savings if we take the auxiliary energy
consumption into account. However, the objective of this approach is more to show the impact
of both the heterogeneity in the hosts’ frequencies and the CPU usage parameter in the objective
function of the EMLS-ONC algorithm, than to rise the energy saving improvement results. The
scheduler retrieves the frequency of the processors of eachhost and its current CPU usage by
requesting the hypervisor. The used hypervisor in our modelis KVM and the objective function
of the energy criterion is defined in Equation (3).

(E)i j = (αi f
3
i + βi) × ej × n j × (

CPU usagei
constvalue

+ 1) (3)
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Where fi is the frequency of the hosti, ej is the time reservation of the VM,n j is the number
of processors required for this VM andCPU usagei is the current CPU usage of the hosti. The
energy consumption is related to both the host and the VM. Theconstvalueis a constant value
that represents the coefficient of the energy increase according to the CPU usage increase. In
other words,constvaluerepresents the ratio between the CPU usage increase from theidle point
to the max usage point and its effect on the energy consumption. We conducted an experiment
(see Figure 6) to find the value ofconstvalue. We used a wattmeter on Dell precision T7400
with an Intel Xeon X5410 2.33 GHz four processor cores. We used the Intel Xeon architecture
because it is commonly used in data centers and designed for CPU intensive usage. We stressed
the processor several times during 2 minutes and we found outthat the extra power needed
compared to the idle state, varies between 30% and 40% of the total energy consumption. We
decided then that in our objective function theconstvalueequals 3, which represents 33% of
extra power between the idle and the maximum processor usage.

Figure 3: CPU usage during a stress period (x-axis)

3.3. VM Performance Model

Reducing the energy consumption in a cloud infrastructure is a major issue. However this
could conduct to some drawbacks in terms of performance. Thevirtualization tool offered by the
cloud allows different VMs to share the same physical host. The energy consumption reduction
conducts often to gather the VMs into the same physical host.However, to take benefit from those
VMs and from their potential, a total isolation between the different VMs has to be provided by
the hypervisor within the same host.
The CPU resources do not cause problems and usually respond well to the isolation. However,
the cache memory aspect is more tricky to handle. Indeed, sharing a physical resource means
sharing CPU cache memory as well. The problem is that there isnot as much cores as caches
to keep a total isolation between the VMs. This problem is notsignificant for the VMs with
low memory needs. However, when the VMs needs exceed the capacity of the L2 cache size,
the VMs are not isolated any more [11]. In [11], the experiments on the VM isolation show
that for the VMs with high memory needs, the response time (delays) of the VMs increases
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Figure 4: FAN rpm during a stress period (x-axis)

Figure 5: CPU temperature during a stress period (x-axis)
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Figure 6: CPU usage vs energy consumption

due to the cache misses. We noticed that the response time of the VMs double between the
value 0% of back ground utilization (lonely VM) and 100% of back ground utilization (full
physical host). We notice also that the increase of the response time is linear with the memory
increase. We deducted then the Equation (4) from this behavior to link the VM response time
(VM performance)Responsetimei j to the VM memory needs and the host memory usage.

Responsetimei j = Memoryj + Memoryj × Mem usagei (4)

Where,Memoryj is the amount of memory needed by the VMj and Memusagei is the
current memory usage of the hosti.

3.4. Problem Description

As illustrated in Figure 7, the focus in our work is on a two-tier cloud model. The first tier
is a cloud provider which hasN heterogenous hosts (data centers). The second tier is a set of
clients withJ VMs requests for running their applications. The problem consists of scheduling
J VMs on N data centers. We know that the task scheduling problem in general is NP-hard [26].
Therefore, our VMs scheduling problem is NP-hard as well. Thus, a metaheuristic algorithm ap-
pears to be the most appropriate approach to solve the problem. The metaheuristic that we used
is a multi-start local search. The multi-start part is used to bring diversification in the problem
solving by a bigger exploration, while each local search adds accuracy with the intensification.
Our approach provides both diversification and intensification without the processing time draw-
back of an evolutionary approach. In other words, EMLS-ONC (or EMLS-ONC-MO) returns
the assignment within the time limit (scheduling cyclein Section 4.5).

With OpenNebula, the client submits virtual machine requests with requirements. Those
requirements are the number of CPU, memory size, storage capacity, the type of the operating
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system, etc for the VM. In our problem, we added a time requirement in the definition of the VM
to know the duration of the execution and to get an estimationof the energy consumption.

During the scheduling process, the user submits a request for a VM j. A VM in our model
is defined by a triplet (ej, n j,mj), all the triplet information are given by the user during the sub-
mission, except the starting time of the VM (t j) which is deduced from the submission time.
The elements of the triplet represent the duration reservation time of the VM (ej), the number of
processors needed by the user for his/her VM (n j) and finally the memory size (mj). Our triplet
is inspired from Amazon EC2 [27] except for the reservation time. This parameter is compulsory
in our model in order to compute the energy consumption. The time unit of the reservation time
is one hour. Thus, the user has sometimes to reserve his/her VM for a time longer than needed
to ensure the completion of the application that he/she runson it.

The objective function of our approach aims at minimizing the energy consumption of the
entire infrastructure when hosting the VMs (EMLS-ONC). A second objective function is used
in addition to the previous one to maximize the performance of the VMs in EMLS-ONC-MO.
They are formulated in Equations (5) and (6):

Minimizing the energy consumption=
N∑

i

J∑

j

(E)i j (5)

Where (E)i j is the power consumption of the hosti while executing the VMj. This is always
done by respecting the following constraints:

• Each VM j has to find at least one host with the correct requirements to be assigned on it,
otherwise the VM is rejected.

• Each VM j can be assigned to one and only one hosti.

Maximizing the VMs per f ormance= Minimizing(
N∑

i

J∑

j

Responsetimei j ) (6)

WhereResponsetimei j is the response time of the VMj while assigned to the hosti includ-
ing the delays. Note that, the VM performance is inversely proportional to the response time of
the VM.

The two objectives in the multi-objective version (EMLS-ONC-MO) are tackled in a Pareto
way, while assigning the maximum number of VMs is a priority.In other words, the best found
solution has first to be the one that assigns the highest number of VMs. After that, a Pareto
ranking is done to classify the solutions. The final best solution is the assignment that maximizes
the number of VMs with the best energy consumption for EMLS-ONC or the best Pareto value
for EMLS-ONC-MO.

4. Multi-start Local Search Algorithm for VMs Assignment

Before describing our EMLS-ONC and EMLS-ONC-MO approaches, we describe briefly the
following sections how the default OpenNebula scheduler and bin packing FFD-based algorithm
work.
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Figure 7: Two-tiers cloud model representing the client tier, the provider tier (Cloud), and the relationship between both
OpenNebula and EMLS-ONC (or EMLS-ONC-MO) scheduler.

4.1. OpenNebula Scheduler Algorithm

To make the assignment of the arriving VMs, it iterates over the set of the arrived VMs.
For each VM it checks the set of hosts where it could be assigned. The first host that satisfies
the VM requirements is chosen to run the VM. The scheduler stops when no more pending
VMs remain. This approach is similar to the consolidation technique which is used for energy
reduction purposes.

4.2. Bin packing FFD-based Scheduler Algorithm

This approach is the second one to which we compare the EMLS-ONC and EMLS-ONC-
MO. It is based on the First Fit Decease heuristic (FFD) as thework [11]. As said previously,
the algorithms that were based on FFD bin packing have been proven to perform the best on the
energy reduction [12]. The idea is to sort the pool of the VMs to be assigned in a decreasing
order (i.e. from the most to the least requirement needs) andto assign those VMs each time
to the server with the least energy consumption according toEquation (2). This algorithm is
the energy-aware version that has been compared to EMLS-ONC. A memory-aware version of
the bin packing FFD scheduler has also has been implemented.This version assigns the sorted
VMs to the server with the most important memory capacity. This helps to avoid a memory
overload which will lead to cache misses and therefore to decrease in the VMs performance. The
Pareto EMLS-ONC-MO has been compared to both energy- and memory-aware bin packing
FFD algorithms.

4.3. Problem Encoding

In order to formulate our problem without overriding the previous constraints (i.e. each VM
has to find a host with its requirements and can be scheduled only on one host), we propose an
encoding for both EMLS-ONC and EMLS-ONC-MO solutions (see Figure 8).

Figure 8 represents one possible assignment among plenty proposed by the multi-start local
search algorithm. In the proposed example we identify threemajor specifications. The values
of the first row of the table (map keys) depict the VMs that are assigned, the number which is
contained by each cell of the second row of the table identifies the host to which the VM is
allocated. In other words, in Figure 8, the first column represents the first VM of the pool that
is currently treated by EMLS-ONC (or EMLS-ONC-MO), it is identified with the id 1 and is
assigned to the host 5. The second VM with the id 3 is assigned to the host 0 and so on. This
encoding includes the number of VMs contained in the pool (10VMs in our example). It also
helps one to deal with the characteristics of our problem. Indeed, it allows the processing of all
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Figure 8: Problem encoding.

the VMs of the pool. Each VM will be assigned to one and only onehost (no duplication of
mapping keys). A host can handle more than one VM and not all the hosts are necessarily used
in each solution.

4.4. Solution Initialization

The generation of the initial solution in a local search algorithm is an important phase. In
fact, this step affects quality of the future results. In ourapproach, since we deal with a multi-
start method, each local search execution has its own initialization and then its proper initial
solution. This process follows 3 different methods. Just after the common phase of the hosts
filtering (removing the unusable hosts with bad requirements), each VM obtains a set of hosts
on which it can be assigned. The first method assigns the VM to the first available host from its
set of hosts. The second method assigns the VM to the best energy efficient host available in its
set of host. The last method assigns the VM to a random host in its set of hosts. The first two
methods are respectively for the first two local searches of the multi-start. The last one is for
the rest of the local searches to add diversity. For each hostselection, a checking mechanism is
applied to verify if the constraints and the availability ofthe host are satisfied. Indeed, during the
initialization somea priori available host can become unavailable in case where previous VMs
in the current initialization already used the resources. If no hosts are available for the VM, the
VM is removed from the current scheduled pool and will be considered as failed.

4.5. Scheduling Steps

The EMLS-ONC and EMLS-ONC-MO approaches are metaheuristics-based schedulers. EMLS-
ONC is a multi-start method that launches a set of local searches in order to find the best energy-
aware VM assignment over the cloud. The Pareto multi-objective version EMLS-ONC-MO adds
the VM performance optimization to its criteria. Before each scheduling, the EMLS-ONC or
EMLS-ONC-MO scheduler waits for a fixed period of time calledscheduling cycle. This period
allows one to gather a pool of VMs in order to have a larger choice in the assignment and thus
to optimize the future assignments. Once this phase done thepool of hosts is filtered out to keep
only the hosts with the correct requirements. The multi-start phase as said before launches each
local search algorithm separately. The number of launched LS is equal to the minimum value
between the number of hosts composing the distributed cloudand 20. This parameter choice
is due to the relationship between the complexity of the problem and the number of hosts. In-
deed, a small number of hosts makes easier the assignment since it reduces the possibilities of
VMs assignments. Therefore, few local searches are enough to get a good solution. However, the
drawback of relating the number of launched local searches to the number of hosts is the process-
ing time. A tradeoff has been found by bounding their number to 20. After the end of each local

12



Algorithm 1 Local Search Pareto archive ranking
Input: LocalSearch(n) with InitialSolution

for each newSolutiondo
if newSolution is not dominated by any solution of the archivethen

add newSolution to archive;
end if
for each solution in archivedo

if solution is dominated by newSolutionthen
delete solution from archive;

end if
end for

end for
Output: A set of Pareto non-dominated solutions

search process, all the best solutions of each LS are compared. Only the best solution among all
the LSs solutions is kept and chosen to be the used assignment. In the last step, OpenNebula dis-
patches the VMs according to this assignment, it updates thehosts states and a new scheduling
cycle is started. Figure 9 draws the different steps of both the EMLS-ONC and EMLS-ONC-
MO. However, there are differences in the meaning of each step between the two approaches in
the flowchart. The local searches in the EMLS-ONC-MO are obviously multi-objective, while in
the EMLS-ONC they are not. Therefore, in EMLS-ONC-MO each LSobtains after its process
a set of Pareto non-dominated solutions that are sorted in a private archive (see Algorithm 1).
After the end of all the processes of all the LSs, each local search updates a common archive
with the elements of their private archive to have the final archive of non-dominated solutions
using Algorithm1. The penultimate step of the flowchart (Best scheduling) consists in the Pareto
version of our approach to pick up randomly in the common archive a solution that will be the
selected assignment. This is made possible by the equivalence of the solutions (non-dominated).
In the single objective version EMLS-ONC, theBest schedulingflowchart step represents the
best energy efficient solution among the solutions of each local search.

4.6. EMLS-ONC/EMLS-ONC-MO Algorithm

The role of the local search algorithm is to generate a numberof combinations from the ini-
tial solution using neighborhood operators in order to find the best assignment according to the
specified objective(s). The multi-start adds diversity, while each local search provides intensi-
fication. The local search algorithm starts by generating the initial solution. The initialization
process is explained in Section 4.4. This initial solution is used to generate a neighborhood based
on two neighborhood operators. The use of one or the other depends on the size of the cloud and
the number of VMs. Both operators are based on an exchange process. The first operator is
dedicated to generate neighborhoods for small cloud configuration or small VM number (no VM
limit and less than 50 hosts or less than 5 VMs and no host limit), while the second is dedicated
to large neighborhoods with large clouds and number of VMs. The first operator (see Figure 10)
switches the value of the host of each VM of the initial solution with each value of the VM’s
hosts set exhaustively. In other words, the neighborhood operator checks all the VM’s available
hosts to find the one where the VM consumes the less energy for the EMLS-ONC or the best
Pareto solution for EMLS-ONC-MO. In the second operator, the number of both hosts and VMs
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Figure 9: The Flowchart of the EMLS-ONC algorithm.
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is bigger. Therefore, the algorithm can not afford to enumerate all the combinations in a rea-
sonable time. Thus, it switches the selected host with not all the VM’s hosts set but only with a
randomly selected range of hosts among this set. Therefore,one iteration of each LS generates
one neighborhood. The local search ends when it enumerates all the hosts of the hosts set of
each VM with the first operator, or enumerates all the hosts ofa selected range in the hosts set of
each VM for the second operator. Each solution of the generated neighborhood is checked for its
feasibility. A fitness value is also assigned to this solution. The best solution of the neighborhood
is kept to build another neighborhood during the next iteration using the previous operators. The
algorithm stops when the number of iterations in each LS reaches the number of VMs. As for
the number of local searches in the multi-start, the reason of choosing this value is due to the
complexity of the problem. Indeed, the more VMs they are the more iterations are needed to find
a good solution.

Figure 10: The Mechanism for generating the neighborhood from an initial solution (neighborhood operator) of one of
the local search algorithm that composes the EMLS-ONC/EMLS-ONC-MO scheduler.

5. Experiments and Results

This section presents the results obtained from our comparative experimental study. The
experiments aim to demonstrate and evaluate the contribution of the EMLS-ONC and EMLS-
ONC-MO approaches. The comparison is done on the different addressed criteria with an energy-
and memory-aware approaches and the default OpenNebula scheduler.

5.1. Experimental Settings

The experimental settings concern both sides of our two tiercloud model. The client side
with the VMs features and the provider side with the hardwareconfiguration of the cloud.

5.1.1. Artificial Hardware Settings
• VMs’ settings: Concerning the inputs of the scheduler we generated VMs in anXML

format. Thus, the OpenNebula parser reads their features ina realistic way. The VM
features in our experiments vary according to three parameters. Indeed, as said before in
Section 3.4 with the triplet (e, n,m), the VMs parameters are the execution time, the num-
ber of processors and finally the memory needs. In order to fit the algorithm parameters,
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we generated randomly this triplet where the execution timee is a value from [1, 10] hours,
the processor requirementn varies in the interval [0.5, 9] and the memory needsm in [1,
8] GBs for the CPU-intensive VMs and [1, 15] GBs for the memory-intensive VMs. The
subdivision unit of all the intervals is given in Equations (7), (8) and (9).

e= 1+ k; 0 ≤ k ≤ 9 (7)

n = k/2; 1≤ k ≤ 18 (8)

m= 1+ k; 0 ≤ k ≤ 14 (9)

• Distributed cloud settings: As for the VMs the hosts features are provided in XML format
to the OpenNebula parser. Hence, we generated different types of hosts by changing each
time their features. Each host is specified by its number of cores randomly generated
between [1, 24] cores, its memory capacity from [2, 24] GB andits CPU frequency from [1,
3] Ghz. A host has also information about the amount of CPU andmemory used resources,
those values have to never exceed the initial capacity of thehost for both CPU and memory.
The value of the free resources for each device (CPU, memory)is deduced from the initial
host capacity minus the amount of the current used resource.The subdivision unit of all the
hosts’ parameters intervals is 1. In other words, all the intervals are composed of integer
values.

The interval values of the VM features presented above are deduced from the type of VMs
proposed by the cloud providers like EC2 for Amazon [27]. Theinstances of EC2 vary from
small one (1 CPU, 1.7 GBs memory) to extra large one (8 CPUs, 15GBs memory) [28]. The
floating values as 0.5 for the VM CPU needs are due to virtualization that allows affecting less
than a whole physical core to a VM (tiny VMs). The execution time values range between 1 hour
to 10 hours. Those values are the common ones in terms of reservation. They are oscillating
between a short and a long reservation.

Regarding the interval values of the hosts they range between a private computer (1 core,
2 GB memory, 1 Ghz clock frequency) and a cluster (24 cores, 24GB memory, 3 Ghz clock
frequency). This is done to encompass all types of machines that could compose a cloud. Note
that the CPU and the memory values are related. In other words, a machine with a high number
of CPUs will have high memory capacity andvice versa.

5.1.2. Real Hardware Settings
In the real experiments we generated real VM templates for requesting VMs, as a real user

has to do when he/she fills the VM template. The VMs features (execution time, number of CPUs
and memory) were generated following a poisson distribution with respectively theλ parameters
(1, 2, 4). The sample of each VM feature is composed of 12000 values. The used results for each
distribution are taken in the intervals [1, 10] for the execution time, [1, 9] for the CPU and [1, 8]
for the memory. The total number of generated VMs is 2000.

Regarding the hosts, we used machines from Grid’5000 [29]. We used the site of Nancy
equipped with clusters allowing the virtualization to deploy OpenNebula with and without EMLS-
ONC. The hardware specifications of the hosts that compose our cloud are summarized in Ta-
ble 1.
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Table 1: Hardware Specifications of the Hosts

Device Specification Value
Max Number of hosts 200

Frontend hosts 1
Number of clusters 2
Clock frequency 2.5 Ghz, 2.53 Ghz
Memory capacity 8192 Mo, 16384 Mo
Number of cores 8, 4

CPU type Intel Xeon E5420, Intel Xeon X3440

5.2. Algorithm and Instances Parameters

5.2.1. Artificial Experimental Parameters
The EMLS-ONC and EMLS-ONC-MO schedulers are proposed to be integrated in the Open-

Nebula cloud manager. Therefore, they have to be flexible andfit different cloud configurations.
In this context, we conducted our experiments on both approaches during 20scheduling cycles
for each instance. We define an instance as a certain number ofVMs that arrive per scheduling
cycle on a certain number of hosts. In these experiments, we compare the EMLS-ONC with
an energy-aware algorithm, while the multi-objective EMLS-ONC-MO is compared to both an
energy-aware and a VM performance-aware algorithm. Note that comparison of both approaches
is also done with the default OpenNebula scheduler. We measure in these experiments their abil-
ity to handle a flow of VMs requests arriving at the same time (one scheduling cycle) by compar-
ing one to one the results of each scheduling cycle. We also discuss the results of each algorithm
over several scheduling cycles in row. The comparison studyof the single objective algorithm
EMLS-ONC concerns the number of assigned VMs, the energy consumption and the processing
time duration criteria. Regarding the Pareto EMLS-ONC-MO scheduler, the study concerns the
VM performance criterion in addition to the previously cited criteria. The constraint for both
schedulers is to provide the results before the end of the scheduling cycle time, and thus, the
arrival of a new pool of VMs. Moreover, all the experiments presented below deal with the
scheduling process part of the algorithm and nohow with the physical VMs dispatching phase.
The VM dispatching phase is handled by OpenNebula.

In our experiments, we used some parameters: the schedulingcycle duration, number of
scheduling cycles in row, number of VMs per arrival in each scheduling cycle, and the number
of hosts composing the cloud. We performed experiments with4 different cloud configurations,
from a small local cloud with 5 hosts to a wide distributed cloud with 320 machines. Concerning
varying the VMs arrival rates we use 5 different loads from a single VM to a massive arrival of
100 VMs on each scheduling cycle. Each instance is defined to be the couple (# VMs, # hosts)
during 20 cycles of 30 seconds. This represents for the highest work load (100VMs/scheduling
cycle) 2000 VMs for each cloud configuration. The constant value scheduling cycle duration
is deduced from OpenNebula. Indeed, this value is the default waiting time period between
two scheduling phases. Note that this is fixed by default to 30seconds but it can be changed
according to the needs. The other constant value which is thenumber of scheduling cycles in
row has been determined from experimentations. We noticed that 20 scheduling cycles in row
was the number of cycles needed to saturate the biggest cloudconfiguration (320 hosts) with
the highest VMs arrival per scheduling cycle (100 VMs). A full description of the experiments
parameters is given in Table 2.
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Table 2: Artificial Experimental Parameters

Parameter Value
Scheduling cycle 30s

Number of scheduling cycles in row 20
Number of VM per arrival 1, 5, 20, 60, 100

Number of hosts 5, 20, 80, 320

5.2.2. Real Experimental Parameters
In the real experiments we used 2 types of clouds, a medium one(50 hosts) and a big one

(200 hosts). The clouds have been deployed on the Grid5000 platform [29]. The VMs arrival
workloads during each scheduling cycle are 5, 50 and 100. Theobjective of this experiment is to
prove the feasibility of the deployment of our approach overphysical machines, while handling
their constraints (lags, communications,...). The behaviors of EMLS-ONC and its performances
were compared to default OpenNebula scheduler. We treat allconfigurations to show the different
algorithm behaviors. We expressed the couples (number of hosts, number of VMs) as ratios. A
ratio is the relationship between the number of VMs to be assigned and the number of hosts that
compose the cloud. Thus, we dealt with a small ratio ( 50 hosts, 5 VMs), a big ratio (50 hosts, 100
VMs) and a medium ratio (200 hosts, 100 VMs). The scheduling cycle duration and the number
of scheduling cycles in row have been fixed for the same reasonas mentioned in Section 5.2.1.
We used 30 seconds as time duration for the scheduling cycle in all the instances except in the
(200 hosts, 100 VMs) instance. We used 60 seconds in this latter because of the communication
delays due to a large cloud (200 hosts) which increases the processing time of EMLS-ONC. The
scheduling cycles in row value was fixed to 10 because that wassufficient to saturate the 200
hosts cloud. A full description of the experiments parameters is given in Table 3.

Table 3: Real Experimental Parameters

Parameter Value
Scheduling cycle 30s, 60s

Number of scheduling cycles in row 10
Number of VM per arrival 5, 50, 100

Number of hosts 50, 200

5.3. Experimental Results

In the following, we discuss the experiment study of two scheduling approaches based on a
metaheuristic, integrating both the energy consumption and the VM performances on the top of
OpenNebula cloud manager. We perform a set of experiments with different parameters cited
before in both Section 5.2.1 and 5.2.2 respectively for the artificial and the real experiments.

The first single objective approach EMLS-ONC has been compared to two algorithms. The
first comparison was done with an energy-aware FFD based algorithm. The FFD algorithm as
said previously has been proved to perform very well in energy savings. The second comparison
was done obviously with the default OpenNebula scheduler toknow the impact of our approach
on the OpenNebula cloud manager. The default scheduler of OpenNebula is based on a type of
consolidation technique. This technique provides energy consumption reduction. In addition, we
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validated through experiments on a real cloud infrastructure (GRID5000) the behavior and the
contributions of the EMLS-ONC over the default OpenNebula scheduler when deployed on real
hosts.

The second approach, the Pareto EMLS-ONC-MO, has been compared to three algorithms.
Indeed, dealing with two objectives, we compared EMLS-ONC-MO to two heuristics tackling
each one an objective among the two. We compared EMLS-ONC-MOwith the default Open-
Nebula scheduler as well. The two heuristics mentioned earlier are both based on FFD assign-
ment. As presented in Section 4.2, the first one is energy-aware and sorts the hosts and the VMs
according to this criterion, while the second one is memory-aware in order to save the VMs
performance. Thus, it sorts the hosts and the VMs according to this other criterion.

Due to the stochasticity of both EMLS-ONC and EMLS-ONC-MO, we run each experiment
for each instance 30 times. The presented results for each instance of both EMLS-ONC and
EMLS-ONC-MO algorithms are the average value of all the 30 executions. Note that, the noted
average valuesrows in the tables of results represent the average value of each column over all
the instances. In addition, the notation# VMson the type of instance column represents the
number of VMs that arrive per scheduling cycle. Moreover, inthe tables of results theRPC
acronym designates theRelative Percentage Change. It represents the percentage of difference
between the obtained values of our algorithm and the values of the compared with algorithm.
In our case, since dealing with minimization, negative values mean the improvements of our
algorithm while positive values mean worst results.

In the presented results we also used two terms:cumulativeandnormalized. Those terms are
due to the difference in the number of assigned VMs between the compared approaches. Indeed,
it is not sufficient to compare the obtained values for each criterion at each scheduling cycle. We
used the cumulative sum to link the results of each scheduling cycles and to have the evolution
of the addressed criterion through the different VMs arrival waves. Moreover, the normalization
uses the cumulative sum of the criterion and the cumulative number of assigned VMs to give at
each moment the value per assigned VM of the addressed criterion.

The results will be discussed in four sections depending on the number of objectives or the
type of experiments (artificial or real). The first section deals with single objective approaches
treating the energy issue, the second with the Pareto bi-objective EMLS-ONC-MO approach
compared with energy-aware algorithm, the third with the same Pareto bi-objective EMLS-ONC-
MO approach but compared with VMs performance-aware algorithm and finally the fourth with
the feedbacks obtained from the experiments on a real infrastructure.

The following figures show the results of 3 most specific instances. One for small cloud and
small number of VMs (20 hosts, 5 VMs), one for a medium cloud with big number of VMs (80
hosts, 100VMs) and the last for big cloud with big number of VMs (320 hosts, 100 VMs), to
cover all scenarios.

5.3.1. Comparison study between the single objective EMLS-ONC, the energy-aware FFD ap-
proach and the OpenNebula scheduler

In this section, we discuss the results of EMLS-ONC, the energy-aware FFD approach and
the OpenNebula scheduler.

• Number of Scheduled VMs:Table 4 shows that EMLS-ONC assigns more VMs than the
energy-aware FFD approach in average. This trend is also confirmed on the instances in-
dividually. However, despite a policy that maximizes the number of assigned VMs in the
EMLS-ONC, the OpenNebula scheduler still assigns slightlymore VMs. This is due to the
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consolidation nature of the OpenNebula scheduler which keeps more space during the suc-
cessive scheduling cycles for the next VMs arrivals. Indeed, in the first scheduling cycles
EMLS-ONC manages to keep up on the number of assigned VMs withthe OpenNebula
scheduler but it collapses at the end. This phenomenon is more significant with the high
VMs arrivals when assigned over a proportionally small cloud. This behavior is caused by
the previous assignments which ultimately govern the next ones.

• Processing time during each scheduling cycle:in this part, we are going to talk about the
time computation comparison between the approaches. Table5 shows that the process-
ing time of both the energy-aware FFD algorithm and the default OpenNebula scheduler
are significantly lower than the scheduling cycle time. Thisis due to the simplicity of
the algorithms. We present in this same table the maximum, minimum and the average
processing time values. The results show that despite the complexity of EMLS-ONC the
processing time value never exceeds the default schedulingcycle duration (Max value) and
it computes really fast for small instances (Min value).

• Energy consumption savings:in Figure 11 and Figure 12 we notice that the EMLS-ONC
energy histogram is always under the OpenNebula scheduler and the energy-aware FFD
algorithm ones, which means better energy reduction duringthe whole scheduling cycles.
Nevertheless, in Figure 14 we notice that after a good start,EMLS-ONC becomes slightly
less efficient than the energy-aware FFD algorithm between the scheduling cycles 7 and
12. It becomes better again until the end of the scheduling cycles. This is due to the dif-
ference in the assignment policies of the two approaches. Indeed, the EMLS-ONC assigns
more VMs in that period of time (see Figure 13) which leads to an energy consumption in-
crease. However, the additional assigned VMs through the next scheduling cycles is done
efficiently which brings down the energy consumption of the EMLS-ONC. Note that, the
energy consumption drawn in the figures and mentioned earlier is a normalized value. It
gives the energy consumption per VM through the different scheduling cycles by taking
into account both the number of assigned VMs and the total energy consumption. This
metric helps to show the real energy efficiency of each approach.

In addition, we note in all the previous figures that EMLS-ONChas an increasing evo-
lution. It changes according to the load and clearly shows its superiority over the first
few cycles when the VM assignment remains subject to choice.In contrast, the other
approaches have a downward evolution mainly OpenNebula scheduler (consolidation). It
has a bad energy assignment at the beginning and starts to stabilize its energy consumption
only on the last cycles when the load is at its highest level. We also note that the Energy-
aware approach FFD is better on average than the OpenNebula scheduler on non-dense
instances and a little bit worse on the instances with high loads as shown in the last cycles
of Figure 12.

Table 4 reports none normalized values. Therefore, we note that with the two instances
(320 hosts, 60 VMs) and (320 hosts, 100 VMs), EMLS-ONC has worse results than
energy-aware FFD. This is not relevant because EMLS-ONC hasa significantly higher
number of assigned VMs. We can see then the interest of using the normalized values in
the figures.
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Figure 11: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 5 VMs and 20
hosts.
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Figure 12: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 100 VMs and 80
hosts.
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Figure 13: Comparison of the number of scheduled VMs during 20 scheduling cycles in row between EMLS-ONC
scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 100 VMs and 320 hosts.
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Figure 14: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 100 VMs and 320
hosts.
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Table 4: Comparison between the results obtained by the EMLS-ONC, the energy-aware FFD algorithm and the Open-
Nebula scheduler

Type EMLS-ONC vs Energy-FFD EMLS-ONC vs OpenNebula
of Instance # of Additional Energy Consumption# of Additional Energy Consumption

# Hosts # VMs Assigned VMs RPC Assigned VMs RPC
5 1 0 0% 0 0%
5 5 0 -25.40% -4 -13.98%
5 20 1 -38.67% -2 -0.83%
5 60 2 -11.75% 0 -18.25%
5 100 2 -6.28% -1 -24.99%
20 1 0 -69.31% 0 -61.10%
20 5 -1 -13.51% -1 -11.00%
20 20 -2 -27.89% -4 -26.14%
20 60 1 -16.96% -8 -1.55%
20 100 5 -39.99% -5 -9.84%
80 1 0 -73.50% 0 -87.17%
80 5 0 -23.57% 0 -29.25%
80 20 7 -5.97% -3 -8.52%
80 60 17 -8.52% -11 -9.57%
80 100 10 -4.25% -8 -11.48%
320 1 0 -77.92% 0 -88.14%
320 5 0 -57.59% 0 -77.90%
320 20 0 -2.84% 0 -29.84%
320 60 13 1.23% -17 -4.23%
320 100 40 3.67% -13 -3.23%

Average values 4.75 -25% -3.85 -26%

Table 5: Comparison between the processing time during 20 scheduling cycle in a row of the EMLS-ONC, the energy-
aware FFD and the OpenNebula scheduler

Computation EMLS-ONC Energy-FFD OpenNebula
time (sec) Scheduler Scheduler Scheduler
Max value 24.5178 0.541404 0.0264464
Min value 0.00219981 0.00189716 0.00184849

Average value 1.18063915 0.03622298 0.004775

5.3.2. Comparison study between the Pareto EMLS-ONC-MO, the energy-aware FFD approach
and the OpenNebula scheduler

In this section, we discuss the results of EMLS-ONC-MO, the energy-aware FFD approach
and the OpenNebula scheduler.

• Number of Scheduled VMs:Table 6 shows that EMLS-ONC-MO assigns more VMs than
the energy-aware FFD approach in average. This trend is alsoconfirmed on the instances
individually. However, EMLS-ONC-MO is less efficient when compared to the OpenNeb-
ula scheduler but still better on average. This is due to the consolidation nature of the
OpenNebula scheduler which keeps more space during the successive scheduling cycles
for the next VMs arrivals. We notice also that EMLS-ONC-MO assigns significantly more
VMs than the other approaches on instances where the architecture is large compared to
the number of VMs (# hosts>> # VMs) like for instances (20 hosts, 5 VMs),(320 hosts,
60 VMs) and (320 hosts, 100 VMs).

• Processing time during each scheduling cycle:we compare here the three scheduling ap-
proaches in terms of execution time. Table 7 shows that the processing time of both the
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energy-aware FFD algorithm and the default OpenNebula scheduler are significantly lower
than the scheduling cycle time. This is due to the simplicityof the algorithms. We report
in this table the maximum, minimum and the average processing time values. The results
show that despite the complexity of EMLS-ONC-MO the processing time value never ex-
ceeds the default scheduling cycle duration (Max value) andthe algorithm is fast for small
instances (Min value).

• Energy consumption and VMs performance savings:we define the VMs performance by
their response time, which is itself related to the memory usage. Therefrom, the VM
response time is inversely related to the VM performance. Inother words, reducing the
response time of a VM means a good VM performance. In Figure 15and Figure 19 for the
energy criterion and, Figure 16 and Figure 20 for the VM performance criterion, we notice
that when there are different assignment choices (i.e. during the first scheduling cycles)
in the instance types (# hosts>> # VMs) such as (20 hosts, 5 VMs) and (320 hosts, 100
VMs), EMLS-ONC-MO suffers a bit from the diversity of the Pareto space. It struggles
during the first scheduling cycles but ends up having better results in both VM response
time and energy consumption. Moreover, it gives better results on both criteria during
all the scheduling cycles on the high loaded instances such as (80 hosts, 100 VMs) (see
Figure 17 and Figure 18).

Table 6 shows that EMLS-ONC-MO is never Pareto dominated in any type of instance.
We also notice that when the solutions proposed by EMLS-ONC-MO does not dominate
the solutions proposed by the other approaches they still have an advantage in compari-
son to the other ones. Indeed, as shown in the comparison of the average values of both
EMLS-ONC-MO and the energy-aware FFD (-19 % 1 %), when the EMLS-ONC-MO and
the energy-aware FFD solutions do not dominate each others,the advantage that the solu-
tions of EMLS-ONC-MO have in one objective (e.g. Energy) is more significant than the
disadvantage that they may have in the other objective (e.g.VM performance).

We also note that EMLS-ONC-MO has a tendency to improve more significantly the en-
ergy consumption than the VMs performances. This is mainly due to the fact that an
energy-aware assignment can be determined from the beginning while a more focused
VMs performance assignment needs to wait for the last scheduling cycles where the VMs
performance start to decrease because of the load. This leads to a shorter optimization time
dedicated to VM performance with less assignment possibilities.

As for EMLS-ONC, Table 6 shows that with the two instances (320 hosts, 60 VMs) and
(320 hosts, 100 VMs), EMLS-ONC-MO has worse results than energy-aware FFD in both
objectives. This is not relevant because Table 6 reports none normalized values. Those
values do not take into account the number of assigned VMs which is significantly higher
for EMLS-ONC-MO. We can see then the interest of using the normalized values in the
figures.

5.3.3. Comparison study between the Pareto EMLS-ONC-MO, the memory-aware FFD ap-
proach and the OpenNebula scheduler

In this section, we discuss the results of EMLS-ONC-MO, the memory-aware FFD approach
and the OpenNebula scheduler.
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Figure 15: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 5 VMs and
20 hosts.
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Figure 16: Comparison of the results of the normalized response time of a VM during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 5
VMs and 20 hosts.
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Figure 17: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 100 VMs
and 80 hosts.
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Figure 18: Comparison of the results of the normalized response time of a VM during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 100
VMs and 80 hosts.
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Figure 19: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 100 VMs
and 320 hosts.
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Figure 20: Comparison of the results of the normalized response time of a VM during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, energy-aware FFD scheduler and OpenNebula scheduler for a configuration of 100
VMs and 320 hosts.
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Table 6: Comparison between the results obtained by the EMLS-ONC-MO, the energy-aware FFD algorithm and the
OpenNebula scheduler

Type EMLS-ONC-MO vs Energy-FFD EMLS-ONC-MO vs OpenNebula
of instance # of Energy ConsumptionVMs Response # of Energy ConsumptionVMs Response

Additional RPC Time RPC Additional RPC Time RPC
# Hosts # VMs Assigned VMs Assigned VMs

5 1 0 0% 0% 0 0% 0%
5 5 0 -0.59% -1.39% 0 -0.78% -19.98%
5 20 2 -9.61% -1.03% 1 -6.06% -9.45%
5 60 2.25 -55.90% 1.50% -3.75 -39.51% 0.28%
5 100 1 -56.22% 1.75% -4 -43.29% -2.41%
20 1 0 0% 0% 0 0% 0%
20 5 2 -6.59% 5.80% 3 -14.81% -19.62%
20 20 2 -11.61% 0.54% 1 -18.79% 10.69%
20 60 -1 -40.06% 1.19% -9 -19.11% -7.00%
20 100 3 -5.42% -0.83% -6 -10.94% -10.97%
80 1 0 -62.30% -6.51% 0 -82.50% 0%
80 5 0 -6.64% 0.51% 0 -29.02% -27.86%
80 20 2 -10.59% 0.90% -1 -17.99% -31.67%
80 60 10 -0.57% 4.57% -7 -13.24% -17.48%
80 100 5 -7.69% 0.26% -5 -18.17% -29.90%
320 1 0 -71.41% 0% 0 -86.65% 0%
320 5 0 -19.78% 0.45% 0 -55.59% 2.44%
320 20 0 -32.35% 3.73% 0 -17.96% 8.36%
320 60 35.75 4.45% 3.17% 36.75 -2.62% -17.32%
320 100 34 3.44% 4.91% 19 -3.39% -3.54%

Average values 4.9 -19% 1% 1.25 -24% -9%

Table 7: Comparison between the processing time during 20 scheduling cycle in a row of the EMLS-ONC-MO, the
energy-aware FFD and the OpenNebula scheduler

Computation EMLS-ONC-MO Energy-FFD OpenNebula
Time (sec) Scheduler Scheduler Scheduler
Max value 15.430325 0.57012 0.103329
Min value 0.00221455 0.00189864 0.00181377

Average value 0.73919431 0.04525467 0.00500326

• Number of Scheduled VMs:Table 8 shows that EMLS-ONC-MO assigns more VMs than
the memory-aware FFD approach in average. This trend is alsoconfirmed on the in-
stances individually. We note also that the improvement of EMLS-ONC-MO in the VM
assignments are more significant against memory-aware FFD than against energy-aware
FFD. However, EMLS-ONC-MO gives in average almost the same results as OpenNebula
scheduler. This is due as said previously to the consolidation nature of the OpenNebula
scheduler which keeps more space during the successive scheduling cycles for the next
VMs arrivals. In addition, we notice that EMLS-ONC-MO outperforms memory-aware
FFD on the instances where the infrastructure is relativelylarge (> 20 hosts) especially
for high load (> 60VMs per cycle) like in instances (20 hosts, 100 VMs),(80 hosts, 60
VMs) and (320 hosts, 100 VMs). We deduce that a memory assignment policy misuses
the available space of the resources.

• Processing time during each scheduling cycle:we compare here the three scheduling ap-
proaches in terms of execution time. Table 9 shows that the processing time of both the
memory-aware FFD algorithm and the default OpenNebula scheduler is significantly lower
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than the scheduling cycle time. This is due as said before to the low complexity of the al-
gorithms. We presented in this table the maximum, minimum and the average processing
time values. The results show that despite the complexity ofEMLS-ONC-MO the pro-
cessing time value never exceeds the default scheduling cycle duration (Max value)and the
algorithm is fast for small instances (Min value).

• Energy consumption and VMs performance savings:as previously said, the VMs perfor-
mance is related to the memory usage. Therefore, memory-aware FFD addresses the VMs
performance issue.

We note that memory-aware FFD is very efficient in the performance of VMs (Figure 22
and Figure 26). However, this efficiency has a drawback over the other criterion (i.e. the
energy consumption) (see Figure 21 and Figure 25). Memory-aware FFD reaches this high
efficiency in the VMs performance on the instances where the cloud size is proportionally
greater than the number of arriving VMs. This is due to the possibility in that type of
instances of assigning VMs without overloading the hosts. Always for the same type of
instances we note that EMLS-ONC-MO performs very well for energy reduction and is
quite close to memory-aware FFD on the VMs performance criterion. Nevertheless, we
observe that the more the energy reduction is significant (see Figure 21) the less efficient
EMLS-ONC-MO is, regarding the VMs performances (see Figure22).

Moreover, we notice that for instances with high VMs load such as in Figure 23, the first
assignment (1st scheduling cycle) of EMLS-ONC-MO gives thebest result compared to
the other approaches, but it leads to less energy efficient results during the next scheduling
cycles. However, EMLS-ONC-MO finds the tradeoff and makes upwith the improvement
of the VM performances until being better than the memory-aware FFD (see Figure 24).
We can see here the advantage of a Pareto EMLS-ONC-MO approach.

Moreover, Table 8 shows that EMLS-ONC-MO is never Pareto dominated for any type
of instance and is in average better than both memory-aware FFD (-14%, 2%) and Open-
Nebula scheduler (-25%, -10%). The only times where the solutions proposed by EMLS-
ONC-MO are dominated by the solutions of one of the other approaches, are when EMLS-
ONC-MO assigns more VMs than the other approaches. The normalized values drawn in
the figures prove the Pareto superiority of EMLS-ONC-MO overmemory-aware FFD and
OpenNebula scheduler when including the number of assignedVMs. We note also that the
advantage of EMLS-ONC-MO over memory-aware FFD is less significant than the one
obtained over energy-aware FFD. Indeed, memory-aware FFD is more comprehensive. It
performs well on the VM performances criterion, in additionto improving sometimes the
energy consumption. This is due to the relationship betweenthe memory and the CPU
capacity. In other words, a host with a high memory features has also good CPU features.
Therefore, sorting the hosts by memory is equivalent to sorting them from the one with the
best CPU capacity to the one with the worst. We deduce then that VM assignment using
this technique, consolidates the VMs in the hosts from the biggest to the smallest one. This
consolidation is the reason why memory-aware FFD has also good energy results.

5.3.4. Comparison study between the EMLS-ONC and the OpenNebula scheduler through a real
deployment on GRID5000 infrastructure

In this section, we discuss the comparison between the results of both algorithms EMLS-
ONC and the OpenNebula default scheduler over GRID5000. Theresults are presented in Ta-
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Figure 21: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula scheduler for a configuration of 5 VMs and
20 hosts.
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Figure 22: Comparison of the results of the normalized response time of a VM during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula scheduler for a configuration of 5
VMs and 20 hosts.
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Figure 23: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula scheduler for a configuration of 100 VMs
and 80 hosts.
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Figure 24: Comparison of the results of the normalized response time of a VM during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula scheduler for a configuration of
100 VMs and 80 hosts.
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Figure 25: Comparison of the results of the normalized energy consumption during 20 scheduling cycles in row between
EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula scheduler for a configuration of 100 VMs
and 320 hosts.
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Figure 26: Comparison of the results of the normalized response time of a VM during 20 scheduling cycles in row
between EMLS-ONC-MO scheduler, memory-aware FFD scheduler and OpenNebula scheduler for a configuration of
100 VMs and 320 hosts.
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Table 8: Comparison between the results obtained by the EMLS-ONC-MO, the memory-aware FFD algorithm and the
OpenNebula scheduler

Type EMLS-ONC-MO vs Memory-FFD EMLS-ONC-MO vs OpenNebula
of instance # of Energy ConsumptionVMs Response # of Energy ConsumptionVMs Response

Additional RPC Time RPC Additional RPC Time RPC
# Hosts # VMs Assigned VMs Assigned VMs

5 1 0 0% 0% 0 0% 0%
5 5 0 -22.64% 0% 0 -10.62% 0%
5 20 0 17.28% -30.77% -1 2.34% -1.82%
5 60 0 -26.99% 0% -5 -65.22% 3.18%
5 100 3 -30.73% 0% -4 -35.32% -0.61%
20 1 0 -48.92% -0.89% 0 -63.77% -47.08%
20 5 0 -17.84% 18.24% 0 -3.66% 15.56%
20 20 1 -5.90% 2.68% -1 -15.49% 9.14%
20 60 11 3.22% -0.32% -1 -16.69% -5.84%
20 100 22 47.37% -2.51% -4 0.90% -13.53%
80 1 0 -64.77% 0% 0 -79.65% 0%
80 5 5 -9.69% 14.62% -2 -14.56% -7.44%
80 20 3 -7.09% 7.97% -3 -29.79% -36.98%
80 60 23 -0.56% 4.15% -5 -8.65% -22.43%
80 100 4.5 4.71% 1.71% -2.5 -10.98% -17.48%
320 1 0 -84.69% 0% 0 -90.43% 0%
320 5 0 -38.12% 0.68% 0 -38.48% 0.68%
320 20 5 -1.37% 11.78% -6 -9.24% -25.22%
320 60 12 0.89% 9.77% 17 -9.85% -21.67%
320 100 17.5 1.50% 9.39% 8.5 1.38% -26.37%

Average values 5.35 -14% 2% -0.45 -25% -10%

Table 9: Comparison between the processing time during 20 scheduling cycle in a row of the EMLS-ONC-MO, the
memory-aware FFD and the OpenNebula scheduler

Computation EMLS-ONC-MO Memory-FFD OpenNebula
Time (sec) Scheduler Scheduler Scheduler
Max value 16.5711 0.530779 0.0211479
Min value 0.00224968 0.00188564 0.00178865

Average value 0.70908986 0.04163962 0.00480393

ble 10 to Table 15. For each instance we present two tables, one for the raw results and the other
for the normalized results.

• Number of Scheduled VMs:the results show that when EMLS-ONC is deployed on a real
infrastructure, it assigns more VMs than the default scheduler of OpenNebula. We do not
observe a difference in the number of assigned VMs for the small ratio instances (20 hosts,
5 VMs) because of the small number of arriving VMs compared tothe size of the cloud.
All the VMs could be assigned in both approaches (see Table 10). However, for medium
and high ratio instances, EMLS-ONC is better in the number ofassigned VMs as presented
in Table 12 and Table 14.

• Computation time during each scheduling cycle:the results show that EMLS-ONC never
exceeds the scheduling cycle limit in any of the instances. For the instances where the
scheduling time was set to 30 sec (i.e. (50 hosts, 5 VMs) and (50 hosts, 100 VMs)), the
longest processing time registered was of 24.25sec(see Table 12). Regarding the last
instance, the scheduling cycle time was set to 60 seconds because of the big number of
VMs combined to the size of the cloud (200 hosts, 100 VMs). This increases the time
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duration of the hosts filtering step in the EMLS-ONC algorithm. The obtained results
show that EMLS-ONC spends for the longest processing time 53.68sec(see Table 14).

• Energy consumption savings:we can notice three different behaviors from the energy
analysis of the experiments according to the type of the instance. The first analysis is the
one regarding the small ratio instance (20 hosts, 5 VMs). This instance contains many as-
signment possibilities, we observe that EMLS-ONC improvesthe obtained results at each
scheduling cycle with an average value of−7.81% compared to the default OpenNebula
scheduler (see Table 10 and Table 11). The second analysis concerns the experiments
on a big ratio instance (50 hosts, 100 VMs). We note for this type of instance an im-
provement during the first scheduling cycles which gradually leave room to a decrease in
the improvement. The accumulation of the VMs as the scheduling cycles occur, limits
the opportunities for improving the assignment (see Table 12). However, because of a
higher number of assigned VMs, EMLS-ONC has better normalized energy values than
the OpenNebula default scheduler (see Table 13). The third and last analysis is the one
of the medium ratio instance (200 hosts, 100 VMs). We observefor this type of instance
that there is an improvement during the first scheduling cycles as for the previously an-
alyzed instances. However, the improvement decreases gradually until reaching a point
where EMLS-ONC gives worse results than the OpenNebula scheduler (see Table 14 and
Table 15). Even if EMLS-ONC assigns more VMs than the OpenNebula scheduler, but
this is not the reason to the performance decreasing. In the following, we will explain the
reason of this performance drop on the instances with a medium and high ratio. As shown
in Figure 27, the policy of EMLS-ONC is to assign from the beginning the VMs with an
energy-efficient way. Conversely, the default scheduler ofOpenNebula fills each host to
its maximum capacity and relies on the time to benefit from itsassignment. One can have
at a given moment as shown in Figure 27, two different assignments. The first at the right
of the figure (EMLS-ONC) which minimizes at each moment the energy consumption,
and the second at the left which consolidates (OpenNebula).The problem comes from
the energy evaluation function in Equation (3). Indeed, to be as precise as possible, our
energy function evolves according to the previous CPU usagemade in the host. Therefore,
Equation (3) does not give the same results for a same VMj assigned to the hosti if this
hosti is free or if it is used at 60%. It is obvious then to see that, while the OpenNebula
default scheduler and other consolidation approaches willstart by over loading the first
host before switching to another one, EMLS-ONC assigns withthe aim not to reach a
critical usage of the hosts by having a balanced assignment.With these two policies one
can see that during the last scheduling cycles, the EMLS-ONChas no alternative to find
free hosts. It becomes mandatory for it to assign the VMs witha highCPU usagei value
having an exponential increase while calculating the energy consumption. On the other
hand, the OpenNebula scheduler keeps some hosts free and benefits from this situation
to avoid the additional energy cost given byCPU usagei. This does not show a realistic
energy consumption for the OpenNebula scheduler. Indeed, the hosts usage features are
updated only between the scheduling cycles. One can see thatbecause of a progressive fill-
ing, EMLS-ONC is affected by theCPU usagei parameter, while the default OpenNebula
scheduler is not because of the big number of VMs brought by each scheduling cycle that
fully fill the host at once. To avoid this phenomenon, a solution would be to update the
hosts parameters after each VM assignment and not after the whole scheduling cycle. That
way, one can be able to see the evolution of the energy consumption fairly regardless the
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policy.

Another reason for this performance drop of EMLS-ONC is the weak heterogeneity of the
infrastructure that we used for the real experiments. It is composed of just two different
types of machines. In contrast, this problem is less noticeable in the artificial experiments
where the heterogeneity is significant. This is due to the high advantage that EMLS-ONC
takes from this heterogeneity during the first scheduling cycles. Therefore, the previously
cited phenomenon caused by the high loaded instances (e.g. 100 VMs per scheduling
cycle) is compensated by the energetic gains from the beginning.

Figure 27: The difference between the assignment policies of EMLS-ONC and a consolidation based algorithm (Open-
Nebula scheduler) on a low heterogeneity architecture.

Table 10: Comparison between the results obtained by the EMLS-ONC and the OpenNebula scheduler for 5 VMs arrival
per scheduling cycle on 50 machines of GRID5000

Type EMLS-ONC OpenNebula EMLS-ONC vs OpenNebula
of instance # of Energy Time # of Energy Time Energy

Assigned VMs Consumption Processing Assigned VMs Consumption Processing Consumption RPC
# Hosts # VMs per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle

5 5 618750 0.247646 5 644340 0.115171 -3.97%
5 5 506250 0.206066 5 566238 0.112818 -10.59%
5 5 618750 0.222904 5 673628 0.142955 -8.15%
5 5 450000 0.235296 5 478374 0.10662 -5.93%

50 5 5 562500 0.231712 5 615052 0.154184 -8.54%
5 5 902326 0.208596 5 990916 0.17752 -8.94%
5 5 675000 0.218978 5 766374 0.158824 -11.92%
5 5 677326 0.242968 5 746848 0.119851 -9.31%
5 5 675000 0.249436 5 722899 0.125968 -6.63%
5 5 630382 0.190761 5 646875 0.150096 -2.55%

Sum/Average 50 50 631628.4 0.2254363 50 685154.4 0.1364007 -7.81%
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Table 11: Comparison between the cumulative results obtained by the EMLS-ONC and the OpenNebula scheduler for 5
VMs arrival on 50 machines of GRID5000

Type Cumulative Energy Cumulative # Normalized Energy EMLS-ONC vs OpenNebula
of instance Consumption VMs Assigned Consumption Normalized Energy

# Hosts # VMs EMLS-ONC OpenNebula EMLS-ONC OpenNebula EMLS-ONC OpenNebula Consumption RPC
5 618750 644340 5 5 123750 128868 -3.97%
5 1125000 1210578 10 10 112500 121057.8 -7.07%
5 1743750 1884206 15 15 116250 125613.733 -7.45%
5 2193750 2362580 20 20 109687.5 118129 -7.15%

50 5 2756250 2977632 25 25 110250 119105.28 -7.43%
5 3658576 3968548 30 30 121952.533 132284.933 -7.81%
5 4333576 4734922 35 35 123816.457 135283.486 -8.48%
5 5010902 5481770 40 40 125272.55 137044.25 -8.59%
5 5685902 6204669 45 45 126353.378 137881.533 -8.36%
5 6316284 6851544 50 50 126325.68 137030.88 -7.81%

Table 12: Comparison between the results obtained by the EMLS-ONC and the OpenNebula scheduler for 100 VMs
arrival per scheduling cycle on 50 machines of GRID5000

Type EMLS-ONC OpenNebula EMLS-ONC vs OpenNebula
of instance # of Energy Time # of Energy Time Energy

Assigned VMs Consumption Processing Assigned VMs Consumption Processing Consumption RPC
# Hosts # VMs per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle

100 100 1.32E+07 24.2551 100 1.35E+07 7.669 -2.57%
100 96 1.21E+07 15.5146 96 1.17E+07 4.77494 3.93%
100 1 135938 0.0149516 0 0 2.20E-05 /
100 0 0 0.00013059 0 0 6.42E-05 /

50 100 0 0 0.00012998 0 0 8.33E-05 /
100 5 437630 0.203641 0 0 8.35E-05 /
100 0 0 0.0003989 0 0 0.00015213 /
100 0 0 0.0004072 0 0 0.00015589 /
100 0 0 0.249436 0 0 0.00022373 /
100 0 0 0.190761 0 0 0.00021441 /

Sum/Average 1000 202 25871468 4.04295563 196 25185100 1.24449391 2.73%

6. Conclusion

In this paper, we presented two new schedulers for the cloud manager OpenNebula using a
multi-start local search algorithm. A single objective oneto minimize the energy consumption
called EMLS-ONC and a Pareto multi-objective one named EMLS-ONC-MO that deals with
both the energy consumption of the hosts and the VMs performance. Both algorithms aim at
assigning the maximum number of VMs. The energy saving of ourapproach exploits the het-
erogeneity of the hosts that compose the cloud. The performance of the VMs is related to the
memory sharing issues in the virtualization process by avoiding the cache misses.

Our new approaches have been evaluated in both artificial andreal clouds. EMLS-ONC as an
embedded part of the OpenNebula cloud manager has been experimented on the GRID5000 in-
frastructure. The experiments stretch over 20 instances with 5 types of VMs load per scheduling
cycle and 4 types of cloud configurations, in addition to 3 real clouds deployed over GRID5000.
Each instance takes 10 to 20 scheduling cycles in row. All theEMLS-ONC and EMLS-ONC-MO
experimentations are performed 30 times for each instance.The results show that EMLS-ONC
improves by up to26% on average the results obtained by the OpenNebula’s defaultscheduler
and by up to25% the energy-aware FFD based approach. Moreover, EMLS-ONC-MO provides
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Table 13: Comparison between the cumulative results obtained by the EMLS-ONC and the OpenNebula scheduler for
100 VMs arrival on 50 machines of GRID5000

Type Cumulative Energy Cumulative # Normalized Energy EMLS-ONC vs OpenNebula
of instance Consumption VMs Assigned Consumption Normalized Energy

# Hosts # VMs EMLS-ONC OpenNebula EMLS-ONC OpenNebula EMLS-ONC OpenNebula Consumption RPC
100 13162500 13509100 100 100 131625 135091 -2.57%
100 25297900 25185100 196 196 129070.918 128495.408 0.45%
100 25433838 25185100 197 196 129105.777 128495.408 0.48%
100 25433838 25185100 197 196 129105.777 128495.408 0.48%

50 100 25433838 25185100 197 196 129105.777 128495.408 0.48%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%
100 25871468 25185100 202 196 128076.574 128495.408 -0.33%

Table 14: Comparison between the results obtained by the EMLS-ONC and the OpenNebula scheduler for 100 VMs
arrival per scheduling cycle on 200 machines of GRID5000

Type EMLS-ONC OpenNebula EMLS-ONC vs OpenNebula
of instance # of Energy Time # of Energy Time Energy

Assigned VMs Consumption Processing Assigned VMs Consumption Processing Consumption RPC
# Hosts # VMs per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle per Cycle

100 100 1.32E+07 51.97 100 1.37E+07 7.65 -3.65%
100 100 1.22E+07 53.68 100 1.25E+07 5.35 -2.40%
100 100 1.54E+07 47.97 100 1.53E+07 5.58 0.53%
100 100 1.47E+07 28.03 100 1.45E+07 4.71 1.38%

200 100 100 1.38E+07 17.65 100 1.35E+07 5.30 2.40%
100 100 1.48E+07 28.30 100 1.42E+07 5.77 3.88%
100 100 1.32E+07 20.57 100 1.21E+07 5.72 9.00%
100 37 5.93E+06 5.15 36 4.96E+06 1.91 19.56%
100 0 0 0.24 0 0 0.00022 /
100 0 0 0.19 0 0 0.00021 /

Sum/Average 1000 737 103253980 25.3803807 736 100836570 4.20241951 2.40%

on average Pareto results that are24% and9% better than the default OpenNebula scheduler
for respectively both the energy and the VMs performance criteria. The EMLS-ONC-MO has
also been compared to two other approaches, an energy-awareone and a VMs performance one.
In both cases EMLS-ONC-MO showed in average better Pareto results.

In addition, our approaches provide those results by scheduling on average the same number
of VMs than the OpenNebula’s previous scheduler.

Besides, the major perspectives of this work are to minimizewith more impact the energy
consumption by using a better energy model, including otherenergy consumption resources like
memory and hard drives. Introducing a real time hosts’ features updating in our approach could
be also interesting to have a more precise energy estimate. Moreover, we plan to investigate the
dynamic EMLS-ONC/EMLS-ONC-MO scheduler which will use thelive migration process of
OpenNebula to reassign the VMs during their running phase ondifferent hosts to optimize more
the criteria according to the new VMs arrivals. However, this will depend on the flexibility, the
data transfer cost and the CPU time complexity of the VMs.
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