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On subgroup perfect codes in Cayley sum graphs
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Abstract

A perfect code C in a graph Γ is an independent set of vertices of Γ such that
every vertex outside of C is adjacent to a unique vertex in C, and a total perfect code
C in Γ is a set of vertices of Γ such that every vertex of Γ is adjacent to a unique
vertex in C. Let G be a finite group and X a normal subset of G. The Cayley sum
graph CS(G,X) of G with the connection set X is the graph with vertex set G and
two vertices g and h being adjacent if and only if gh ∈ X and g 6= h. In this paper,
we give some necessary conditions of a subgroup of a given group being a (total)
perfect code in a Cayley sum graph of the group. As applications, the Cayley sum
graphs of some families of groups which admit a subgroup as a (total) perfect code
are classified.
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1 Introduction

Throughout the paper, all groups are finite with identity element denoted by 1, and all

graphs are finite, undirected and simple. Cayley sum graph, which is also called addition

graph [4], addition Cayley graph [9, 14, 19] and sum graph [5], is a variation of the well-

studied Cayley graph. The concept of Cayley sum graphs was at first only for abelian

groups and then generalized over arbitrary groups in [1]. Let G be a group and X a normal

subset of G (that is, g−1Xg = X for all g ∈ G). The Cayley sum graph CS(G,X) of G with

connection set X is the graph with vertex set G and two vertices g and h being adjacent if

and only if gh ∈ X and g 6= h. Note that this definition differs from that in [1] where loops

in graphs are allowed and so x 6= y is not required. An element a of G is called a square if

a = g2 for some g ∈ G and a nonsquare if otherwise. A subset of G is said to be square-free

if it contains no square of G. It is obvious that the neighbourhood of a vertex g is Xg−1 if

g2 /∈ X and (X \ {g2})g−1 if g2 ∈ X . Therefore CS(G,X) is a regular graph if and only if

X is square-free in G.

E-mail address: jyzhang@cqnu.edu.cn (Jun-Yang Zhang)
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Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). Let C be a subset of V (Γ).

If C is an independent set of Γ and every vertex in V (Γ) \ C has exactly one neighbor in

C, then C is called a perfect code in Γ. If every vertex of Γ has exactly one neighbor in

C, then C is called a total perfect code in Γ. It is obvious that a total perfect code in Γ

induces a matching in Γ and therefore has even cardinality. In graph theory, a perfect code

in a graph is also called an efficient dominating set [6] or independent perfect dominating

set [13], and a total perfect code is called an efficient open dominating set [10].

The concept of perfect codes in graphs were firstly introduced by Biggs [2] as a general-

ization of the classical notions of perfect Hamming- and Lee-error-correcting codes. Perfect

codes in Cayley graphs have received considerable attention see [11, Section 1] for a brief

survey and [3, 7, 8, 18, 20, 21, 22, 23] for a few recent papers. In particular, perfect codes

in Cayley graphs which are subgroups of the underlying groups are especially interesting

since they are generalizations of perfect linear codes [15] in the classical setting.

Let CS(G,X) be a Cayley sum graph of G with the connection set X . We use P(G,X)

(T (G,X)) to denote the collection of all subsets of G which are perfect codes (total perfect

codes) in CS(G,X). A subgroup H of G is called a subgroup perfect code (subgroup total

perfect code) in CS(G,X) if H ∈ P(G,X) (H ∈ T (G,X)). Note that {1} is a perfect

code of CS(G,G \ {1}). A subgroup perfect code H of CS(G,X) is said to be nontrivial if

H 6= {1}. Very recently, subgroup perfect codes in regular Cayley sum graphs of abelian

groups were studied in [16, 17]. In this paper, we study subgroup (total) perfect codes in

Cayley sum graphs of groups where the graphs are not necessary regular and groups are

not necessary abelian. The results in this paper include a necessary and sufficient condition

and a few necessary conditions of a subgroup of a given group being a (total) perfect code

in a Cayley sum graph of the group. These results are used to study (total) perfect codes in

a Cayley sum graphs of abelian groups, dihedral groups and one-dimensional affine groups.

Now we describe the results of this paper in detail as follows. In the next section, we

prove a proposition which characterizes the relationship between normal subgroup perfect

codes and normal subgroup total perfect codes in Cayley sum graphs. In Section 3, we

focus on the study of subgroup perfect codes in Cayley sum graphs. After showing an

easy necessary and sufficient condition, we mainly prove a few necessary conditions of a

subgroup H of a given group G being a perfect code in a Cayley sum graph of G. Using

those necessary conditions, we prove that if the core of H in G is not contained in the

center of G, then there is no connected Cayley sum graph of G admitting H as a perfect

code. In Section 4, we develop the theory for perfect codes obtained in Section 3 in parallel

to that for total perfect codes. In Section 5, we study (total) perfect codes in Cayley sum

graphs of some spacial families of groups, including classifications of (total) perfect codes in

connected Cayley sum graphs of abelian groups, dihedral groups and one-dimensional affine

groups respectively. In particular, we give a simple proof of a main result in [17] which

characterizes subgroup perfect codes in regular Cayley sum graphs of abelian groups.
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2 Preliminaries

In [1], a necessary and sufficient condition of a Cayley sum graph being connected was

given. Note that this result also holds for Cayley sum graphs in the present paper as these

graphs are exactly obtained from the Cayley sum graphs in [1] by removing all loops. This

result is stated as follows.

Lemma 2.1 ([1]). Let X be a normal subset of a group G. Then the Cayley sum graph

CS(G,X) is connected if and only if G = 〈X〉 and |G : 〈X−1X〉| ≤ 2.

Recall that the center Z(G) of a group G is a subgroup of G consisting of all elements

x ∈ G such that xg = gx for all g ∈ G. The following lemma characterizes the relationship

between normal subgroup perfect codes and normal subgroup total perfect codes in Cayley

sum graphs.

Proposition 2.2. Let G be a group and H a normal subgroup of G. Then H is a total

perfect code of some Cayley sum graph of G if and only if H is perfect code of some Cayley

sum graph of G and Z(G) contains a nonsquare of H.

Proof . Let H ∈ T (G, Y ) for some normal subset Y of G. Then every g ∈ G is adjacent to

a unique vertex h ∈ H in CS(G, Y ). Let z be the unique element in H adjacent to 1. Then

H ∩ Y = {z} and z is a nonsquare of H . Since both H and Y are normal in G, we have

zG ⊆ H ∩ Y and therefore zg = z for all g ∈ G. Thus z ∈ Z(G). Set X = Y \ {z}. Since

Y is normal in G and z ∈ Z(G), we have that X is normal in G. Note that H ∩ X = ∅.

Therefore H is an independent set of CS(G,X). Let a be an arbitrary element in G\H and

h the unique vertex in H adjacent to a in CS(G, Y ). Then h is the unique element in H

satisfying ab ∈ X . In other words, h is the unique vertex in H adjacent to a in CS(G,X).

It follows that H ∈ P(G,X).

Let H ∈ P(G,X) for some normal subset X of G, z ∈ Z(G) ∩H and z be a nonsquare

of H . Set Y = X ∪ {z}. Then Y is normal in G and it straightforward to check that

H ∈ T (G,X).

3 Perfect codes

In this section, we at first confirm a few simple facts on perfect codes in Cayley sum

graphs and then prove two theorems which characterize those codes more deeply.

The first lemma gives a necessary and sufficient condition of a subgroup of a given group

being a perfect code in a Cayley sum graph of the group.

Lemma 3.1. Let G be a group and H a subgroup of G. Then H is a perfect code of some

Cayley sum graph of G if and only if G has a normal subset X such that X ∪ {1} is a left

transversal of H in G.

Proof . ⇒) Let H ∈ P(G,X) for some normal subset X of G. Then H is an independent

set of CS(G,X), and every g ∈ G \H is adjacent to a unique vertex h ∈ H . It follows that

3



H ∩X = ∅ and every g ∈ G \H can be uniquely written as g = xh−1 for some x ∈ X and

h ∈ H . Therefore X ∪ {1} is a left transversal of H in G.

⇐) Let X be a normal subset of G such that X ∪ {1} is a left transversal of H in G.

Then H ∩X = ∅ and every g ∈ G \H can be uniquely written as g = xh−1 for some x ∈ X

and h ∈ H . Therefore H is an independent set of the Cayley sum graph CS(G,X) and

every g ∈ G \H is adjacent to a unique vertex h ∈ H . Thus H ∈ P(G,X).

Let σ be an automorphism of G. We use xσ to denote the image of x under σ for all

x ∈ G and set Xσ := {xσ | x ∈ X} for all subset X of G. For each g ∈ G, we write

xg := g−1xg and Xg := {xg | x ∈ X}. Since

(Xσ)g = g−1Xσg =
(

(gσ
−1

)−1
)σ
Xσ(gσ

−1

)σ =
(

(gσ
−1

)−1Xgσ
−1
)σ

= (Xgσ
−1

)σ,

we conclude that X is normal in G if and only if Xσ is normal in G. Obviously, if X ∪ {1}

is a left transversal of H in G, then Xσ ∪ {1} is a left transversal of Hσ in G. Therefore

Lemma 3.1 leads to the following result.

Lemma 3.2. Let G be a group, H a subgroup of G, X a normal subset of G and σ an

automorphism of G. Then H ∈ P(G,X) if and only if Hσ ∈ P(G,Xσ). In particular,

H ∈ P(G,X) if and only if Hg ∈ P(G,X) for a given g ∈ G.

Unlike perfect codes in Cayley graph, the subgroup H of G being a perfect code of

a Cayley sum graph CS(G,X) can not guarantee that a coset Hg is a perfect code of

CS(G,X). Actually, Hg is not necessary an independent set of CS(G,X) when H is.

However, we have the follow lemma.

Lemma 3.3. Let G be a group, H a subgroup of G, X a normal subset of G and b an

involution of G such that Hb = H. Then H ∈ P(G,X) if and only if Hb ∈ P(G,X).

Proof . ⇒) Let H ∈ P(G,X). By Lemma 3.1, X ∪ {1} is a left transversal of H in G.

Since b is an involution and Hb = H , we get (Hb)(Hb) = HHb = H . Therefore Hb is an

independent set of CS(G,X) as (Hb)(Hb) ∩ X = H ∩ X = ∅. Now let g be an arbitrary

element in G \ Hb. Then gb /∈ H . Since X ∪ {1} is a left transversal of H in G, we get

|gbH ∩X| = 1. Therefore there exists a unique h ∈ H such that gbh ∈ X , that is, bh is the

unique vertex in Hb (= bH) adjacent to g in CS(G,X). It follows that Hb ∈ P(G,X).

⇐) Let Hb ∈ P(G,X). Then Hb is an independent set of CS(G,X) and every vertex in

G \Hb is adjacent to a unique vertex in H . Since b is an involution and Hb = H , we have

H ∩X = (Hb)(Hb) ∩X = ∅. Therefore H is an independent set of CS(G,X). Let g be an

arbitrary element in G \ H . Then gb /∈ Hb. Let hb be the unique vertex in Hb adjacent

to gb. Then hb is the unique vertex in Hb satisfying gbhb ∈ X . Set h1 = hb. Then h1 is a

unique vertex in H satisfying gh1 ∈ X . Therefore H ∈ P(G,X).

We use ∪̇
n

i=1Si to denote the union of the pair-wise disjoint sets S1, S2, . . . , Sn. Let G

be a group and H a subgroup of G. We use |G : H| to denote the index of H in G. The

core of H in G is the largest normal subgroup of G contained in H . For each g ∈ G, we

use CG(g) to denote the centralizer of g in G. The following theorem gives a few necessary

conditions of H being a perfect code in a Cayley sum graph of G.
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Theorem 3.4. Let G be a group, X a normal subset of G, and H a subgroup perfect code

of the Cayley sum graph CS(G,X). Then the following statements hold.

(i) The core of H in G is contained in CG(x) for each x ∈ X.

(ii) If X = ∪̇
s

i=1x
G
i and H is normal in G, then 1

|G:H|
+
∑s

i=1
1

|CG(xi):H|
= 1.

(iii) If |X| > 1 and H is normal in G, then X is a union of at least two conjugacy classes

of elements in G.

Proof . (i) By Lemma 3.1, X ∪ {1} is a left transversal of H in G. Let N be the core of

H in G. Suppose to the contrary that N is not contained in CG(x) for some x ∈ X . Then

a−1xa 6= x for some a ∈ N . Since X is normal in G, we have a−1xa ∈ X . However, since

N is the core of H in G, we have a−1xaH = x(x−1a−1x)H = xH . This contradicts the fact

that X ∪ {1} is a left transversal of H in G.

(ii) Since X ∪ {1} is a left transversal of H in G, we have 1 + |X| = |G : H|. Since

X = ∪̇
s

i=1x
G
i , we get 1 +

∑s

i=1 |x
G
i | = |G : H|. Noting that |xG

i | = |G : CG(xi)| for every

i ∈ {1, . . . , s}, we obtain, 1 +
∑s

i=1 |G : CG(xi)| = |G : H|. By the conclusion of (i), we

have that H is contained in CG(xi) for every i ∈ {1, . . . , s} as H is normal in G. Therefore

|G : CG(xi)| =
|G:H|

|CG(xi):H|
and it follows that 1

|G:H|
+
∑s

i=1
1

|CG(xi):H|
= 1.

(iii) If otherwise that X = xG for some x ∈ G, then (ii) implies 1
|G:H|

+ 1
|CG(x):H|

= 1.

Since H is normal in G, by (i) we have that H is contained in CG(x). Therefore |G : H| =

|G : CG(x)||CG(x) : H|. It follows that (1 + |G : CG(x)|) = |G : H|. Since |G : CG(x)|

divides |G : H|, we conclude that |G : CG(x)| = 1, contradicting to |X > 1|.

The following theorem provides a basis for denying some subgroups to be perfect codes

in connected Cayley sum graphs.

Theorem 3.5. Let G be a group and H a subgroup of G. If the core of H in G is not

contained in the center of G, then there is no connected Cayley sum graph of G admitting

H as a perfect code. In particular, if H is normal in G and not contained in the center of

G, then H is not a perfect code of any connected Cayley sum graph of G.

Proof . LetX be an arbitrary normal subset ofG such that the Cayley sum graph CS(G,X)

is connected. By Lemma 2.1 we have G = 〈X〉. Since the core N of H in G is not contained

in the center of G, we conclude that N is not contained in CG(x) for some x ∈ X . By

Theorem 3.4 (i), we have that H /∈ P(G,X).

For the spacial case that H is normal in G, the core of H in G is H itself. Therefore

H is not a perfect code of any connected Cayley sum graph of G provided that H is not

contained in the center of G.

4 Total perfect codes

In this section, we give some results on total perfect codes which are analogous to the

results about perfect codes in Section 3.
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Parallel to Lemma 3.1, we obtain a necessary and sufficient condition of a subgroup of

a given group being a total perfect code in a Cayley sum graph of the group as follows.

Lemma 4.1. Let G be a group and H a subgroup of G. Then H is a total perfect code of

some Cayley sum graph of G if and only if G contains a normal subset Y such that Y is a

left transversal of H in G and the unique common element of H and Y is a nonsquare of

H.

Proof . ⇒) Let H ∈ T (G, Y ) for some normal subset Y of G. Then every g ∈ G is adjacent

to a unique vertex h ∈ H , that is, every g ∈ G can be uniquely written as g = yh−1 for

some y ∈ Y and h ∈ H . Therefore Y is a left transversal of H in G. In particular,

|H ∩ Y | = 1. Set H ∩ Y = {z}. Since H induces a matching of T (G, Y ), we conclude that

z is a nonsquare of H .

⇐) Let Y be a normal subset of G such that Y is a left transversal of H in G and

the unique common element of H and Y is a nonsquare of H . Then every g ∈ G \ H

can be uniquely written as g = yh−1 for some y ∈ Y and h ∈ H . Therefore H induces a

matching of CS(G, Y ) and every g ∈ G \ H is adjacent to a unique vertex h ∈ H . Thus

H ∈ T (G, Y ).

The following obvious result is the counterpart of Lemma 3.2.

Lemma 4.2. Let G be a group, H a subgroup of G, Y a normal subset of G and σ an

automorphism of G. Then H ∈ T (G, Y ) if and only if Hσ ∈ T (G, Y σ). In particular,

H ∈ T (G, Y ) if and only if Hg ∈ P(G, Y ) for a given g ∈ G.

The following Lemma is akin to Lemma 3.3. Its proof is omitted as it is similar to the

proof of Lemma 3.3.

Lemma 4.3. Let G be a group, H a subgroup of G, Y a normal subset of G and b an

involution of G such that Hb = H. Then the H ∈ T (G,X) if and only if Hb ∈ T (G,X).

The following two theorems are the counterparts of Theorem 3.4 and 3.5. Note that

Theorem 4.5 can be seen as a corollary of Theorem 4.4. Its proof is similar to that of

Theorem 3.5 and therefore omitted.

Theorem 4.4. Let G be a group, Y a normal subset of G, and H a subgroup total perfect

code of the Cayley sum graph CS(G, Y ). Then the following statements hold.

(i) H is contained in CG(z) where z is the unique common element of H and X.

(ii) The core of H in G is contained in CG(y) for each y ∈ Y .

(iii) If Y = ∪̇
s

i=1y
G
i and H is normal in G, then

∑s

i=1
1

|CG(yi):H|
= 1.

(iv) If |Y | > 1 and H is normal in G, then Y is a union of at least two conjugacy classes

of elements in G.

6



Proof . (i) Let z be the unique common element of H and Y . Since Y is normal in G, we

have yh ∈ Y for every h ∈ H . Therefore yh ∈ H ∩ Y as z, h ∈ H . By the uniqueness of z,

we have zh = z and it follows that H is contained in CG(z).

The proofs of (ii), (iii) and (iv) are omitted as they are similar to the proof of Theorem

3.4.

Theorem 4.5. Let G be a group and H a subgroup of G. If the core of H in G is not

contained in the center of G, then there is no connected Cayley sum graph of G admitting

H as a total perfect code.

5 For some spacial families of groups

5.1 Abelian groups

The following result is obvious.

Theorem 5.1. Every subgroup H of an abelian group G is a perfect code of some Cayley

sum graph CS(G,X) of G.

Proof . Since G is abelian, every subset of G is normal in G. Let T be a left transversal of

H in G. Set X = T \H . Then X is a normal subset of G and X ∪ {1} is a left transversal

of H in G. By Lemma 3.1, H is a perfect code of the Cayley sum graph CS(G,X).

Recall that the Frattini subgroup Φ(G) of G consists of elements x of G such that

G = 〈S, x〉 leads to G = 〈S〉 for any subset S of G. The Hall 2′-subgroup of G is an odd

order subgroup of index a power of 2. The following obvious result can be checked directly.

Lemma 5.2. Let G be an abelian group. Let Q and H be the Sylow 2-subgroup and the Hall

2′-subgroup of G respectively. Then an element g of G is a square if and only if g ∈ Φ(Q)K.

The following result can be found in [17]. Here we give it a short proof.

Theorem 5.3 ([17]). Let G be an abelian group and H a subgroup of G. Then H is a

perfect code of some regular Cayley sum graph of G if and only if H contains a non-square

of G or H = Φ(Q)K where Q and K are respectively the Sylow 2-subgroup and the Hall

2′-subgroup of G.

Proof . ⇒) Let CS(G,X) be a regular Cayley sum graph of G and H a perfect code of

CS(G,X). Assume that every element of H is a square of G. It suffices to show that

H = Φ(Q)K. By Lemma 5.2, H is contained in Φ(Q)K. Let g be an arbitrary element

of Φ(Q)K. Since H a perfect code of CS(G,X), it follows from Lemma 3.1 that X ∪ {1}

is a left transversal of H in G. Therefore g can be uniquely written as g = yh for some

y ∈ X ∪ {1} and h ∈ H . Since h, g ∈ Φ(Q)K, we get y ∈ Φ(Q)K. Therefore y is a square.

On the other hand, X is square-free as CS(G,X) is regular. It follows that y = 1 and

g ∈ H . Therefore H = Φ(Q)K.

⇐) Let X ∪ {1} be a left transversal of H in G. Then X ∩H = ∅. Since G is abelian,

X is normal in G. If H = Φ(Q)K, then Lemma 5.2 implies that X is square-free in G.

7



It follows that CS(G,X) is a regular Cayley sum graph of G and H a perfect code of

CS(G,X). In what follows we assume that H contains a non-square, say a. Let Z be a

subset of X consists of elements being squares of G. If Z = ∅, then we set Y = X . If

Z 6= ∅, then we set Y = aZ ∪ (X \ Z). It is obvious that Y ∪ {1} is a left transversal of

H in G and Y is a square-free normal subset of G. Therefore CS(G, Y ) is a regular Cayley

sum graph of G and H a perfect code of CS(G, Y ).

The following result can be directly deduced from Proposition 2.2 and Theorem 5.1.

Theorem 5.4. Every even order subgroup H of an abelian group G is a total perfect code

of some Cayley sum graph of G.

By Proposition 2.2 and Theorem 5.3, we have the following result.

Theorem 5.5. Let G be an abelian group and H an even order subgroup of G. Then H

is a total perfect code of some regular Cayley sum graph of G if and only if H contains a

non-square of G or H = Φ(Q)K where Q and K are respectively the Sylow 2-subgroup and

the Hall 2′-subgroup of G.

5.2 Dihedral groups

Throughout this subsection. We use D2n to denote the dihedral group order 2n which

has a cyclic subgroup 〈a〉 of order n and an involution b /∈ 〈a〉 such that ab = a−1.

Exapmle 5.6. The subset X := {b, ab, a2b, . . . , an−1b} is normal in D2n and the Cayley sum

graph Γ := CS(D2n, X) is isomorphic to the complete bipartite graph Kn,n. It is obvious

that 〈b〉 is a total perfect code of Γ.

Exapmle 5.7. Let n = 2ℓ where ℓ is a positive integer. Then bD2n = {b, a2b, . . . , a2ℓ−2b}

and (ab)D2n = {ab, a3b, . . . , a2ℓ−1b}. Set Z = {a2, a4, . . . , a2ℓ−2} and Z ′ = {a, a3, . . . , a2ℓ−1}.

Then both Z and Z ′ are normal in D2n. It is straightforward to check that 〈ab〉 is a perfect

code of the Cayley sum graph Γ0 := CS(D2n, b
D2n ∪ Z) and 〈b〉 is a perfect code of the

Cayley sum graph Γ1 := CS(D2n, (ab)
D2n ∪ Z). Moreover, 〈b〉 is a total perfect code of the

Cayley sum graph Γ′
0 := CS(D2n, b

D2n ∪ Z ′) and 〈ab〉 is a total perfect code of the Cayley

sum graph Γ′
1 := CS(D2n, (ab)

D2n ∪ Z ′).

Exapmle 5.8. Let n = 4k+ 2 where k is a positive integer. Then bD2n = {b, a2b, . . . , a4kb}

and (ab)D2n = {ab, a3b, . . . , a4k+1b}. Choose an inverse-closed left transversal Z of 〈a2k+1〉

in 〈a〉 (for example, let Z = {a, a2, . . . , ak, a−1, a−2, . . . , a−k, 1}). Let

X = bD2n ∪ (Z \ 〈a2k+1〉) or (ab)D2n ∪ (Z \ 〈a2k+1〉).

Then X is a normal subset of D2n. It is straightforward to check that 〈a2k+1〉 is a perfect

code of the Cayley sum graph Γ := CS(D2n, X) and a total perfect code of the Cayley sum

graph Γ′ := CS(D2n, X ∪ {a2k+1}).

Theorem 5.9. Every connected Cayley sum graph of D2n has no nontrvial subgroup perfect

code except the graphs Γ0, Γ1 in Example 5.7 and Γ in Example 5.8.
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Proof . Let Σ := CS(D2n, X) be a connected Cayley sum graph of D2n. Then X is a normal

subset of G. By Lemma 2.1, we have D2n = 〈X〉. Therefore X ∩ 〈a〉b 6= ∅. Suppose that

Σ has a nontrvial subgroup perfect code, say H . It suffices to prove that Σ coincides with

one of the graphs Γ0, Γ1 in Example 5.7 and Γ in Example 5.8. By Lemma 3.1, X ∪ {1}

is a left transversal of H in D2n and therefore |H|(|X| + 1) = 2n. Since |H| > 1, we

have |X| < n. It follows that 〈a〉b is not contained in X . Therefore n is even and exactly

one of the two conjugacy classes bD2n and (ab)D2n is contained in X . Set Y = X ∩ 〈a〉b.

Then Y = bD2n or (ab)D2n . In particular, |Y | = n
2
. It follows that n

2
< |X| + 1 ≤ n. Since

|H|(|X|+1) = 2n, we have |H| = 2 or 3. By Theorem 3.4, the core of H in D2n is contained

in the center of D2n. Note that every odd order subgroup of D2n is normal in D2n but not

contained in the center of D2n. Therefore |H| 6= 3. It follows that |H| = 2 and |X| = n− 1.

Write n = 2ℓ. Then |Y | = ℓ and |X \ Y | = ℓ− 1. The remainder proof is divided into two

cases.

Case 1. H ∩ 〈a〉b 6= ∅.

In this case, H = 〈aib〉 for some i ∈ {0, 1, . . . , n− 1}. Set Z = {a2, a4, . . . , a2ℓ−2}. If i is

odd, then Z is the unique subset of D2n such that bD2n ∪ Z ∪ {1} is normal in D2n and a

left transversal of H in D2n. Therefore Σ is the graph Γ0 in Example 5.7. Similarly, if i is

even, then Σ is the graph Γ1 in Example 5.7.

Case 2. H ∩ 〈a〉b = ∅.

In this case, H = 〈aℓ〉. Set Z = X \ Y . Since X ∪ {1} is a left transversal of 〈aℓ〉 in

D2n, we conclude that Z ∪ {1} is a left transversal of 〈aℓ〉 in 〈a〉 and Y 〈aℓ〉 = 〈a〉b. Note

that Y = Y ai provided i is even. Therefore Y 〈aℓ〉 6= 〈a〉b if ℓ is even. It follows that ℓ is

odd. Thus Σ is the graph Γ in Example 5.8.

Theorem 5.10. Every connected Cayley sum graph of D2n has no subgroup total perfect

code except the graphs Γ in Example 5.6, Γ′
0, Γ

′
1 in Example 5.7 and Γ′ in Example 5.8.

Proof . Let Σ := CS(D2n, X) be a connected Cayley sum graph admitting a subgroup

total perfect code H . Then H is of even order, and X is a normal subset of D2n and a

left transversal of H in D2n. It suffices to prove that Σ coincides with one of the graphs

Γ in Example 5.6, Γ′
0, Γ

′
1 in Example 5.7 and Γ′ in Example 5.8. If 〈a〉b ⊆ X , then we

have |H| = 2 and X = 〈a〉b as 2n = |H||X|. It follows that Σ is the graph Γ in Example

5.6. If the unique common element of X and H is contained in 〈a〉, then H is subgroup

perfect code of the Cayley sum graph CS(D2n, X \ 〈a〉). By Theorem 5.9, we have that

CS(D2n, X \ 〈a〉) is the graph Γ in Example 5.8. Therefore Σ is the graph Γ′ in Example

5.8. Now we assume that 〈a〉b is not a subset ofX and the unique common element ofX and

H is not contained in 〈a〉. Then X ∩H = 〈aib〉 for some i ∈ {1, . . . , n} and (aib)D2n 6= 〈a〉b.

It follows that n is even, X ∩ 〈a〉b = (aib)D2n , |(aib)D2n | = n
2
and 〈(aib)D2n〉 6= D2n. Since Σ

is connected, we have D2n = 〈X〉. Therefore X \ (aib)D2n 6= ∅ and so |X| > n
2
. Since |H| is

even and 2n = |H||X|, we have|H| = 2 and |X| = n. In particular, H = 〈aib〉. Therefore

(aib)D2nH = {1, a2, . . . , a2ℓ−2}∪ (aib)D2n and it follows that X \ (aib)D2n = {a, a3, . . . , a2ℓ−1}.

Thus Σ is the graph Γ′
0 or Γ′

1 in Example 5.7.
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5.3 One-dimensional affine groups

Let Fq be the finite field of order q, AGL1(q) the one-dimensional affine group over

Fq where q is a prime power. It is well known that AGL1(q) is a Frobenius group with

an elementary abelian Frobenius kernel of order q and cyclic Frobenius complements of

order q − 1. Throughout this subsection, let G = AGL1(q), and use K and C to denote

the Frobenius kernel and a Frobenius complement of G respectively. By the Frobenius

partitions (see [12, Page 79]) of Frobenius groups, we have the following lemma.

Lemma 5.11. G = K ∪ (∪x∈KC
x).

We aim to classify Cayley sum graphs of one-dimensional affine groups admitting a

subgroup (total) perfect code. Before doing that, we need prove the following lemma.

Lemma 5.12. Let Y be a conjugacy class of G not containing 1. Then either Y = K \ {1}

or |Y | = q and |Y ∩ Cg| = 1 for all g ∈ G.

Proof . Take y ∈ Y . Then Y = yG. It suffices to show that Y = K \ {1} if y ∈ K \ {1},

and |Y | = q and |Y ∩ Cg| = 1 for all g ∈ G if y /∈ K.

Firstly, we assume y ∈ K \ {1}. Since K is normal in G, we conclude that Y ⊆ K \ {1}.

Since G is a Frobenius group with the Frobenius kernel K and a Frobenius complement C,

we have Cy ∩C = 1. In particular cy 6= yc for all c ∈ C \ {1}. Therefore yc1 6= yc2 for each

pair of distinct elements c1, c2 ∈ C. This leads to |Y | ≥ |C| = q − 1. Since Y ⊆ K \ {1}

and |K \ {1}| = q − 1, it follows that Y = K \ {1}.

Now we assume that y /∈ K. By Lemma 5.11, y is an nonidentity element contained

in a Frobenius complement of G. Without loss of generality, we assume that y ∈ C \ {1}.

Then yx1 6= yx1 for each pair of distinct elements x1, x2 ∈ K as Cx1x
−1

∩C = {1}. Therefore

|yK| = |K| = q. Since G = CK and C is abelian, we have Y = yCK = yK and it follows

that |Y | = q. For every g ∈ G, we have yg ∈ Cg. If there exists h ∈ G satisfying yh ∈ Cg,

then y ∈ Cgh−1

∩ C and it follows that gh−1 ∈ C. Therefore ygh
−1

= y. This implies that

yg = yh. Therefore yg is the unique element of Y ∩ Cg, that is, |Y ∩ Cg| = 1.

The following two theorems give a classification of Cayley sum graphs of one-dimensional

affine groups which admit a subgroup (total) perfect code.

Theorem 5.13. Let C = 〈c〉 and q − 1 = st with t > 1. Let {a0, a1, . . . , as−1} be a left

transversal of 〈cs〉 in C with a0 ∈ 〈cs〉\{1}. Set X := (∪s−1
i=1a

G
i )∪(K\{1}) and Y := ∪s−1

i=0a
G
i .

Then 〈cs〉 is a perfect code of CS(G,X). Moreover, if c0 is a nonsquare of 〈cs〉, then 〈cs〉

is a total perfect code of CS(G, Y ).

Proof . Since {a0, a1, . . . , as−1} is a left transversal of 〈cs〉 in C and a0 ∈ 〈cs〉 \ {1}, we

have that ai 6= 1 for every i ∈ {0, 1, . . . , s − 1}. By Lemma 5.12, we have |aGi | = q and

aGi ∩ C = {ai}. Therefore aGj ∩ aGk = ∅ for each pair of distinct elements aj and ak. It

follows that |Y | = | ∪s−1
i=0 aGi | =

∑s−1
i=0 |a

G
i | = sq. Since q − 1 = st and |〈c〉| = q − 1,

we have |Y ||〈cs〉| = sqt = q(q − 1) = |G|. Take agi , a
h
j ∈ Y such that agi 〈c

s〉 = ahj 〈c
s〉.

Since (agi )
−1ahj = [g, ai][hai, a

−1
j ]aia

−1
j , we have [g, ai][hai, a

−1
j ]aia

−1
j ∈ 〈cs〉. By Lemma
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5.11, we have [g, ai][hai, a
−1
j ] ∈ K. It follows that [g, ai][hai, a

−1
j ] = 1 and aia

−1
j ∈ 〈cs〉.

Since {a0, a1, . . . , as−1} is a left transversal of 〈cs〉 in C, we have ai = aj and therefore

[g, ai][hai, a
−1
i ] = 1. Since [g, ai][hai, a

−1
i ] = g−1a−1

i gaia
−1
i h−1aihaia

−1
i = (agi )

−1ahi , we get

agi = ahi , that is, agi = ahj . Now we have proved that |Y ||〈cs〉| = |G| and agi 〈c
s〉 = ahj 〈c

s〉

implies agi = ahj for agi , a
h
j ∈ Y . Therefore Y is a left transversal of 〈cs〉 in G. By Lemma

4.1, 〈cs〉 is a total perfect code of CS(G, Y ) if a0 is a non-square of 〈cs〉.

It remains to prove that 〈cs〉 is a perfect code of CS(G,X). Since K is normal in G,

we have that K〈cs〉 is a subgroup of G. By Lemma 5.11, we have [g, a−1
0 ] ∈ K for all

g ∈ G. Therefore ag0 = [g, a−1
0 ]a0 ∈ K〈cs〉 as a0 ∈ 〈cs〉. It follows that aG0 〈c

s〉 ⊆ K〈cs〉.

Since |aG0 〈c
s〉| = |aG0 ||〈c

s〉| = qt = |K〈cs〉|, we conclude that aG0 〈c
s〉 = K〈cs〉. Note that

X ∪ {1} = (Y \ aG0 )∪K. Therefore (X ∪ {1})〈cs〉 = Y 〈cs〉 = G. Since |X ∪ {1}| = |Y | and

Y is a left transversal of 〈cs〉 in G, it follows that X ∪ {1} is a left transversal of 〈cs〉 in G.

By Lemma 3.1, 〈cs〉 is a perfect code of CS(G,X).

Theorem 5.14. Every Cayley sum graph of AGL1(q) has no nontrivial subgroup perfect

code except the graphs CS(G,X) in Theorem 5.13 and no subgroup total perfect code except

the graphs CS(G, Y ) in Theorem 5.13.

Proof . Suppose that CS(G,X) is a Cayley sum graph of G admitting a subgroup perfect

code H . Since X is a normal subset of G, it is a disjoint union of conjugacy classes of G.

By Lemma 5.12, either (K \ {1}) ⊆ X or |X| = ℓq for some integer ℓ. By Lemma 3.1,

{1} ∪ X is a left transversal of H in G. In particular, (|X| + 1) is a divisor of q(q − 1).

Since (ℓq + 1) ∤ q(q − 1), we conclude that (K \ {1}) ⊆ X . It follows that H ∩K = 1 and

therefore H is contained in a Frobenius complement of G. Without loss of generality, we

assume H ≤ C. By Lemma 5.12, every conjugacy class contained in X \ K has a unique

element belonging to C. Therefore we can set X = (∪s−1
i=1a

G
i ) ∪ (K \ {1}) where ai is the

unique common element of C and a conjugacy class for all i ∈ {1, . . . , s− 1}. In particular,

we have X ∩ C = {a1, . . . , as−1}. Since {1} ∪ X is a left transversal of H in G, we have

that {a0, a1, . . . , as−1} is a left transversal of H in C for each a0 ∈ H . Therefore the graph

CS(G,X) here is inconsistent with the graphs CS(G,X) in Theorem 5.13.

Suppose that CS(G, Y ) is a Cayley sum graph of G admitting a subgroup total perfect

code H . By Lemma 5.12, either (K \{1}) ⊆ Y or |Y | is divisible by q. By Lemma 4.1, Y is

a left transversal of H in G. In particular, |Y | is a divisor of q(q−1). Note that |Y | = ℓq−1

for some nonnegative integer ℓ if (K \ {1}) ⊆ Y . Since (ℓq− 1) ∤ q(q− 1), we conclude that

K \{1} is not contained in Y . Therefore |Y | is divisible by q. Since |Y ||H| = |G| = q(q−1),

we have that |H| is a divisor of q − 1. Thus H is contained in a Frobenius complement of

G. Without loss of generality, we assume H ≤ C. Let a0 be the unique common element of

Y and H . Then a0 is a nonsquare of H . Set Y ∩C = {a0, a1, . . . , as−1}. Then Y = ∪s−1
i=0a

G
i .

Since Y is a left transversal of H in G, we have that {a0, a1, . . . , as−1} is a left transversal

of H in C. Therefore the graph CS(G, Y ) here is inconsistent with the graphs CS(G, Y ) in

Theorem 5.13.
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