Improving the Performance of Stochastic Local Search for Maximum Vertex Weight
Clique Problem Using Programming by Optimization

Yi Chu®®, Chuan Luo¢, Holger H. Hoos?, Qingwei Lin¢, Haihang You®*

“4State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
b University of Chinese Academy of Sciences, Beijing 100049, China
“Microsoft Research, China
41 eiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

Abstract

o The maximum vertex weight clique problem (MVWCP) is an important generalization of the maximum clique problem (MCP) that
(\J] has a wide range of real-world applications. In situations where rigorous guarantees regarding the optimality of solutions are not
O required, MVWCP is usually solved using stochastic local search (SLS) algorithms, which also define the state of the art for solving
O\ this problem. However, there is no single SLS algorithm which gives the best performance across all classes of MVWCP instances,
and it is challenging to effectively identify the most suitable algorithm for each class of MVWCP instances. In this work, we
follow the paradigm of Programming by Optimization (PbO) to develop a new, flexible and highly parametric SLS framework for
solving MVWCP, combining, for the first time, a broad range of effective heuristic mechanisms. By automatically configuring this
[PbO-MWC framework, we achieve substantial advances in the state-of-the-art in solving MVWCP over a broad range of prominent
(Nl benchmarks, including two derived from real-world applications in transplantation medicine (kidney exchange) and assessment of

research excellence.

< Keywords: Maximum Clique Problem, Stochastic Local Search, Programming by Optimization
N

. o ,1. Introduction

«— Given an undirected graph G, a clique is a subset of vertices

= of C € G whose induced subgraph is complete. The maximum

O) clique problem (MCP) is to find a clique C of maximum size |C]|

in a given graph. MCP is one of the most widely known combi-

natorial optimization problems; it was one of the first problems

«—] proven to be NP-hard, with an NP-complete decision variant

+ [1]. The maximum vertex weight clique problem (MVWCP)

is an important generalization of the MCP, where each vertex

) is associated with a positive number representing its weight,

O\l and the objective is to find a clique with maximum weight, i.e.,

- a clique C with maximum total weight over the vertices con-

» == tained in C. The MVWCP has a wide range of practical applica-

tions, including computer vision, pattern recognition, robotics

E [2], broadband network design [3]] and wireless telecommuni-
cation [4].

In light of the importance of the MCP and MVWCP in
theory and practice, considerable effort has been expended to
develop effective algorithms for these problems. In practice,
there are two popular categories of algorithms for solving the
MCP and MVWCP: complete algorithms and incomplete al-
gorithms. Complete algorithms are usually based on an ap-
proach known as branch and bound (see, e.g., 3. 16, [7, 8 O]]).
These algorithms use sophisticated techniques to determine
tight upper bounds and branching strategies, in order to re-
duce the search space and accelerate the search process. In

190

*Corresponding author

Preprint submitted to Elsevier

contrast, incomplete algorithms, which are mostly based on
some form of local search, cannot prove the optimality of can-
didate solutions. However, the best incomplete algorithms
are usually able to find high-quality solutions even for large
and challenging instances within reasonable time (see, e.g.,
[0}, 11l (12l 1131 4L [1st el 17, 181 [19]).

Among these incomplete algorithms, MN/TS [[15] shows an
advantage on the well-known BHOSLIB benchmark, where in-
stances are generated in the phase-transition area according to
Model RB [20]] and known to be difficult in theory and prac-
tice [21]], while the strong configuration checking (SCC) strat-
egy underlying the LSCC algorithm [16] exhibits stronger per-
formance on the prominent DIMACS benchmark [22]], which
contains instances from applications in various areas. Overall,
there is no single algorithm that performs best on all types of
MVWCEP instances, and selecting the most appropriate algo-
rithm for a given set of instances is challenging.

Designing an effective local search algorithm for MVWCP
involves a large number of design choices, such as 1) how
to construct the initial solution, 2) which intensification and
diversification strategies to use, 3) how to strike a good bal-
ance between intensification and diversification, and 4) when
to restart the local search process. As noted earlier, to deal
effectively with various types of MVWCP instances, different
search strategies appear to be required, yet, current state-of-the-
art MVWCP solvers are based on rather restrictive choices. In
addition, for a given graph, it is quite challenging to identify the
most effective combination of algorithmic strategies.

February 28, 2020

Recently, a novel algorithm design paradigm dubbed pro-
gramming by optimization (PbO) [23]] has been proposed to en-
courage algorithm developers to embrace and exploit rich de-
sign spaces incorporating a broad range of algorithmic tech-
niques, to expose choices that may affect performance as pa-
rameters, and to use general-purpose automated configura-
tion techniques to instantiate those choices such that perfor-
mance for specific classes or sets of problems instances is op-
timized. Through the use of PbO, major improvements have
been achieved in the state of the art for solving a broad range of
NP-hard problems, including propositional satisfiability [24],
mixed integer programming [25] and minimum vertex cover
[26].

In this work, we present what we believe to be the first ap-
plication of the PbO paradigm to the MVWCP and achieve ma-
jor improvements in the state of the art in solving this promi-
nent and important NP-hard combinatorial optimization prob-
lem. Our main contributions can be summarized as follows:

e We propose a new PbO-based local search framework
for MVWCP dubbed PhO-MWC, which is highly config-
urable and incorporates a broad range of of effective tech-
niques.

e We conduct extensive experiments to compare PbO-MWC
against five state-of-the-art solvers on four benchmarks,
including two benchmarks that have been widely used in
the literature (BHOSLIB and DIMAC), and two bench-
marks derived from practical applications (kidney ex-
change and research excellence assessment). Our em-
pirical results indicate that PbO-MWC outperforms its
competitors on all four benchmarks. PbO-MWC signif-
icantly improves over the performance of state-of-the-art
solvers for solving MVWCP on three benchmarks (BH-
SOLIB, kidney exchange and research excellence assess-
ment). Notably, usng PbO-MWC, we were able to achieve
an improvement in the best known solution for a challeng-
ing graph known as ‘MANN_a81°.

e Based on our extensive empirical analysis, we provide in-
sights into the efficacy of different local search strategies
and mechanisms.

The remainder of this paper is structured as follows. In Sec-
tion[2] we provide necessary definitions, notations and an intro-
duction to multi-neighborhood search. In Section[3] we give an
overview of related work. Then, in Section El, we present our
PbO-MWC solver framework and provide detailed descriptions
of all its core components. In Section[5} we conduct extensive
experiments to show the effectiveness of PbO-MWC and ana-
lyze the experimental results. Finally, we conclude this paper
and give future work in Section[6]

2. Preliminaries

Given an undirected graph G = (V,E), where V
{vi,va,---,v,} is the set of vertices and E = {ej,es, - ,e,} C
V x V is the set of edges, a clique C is a subset of V, such that

Nl

Algorithm 1: SLS for MVWCP

Input: graph G=(V, E, W), the cutoff time;
Qutput: C*;

1 initialize C* := 0,C := 0;

2 while no termination criteria are met do

3 while Vadd(C) # (0 do

4 v := select a vertex from V,,(C);

5 C:=CuU{v}

6 if W(C)>W(C*) then

7 L C*:=C,

8 while (no termination criteria are met) and (no restarting
criteria are met) do

9 C := a neighboring clique of C;

10 if W(C)>W(C*) then

1 L C*:=C;

12 return C*;

each pair of vertices in C is connected by an edge. Given an
undirected graph G, the objective in the maximum clique prob-
lem (MCP) is to find a clique C C V with a maximum number
of vertices. Given an undirected vertex-weighted graph G =
(V, E,w), where (V, E) is an unweighted graph and w a weight
function that assigns a positive weight w(v) to each vertex
v € V, the weight of a clique C is defined as w(C) := Z,ccw(v).
In the maximum vertex weight clique problem (MVWCP), the
objective is to find a clique C C V with maximum weight w(C)
in a given vertex-weighted graph G.

As usual, edges e € E in a given undirected graph G are
represented as pairs of vertices e(u, v), where u, v € C are called
the end points of e = (u,v). Finally, for a vertex v € V, we use
N®@) :={u € V| (u,v) € E} to denote the set of neighbours of v,
and d(v) := |N(v)| to denote the degree of v.

Stochastic local search (SLS) algorithms for the MVWCP
usually build and subsequently modify cliques until some ter-
mination criterion is met, and then return the clique with the
maximum weight encountered during the search process. Three
kinds of search steps are performed: add, swap and drop. To
formally define these, we introduce three sets of vertices for a
given clique C:

o V,uu(C) ={u ¢ C|VYveC:ue N©WV), ie.,, the set of
vertices that, when added to C, result in a larger clique;

e Vaap(C)={ugClIveC:uv)¢ EAVWEC\ {v}}:
(u,w) € E}, i.e.,, the set of vertices that can replace some
vertex in C resulting in a new clique of the same size;

® Viyop(C) = {v | v € C}, ie,, the set of all vertices that
can be dropped from the given clique, resulting in a new,
smaller clique.

An add step moves from a clique C to a clique C U V,4,(C);
a swap step moves from a clique C to a clique C U V,,,(C);
and a drop step moves from a clique C to a clique C U Vg, (C).
Cliques C and C’ are called neighbours if C’ can be obtained
from C by a single add, swap or drop step.

Formally, we define a general framework of SLS algorithms
for the MVWCP as shown in Algorithm [} Starting from an
empty set, we construct an initial clique C by iteratively choos-
ing a vertex from V,4,(C) and add it into C, until V,;4(C) = 0
(Line 3-5); the choosing approach is based on different strate-
gies. Then, we iteratively move from one clique to one of its
neighbours until the termination criteria are met or some restart-
ing criteria are met (e.g. a fixed number of steps have been
iterated) (Line 8-11).

High-performance SLS algorithms usually balance between
two types of strategies: intensification and diversification strate-
gies. In the case of MVWCP, intensification strategies aim to
greedily improve the weight of the clique, e.g., by iteratively
moving from current clique to the neighbouring clique with the
largest weight. Diversification strategies are used to prevent or
overcome search stagnation, usually by moving to a different
part of the search space with little or no regard to solution qual-
ity (here: weight of the current clique).

Let C be a clique, W(C) denotes the weight of clique C. We
use Ascore(v,C) to denote the increment of W(C) after adding
v into C, i.e., Ascore(v,C) = W(C U {v}) — W(C). We use
Sscore(u,v,C) to represent the increment of W(C) after both
adding u into C and removing v from C, i.e., Sscore(u,v,C) =
W(C\{v} U {u}) — W(C). We use Dscore(v, C) to express the in-
crement of W(C) after removing v from C, i.e., Dscore(v,C) =
W(C\{vh) = W(O).

Besides, given a graph G = (V, E, W) and a clique C, a vertex
v € V has two possible states: inside C, or outside C. We define
the number of steps that has occurred since v last changed its
states as the age of v, denoted as age(v).

3. Related Work

In this section, we give an overview of related work, includ-
ing the existing local search algorithms for MCP and MVWCP,
programming by optimization and automated algorithm config-
uration, which form the basis of PbO-MWC.

3.1. Existing Local Search Algorithms for MCP (MVWCP)

Notable progress on local search algorithms for MCP and
MVWCP has been made in recent years. In this subsection,
we briefly review the most representative and the state-of-
the-art local search algorithms. Reactive local search (RLS)
[LQ], dynamic local search (DLS-MC) [[12] and cooperating lo-
cal search (CLS) [14]] are designed for MCP. RLS combines
local-neighborhood-search with prohibition based diversifica-
tion techniques. Starting from an empty clique, RLS explores
the search space by two moves: Add and Drop. As soon as a
vertex is added or dropped, it is put into the tabu list and remains
prohibited for the next 7T iterations. The prohibition 7T is ad-
justed through feedback from the previous history of the search.
RLS performs better than its predecessors on DIMACS bench-
mark. DLS-MC alternates between clique expansion phase and
plateau search phase. The expansion phase selects a vertex from
V.44(C) to add it to the current clique. The plateau search phase
selects a vertex pair from V,,,(C) to perform the Swap move.

The selection of vertices is based on vertex penalties that are dy-
namically adjusted during the search process. DLS-MC shows
excellent performance on DIMACS benchmark. CLS also alter-
nates between clique expansion phase and plateau search phase.
CLS integrates four low level heuristics which are effective for
different instance types. The low level heuristics differ primar-
ily in their vertex selection methods and also the perturbation
mechanisms used to overcome search stagnation. CLS im-
proves the state-of-the-art performance for MCP on BHOSLIB
benchmark and achieves the performance that are comparable
to state-of-the-art algorithms on DIMACS.

Multi-neighborhood tabu search (MN/TS) [15] is designed
for MCP and MVWCP. Local search with SCC (LSCC) [16]
and Restart and random walk in local search (RRWL) [19] are
both developed on the basis of MN/TS and designed for solving
MVWCP. These algorithms alternate between clique construc-
tion phase and and local search phase. In the local search phase,
algorithms are based on a combined neighborhood induced by
Add, Drop and Swap moves. The general prohibition rule in
these algorithms is only prohibit removed vertices to move back
to the clique C during the prohibition period, vertices that in C
can be removed without restriction. In the local search phase,
MN/TS adopts tabu strategy. LSCC proposes a new prohibition
mechanism named Strong Configuration Checking (SCC) that
are based on Configuration Checking (CC). SCC mechanism is
more restrictive than CC, a prohibited vertex will be lifted pro-
hibition after adding one of its neighboring vertices to clique
by Add move. LSCC shows obvious advantage on DIMACS
benchmark when comparing with predecessors. RRWL [19]
proposes a revisiting based restart strategy and adopts random
walk strategy. In the local search phase, RRWL uses the SCC
strategy. RRWL utilizes a hash table to record cliques that have
been visited and detects revisiting after the first step which in-
creases the clique weight. In order to increase diversity, RRWL
adopts random walk strategy when choosing a vertex to perform
Drop move. RRWL finds a new best-known solution (111,341)
on ‘MANN_a81’ instance from DIMACS benchmark.

These algorithms do not contain various techniques and no
single algorithm can perform well on all types of benchmarks.
In addition, the performance of the above algorithms for solving
MVWCP on many hard instances from BHOSLIB benchmark
and DIMACS benchmark still exists the enhanced space. They
also do not perform well on some benchmarks transformed
from real-world problems.

3.2. Programming by Optimization

PbO approach encourages algorithm developers to greatly
expand the design space of algorithms by integrating more al-
gorithmic technologies [23]]. Algorithm development following
PbO approach usually involves exposing all design options as
configuration parameters and searching for design alternatives
to key components. The traditional algorithm configuration
method is to test relatively few configurations through some
experiments. With the progress of optimization and machine
learning, solving the algorithm configuration problem as an op-
timization problem is a trend of algorithm design [27, 28 [29].
Up to now, PbO-based approaches have shown effectiveness in

many problems, including Boolean satisfiability [24,[30], mixed
integer programming [25} 31]], AI planning [32]] and Minimum
Vertex Cover [26].

3.3. Automated Algorithm Configuration

The ability of complex heuristic algorithms to solve chal-
lenging combinatorial problem instances often critically de-
pends on the use of suitable parameter settings [28]. Since it
may be difficult to seek for performance optimization values for
these parameters, in recent years, some work has focused on the
automated process of determining optimization parameter con-
figurations, such as ParamILS [28], GGA [27], F-RACE [33],
SMAC [29] and irace [34]. In these automated algorithm con-
figurations, SMAC is a sequential model-based algorithm con-
figurator, that supports conditional parameters. Since SMAC is
one of the best-performing algorithm configuration procedures,
we utilized it to configure our PbO-MWC framework and the
parametric competitors.

4. Parametric Stochastic Local Search for MVWCP

In order to explore the performance of configurations in con-
figuration space and avoid premature selection of strategies
for different benchmarks, we design a stochastic local search
framework named PbO-MWC for solving MVWCP, which ex-
poses various strategies as parameters to the configuration pro-
cedure for selection. In the following, we first introduce the
top-level design of PbO-MWC, then describe its key compo-
nents, configuration space and default configuration.

4.1. The PbO-MWC Framework

The top level design of PbO-MWC can be described as fol-
lows: PbO-MWC iteratively executes two components until the
termination criteria are met: initially, PbO-MWC generates an
initialized clique; then PbO-MWC iteratively moves the current
clique by local search step.

PbO-MWC consists of two components: construction and
search. In the construction component, the initial clique is gen-
erated and regarded as the starting point of the search compo-
nent. In the search component, PbO-MWC iteratively performs
local search to move the clique to another. The pseudo-code
of PbO-MWC is outlined in Algorithm There is an outer
loop (lines 2-18 in algorithm [2) and an inner loop (lines 6-18
in algorithm [2). This framework determines whether the al-
gorithm jumps from the inner loop to the outer loop through
a parameter called perform_restart, thereby restarting the local
search process by reconstructing the initial clique. If the weight
of current clique do not increase after performing intensifica-
tion_process() and perform_restart= True, the algorithm restarts
the search process with a probability of restart_prob (lines 13-
16 in algorithm [2).

4.2. The Construction Component

To make construction effective, PbO-MWC adopts three sim-
ple effective construction approaches, resulting in three instan-
tiations of the construction component init_construction (Line
3 in algorithm [2):

Algorithm 2: The PbO-MWC Framework

Input: graph G=(V, E, W), the cutoff time;
Qutput: C*;

1 initialize C* := 0;

2 while no terminating criteria are met do

3 C:=init_construction();

4 if W(C)>W(C*) then

5 L C*:=C;

6 while no terminating criteria are met do

7 if perform_randomwalk then

8 if with probability randomwalk_prob then
9 C:=random_walk_process(C);
10 L continue;
11 c :=C;
12 C:=intensification_process(C);
13 if W(C) < W(C') then
14 if perform_restart then
15 if with probability restart_prob then
16 L L break;
17 else if W(C)>W(C*) then
18 L C*:=C;

19 return C*;

1) Randomized approach: starting with an empty vertex set
C, repeats randomly adding a vertex v € V,44(C) into C until
Vaaa(C) = 0.

ii) Weight-based approach: randomly selecting a vertex v as
the initialized clique C, repeats adding a vertex v € V,44(C)
with the largest weight into C until V,;,(C) = 0.

iii) Degree-based approach: randomly selecting a vertex v as
the initialized clique C, repeats adding a vertex v € V,44(C)
with the largest degree into C until V,;4(C) = 0.

4.3. The Random Walk Component

PbO-MWC utilizes a parameter called perform_randomwalk
to determine whether to attempt a random walk search or not, if
perform_randomwalk=true, then PbO-MWC performs random
walk search with a probability of randomwalk_prob, where ran-
domwalk_prob is a parameter. This procedure is outlined in Al-
gorithm 3]

4.4. The Intensification Component

The Intensification procedure is outlined in algorithm @ The
intensification_process moves the current clique to a neighbor-
ing clique with the maximum weight with prohibition mecha-
nism. It first selects a vertex v € V,4,(C) with the largest Ascore
and v is not forbidden (Line 1), and selects a vertex pair (u, u’)
€ Vguap(C) with the largest Sscore and u is not forbidden (Line
2-5). If an Add move is possible, it selects the move with the
largest weight (Line 6-10). On the contrary, it selects a vertex
X € Varop(C) with the largest Dscore, it picks the Drop move if
there is no Swap move or Dscore>Sscore (Line 13-15), other-
wise it picks the Swap move (Line 16-17).

Algorithm 3: The random_walk_process Procedure

Algorithm 4: The intensification_process Procedure

Input: C;

Output: C;

prob:=a random integer between 0 and 99;

if prob <33 and V,44(C) # 0 then
v:=a vertex randomly selected from V,4,(C);
C:=Cu{v};

5 else if prob<67 and V., (C) # 0 then

6 (u, vy:=a vertex pair randomly selected from V,,,(C);
7 C :=CU{up\{v}h

else

9 v:=a vertex randomly selected from V,,,(C);

10 C :=C\{v});

11 return C;

W N -

o

In intensification search, local search algorithms correspond
to efforts of revisiting promising regions of the search space
[35]. In this process, algorithms may easily encounter the cy-
cling phenomenon, i.e., returning to a candidate solution that
has been visited recently. The cycling problem is an inher-
ent problem of local search as the method does not allow our
algorithms to memorize all previously visited candidate solu-
tions. To deal with this severe issue, two fundamental prohi-
bition mechanisms have been proposed to combine with local
search : tabu mechanism [36] and configuration checking (CC)
[37]]. Tabu mechanism was proposed by Glover [36], and the
tabu mechanism forbids reversing the recent changes, where
the “strength” of prohibition is controlled by a parameter called
tabu_tenure(1t). Configuration Checking (CC) was proposed by
Cai [37], CC forbids a vertex to be added back into the candi-
date set until its circumstance information (also called config-
uration) has been changed. This paper adopts two prohibition
mechanisms: one is based on the tabu mechanism and the other
is derived from CC. A brief description is as follows:

The MN/TS algorithm proposes a prohibition rule: a vertex
that leaves the current clique C (by a Swap or Drop move) is
forbidden to move back to C for the next # iterations. A vertex
in the clique C is free to be removed from C without restriction
[15].

For the Swap move, a vertex pair (u,v) € V,,,(C), where v
is removed from C, v is prohibited to be moved back to C for
the next #f_swap iterations.

tt_swap=random(|Vs,qp(C)]) + T}.

For the Drop move, a vertex u € Vg,,(C), where u is re-
moved from C, u is prohibited to be moved back to C for the
next t¢_drop iterations.

tt_drop=T}.

T, is set to 7 as in [15].

The LSCC algorithm proposes a prohibition rule called
strong configuration checking (SCC) for MVWCP [16]. The
SCC strategy is implemented with a Boolean array named con-
fChange, where confChange[v] = 1 means v is allowed to be
added to the current clique C and confChange[v] = 0 means v
is forbidden to be added to C.

(1) Initially, for each vertex v, confChange[v] = 1.

Input: C;
Output: C;

1 v := a vertex with the largest Ascore in V,4,(C) and v is not
forbidden by the prohibition mechanism, breaking ties by a
breakingTiesRule;

2 if perform_BMS then

3 (u,u’) := a vertex pair with the largest Sscore in V,,,(C)
with BMS strategy and u is not forbidden by the prohibition
mechanism, breaking ties by a breakingTiesRule;

4 else

5 (u,u’) := a vertex pair with the largest Sscore in V,,,(C) and
u is not forbidden by the prohibition mechanism, breaking
ties by a breakingTiesRule;

6 if v # null then

7 if (u, ' Y=(null, nully or Ascore>Sscore then

8 | C:=Ccuiw;

9 else

10 | C:=Culu\u};

11 else

12 x:=a vertex with the largest Dscore in Vgy,,(C);

13 if (u, v’ Y=(null, nully or Dscore>Sscore then

14 x:=a vertex selected by a selectDropVertexRule from
Vdrop(c);

15 C:=C\{x}

16 else

17 | C:=CUuh\u);

18 return C;

(2) When v is added into C, confChange[u] = 1 for all u €
N©).

(3) When v is removed from C, confChange[Vv] = 0.

(4) When (u, v) is swapped, where v is removed from C, con-
fChange[v] = 0.

In this intensification component, we propose a new prohibi-
tion mechanism named TabuCC, which is inspired by tabu strat-
egy and SCC strategy. The aim of MVWCP is to find a clique
with the maximum weight, therefore, intuitively, if a vertex v
is added to the current clique, then its neighbors should also
be encouraged to add to the clique [16]]. Based on this idea,
we propose a tabu-based prohibition mechanism. The TabuCC
mechanism is worked as follows:

1) For the Swap move, a vertex pair (u, v) € Vy,,(C), where
v is removed from C, v is prohibited to be moved back to C for
the next tz_swap iterations.

tt_swap=random(|Vsqp(C)) + T}.

ii) For the Drop move, a vertex u € Vy,,,(C), where u is
removed from C, u is prohibited to be moved back to C for the
next tt_drop iterations.

tt_drop=T).

iii) For the Add move, a vertex v € V,;4(C), where v is added
into C, for each vertex u € N(v), lift the prohibition of u.

The intensification component provides three prohibition
mechanisms for selection, including the tabu mechanism pro-

Table 1: The configuration space of PbO-MWC.

Parameters Depended Conditions Parameter Type Value Domain Default Value
perform_BMS - Categorical {True,False} True
bms_num perform_BMS =1 Integer [1,100] 50
breaking _ties - Categorical {0,1} 0
init_construction - Categorical {0,1,2} 0
drop_vertex - Categorical {0,1,2} 0
randomdrop _prob drop_vertex = 1 Categorical {0.1,0.2,...,0.9} 0.2
perform_restart - Boolean-valued ({True,False} False
restart_prob perform_restart = 1 Real [0.0000001,0.0001] 0.000001
perform_randomwalk - Boolean-valued {True,False} True
randomwalk_prob perform_randomwalk = 1 Real [0.00001,0.1] 0.0001
tabu_type - Categorical {0,1,2} 1
tabu_tenure tabu_type = 1,2 Integer [1,100] 7

Table 2: The default configuration of PbO-MWC

Instantiation Default Configuration

Default

perform_BMS=True, bms_num=50, breaking _ties=0, init_construction=0, drop _vertex=0,

perform_restart=False, perform_randomwalk=True, randomwalk_prob=1.0E-4, tabu_type=1, tabu_tenure=7

posed in MN/TS, SCC proposed in LSCC and TabuCC men-
tioned above. The tabu mechanism and TabuCC involve a pa-
rameter called tabu_tenure, which is exposed to the configurator
for selection. For selecting a vertex pair from V,,,(C), intensi-
fication_process procedure applies a fast and effective strategy
named Best from Multiple Selection (BMS), which strikes a
balance between quality and complexity and can bring diver-
sity to the search process [38]. The BMS strategy randomly
selects bms_num elements (bms_num is an integer parameter)
from source set S, and then returns the best element. The activa-
tion of BMS strategy is depended on a Boolean-valued param-
eter perform_BMS. If BMS strategy is activated, the parameter
bms_num of BMS strategy will be activated. There are three
selectDropVertexRule in this component: i) Random selection;
ii) Weight-based selection; iii) Perform random selection with
a probability of randomdrop_prob, otherwise perform weight-
based selection. This component includes two breakingTies-
Rules: i) Breaking ties randomly; ii) Breaking ties in favor of
the largest age.

4.5. Configuration space and default configuration

PbO-MWC is a parametric local search framework and can
be configured to various high-performance local search algo-
rithms. We have introduced the top level of our algorithm
framework, all its components and the parameters in Subsec-
tions In Table [T we give an overview of the full con-
figuration space of PbO-MWC, including all strategies and pa-
rameters, as well as the conditions under which strategies and
parameters are activated. The default configuration settings of
PbO-MWC are shown in Table 2]

5. Experimental Evaluations

To evaluate the efficiency of our proposed PbO-MWC frame-
work and explore the potential of the configuration space, we
conduct extensive experiments to compare PbO-MWC against
five state-of-the-art solvers on a broad range of MVWCP
benchmarks. First, we describe the benchmarks and the com-
petitors. Second, we describe the configuration protocols
used to automatically configure PbO-MWC and its competi-
tors. Then we describe the experimental setup. Finally, we
present the experimental results and give some speculations
about which strategies work well on which benchmark.

5.1. The Benchmarks

The set of 40 BHOSLIB instances arose from the SAT 04
Competition. The BHOSLIB instances were translated from
hard random SAT instances. DIMACS benchmark set was es-
tablished for the Second DIMACS Implementation Challenge.
This set comprises 80 instances from a variety of real-world ap-
plications [39]. The BHOSLIB and DIMACS benchmarks have
been widely used in the recent literature to test new MCP and
MVWCEP solvers [40, 13} [14] [15] [16l [7, 141, [19]. The original
graphs are unweighted, we adopt the method described in [13]:
for each vertex i, W; is set to (i mod 200) + 1.

Besides the above two benchmarks, we evaluate the perfor-
mance of all the solvers on two real-world application bench-
marks. Kidney Exchange Scheme (KES) exists in several coun-
tries to increase the number of transplants from living donors
to patients with end-stage renal disease. A donor-patient pair
contains a patient and a person who is willing to donate to
that patient but unable to do so due to non-compatible prob-
lem. Each feasible exchange gives a score that reflects its de-
sirability. Typically, administrators perform matching opera-
tions at fixed intervals, with the goal of maximizing the sum

Table 3: The optimized configurations of PbO-MWC for all benchmarks.

Benchmark/Instance Family Optimized Configuration

BHOSLIB

perform_BMS=False, breaking ties=1, init_construction=1, drop _vertex=0,

perform_restart=True, perform_randomwalk=True, restart_prob=5.016696977394702E-5,
randomwalk_prob=0.09733547356349166, tabu_type=1, tabu_tenure=5

DIMACS
(MANN family)

perform_BMS=False, breaking _ties=1, init_construction=1, drop_vertex=1,
perform_restart=False, perform_randomwalk=True, randomdrop_prob=0.1,

randomwalk_prob=0.0021339029487367554, tabu_type=0

DIMACS
(except MANN family)

perform_BMS=False, breaking _ties=1, init_construction=0, drop _vertex=0,
perform_restart=True, perform_randomwalk=True, restart_prob=3.459685410644107E-5,

randomwalk_prob=0.00994485968433248, tabu_type=1, tabu_tenure=8

KES

perform_BMS=True, bms_num=6, breaking_ties=1, init_construction=0, drop_vertex=2,

perform_restart=True, perform_randomwalk=False, restart_prob=2.7775287025690946E-5,

tabu_type=1, tabu_tenure=30

REF

perform_BMS=True, bms_num=16, breaking_ties=1, init_construction=0, drop_vertex=1,

perform_restart=True, perform_randomwalk=False, randomdrop_prob=0.4,
restart_prob=9.44211698679448E-6, tabu_type=2, tabu_tenure=8

of exchange scores. McCreesh et al. [42] proposed that this
optimization problem may be solved by reduction to MVWCP,
where each vertex is an exchange, whose weight is its score.
Two exchanges are adjacent if and only if they have no partici-
pants in common. The clique stands for a maximally desirable
set of donor-patient exchange. Research Excellence Frame-
work (REF) is the system for assessing the quality of research
in higher education institution. In each assessment unit, each
staff would submit six publications, from which the organiza-
tion chooses four. Cooperating authors within the same assess-
ment unit cannot submit a shared publication. MVWCP helps
the assessment units find a way to maximize the submission,
where each vertex is a choice of four publications from six pub-
lications. The clique stands for the set of publications that an
assessment unit can provide to the authority. These two bench-
marks are generated by McCreesh et al. [42]]. In this paper,
we selected 42 instances the KES benchmark and 29 instances
from the REF benchmark that are difficult to solve.

5.2. Competitors

In this paper, we compare PbO-MWC (the implementation is
available onlineﬂ) against five state-of-the-art solvers, includ-
ing four SLS solvers and one complete solver:

SLS solvers:

MN/TS][15] is a high performance SLS solver based on
multi-neighborhood search and tabu mechanism. In our exper-
iments, we used the version of MN/TS made available by its
authors

1 https://github.com/PbO-MWC/PbO-MWC
2http://www.info.univ—angers.fr/%7eha0/cliquc:.html

LSCCJ16] is an efficient SLS solver which perform well on
BHOSLIB and DIMACS. LSCC+BMS|16] is suitable for mas-
sive graph instances. We used the version of these two solvers
that are available online[]

RRWL[19] is an efficient SLS solver without parameters. We
used the version of RRWL made available by its authorsE]

Complete solver:

TSM-MWC[9] is a state-of-the-art complete solver for MWC
in both small/medium and massive real-world graphs. The
source code is available online]

5.3. Configuration Protocol

In this work, we made use of SMAC(version:2.10.03) to au-
tomatically configure our PbO-MWC framework. In this sub-
section, we describe the protocol used for PbO-MWC and its
competitors. We extracted a training set for each benchmark.
For BHOSLIB, frb45 family is chosen to be the training set. For
DIMACS and REF, we randomly chosen an instance from each
family. For KES, we randomly chosen 10 instances from the
benchmark. For some training sets, SMAC could not find a con-
figuration for some solvers, with the configuration, the solver
could reach the known optimal solution at least once within a
cutoff time for each run. In order to configure all the solvers in
a uniform protocol, we define a new solution quality named
NewSQ: NewSQ=0-(solution quality) + (solution time)/1000.
We used SMAC to minimize NewSQ. Throughout the configu-
ration process, we allowed a 2-day time budget and a cutoff time

3http://ai.nenu.edu.cn/wangyy/Yiyuandata/Download/mwcp.tar.gz

4https ://github.com/Fan-Yi/Restart-and-Random-Walk-in-Local-Search-
for-MVWC-in-Large-Sparse-Graphs

Shttps://home.mis.u-picardie.fr/%7ecli/EnglishPage.html

Table 4: Experimental results on BHOSLIB benchmark. For all instances, each solver was performed with its optimized configuration trained on 5 instances in the

upper part.
- + -

Graph SOIBESt hGue(tg) #Suc(tang) HSUC(arg) HSUC(tang) #SuC(tavg) #Suc(time)

645211 4760 100 (14459) 100 (68.800) 46(1349.447) 42(1414568) SI(1085535) 0 (1020.450)
fbd5212 4784 100 (1.759) 100 (14099) 78(1326.001) 70(1352.767) 57(1032.973) 0 (2733.750)
frb45-21-3 4765 100 (2.565) 100 (22378) 53(1607.364) 51(1638.062) 64(1288.928) 0 (1563.770)
frbd521-4 4799 100 (1.245) 100 (49.663) 67(1442893) 59(1510.165) 85(1139340) 0 (1329.360)
fb4521-5 4779 100 (2.294) 100 (5323) 100(301.269) 100(338229) 95 (393415) 0 (1772.870)
fi630-153 2095 100 (0.202) 100 (0.635) 100 (13.648) 100 (I4819) 100 (4423) T00(1562.590)
frb35-17-1 3650 100 (0.808) 100 (4672) 100 (91.153) 100(107303) 100 (38.994) 0 (3354.780)
fb35-17-2 3738 100 (3.187) 100 (28.094) 100(151364) 100(173.864) 100(196.664) 0 (3276.140)
fb35-17-3 3716 100 (0.378) 100 (4365) 100 (42298) 100 (49.195) 100 29.877) 0 (2267.320)
frb35-17-4 3683 100 (0.429) 100 (4245) 100(328516) 100(406.264) 100(136796) 0 (3440.670)
frb35-17-5 3686 100 (0.548) 100 (1.058) 100 (20187) 100 (22.571) 100 (19.197) 0 (2461.840)
frb40-19-1 4063 100 (5.377) 100 (11478) 100(341834) 100438.977) 100(497250) 0 (3344.290)
fib40-192 4112 100 (2.137) 100 23773) 99 (656.502) 99 (747.700) 98 (879.786) 0 (3584.080)
frb40-19-3 4115 100 (9.149) 100 (72378) 97 (913408) 94(1017.261) 92 (898.788) 0 (2150.580)
frb40-19-4 4136 100 (LI121) 100 (65.162) 97 (850.168) 96 (921.804) 95 (823.619) 0 (1722.160)
frbd0-19-5 4118 100 (2.928) 100 (16579) 100(434633) 100(514314) 97 (317.954) 0 (1008.240)
frbS0-23-1 5494 100(119.462) 77(1532.625) 3 (1643836) 1 (1741.232) 3 (1375311) 0 (3040.930)
fbS0-23-2 5462 100 (92.994) 71(1154720) 6 (1577.357) 5 (1652.677) 10(1372.736) 0 (319.980)
fb50-23-3 5486 100 (17.533) 100 (47.560) 17(1703953) 11(1619.835) 17(1326.604) 0 (2949.470)
frbS0-23-4 5454 99(1035311) 58 (919.783) 0 (1792514) 0 (1729.724) 1 (1256577) 0 (3560.910)
fb50-23-5 5498 100 (5.399) 100 (26746) 70(1578.170) 62(1653499) 60(1284259) 0 (2748.320)
fb53-24-1 5670 100 (33.530) 100(398.036) 7 (1666.790) 3 (1788.058) 7 (1424357) 0 (562.150)
fb53-24-2 5707 100 (98211) 54(1681.134) 2 (1756.783) 3 (1668.641) 2 (1245848) 0 (3453.760)
frb53-24-3 5655 100(711.933) 29 (666.191) 1 (1836278) 1 (1960.289) 0 (1511.852) 0 (3433.890)
frb53-24-4 5714 100 (77.797) 30(1051233) 0 (1730.691) 0 (1801.601) 0 (1536212) 0 (2215.230)
frb53-24-5 5650 100(286.630) 42(1664354) 0 (1641510) 0 (1635425) 1 (1314714) 0 (1657.180)
fb56-25-1 5916 100 (35.216) 97 (935.194) 1 (1996991) 1 (1779.035) 2 (1459226) 0 (3456.430)
frbS6-25-2 5886 100 (37.982) 35(1727.162) 1 (1770.001) 0 (1798.876) 1 (1495.152) 0 (1467.520)
fb56-25-3 5859 98 (706.840) 20(1498373) 0 (I868919) 0 (1799.464) 0 (1461475) 0 (2619.290)
frbS6-25-4 5892 99 (678.962) 30(1719.638) 0 (1765438) 0 (1862.983) 0 (1434981) 0 (2525.100)
frb56-25-5 5853 94(1022.826) 12(1594286) 0 (16257000 0 (1730.110) 0 (1599.427) 0 (2425.130)
fb59-26-1 6591 100 (33.607) 100(464.091) 0 (1693629) 0 (1737.817) 1 (1367452) 0 (2930.000)
fb59-262 6645 100(111.328) 99 (632.977) 2 (I875.558) 0 (1843.966) 1 (1470.946) 0 (2124.560)
fb59-26-3 6608 100 (74.141) 34(1534772) 0 (1991458) 0 (1930.665) 0 (1513.631) 0 (1590.650)
frb59-26-4 6592 100 (92.463) 95 (988.683) 1 (1678.177) 1 (1727.378) 1 (1502.068) 0 (23.280)
frb59-26-5 6584 100279.545) 48(1429216) 0 (1652.560) 0 (1797.136) 0 (1536.050) 0 (2806.550)

of 300 CPU seconds for each solver run. For each training set,
we performed 25 SMAC runs and obtained 25 optimized con-
figurations. The configuration with the minimum NewSQ value
on the training set was chosen as the final optimized configu-
ration. The optimized configurations of PbO-MWC for each
benchmark are shown in Table

5.4. Experimental Setup

All the experiments were carried out on a workstation under
the operating system CentOS (version: 7.6.1810), with Intel(R)
Xeon(R) CPU E5-2620 2.10GHz CPU, 20MB L3 cache and
128GB RAM. Except RRWL and TSM-MWC without param-
eters, other solvers were configured using SMAC with the same
configuration protocol. Each local search solver was executed
100 runs on each instance with seeds from 1 to 100. TSM-
MWC was performed 1 run on each instance. The cutoff time
for each solver run was set to 3600 seconds. The best solution-
quality known so far is indicated by solBest. We report the
number of successful runs (reaches solBest within cutoff time),
denoted by #Suc, and the averaged running time of finding the
final solution on each instance, denoted by #,,,. We denote the
number of successful runs divided by the number of total runs
as success rate. Since the main difference between solvers on
DIMACS is the solution quality, for each solver on each in-
stance of DIMACS, on the 100 runs, we report the maximum
weight (W) and averaged weight (w,,,) of the cliques found

by each solver. For TSM-MWC, we report the weight of final
clique found, denoted by wy,;, and the time of the final clique
found, denoted by time. We do not report the instances that all
the local search solvers reach 100% success rate with t,,,<10
seconds. In this experiments, unspecified time units are CPU
seconds.

We also report the averaged PAR10 (penalized running time,
if the solver can not get the solBest in a given cutoff time, it
counts the running time as 10 times the given cutoff time.) of
each solver on each benchmark, denoted by avgPARI0.

5.5. Experimental Results

5.5.1. Results on BHOSLIB Benchmark.

Table [] presents the comparative results of PbO-MWC and
its competitors on BHOSLIB benchmark. From Table[d] we can
clearly see that our PbO-MWC algorithm stands out the best
solver on the training set and test set. On training set, PbO-
MWC achieves 100% success rate on all 5 instances. MN/TS,
the second best solver also achieves a 100% success rate on all
training instances, but in terms of running time, the averaged
time of PbO-MWC is 4.464 and the averaged time of MN/TS
18 32.054. The success rate of LSCC, LSCC+BMS and RRWL
are much lower than 100%. TSM-MWC can not reach the best
solution known on any training instance. On all 31 test in-
stances, PbO-MWC achieves a 100% success rate for 27 of
them, while the figure is 15, 8, 8, 7 and 1 for MN/TS, LSCC,

Table 5: Experimental results on DIMACS benchmark. For the MANN instance family, each solver was performed with its optimized configuration trained on
MANN_a45 instance. For other instances, each solver was performed with its optimized configuration trained on 9 instances of the instances in the upper part that

do not contain MANN_a45 5

bO-MWC MN/TS LSCC LSCC+BMS RRWL TSM-MWC
Graph Wmax(Wavg) Wmax(Wavg) Wmax(wavg) Wmax(wavg) Wmax(wavg) Wsol .
tllVg tavg lavg lavg lLlVg tlme
MANN 245 34263(34262.59) 34226(34199.31) 34256(34254.02) 34258(34253.84) 34263(34254.72) 34265
. 1490.467 1815.412 425.650 1291.260 357.249 404.800
brock800.4 2971(2971.00) 2971(2970.98) 2971(2970.80) 2971(2970.78) 2971(2971.00) 2971
- 42.734 774.713 1176.934 1128.025 126596 2540.720
C2000.9 10999(10999.00) 10999(10999.00) 10999(10951.90) 10999(10951.25) 10999(10951.41) 8338
: 101.025 191.816 1919.433 1902.930 1437.638 2311.820
e £a1500-10 11586(11586.00) 11586(11586.00) 11586(11586.00) 11586(11586.00) 11586(11586.00) 11586
0.248 0.059 <0.001 <0.001 0.379 0.190
DSIC1000.5 2186(2186.00) 2186(2186.00) 2186(2186.00) 2186(2186.00) 2186(2186.00) 2186
: 0.083 0.047 5.955 5.989 1.158 54.910
en400.00.9.75 3006(8006.00) 8006(8006.00) 8006(8006.00) 8006(8006.00) 8006(8006.00) 8006
g -pY-7- 0.001 0.007 0.638 0.693 0.538 77.200
hamminel0 J0312(50512.00) ~ 50512(50512.00) 50512(50512.00) 50512(50512.00) 50512(50512.00) 50512
g 0.145 0.652 0.588 0.516 0.966 43.290
hnson3no.4 2033(2033.00) 2033(2033.00) 2033(2033.00) 2033(2033.00) 2033(2033.00) 1891
johnson 0.003 0.811 0.151 0.154 0.410 10.590
hat1 S00.3 10321(10321.00) 10321(10321.00) 10321(10321.00) 10321(10321.00) 10321(10321.00) 10321
p 2.855 29.639 113.621 117.621 30.924 3336.320
<and00.0.9.1 9776(9776.00) 9776(9776.00) 9776(9776.00) 9776(9776.00) 9776(9776.00) 9776
U2~ 3.402 1.646 2.848 3.218 3.511 75.290
MANN.a27 3.974 1377.077 129.249 251.788 270.134 4.400
MANN 81 111355(111342.37) 110171(110090.74) 111302(111250.54) 111269(111207.88) 111324(111303.34) 109970
- 1639.896 1818.422 1639.686 1861.101 1784362 3202.890
brocka00.4 3626(3626.00) 3626(3626.00) 3626(3626.00) 3626(3626.00) 3626(3626.00) 3626
- 0.632 0.988 12.447 13.083 1.634 136.900
C1000.9 9254(9254.00) 9254(9254.00) 9254(9254.00) 9254(9254.00) 9254(9254.00) 7477
: 1214 1.201 177.922 186.512 63.886 2806.730
CA000.5 2792(2792.00) 2792(2792.00) 2792(2792.00) 2792(2792.00) 2792(2792.00) 2502
: 13.808 14.050 77.724 79.793 129.973 3497.290
hamminel0.q 5129(5129.00) 5129(5129.00) 5129(5129.00) 5129(5129.00) 5129(5129.00) 4828
g 1.148 2.846 19.140 21.761 23.739 1244.040
cellers 3317(3317.00) 3317(3317.00) 3317(3317.00) 3317(3317.00) 3317(3317.00) 3097
0.332 0.245 15.977 18.548 6.088 3472.040
Keller6 8062(8062.00) 8062(8062.00) 8062(7858.60) 8062(7862.85) 8062(7892.65) 4793
83.535 509.848 1729.344 1895.647 1633.382 3564.280
<an1000 1716(1716.00) 1716(1716.00) 1716(1716.00) 1716(1716.00) 1716(1716.00) 1716
§ 11.055 7.871 656.871 90.903 14.471 5.580
<and00.0.7.1 3941(3941.00) 3941(3941.00) 3941(3941.00) 3941(3941.00) 3941(3941.00) 3941
V1= 158.120 42.184 62.246 88.384 7.087 1.490
and00.0.72 3110(3110.00) 3110(3110.00) 3110(3110.00) 3110(3110.00) 3110(3110.00) 3110
-V - 245.999 75.019 197.050 223.260 15.661 3.890

LSCC+BMS, RRWL and TSM-MWC, respectively. On the
four instances where PbO-MWC can’t reach the 100% success
rate, the success rate of PbO-MWC is 99%, 98%, 99% and 94 %
respectively, which is much higher than that of its competitors.
The total #Suc of PbO-MWC is 3090, while the figure is 2331,
1264, 1177, 1189 and 100 for its competitors respectively. In
addition, PbO-MWC finds best solutions with shortest averaged
time on 28 of 31 instances. The averaged time of PbO-MWC is
179.935, the figure is 706.426, 1248.068, 1279.758, 1042.975
and 2389.775 for MN/TS, LSCC, LSCC+BMS, RRWL and
TSM-MWC respectively.

5.5.2. Results on DIMACS Benchmark.

Table [5] shows the comparative results of PbO-MWC and its
competitors on DIMACS benchmark. From table[5] PbO-MWC
provides a performance advantage in terms of solution-quality
and running time. On training set, PbO-MWC achieves the

best W,,, with shortest averaged time on 6 of 10 instances. On
all 11 test instances, PbO-MWC gets the best W, and W,
for all of them. Notice that on ‘MANN_a81’, PbO-MWC found
Wiax=111,355. So far as we know, this is a new best-known
solution. In terms of running time, PbO-MWC has obvious ad-
vantage on most of the instances except three instances where
the complete solver has advantage.

5.5.3. Results on Kidney Exchange Scheme (KES) Benchmark

The comparative results of PbO-MWC and its competitors on
KES benchmark are illustrated in Table [6] From Table [6] our
PbO-MWC algorithm performs much better than its competi-
tors. On training set, PbO-MWC is the only solver achieves
a 100% success rate with the shortest f,,, on all 10 instances.
On all 27 test instances, PbO-MWC reaches a 100% success
rate for all of them, while the figure is 10, 16, 12, 13 and 11 for
MN/TS, LSCC, LSCC+BMS, RRWL and TSM-MWC, respec-

Table 6: Experimental results on KES benchmark. For all instances, each solver was performed with its optimized configuration trained on 10 instances in the upper

part.
- + -

Graph — solBest HSUC(ag) #Suclla) ASuclag) #Sucltag) #Sucltag) #Suc(time)

83 1237638860685 100 (0.895) 100 (76.022) 100 (73.769) 100 (93.026) TO0(T42.617) 100 (162.390)
84 1100166012937 100 (0.593) 100(170.961) 100 (5.882) 100 (12.575) 100 (10478) 100 (189.200)
Ol 1306441900046 100 (4.447) 90(1274.412) 100(267.249) 86(1148.002) 100(348.165) 0 (112.590)
96 1375094325251 100 (1.572) 13 (271.969) 100(272.134) 85 (959.731) 100(440349) 0 (6.290)
97 1375144632330 100 (2.045) 3 (507.525) 100(414291) 82(1196.935) 73(1052.616) 0 (744.600)
105 1787797020693 100 (7.879) 92(1073.198) 74(1363477) 70(1293.008) 43(1177.404) 0 (119.590)
107 1650240659468 100 (4.792) 95(1011.776) 78(1196.789) 52(1548.089) 41(1312.153) 0 (148.390)
114 2406557630478 100(17.364) 0 (1535.306) 2 (1590.658) 2 (1693.137) 2 (1776499) 0 (1671.880)
116 2131511910416 100 (5.393) 0 (1383.749) 82(1110.178) 68(1349.423) 38(1491.430) 0 (414.780)
119 2269068296209 100 (4.812) 3 (1220.001) 100(679.383) 99 (743.503) 75(1281.739) 0 (488.960)
7T 1306458693642 : . : : A :

81 1650240634805 100(10.112) 42 (952:869) 92 (928.713) 98(1004306) 51(1255399) 0 (994.070)
82 1443914440714 100 (2.676) 0 (1454161) 100 (52.113) 100 (52.100) 100 (96.197) 100 (601.480)
85 1100216320013 100 (1168) 100 (3232) 100 (33.098) 100 (63250) 100 (71.106) 100 (14.990)
87 1375194930405 100 (1.127) 100 (3.583) 100 (50.560) 100 (34.520) 100(171.926) 100 (8.060)
89 §93040457482 100 (0.329) 100 (7.763) 100 (59.544) 100 (52238) 100 (75254) 100 (0.790)
92 1581403750408 100 (1.738) 0 (1150.796) 100(344.064) 93(1182.126) 85(1183.945) 100 (5.690)
904 1031547150353 100 (L118) 100 (2.025) 100(106281) 100 (49.779) 100(137.152) 100 (77.780)
95 1375245246480 100 (2.556) 100 (48.995) 100(192.375) 100(432.595) 100(418.615) 0 (14.880)
08 1443947978765 100 (1.156) 100 (8.000) 100 (13.263) 100 (11.132) 100 (21.734) 100 (501.780)
99 1237722398735 100 (1.985) 100 (11295) 100 (18.543) 100 (19.415) 100 (38.765) 0 (974.380)
100 1512701018124 100 (1.586) 21 (524.223) 100(185.291) 100(230.710) 100(515888) 0 (13.090)
101 1650207096842 100 (5.288) 0 (1246.877) 83(1174.490) 23(1066.035) 68(1473.039) 100 (20.390)
102 1718960136202 100 (2.812) 30 (623.679) 100 (92.241) 95 (824.607) 100(236.558) 0 (132.650)
103 1512701018125 100 (3.859) 38 (668.578) 100 (62.515) 100(109.763) 100 (82.190) 0 (34.780)
104 1512818425875 100 (4.727) 40(1647.883) 78(1141.302) 74(1244.486) 18(1163.635) 0 (1162.670)
106 1375228477454 100 (2.745) 100(140.282) 100(321.318) 97(1034.791) 76(1485375) 0 (10.090)
108 1581487595537 100 (5.361) 99 (450271) 99 (657.236) 85(1129.557) 95(1050.945) 0 (32390
109 1718976905230 100 (3.911) 1 (1306.312) 100(551.843) 59(1248.325) 88(1310.915) 0 (3352.550)
110 1512768004224 100 (3.801) 100(391.202) 100 (15.364) 100 (13.357) 100 (17.000) 0 (2269.430)
111 2544013377548 100(57.323) 0 (1567.153) 1 (1567.423) 0 (1808.095) 0 (1519.593) 0 (98.890)
112 2475277107217 100(30.221) 0 (1749.538) 5 (1692.161) 0 (1550.411) 0 (1652.289) 0 (3593.620)
113 2200298487823 100 (8.621) 0 (1556.683) 13(1357.006) 16(1540.398) 3 (1510.060) 100 (48.390)
115 1581588200685 100(15.338) 2 (1787.766) 30(1404.084) 87(1038.877) 33(1581393) 0 (3150.560)
117 1925303123981 100 (7.908) 0 (1474.054) 97(1214.428) 79(1456.617) 64(1177.945) 0 (974.580)
118 2406641475604 100(15.660) 0 (1670.186) 0 (1715431) 0 (1591.963) 0 (1529.837) 100(1443.190)
120 2337821335572 100(12.455) 0 (1433344) 19(1570.731) 4 (1409.346) 3 (1737.625) 0 (162.680)

tively. The total #Suc of PbO-MWC is 2700, while the figure
is 1273, 2117, 2010, 1884 and 1100 for its competitors respec-
tively. In terms of running time, on 21 of the 27 instances,
PbO-MWC can achieve solBest with #,,,<10 seconds. The av-
eraged time of PbO-MWC is 7.625, while the figure is 810.750,
637.970, 748.197, 797.203 and 736.626 for its competitors re-
spectively.

5.5.4. Results on Research Excellence Framework (REF)
Benchmark

The results shown in Table [7] indicate that PbO-MWC out-
performs its competitors on REF benchmark. On training set,
PbO-MWC is the only solver achieves a 100% success rate on
all 3 instances. On ‘ref-60-23-0’ instance, PbO-MWC reaches
#Suc=100 with #,,,=37.242, MN/TS, the second best solver on
this instance, reaches #Suc=87 with t,,,=1045.383. On all 19
test instances, PbO-MWC reaches a 100% success rate for all
of them, while the figure is 18, 12, 14, 7 and 1 for MN/TS,
LSCC, LSCC+BMS, RRWL and TSM-MWC, respectively. On
‘ref-60-500-0" instance, PbO-MWC is the only solver that can
achieve a 100% success rate, and the t,,, of PbO-MWC is much
shorter than that of its competitors. In terms of running time,
PbO-MWC achieves solBest with shortest t,,, on 18 of 19 in-
stances. The averaged time of PbO-MWC is 2.272, while the
figure is 43.114, 305.898, 245.693, 595.366 and 1584.664 for

10

its competitors respectively.

5.5.5. An Overview of Results on All Benchmarks

We summarize all the results in Table[8] Table [§] shows that
PbO-MWC outperforms all its competitors in terms of avg-
PARI0 on all four benchmarks. On BHOSLIB, DIMACS, KES
and REF, the ratio of avgPARI0 of the best performing com-
petitor to avgPARI0 of PbO-MWC is 31.64, 1.53, 1093.38 and
275.29, respectively. The performance of state-of-the-art solver
for MVWCP on BHOSLIB benchmark and two benchmarks
that are transformed from real-world problems has been im-
proved remarkably.

5.5.6. The effect of automatically configuring PbO-MWC

To illustrate the effect of automatic configuration of PbO-
MWC, we report the performance comparison between PbO-
MWC and PbO-MWC (Default) on the four benchmarks, as
shown in Figure [} Figure [I] clearly illustrates that configura-
tion leads to performance improvements on a large majority of
instances on all the four benchmarks.

5.5.7. The speculations on the effectiveness of different strate-
gies

Based on the extensive experiments, we made some specu-

lations. We presumed that random walk strategy plays an im-

Table 7: Experimental results on REF benchmark. For all instances, each solver was performed with its optimized configuration trained on 3 instances in the upper

part.

- + -
Graph SOBESt hGuc(tyyg) #Suc(tmg) HStcllayy) ASucllapy) #Sucltng) #Suc(time)
TeI-60-1000 743 100 (3.978) 100 (0.096) 100 (2.604) 100 (2815) 100 (3.587) T00(277.880)
ref-60-230-0 506 100(37.242) 87(1045.383) 0 (770.114) 0 (758.782) 0 (1240.335) 0 (2477.980)
ref-60-500-7 700 100 (5.511) 100 (58.170) 2 (57.438) 2 (76478) 0 (39.422) 0 (399.550)
Tef-60-10000 768 : 0.032) 007 : 0527 :
ref-60-230-1 506 100(14.083) 100 (52.042) 2 (259.120) 0 (201255 O (992.196) 0 (830.790)
ref-60-230-2 524 100 (0.030) 100 (0.249) 100(337.901) 100(260.969) 98 (629.556) 0 (3054.720)
ref-60-230-3 502 100 (0.072) 100 (0.244) 100(173.394) 100(194.756) 97 (800.821) 0 (1781.070)
ref-60-230-4 504 100 (0.098) 100 (0.712) 98 (855.686) 100(499.303) 61(1091.397) 0 (1511.560)
ref-60-230-5 503 100 (0.280) 100 (0339) 100(362.522) 100(429.003) 82(1048.387) 0 (128.590)
ref-60-230-6 505 100 (0.027) 100 (0.091) 100(135.267) 100 (79.723) 100(548.991) 0 (3351.150)
ref-60-230-7 506 100 (2.353) 100 (6.780) 14 (432.156) 15 (429.282) 3 (936.927) 0 (2569.800)

ref-60-230-8 494
ref-60-230-9 526

100 (0.149) 100
100 (0.352) 100

(0.310)
(2.677)

100(355.894)
98(1065.225)

100(364.748)
100(599.256)

93(1022.198) 0 (1219.250)
61(1003.228) 0 (44.490)

ref-60-300 599 100 (0.035) 100 (0.232) 100(183.132) 100(103.767) 99 (708.523) 0 (3567.480)
ref-60-500-0 704 100 (9.023) 48 (735.908) 0 (353.410) 0 (121.051) 0 (325.049) 0 (3552.830)
ref-60-500-1 709 100 (0.020) 100 (0.090) 100 (9.942) 100 (3.448) 100 (11.789) 0O (908.640)
ref-60-500-2 702 100 (0.834) 100 (12.230) 4 (145902) 3 (155.079) 1 (254.645) 0 (68.080)
ref-60-500-4 690 100 (0.168) 100 (0.727) 100(339.175) 100(109.800) 100(804.839) 0 (500.710)
ref-60-500-6 715 100 (0.035) 100 (0.089) 100 (8.521) 100 (6.583) 100 (18.712) 0 (3161.160)
ref-60-500-8 714 100 (0.021) 100 (0.100) 100(286.912) 100(123.516) 100(850.038) 0 (411.690)

ref-60-500-9 704
ref-60-500 704

100 (0.923) 100
100 (0.476) 100

(5.372)
(0.940)

17 (366.494)
100(141.320)

47 (905.199)
100 (81.310)

9 (204.615) 0 (642.830)
100 (59.510) 0 (2790.890)

Table 8: The avgPAR10 on each benchmark.

Benchmark Num FPO-MW MN L L +BM RRWL — TSM-MW
avgPARIO avgPARIO avgPARIO avgPARIO avgPARIO avgPARIO
BHOSLIB 40 228.682 7234972 18707.556 19151.201 18743.424 32519.003
DIMACS 80 903.982 1379.709 1885.051 1897.256 1770.183 5113.066
KES 42 6.154 16728.550 6728.632 8526.514 10163.870 20723.301
REF 29 3.170 872.675 8423.623 8000.062 10168.337 27320.371

portant role on BHOSLIB. Among the three prohibition mech-
anisms utilized in PbO-MWC, SCC strategy performs best on
DIMACS. In our experiments, all efficient configurations for
KES contain BMS strategy with a parameter bms_num that are
less than 10. On REF, the optimized configuration includes
TabuCC strategy, which works well on the REF benchmark.
We consider an effective framework on REF benchmark has the
following properties: restarting local search with a lower prob-
ability, including BMS strategy with a lower bms_num and no
random walk strategy is included.

6. Conclusions and Future work

In this work, we proposed a parametric SLS framework for
MVWCEP, called PbO-MWC, which contains many effective
techniques and restarts the local search process with a certain
probability when it getting stuck local optima. We used the au-
tomated algorithm configuration procedure SMAC to configure
PbO-MWC and its competitors. We conducted experiments to
compare the performance of all the configured solvers on four
benchmarks. On BHOSLIB, KES and REF, the ratio of avg-
PARIO0 of the second best solver to avgPARIO of PbO-MWC
is 31.64, 1093.38 and 275.29 respectively. On ‘MANN_a81’
from DIMACS, a new optimal solution (111,355) is found by
PbO-MWC.

In the future, we plan to do some research to understand
which strategies are best suit for particular problem types, and

design novel strategies to integrate them into PbO-MWC frame-
work to further improve the performance. In addition, we
would like to conduct experiments on more benchmarks that
are transformed from real-world problems.

References

[1] R.M. Karp, Reducibility among combinatorial problems, Journal of Sym-
bolic Logic 40 (4) (1972) 618-619.

[2] D. H. Ballard, C. M. Brown, Computer vision (1982) 145.

[3] K. Park, K. Lee, S. Park, An extended formulation approach to the edge-
weighted maximal clique problem, European Journal of Operational Re-
search 95 (3) (1996) 671-682.

[4] B. Balasundaram, S. Butenko, Graph Domination, Coloring and Cliques
in Telecommunications, 2006.

[5] P.R. Ostergard, A new algorithm for the maximum-weight clique prob-
lem, Nordic Journal of Computing 8 (4) (2001) 424-436.

[6] K. Yamaguchi, S. Masuda, A new exact algorithm for the maximum
weight clique problem, in: ITC-CSCC: International Technical Confer-
ence on Circuits Systems, Computers and Communications, 2008, pp.
317-320.

[7] Z.Fang, C.-M. Li, K. Xu, An exact algorithm based on maxsat reasoning
for the maximum weight clique problem, Journal of Artificial Intelligence
Research 55 (2016) 799-833.

[8] H. Jiang, C.-M. Li, F. Manya, An exact algorithm for the maximum
weight clique problem in large graphs., in: AAAI 2017, pp. 830-838.

[9] H. Jiang, C.-M. Li, Y. Liu, F. Manya, A two-stage maxsat reasoning ap-
proach for the maximum weight clique problem, in: Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[10] R. Battiti, M. Protasi, Reactive local search for the maximum clique prob-
lem 1, Algorithmica 29 (4) (2001) 610-637.

[11] A. Grosso, M. Locatelli, F. Della Croce, Combining swaps and node
weights in an adaptive greedy approach for the maximum clique prob-
lem, Journal of Heuristics 10 (2) (2004) 135-152.

[12]
[13]
[14]

[15]

[16]

(17]

[18]

(19]

[20]

(21]

(22]

[23]

[24]

PbO-MWC, PAR10

101 1 10 102 103 1h 104

PbO-MWC (Default), PAR10

(a) PAR10 between PbO-MWC and PbO-MWC (Default) on BHOSLIB.

102 105

PbO-MWC, PAR10

103
103

10-1 1 10 102 103 1h 104

PbO-MWC (Default), PAR10

(c) PAR10 between PbO-MWC and PbO-MWC (Default) on KES.

102 105

PbO-MWC, PAR10

101 1 10 102 103 1h 104 105

PbO-MWC (Default), PAR10

102

(b) PAR10 between PbO-MWC and PbO-MWC (Default) on DIMACS.

PbO-MWC, PAR10

103
103

10-1 1 10 102 103 th 104

PbO-MWC (Default), PAR10

(d) PARI10 between PbO-MWC and PbO-MWC (Default) on REF.

102 105

Figure 1: Scatter plots of PAR10 between PbO-MWC and PbO-MWC(Default) on four benchmarks. (1h [3600 seconds] is the cutoff time of each run.)

W. Pullan, H. H. Hoos, Dynamic local search for the maximum clique
problem, Journal of Artificial Intelligence Research 25 (2006) 159-185.
W. Pullan, Approximating the maximum vertex/edge weighted clique us-
ing local search, Journal of Heuristics 14 (2) (2008) 117-134.

W. Pullan, F. Mascia, M. Brunato, Cooperating local search for the maxi-
mum clique problem, Journal of Heuristics 17 (2) (2011) 181-199.

Q. Wu, J.-K. Hao, F. Glover, Multi-neighborhood tabu search for the
maximum weight clique problem, Annals of Operations Research 196 (1)
(2012) 611-634.

Y. Wang, S. Cai, M. Yin, Two efficient local search algorithms for max-
imum weight clique problem, in: Proceedings of AAAI 2016, 2016, pp.
805-811.

S. Cai, J. Lin, Fast solving maximum weight clique problem in massive
graphs, in: Proceedings of IICAI 2016, 2016, pp. 568-574.

Y. Zhou, J.-K. Hao, A. Goéfton, Push: A generalized operator for the
maximum vertex weight clique problem, European Journal of Operational
Research 257 (1) (2017) 41-54.

Y. Fan, N. Li, C. Li, Z. Ma, L. J. Latecki, K. Su, Restart and random
walk in local search for maximum vertex weight cliques with evaluations
in clustering aggregation, in: Proc. of International Joint Conference on
Artificial Intelligence (IJCAI), 2017, pp. 622-630.

K. Xu, F. Boussemart, F. Hemery, C. Lecoutre, A simple model to gen-
erate hard satisfiable instances, in: Proceedings of IJCAI 2005, 2005, pp.
337-342.

K. Xu, F. Boussemart, F. Hemery, C. Lecoutre, Random constraint satis-
faction: Easy generation of hard (satisfiable) instances, Artificial Intelli-
gence 171 (8-9) (2007) 514-534.

D. S. Johnson, M. A. Trick (Eds.), Cliques, Coloring, and Satisfiabil-
ity, Vol. 26 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, DIMACS/AMS, 1996.

H. H. Hoos, Programming by optimization., Commun. ACM 55 (2)
(2012) 70-80.

A. R. KhudaBukhsh, L. Xu, H. H. Hoos, K. Leyton-Brown, SATenstein:
Automatically building local search SAT solvers from components, Arti-

12

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

ficial Intelligence 232 (2016) 20—42.

F. Hutter, H. H. Hoos, K. Leyton-Brown, Automated configuration of
mixed integer programming solvers, in: International Conference on In-
tegration of Artificial Intelligence (AI) and Operations Research (OR)
Techniques in Constraint Programming, Springer, 2010, pp. 186-202.

C. Luo, H. H.Hoos, S. Cai, Q. Lin, H. Zhang, D. Zhang, Local search
with efficient automatic configuration for minimum vertex cover, in: Pro-
ceedings of IICAI 2019, 2019.

C. Ansétegui, M. Sellmann, K. Tierney, A gender-based genetic algo-
rithm for the automatic configuration of algorithms, in: International Con-
ference on Principles and Practice of Constraint Programming, Springer,
2009, pp. 142-157.

F. Hutter, H. H. Hoos, K. Leyton-Brown, T. Stiitzle, ParamILS: an au-
tomatic algorithm configuration framework, Journal of Artificial Intelli-
gence Research 36 (1) (2009) 267-306.

F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-based opti-
mization for general algorithm configuration, in: Proceedings of LION
2011, 2011, pp. 507-523.

F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. Hoos, K. Leyton-Brown,
The configurable sat solver challenge (cssc), Artificial Intelligence 243
(2017) 1-25.

L. Xu, F. Hutter, H. H. Hoos, K. Leyton-Brown, Hydra-mip: Automated
algorithm configuration and selection for mixed integer programming, in:
RCRA workshop on experimental evaluation of algorithms for solving
problems with combinatorial explosion at the international joint confer-
ence on artificial intelligence (IICAI), 2011, pp. 16-30.

M. Vallati, C. Fawcett, A. E. Gerevini, H. Hoos, A. Saetti, Automatic gen-
eration of efficient domain-optimized planners from generic parametrized
planners, in: Sixth Annual Symposium on Combinatorial Search, 2013.
M. Birattari, Z. Yuan, P. Balaprakash, T. Stiitzle, F-race and iterated f-
race: An overview, in: Experimental methods for the analysis of opti-
mization algorithms, Springer, 2010, pp. 311-336.

M. Lpez-Ibez, J. Dubois-Lacoste, L. P. Cceres, M. Birattari, T. Sttzle,
The irace package: Iterated racing for automatic algorithm configuration,

(35]
[36]

(37]

(38]

[39]

(40]

(41]

[42]

Operations Research Perspectives 3 (2016) 43-58.

H. H. Hoos, T. Stiitzle, Stochastic Local Search: Foundations & Applica-
tions, Elsevier / Morgan Kaufmann, 2004.

F. Glover, Tabu search?part i, ORSA Journal on computing 1 (3) (1989)
190-206.

S. Cai, K. Su, A. Sattar, Local search with edge weighting and configura-
tion checking heuristics for minimum vertex cover, Artificial Intelligence
175 (9-10) (2011) 1672-1696.

S. Cai, Balance between complexity and quality: Local search for min-
imum vertex cover in massive graphs, in: Proceedings of IJCAI 2015,
2015, pp. 747-753.

D. S. Johnson, M. A. Trick, Cliques, coloring, and satisfiability: sec-
ond DIMACS implementation challenge, October 11-13, 1993, Vol. 26,
American Mathematical Soc., 1996.

S. Richter, M. Helmert, C. Gretton, A stochastic local search approach to
vertex cover, in: Annual Conference on Artificial Intelligence, Springer,
2007, pp. 412-426.

C.-M. Li, H. Jiang, F. Manya, On minimization of the number of branches
in branch-and-bound algorithms for the maximum clique problem, Com-
puters & Operations Research 84 (2017) 1-15.

C. McCreesh, P. Prosser, K. Simpson, J. Trimble, On maximum weight
clique algorithms, and how they are evaluated, in: International Con-
ference on Principles and Practice of Constraint Programming, Springer,
2017, pp. 206-225.

13

