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Efficiency ranking using Dominance Network and Multiobjective 

Optimization indexes 

Abstract 

This paper presents a new approach for ranking organizational units within a benchmarking context. 

Instead of the conventional optimization-based techniques, the proposed approach uses Social 

network analysis and Multiobjective optimization concepts to extract second-order features from 

the input-output data, integrating the resulting multidimensional information using TOPSIS. It 

shows how several expert and intelligent systems techniques can be harmoniously integrated and 

applied to performance assessment. The proposed approach has been used for ranking the 

performance of 27 major US airlines, comparing the results with some existing Data Envelopment 

Analysis methods. It is shown that the use of a richer information set instead of the raw input-output 

data leads to an innovative and more effective way of discriminating between efficient units. 

Keywords: Efficiency; Ranking; TOPSIS; PageRank; Crowding distance; Airlines 

1. Introduction 

Assessing the efficiency of organizational units is an important, well-researched issue. The most 

common approach is a non-parametric benchmarking technique known as Data Envelopment 

Analysis (DEA). DEA is a data-driven mathematical tool that only uses data on the inputs 

consumed and the outputs produced by the units under study, which are commonly termed Decision 

Making Units (DMUs). From the observed data and using some standard axioms (such as free 

disposability and convexity), DEA infers the Production Possibility Set (PPS, a.k.a. DEA 

technology) which represents all feasible operating points. The non-dominated set within this PPS 

corresponds to the Efficient Frontier (EF). The DMUs can be projected onto the EF using different 

DEA approaches (e.g. Hladík 2018, Lozano and Soltani 2018, Lozano and Calzada-Infante 2018a). 

For each inefficient DMU an efficiency score and an efficient target are provided by DEA. Efficient 

DMUs are non-dominated and thus projected onto themselves, getting an efficiency score of one. 

This lack of discriminatory power among the efficient DMUs motivates the existence of a number 

of DEA approaches aimed at discriminating and ranking efficient DMUs. There are a number of 

review papers on the subject (e.g. Adler et al. 2002, Jahanshahloo et al. 2008, Hosseinzadeh Lofti et 

al. 2013). In particular, we refer the reader to the recent paper by Aldamak and Zolfaghari (2017), 

which reviews up to ten different categories of DEA ranking methods, such as super-efficiency, 

cross-efficiency, common set of weights, cross-influence, etc. Most of the existing methods are 
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based on optimization models that directly process the input and output data without analysing it to 

extract higher-level information. This paper follows a different path, analysing the available data 

from different perspectives and computing a multidimensional set of indexes that provide a richer 

view of the problem and lead to a more effective ranking of the efficient DMUs. It also shows how 

several expert and intelligent systems (EIS) techniques can be harmoniously integrated to develop 

an effective benchmarking and performance assessment method. 

Actually, different EIS techniques, such as TOPSIS (Namazi and Mohammadi 2018), Social 

network analysis (Lozano and Calzada-Infante 2017), Decision trees (Samoilenko and Osei-Bryson 

2008), Cooperative game theory (Hinojosa et al. 2017) or Self-organizing maps (Sharma and Yu 

2009) have already been used for benchmarking and efficiency assessment. In particular, as regards 

DMU ranking, Hosseinzadeh Lofti et al. (2011) and Jahantighi et al. (2013) use TOPSIS to integrate 

the results from different conventional DEA ranking methods. Jahanshahloo et al. (2011) also use 

TOPSIS but applied to the cross-efficiency matrix computed using interval DEA. Social network 

analysis (SNA) has also been applied to DMU ranking by Liu et al. (2009, 2010) and Leem and 

Chun (2015). In these papers Eigenvector centrality and PageRank are used to rank the efficient 

DMUs. The corresponding network is built using the optimal values of the lambda variables 

computed by an envelopment DEA model. The approaches differ in that Liu et al. (2009, 2010) 

consider a denser network by solving DEA models with all possible input/output specifications, 

while Leem and Chun (2015) consider only the full input/output DEA model. More recently, Simon 

de Blas et al. (2018) use the authority and hub indexes computed by a modified HITS algorithm to 

rank efficient and inefficient DMUs. Finally, Multiobjective optimization (MO) has also been used 

for DMU ranking (e.g. Carrillo and Jorge 2016). 

This paper proposes an integrated approach that combines different EIS methods in a novel way for 

the purpose of ranking efficient DMUs. Thus, SNA and MO are used to provide information on the 

role and significance of the input-output patterns of the observed DMUs. This information is then 

effectively integrated using TOPSIS (Hwang and Yoon 1981). The proposed approach shows how 

different EIS tools can be used synergistically to generate and process a richer information set 

instead of using the conventional optimization-based DEA approach. In particular, SNA and MO 

are used to extract second-order features from the raw input-output data by using concepts such as 

Dominance Networks (DN, Calzada-Infante and Lozano 2016) and Pareto Front. Although some of 

the SNA and MO performance indicators used (e.g. PageRank, Hypervolume, Crowding distance, 

etc) are well known, their joint use to provide a multidimensional perspective is innovative as it is 

also original the use of DN for DMU ranking. The use of TOPSIS in the second step is not original 

but perfectly fits its purpose as integrator of the proposed SNA and MO indicators. 
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The structure of the paper is the following. In section 2 the different tools used in this paper are 

briefly reviewed. Section 3 presents the proposed EIS-based DMU ranking approach. Section 4 

applies this approach to the major US Airlines, discussing the results and comparing them with 

other DEA ranking methods. Finally, Section 5 summarizes and concludes. 

2. Review of techniques used 

In this section the different techniques that will take part in the proposed approach are presented 

separately. This will facilitate the understanding of the proposed EIS-based DMU ranking approach 

presented in the next section. 

2.1. Data Envelopment Analysis 

Consider a set of DMUs whose inputs consumption and outputs productions are known. Let 

j index on DMUs (varying from 1 to n) 

i  index for inputs (varying from 1 to m) 

k  index for outputs (varying from 1 to s) 

xij  amount of input i consumed by DMU j 

ykj  amount of output k produced by DMU j 

The Variable Returns to Scale (VRS) DEA technology corresponds to the set of feasible operating 

points 

     
n n n

1 2 n j j ij i j kj k
j 1 j 1 j 1

ˆ ˆ ˆ ˆ ˆ ˆT x, y x, y : , ,..., 0 1 x x i y y k

  

  
                
  

    (1) 

Given a DMU 0, it can be projected onto the EF using any of a number of DEA models (input or 

output-oriented, radial, non-radial, slack-based, etc.). In particular, consider the following Slacks-

Based Inefficiency (SBI) DEA model (Fukuyama and Weber 2009): 
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m s ss1 i kMax
x ym s c ci 1 k 1i k

 
 
 
    
 

   (2) 

s.t. 

n

j ij i0 i
j 1

x x s i



     (3) 

n

j kj k0 k
j 1

y y s k



     (4) 

n

j
j 1

1


   
(5) 

j i k0 j s 0 i s 0 k         (6) 

The optimal solution of the above DEA model provides an efficiency score 

m s ss1 i kSBI 10 x ym s c ci 1 k 1i k

 
 

   
    
 

   (7) 

and corresponding efficient targets 

n n

í0 j ij k0 j kj
j 1 j 1

ˆ ˆx x i y y k
 

        (8) 

The efficiency scores can be used to rank the inefficient DMUs. However, conventional DEA 

models cannot discriminate between the efficient DMUs as all of them are assigned unity efficiency 

scores. As indicated in the introduction, this is the justification for the need of ranking methods in 

DEA. 
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2.2. Dominance network analysis 

A DN is a directed weighted network (D,E) where D is the set of nodes and E is the set of arcs 

between them. Each node j D  corresponds to a feasible operating point with input and output 

vectors  j jx , y . The arcs correspond to the dominance relationships between the nodes. Thus, an 

arc between a node r and a node j exists if j dominates r, i.e. 

   ij ir kj kr j j r rx x i y y k x , y x , y       . Such an arc has an associated weight 

m s
ir ij kj kr

rj x y
i 1 k 1i k

x x y y1
e

m s c c 

  
   
 
 

   (9) 

where x
ic  and 

y
k

c  are slacks normalizing constants. Let  D r be the set of nodes that dominate node 

r. As shown in Lozano and Calzada-Infante (2018b), the arc weights have the following additive 

property pj pr rjr D(p) j D(r) e e e      . When visualizing the network it is convenient, in 

order to reduce the clutter, not to draw the transitive arcs. This type of filter is called skeletonization 

(Lozano and Calzada-Infante 2018b). 

The out-degree of a node is the number of arcs that leave that node and corresponds to  D r . 

Similarly, the in-degree of a node is the number of arcs that enter a node, i.e. the number of nodes 

that dominate it. The asymmetry and transitivity of the dominance relationships mean that DNs 

have a layered structure with some nodes (labelled layer 0) being non-dominated and hence having 

zero out-degree. The layer of all the nodes can be computed recursively as 

j D(r)

0 if D(r)
(r) 1 max ( j) otherwise




    



 (10) 

Many SNA indexes can be used to characterize a DN, both at the local and global levels, but for the 

purpose of this research, i.e. ranking the efficient DMUs, we will only need the following three: 

(i) In-strength: This is the sum of the weights of the arcs that enter a node 

 

in
j rj

r:j D(r)

s e



  . If j is an efficient DMU then this SNA index measures the total 
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increase in efficiency if all the inefficient DMUs dominated by j reduce their inputs 

and increase their outputs to the corresponding levels of DMU j. 

(ii) Inefficiency radius: This is the maximum of the weights of the arcs that enter a node 

 
j rj

r:j D(r)
max e


  . It corresponds to the length of the longest arc entering that node. 

(iii) PageRank: This is a node centrality index that is commonly used in directed 

networks. It was originally proposed to rank the relevance of the web pages returned 

by Google (Brin and Page 1998). Basically, this index measures the relative 

frequency with which a random surfer that, starting from any node and randomly 

following one outgoing link (using the weights of those outgoing links to compute 

the probability of choosing each of them), visits each node of the network. This 

measure has two refinements, one to allow nodes with a zero in-degree to have a 

certain probability of being visited and another to escape from nodes with a zero out-

degree that otherwise would be like dead ends. The parameter  is called the 

damping factor and usually takes a value of 0.85. 

   
 

rj
j r rout

out outrr:s 0 r:s 0r r

e 1 1
PageRank PageRank PR 1

n ns
 

             
(11) 

2.3. Multiobjective Optimization performance indicators 

MO problems appear when there are multiple conflicting objective functions, so there is no single 

solution which could simultaneously optimize all of them. In MO, the solutions of interest are, as 

the operating points in DEA, those that are not dominated. The equivalent to the DEA EF is called, 

in MO, the Pareto Frontier (PF, a.k.a. Pareto Optimal Set). Many different MO methods have been 

proposed in the literature (see Marler and Arora 2004) with population-based methods, such as 

Multi-Objective Evolutionary Algorithms (Nedjah and de Macedo Mourelle 2015; Zhou et al. 

2011), among the most commonly used. Actually, population-based MO methods do not compute a 

single solution but try to estimate the whole PF. Since the solution method computes a discrete 

approximation of the true Pareto Front there exist a number of so-called performance indicators that 

measure how good those approximations are and how much better one approximation is with 

respect to another. There are many performance indicators measuring the separation/diversity of the 

solutions in the PF, the ratio of non-dominated solutions, etc. Other performance indicators 

frequently used go by the names of hypervolume (a.k.a. size of space covered), spread, spacing, 
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Zitzler measure, etc (see, e.g., Zitzler et al. 2003, Zhou et al. 2011). Although, as indicated above, 

these performance indicators aim at assessing the whole PF, they are generally computed as the 

average or the sum of measures computed for each individual solution. This means that we can also 

use those measures at the solution level. Specifically, we are interested in the following three MO 

indicators: 

(i) Spacing: This indicator measures the minimum distance between a point and all the 

others. The idea is that, since the PF is a discrete approximation to a possible infinite 

set, having two solutions that are very similar implies an undesirable redundancy. In 

the case of the DEA EF, this indicator measures the degree of similarity of two 

operating points. Thus, two efficient DMUs that represent close operating points are 

somewhat redundant as benchmarks and it would be more useful if they represented 

differentiated efficient operating points. 

m s
ij ij' kj kj'

j x yj' EF
i 1 k 1i k

x x y y1
Spacing min

m s c c
 

  
   

  
 

   (12) 

(ii) Hypervolume: This indicator measures the size of the space covered by each non-

dominated solution. Each dimension is normalized using the optimal objective 

function value, which, in the case of the DEA EF, would be the maximum value if it 

is an output dimension and the minimum value if it is an input dimension 

 

 ir
kj r

j
kr ijk i

r

min xy
Hypervolume

max y x
    (13) 

(iii) Crowding distance: This indicator was proposed in the popular NSGAII MO 

evolutionary algorithm (Deb et al. 2002) and its aim is also to determine how 

separate the non-dominated solutions are from one another. It is calculated as the 

rectangular distance between the two PF solutions that are closest to a given non-

dominated solution. It is computed sorting the non-dominated solutions for each 

objective function and summing the difference, in each dimension, between the 

neighbouring upper and lower values of the given solution. For the solutions which 

are on the border of the frontier, the crowding distance is generally assigned an 
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infinite value but in the case of the proposed approach we can make it equal to two 

times the distance to the next upper or lower value (depending on whether it is the 

maximum or minimum value of the corresponding input or output dimension). 

Defining the neighbouring upper and lower values of a given DMU j for each input 

and output dimension as 
 

ij ir
r j:x xir ij

u(x ) min x
 

 , 
 

ij ir
r j:x xir ij

l(x ) max x
 

 , 

 
kj ir

r j:y y kkr kj

u(y ) min y
 

  and 
 

kj ir
r j:y y kkr kj

l(y ) max y
 

 , its crowding distance can be 

expressed as 

m s
ij ij kj kj

j x y
i 1 k 1i k

u(x ) l(x ) u(y ) l(y )
CrowdingDistance

c c 

 
    (14) 

2.4. TOPSIS 

TOPSIS is a popular multicriteria decision making technique and can thus rank a finite number of 

alternatives using multiple attributes or criteria (see, e.g., Behzadian et al. 2012). Its name is an 

acronym of Technique for Order Preference by Similarity to Ideal Solution which refers to its use of 

the concepts of Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS, a.k.a. Anti-Ideal 

Solution). The former corresponds to a virtual alternative having the best value for each of the 

attributes while the latter is the opposite, i.e. a virtual alternative having the worst value for each of 

the attributes. For each alternative, its Euclidean distance to the PIS and NIS are computed and 

alternatives that are closer to PIS and farther from NIS are preferred. There are different TOPSIS 

variants (see, e.g., Zavadskas et al. 2016). The one that is proposed in this paper is Modified 

TOPSIS (Deng et al. 2000) which uses objective weights directly derived from the data. This 

approach is the most adequate in our case since there is no specific Decision Maker that could 

supply the importance weights for the different criteria. 

Given the decision matrix U (whose rows correspond to the alternatives and whose columns 

correspond to the criteria), the steps of the Modified TOPSIS method are the following: 

1. Normalize the decision matrix so that the sum of each column is unity 
jt

jt
rt

r

u
v

u


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2. Compute the criteria weights from the normalized decision matrix. This can be done using, 

for example, the standard deviation of the normalized attribute values of each criterion, i.e. 

t
t

q
q

w





 

3. Compute PIS and NIS vectors with the best and worst values, respectively, for each of the c 

criteria  1 2 cv v , v ,..., v     and  1 2 cv v , v ,..., v     

jt
j

t
jt

j

max v if t is a positive attribute

v
min v if t is a negative attribute






 



     

jt
j

j
t

jt
j

min v if t is a negative attribute

v

max v if t is a positive attribute






 



 (15) 

4. Compute the weighted Euclidean distance from each alternative to PIS and NIS 

 
2c

j t t jt

t 1

d w v v 



      
2c

j t t jt

t 1

d w v v 



    (16) 

5. Compute the closeness/farness ratio and rank the alternatives in decreasing order of this ratio 

j
j

j j

d
T

d d



 



 (17) 

3. Proposed EIS-based DMU ranking approach 

The first step of the proposed approach consists of solving DEA models (2)-(6) and computing SBI 

efficiency scores (7) and, for the inefficient DMUs, corresponding efficient targets (8). Inefficient 

DMUs can be ranked using their SBI efficiency scores. In order to rank the efficient DMUs, which 

have their SBI efficiency score equal to one, we propose: 

1. Build a DN whose nodes are the observed DMUs plus the efficient targets computed for the 

inefficient DMUs. 
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2. Compute the in-strength, inefficiency radius and PageRank of the DN nodes. In the case of 

the in-strength and the inefficiency radius, they need to be computed only for the efficient 

DMUs. In the case of PageRank, although only the values for the efficient DMUs will be 

used later on, the recursive nature of the PageRank calculation (11) requires that it be 

computed for all the nodes of the network. 

3. Compute the Spacing, Hypervolume and Crowding Distance of each efficient DMU. 

4. Form a decision matrix where the alternatives are the efficient DMUs to be ranked and the 

attributes are the three SNA DN measures plus the three MO indicators computed in steps 2 

and 3 above. 

5. Apply Modified TOPSIS considering that all the attributes are positive, i.e. the larger the 

better, i.e. an efficient DMU having more in-strength, a larger inefficiency radius, higher 

PageRank, more Spacing, more Crowding Distance and a larger Hypervolume is preferred. 

In summary, the proposed approach makes use and takes advantage of the strength of different 

techniques. First of all is DEA, which is the basic Frontier Analysis methodology. DEA, however, 

has limitations one of which is its inability to discriminate between the efficient DMUs. To that end, 

six important indicators are used. Three of them correspond to SNA measures of the nodes of a DN 

that takes into account the dominance relationships between the DMUs. Thus, if an efficient DMU 

dominates many inefficient DMUs and by a large margin (i.e. it consumes much less inputs and 

much more outputs) then that efficient DMU is more “important” in the sense of being a relevant 

and useful benchmark. Similarly, the PageRank of an efficient DMU is a measure of how likely it is 

to be selected as a benchmark if the inefficient DMUs choose their benchmarks proportional to the 

corresponding efficiency differences between the dominating and dominated nodes. Therefore, 

these three SNA measures allow the gauging of the relative benchmark importance of each efficient 

DMU. 

In order to enrich the analysis, and instead of including more SNA measures, we also propose to use 

information from an MO perspective. Given the closeness between the EF of DEA and the PF of 

MO, we have been able to adapt some of the multiple MO performance indicators to the DEA 

ranking context. Thus, the separation of the efficient DMUs is seen as a positive attribute as it 

provides non-redundant information about the EF, thus defining distinct efficient operating points 

and hence increasing the overall benchmarking possibilities. Also, the hypervolume of the region of 

the PPS covered by each efficient DMU can be used to gauge the benchmarking capacity of each 

efficient DMU. 
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As already mentioned, although to keep it simple and parsimonious we have considered only a 

limited number of SNA and MO measures, additional indicators can be included if desired. One of 

the advantages of using TOPSIS is that it can accommodate multiple and varied types of attribute. 

That is one of its strengths, together with its ease of calculation and clear graphical interpretation. 

4. Efficiency assessment and Ranking of US airlines 

In this section, the usefulness of the proposed approach is illustrated, applying it to assessing the 

efficiency and ranking the passenger services of major US airlines. Before we describe this 

application, we should mention that DEA has been extensively applied to assess the efficiency of 

airlines using conventional DEA (e.g. Barros and Dieke 2007; Lozano and Gutiérrez 2011; Cui and 

Li 2015; Merkert and Pearson 2015) as well as network DEA models (e.g. Zhu 2011; Tavassoli et 

al. 2014; Lozano and Gutiérrez 2014; Omrani and Soltanzadeh 2016). It is also worth mentioning 

that TOPSIS has been used by some researchers, as an alternative to DEA, for airlines performance 

assessment and ranking (Feng and Wang 2000; Wang 2008; Barros and Wanke 2015; Wanke et al. 

2015). 

The data used for this research correspond to year 2015 and were obtained from the Bureau of 

Transportation Statistics website (https://www.bts.gov/). Discarding those airlines for which some 

data was missing, a total of 27 observed DMUs were obtained. The inputs considered are aircraft 

hours (which is considered a non-discretionary input, in thousands), number of employees (Full 

Time Equivalent (FTE), in thousands) and fuel consumption (in million litres) while the output 

considered is Revenue Passenger Kilometres (RPK, in millions). Table 1 shows the values of the 

corresponding variables for the different DMUs. 

============================== Table 1 ================================== 

The first step was to solve the SBI VRS DEA model (2)-(6) using the variables standard deviation 

as slacks-normalizing constants. Note that the non-discretionary input has not been included in the 

objective function as per Banker and Morey (1986). Eleven DMUs were found to be efficient. For 

the other 16, the corresponding efficiency scores and targets were computed. The optimal input and 

output slacks and corresponding objective function value (2) are shown in Table 2.  

============================== Table 2 ================================== 

The second step is building the DN formed by the original 27 DMUs, plus the 16 efficient targets 

computed in step one for the 16 inefficient DMUs. Again, when computing the arcs weights, the 

https://www.bts.gov/
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non-discretionary input is not considered. That input is, however, taken into account when 

determining whether a DMU dominates another. Figure 1 shows the visualization of this DN using 

a layered layout. The width of the edges is proportional to their weights. Note that of the total 43 

nodes, 27 belong to layer 0 (the original 11 efficient DMUs plus the 16 efficient targets). Most of 

the 16 inefficient DMUs belong to layer 1. 

============================== Figure 1 ================================== 

The next step is to compute the SNA measures, i.e. in-strength, inefficiency radius and PageRank of 

the nodes corresponding to the efficient DMU. These are shown in Table 3. The table also shows 

the MO indicators computed for each of the efficient DMUs. As before, the non-discretionary input 

is not considered in the computation of these indicators. 

============================== Table 3 ================================== 

The final step is to apply TOPSIS using the data in Table 3 as the decision matrix. The normalized 

decision matrix and PIS and NIS vectors are shown in Table 4, which also shows the “objective” 

criteria weights computed using the standard deviation method (see Deng et al. 2000) 

============================== Table 4 ================================== 

Table 5 shows the distance of each efficient DMU to PIS and NIS as well as the closeness/farness 

ratio and the resulting ranking. The highest rank is assigned to Southwest Airlines (WN), which 

does not dominate any other (it has zero in-strength and inefficiency radius) but operates in a niche 

of the PPS where there are no other similar operating points (it has high spacing and crowding 

distance). 

============================== Table 5 ================================== 

The results of the proposed approach can be compared with those of the SNA DEA approaches of 

Liu et al. (2009, 2010) and Leem and Chun (2015). Figures 2 and 3 show the weighted network 

considered in each case. Note that the Liu et al. (2009, 2010) networks are denser than that of Leem 

and Chun (2015) as the former considers many different input/output specifications. Note that none 

of these networks is based on the concept of dominance and hence are completely different from the 

proposed DN. 

============================== Figure 2 ================================== 

============================== Figure 3 ================================== 
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Table 6 shows the Eigenvector and PageRank centrality computed for the networks of Liu et al. 

(2009, 2010) and Leem and Chun (2015), respectively, and the resulting ranking of the efficient 

DMUs. As a representative of conventional (in the sense of not using SNA) DEA ranking methods, 

in Table 6, the super-SBM scores (Tone 2002) and the corresponding ranking are also shown. Note 

that although the second and third ranked DMUs in the proposed approach (NK and F9, 

respectively) occupy similar positions in the other methods, that does not happen in the case of WN, 

which only in super-SBM occupies a highly ranked position. 

============================== Table 6 ================================== 

Finally, Table 7 shows the Spearman’s rank order correlation between the four methods. The 

different methods rank the DMUs from different points of view and thus it is normal that their 

rankings differ. In particular, it can be seen that rankings computed by the SNA DEA approaches 

are not correlated with that of super-SBM. 

============================== Table 7 ================================== 

5. Conclusions 

This paper proposes a new EIS-based ranking approach to discriminate between efficient DMUs. 

The gist of the approach is the extraction of second-order features from the observed input-output 

data using DN, SNA and MO concepts, integrating them, in a second step, using TOPSIS. The 

proposed approach, thus, generate and process a richer information set on which to base the ranking 

decisions, which enhances its discrimating power compared with the existing optimization-based 

approaches. It is also more effective than existing DMU ranking approaches than only use SNA but 

not DN or MO. 

Specifically, the proposed approach computes three DN indicators that measure the in-strength, 

inefficiency radius and PageRank centrality of the efficient DMUs and can be used to determine the 

centrality and benchmarking importance of the DMUs in the network. This is complemented with 

another three MO performance indicators measuring the spacing and Crowding distance, i.e. the 

uniformity of the spread of the Pareto Front formed by the efficient DMUs, as well as the size of the 

hypervolume dominated by each efficient DMU. 

Thus, the proposed approach uses an innovative perspective that integrates information about the 

extent of the dominance and the degree of spacing of the efficient DMUs. The criteria considered 

favour those efficient DMUs that dominate (and hence can be used as benchmarks) many other 
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DMUs. Also, the larger the extent of that dominance, the larger the efficiency improvements that 

can be credited to the DMU. The size of the hypervolume (in the input-output space) associated 

with the efficient DMU operating point is also taken into account. And finally, the degree of 

specialization of the DMU is also considered, with DMUs occupying a sparse region of the PPS 

being preferred. This is because efficient DMUs that are close within the input-output space are, to 

some extent, redundant in the definition of the EF while specialized DMUs make a larger 

incremental contribution to enlarging the PPS. 

The proposed approach has been applied to a sample of 27 major US airlines. A conventional VRS 

DEA approach determines that 11 of the airlines are efficient. In order to rank them, the DN of the 

sample has been built and the in-strength, inefficiency radius and PageRank measures of the 

different DMUs have been computed. This information has been complemented with that provided 

by the hypervolume, spacing and crowding distance computed for each efficient DMU. The results 

put Southwest Airlines, the world’s largest low-cost carrier and a success story in the sector, at the 

top of the efficient DMUs. None of the methods with which it has been compared ranks this airline 

on top. Because it processes the input-output data to derive a richer set of performance indicators 

the proposed approach provides an enhanced method of discriminating between the efficient 

DMUs. It is also an example of the synergistic use of multiple EIS techniques and shows their 

potential for extracting higher-level information from raw data and process it in a more effective 

way. Of course, using multiple techniques instead of just a conventional optimization approach 

requires more expertise and a broader, more integrative perspective but this increase in complexity 

pays off in terms of the quality of the results. 

As topics for further research, one should be to extend the proposed approach to rank the DMUs 

when data on multiple time periods are available. For multiperiod data, either a contemporaneous, a 

sequential or an intertemporal approach (Tulkens and Vanden Eeckaut 1995) can be adopted. The 

ability to also handle uncertainty in the form of imprecise data is more challenging but would lead 

to a more robust method. Another interesting line of research is integrating information provided by 

other EIS techniques (such as Cooperative Game Theory or Self-Organizing Maps) as well as from 

other DEA ranking methods (e.g. cross-efficiency, super-efficiency, etc.) keeping TOPSIS as top-

level integrator. Finally, a more sophisticated approach would involve substituting TOPSIS by a 

mixture of experts method. 
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Table 1. Inputs and output variables for major US airlines (year 2015) 

  Inputs 
Output 

DMU 
Non-

discretionary 
Discretionary 

IATA Airline Hours Fuel FTE RPK 

WN Southwest Airlines Co. 2,200.09 7,208.17 47.98 189,284.16 

QX Horizon Air 125.09 91.76 3.10 3,711.39 

HA Hawaiian Airlines Inc. 144.72 883.38 4.92 23,193.80 

DL Delta Air Lines Inc. 2,533.17 12,805.40 78.35 303,159.02 

AA American Airlines Inc. 2,459.27 11,521.81 79.65 268,866.21 

8C Air Transport Int’l 16.10 84.21 0.28 81.92 

AS Alaska Airlines Inc. 491.23 1,662.26 10.73 48,835.47 

UA United Air Lines Inc. 2,689.09 12,130.42 78.65 295,514.83 

5Y Atlas Air Inc. 119.60 1,317.24 1.86 1,516.89 

ZW Air Wisconsin Airlines  167.78 303.57 1.89 3,681.31 

OO SkyWest Airlines Inc. 835.55 1,602.27 10.00 27,319.30 

9E Endeavor Air Inc. 245.23 578.41 3.28 8,902.24 

EV ExpressJet Airlines Inc. 719.03 2,568.26 7.97 20,415.27 

G4 Allegiant Air 139.05 567.63 2.58 14,473.70 

X9 Omni Air Int’l LLC 23.59 159.36 0.84 2,767.26 

YV Mesa Airlines Inc. 244.47 600.68 2.56 10,319.77 

MQ Envoy Air 340.29 678.61 10.53 8,681.39 

GL Miami Air International 7.58 26.27 0.34 435.75 

B6 JetBlue Airways 776.24 2,649.25 14.61 67,191.19 

NK Spirit Air Lines 277.34 931.68 4.34 28,961.11 

SY MN Airlines LLC 64.86 201.47 1.37 5,439.34 

F9 Frontier Airlines Inc. 218.93 737.49 2.98 21,557.34 

S5 Shuttle America Corp. 220.12 501.22 2.69 6,980.89 

YX Republic Airlines 301.48 717.06 3.14 10,912.09 

CP Compass Airlines 136.12 331.80 1.54 5,650.11 

VX Virgin America 192.40 639.47 2.64 16,796.38 

G7 GoJet Airlines LLC 112.38 260.48 1.18 3,937.35 
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Table 2. Optimal input/output slacks and objective function value (2) of the inefficient DMUs 

 Input slacks Output slack 
Obj. function (2) 

DMU Fuel FTE RPK 

AA 401.99 10.45 0.00 0.174 

5Y 1,254.57 1.38 0.00 0.128 

ZW 168.01 1.14 0.00 0.030 

OO 713.65 5.96 0.00 0.141 

9E 267.05 1.88 0.00 0.048 

EV 1,869.23 5.13 0.00 0.231 

G4 93.57 0.25 0.00 0.011 

X9 48.66 0.06 0.00 0.005 

YV 241.59 0.98 0.00 0.034 

MQ 374.69 9.15 0.00 0.154 

SY 6.71 0.40 0.00 0.006 

S5 254.56 1.53 0.00 0.043 

YX 338.02 1.49 0.00 0.049 

CP 129.95 0.55 0.00 0.019 

VX 62.30 0.26 0.00 0.009 

G7 116.30 0.40 0.00 0.016 

 

 

 

Table 3. SNA and MO indicators for efficient DMUs 

DMU 
Crowding 
Distance 

Spacing Hypervolume In-strength PageRank 
Inefficiency 

Radius 

WN 6.7125 0.9286 1.3E-05 0.0000 0.7455 0.0000 

QX 0.0537 0.0366 3.1E-04 0.0000 0.7455 0.0000 

HA 0.3689 0.0278 1.3E-04 0.1653 0.8876 0.1653 

DL 0.1672 0.0914 7.2E-06 0.0000 0.7455 0.0000 

8C 0.0077 0.0073 8.4E-05 0.0000 0.7455 0.0000 

AS 1.2742 0.2075 6.5E-05 0.0000 0.7455 0.0000 

UA 0.8447 0.0914 7.4E-06 0.0000 0.7455 0.0000 

GL 0.0349 0.0073 1.2E-03 0.0000 0.7455 0.0000 

B6 4.5491 0.2075 4.2E-05 0.0000 0.7455 0.0000 

NK 0.4764 0.0139 1.7E-04 0.3030 1.2199 0.1857 

F9 0.0899 0.0095 2.3E-04 0.1928 0.9112 0.1928 
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Table 4. Normalized decision matrix, criteria weights and PIS and NIS vectors 

DMU 
Crowding 
Distance 

Spacing Hypervolume In-strength PageRank 
Inefficiency 

Radius 

WN 0.4604 0.5701 0.0059 0.0000 0.0830 0.0000 

QX 0.0037 0.0225 0.1401 0.0000 0.0830 0.0000 

HA 0.0253 0.0171 0.0572 0.2501 0.0988 0.3040 

DL 0.0115 0.0561 0.0032 0.0000 0.0830 0.0000 

8C 0.0005 0.0045 0.0379 0.0000 0.0830 0.0000 

AS 0.0874 0.1274 0.0294 0.0000 0.0830 0.0000 

UA 0.0579 0.0561 0.0033 0.0000 0.0830 0.0000 

GL 0.0024 0.0045 0.5222 0.0000 0.0830 0.0000 

B6 0.3120 0.1274 0.0186 0.0000 0.0830 0.0000 

NK 0.0327 0.0086 0.0769 0.4583 0.1358 0.3415 

F9 0.0062 0.0058 0.1052 0.2916 0.1014 0.3545 

Weight 0.1894 0.2060 0.1865 0.2033 0.0204 0.1944 

PIS 0.4604 0.5701 0.5222 0.4583 0.1358 0.3545 

NIS 0.0005 0.0045 0.0032 0.0000 0.0830 0.0000 

 

 

 

 

Table 5. Distance to PIS and NIS, closeness/farness ratio and ranking obtained by proposed 

approach 

DMU jd

 jd

 jT  Rank 

WN 0.3419 0.3255 0.4877 1 

QX 0.4424 0.0597 0.1188 8 

HA 0.3854 0.1771 0.3149 5 

DL 0.4583 0.0239 0.0496 10 

8C 0.4657 0.0149 0.0311 11 

AS 0.4233 0.0683 0.1390 7 

UA 0.4500 0.0343 0.0707 9 

GL 0.4157 0.2241 0.3503 4 

B6 0.3988 0.1467 0.2690 6 

NK 0.3696 0.2582 0.4112 2 

F9 0.3778 0.2090 0.3561 3 
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Table 6. Ranking of Liu et al. (2009, 2010), Leem and Chun (2015) and Super-SBM (Tone 2002) 

 Liu et al. approach Leem and Chun approach Super-SBM 

DMU Eigenvector centr. Rank PageRank centr. Rank Score Rank 

WN 0.3708 10 1.2560 5 1.0417 3 

QX 0.2214 5 1.0000 9 1.1506 1 

HA 0.1264 4 1.0797 6 1.0000 10 

DL 0.0652 9 1.5940 4 1.0278 5 

8C 0.9491 6 1.0000 9 1.0000 10 

AS 1.0000 7 1.0000 9 1.0143 6 

UA 0.6302 11 1.0000 9 1.0123 7 

GL 0.8658 1 8.4521 1 1.0000 10 

B6 0.5244 8 1.0000 9 1.0017 8 

NK 0.0196 3 2.0857 3 1.0879 2 

F9 0.0349 2 5.1325 2 1.0415 4 

 

 

 

 

Table 7. Spearman’s rank correlation coefficients 

 

Proposed 

approach 
Liu et al. 

Leem and 

Chun 
Super-SBM 

Proposed approach 1.000 0.382 0.610 0.312 

Liu et al. - 1.000 0.582 -0.083 

Leem and Chun - -- 1.000 0.106 

Super-SBM 
 

- 
 

1.000 
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Figure 1. Layered layout of proposed DN 
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Figure 2. Liu et al. (2009, 2010) network 
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Figure 3. Leem and Chun (2015) network 

 


