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Abstract

Erdős [3] conjectured that every triangle-free graph G on n vertices contains
a set of bn/2c vertices that spans at most n2/50 edges. Krivelevich proved
the conjecture for graphs with minimum degree at least 2

5n [9]. In [8] Keevash
and Sudakov improved this result to graphs with average degree at least 2

5n.
We strengthen these results by showing that the conjecture holds for graphs
with minimum degree at least 5

14n and for graphs with average degree at least(
2
5 − γ

)
n for some absolute γ > 0. Moreover, we show that the conjecture is

true for graphs which are close to the Petersen graph in edit distance.

Keywords: Triangle-free graph, sparse half, minimum degree, Petersen graph, edit dis-
tance, blowup

1. Introduction

In this paper we consider the edge distribution in triangle-free graphs. A fundamental
result in extremal graph theory, Turán’s theorem implies that if a graph G on n vertices
has more than (1 − 1/r)

(
n
2

)
edges, then G has Kr+1 as a subgraph. One can consider

the following generalization of this problem that was first studied by Erdős, Faudree,
Rousseau and Schelp [5] in 1990. Fix α ∈ (0, 1], and suppose that every set of αn
vertices in G induces more than βn2 edges. What is the smallest β := β(α, r) that
forces G to contain Kr+1?

In particular, one of Erdős’s old and favorite conjectures says that β(1
2
, 2) = 1

50
[3];

he first proposed this in 1975 and offered a $250 prize for its solution later, in [4]. It is
easy to check that the bound 1/50 is tight. It is achieved on the uniform blowup of C5

which is obtained from the 5-cycle by replacing each vertex i by an independent set Vi
of size n/5 (for simplicity assume n is divisible by 5) and each edge ij by a complete
bipartite graph joining Vi and Vj. The blowup of the Petersen graph also achieves this
bound tightly, see Figure 1.

Conjecture 1.1 (Erdős). Any triangle-free graph G on n vertices contains a set of
bn/2c vertices that spans at most n2/50 edges.

1

ar
X

iv
:1

31
1.

58
18

v2
  [

m
at

h.
C

O
] 

 1
0 

Fe
b 

20
15



v10 v7

v9

v6

v8

v3

v5 v2

v4

v1

Figure 1: A sparse half in the uniform blowup of Petersen graph.

In [9] Krivelevich proved that the conjecture holds if 1/50 is replaced by 1/36. He
also showed that it is true for triangle-free graphs with minimum degree 2

5
n. In Section 3

we improve this result by proving the following theorem.

Theorem 1.1. Every triangle-free graph on n vertices with minimum degree at least
5
14
n contains a set of bn/2c vertices that spans at most n2/50 edges.

Our proof of Theorem 1.1 is mainly based on the structural characterization of the
graphs with minimum degree at least 5

14
n, established by Jin, Chen and Koh in [2, 7].

We also use some averaging arguments similar to the ones used in [8, 9].

Keevash and Sudakov [8] improved Krivelevich’s result of [9] showing that the
conjecture holds for graphs with average degree 2

5
n. In Section 5 we extend their result

as follows.

Theorem 1.2. There exists γ > 0 such that every triangle-free graph on n vertices
with at least (1

5
− γ)n2 edges contains a set of bn/2c vertices that spans at most n2/50

edges.

Finally, we study the validity of the conjecture in the neighborhood of the known
extremal examples, in the following sense. In the uniform blowup of the Petersen graph
every set of bn/2c has at least n2/50 edges (see Figure 1). To the best of our knowledge,
the uniform blowups of the Petersen graph and C5, as defined in the beginning of the
introduction, are the only known examples for which Conjecture 1.1 is tight. In Section 4
we develop a set of tools which allow us to prove the Conjecture 1.1 for the classes of
graphs which are close to a fixed graph in edit distance. In Section 6 we use these
tools to verify the conjecture for graphs which are close to the Petersen graph, while
Theorem 1.2 shows that it also holds for graphs close to the 5-cycle. These results can
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2



be considered as a proof of a local version of Conjecture 1.1, in the spirit of recent
results of Lovász [10] and Razborov [12, 13]. Lovász [10] proved Sidorenko’s conjecture
locally in the neighborhood of the conjectured extremal example with respect to the
cut-norm (and consequently, with respect to the edit distance). Razborov proved that
the Caccetta-Häggkvist conjecture [12] and the Turán’s (3, 4)-problem [13] hold locally
in the neighborhood of families of the known examples in a slightly different sense, as
he additionally forbade certain induced subconfigurations.

2. Notation and Preliminary Results

For a graph G, we let v(G) := |V (G)| and e(G) := |E(G)|. Denote by NG(v) the neigh-
borhood of a vertex v ∈ V (G) and by dG(v) the degree of v (i.e. dG(v) := |NG(v)|).
Whenever there is no ambiguity, we will use N(v) and d(v) for shorter notation. The
maximum and the minimum degrees are denoted by ∆(G) and δ(G), respectively.

A graph G is called triangle-free if it does not contain a triangle, it is maximal
triangle-free if adding any edge creates a triangle. We say that G contains a sparse half
if there exists a set of bn/2c vertices in G that spans at most n2/50 edges. Conjecture 1.1
says that there must exist a sparse half in every triangle-free graph.

We say that ω : V (G) → (0, 1) is a weight function on G if
∑

v∈V (G) ω(v) = 1. A

pair (G,ω), where ω is a weight function on G is called a weighted graph. The weight
ω(e) of an edge e = (u, v) in (G,ω) is defined as ω(u) · ω(v). For a set X of vertices
or edges in G let ω(X) :=

∑
x∈X ω(x). The degree of a vertex v in a weighted graph

(G,ω) is defined as ω(N(v)). The minimum degree of the weighted graph (G,ω) is
denoted by δ(G,ω).

We call a real function s : V (G) → R+ a half of G if s(v) ≤ ω(v) for every
v ∈ V (G), and s(V (G)) :=

∑
v∈V (G) s(v) = 1/2. For every edge e = (u, v), we define

s(e) := s(u)s(v). Let s be a half of G, if s(E(G)) :=
∑

e∈E(G) s(e) ≤ 1
50

then s is called
a sparse half.

There is a natural way of associating a weighted graph to a graph G of order n;
that is, we can assign to each vertex v ∈ V (G) weight equal to 1

n
. For each graph G,

the corresponding weighted graph defined as above, is called uniformly weighted G; we
denote it by (G,ωu).

Lemma 2.1. If (G,ωu) has a sparse half, then so does G.

Proof. We claim that, if (G,ωu) has a sparse half, then it has a sparse half s such that
s(v) = 0 or s(v) = 1

n
for all v ∈ V (G) except for possibly one vertex.

Indeed, let us choose a sparse half s of G such that the number of vertices v ∈ V (G)
such that either s(v) = 0 or s(v) = 1

n
is maximum. We show that there exists at most

one vertex u such that 0 < s(u) < 1
n

.
Suppose not and there exist u, v ∈ V (G) such that 0 < s(u), s(v) < 1

n
. We define a

new half s′ : V (G)→ R+. Let s′ be the same as s on all vertices of G, except u and v.
Without loss of generality, suppose s(N(u)) ≤ s(N(v)). Let δ = min{s(u), 1

n
− s(v)}

and define s′(u) = s(u)− δ and s′(v) = s(v) + δ. We will show that s′ is a sparse half.
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Suppose that u and v are adjacent, then

s′(E(G)) = s(E(G))−
∑

x∈N(u)
x 6=v

δs(x) +
∑

y∈N(v)
y 6=u

δs(y) + s′(u)s′(v)− s(u)s(v)

= s(E(G))−
∑

x∈N(u)
x 6=v

δs(x) +
∑

y∈N(v)
y 6=u

δs(y)− δs(v) + δs(u)− δ2

= s(E(G))− δ (s(N(u))− s(N(v)))− δ2 < s(E(G)).

The calculation in the case when u and v are non-adjacent is similar.
It follows that s′ contradicts the choice of s. Hence for all vertices v ∈ V (G) except

maybe one vertex either s(v) = 0 or s(v) = 1
n

. Let

S = {v ∈ V (G) | s(v) = 1/n}.

It follows from the previous observation that |S| ≥ bn/2c. It is easy to see that e(G[S]) ≤
n2s(E(G)) ≤ n2/50, where G[S] is defined to be the subgraph of G induced by the vertex
set S. This shows that S ia a sparse half in G, as desired.

Lemma 2.1 allows us to work with weighted graphs, which proves to be convenient.
We prove that every weighted triangle-free graph with minimum degree at least 5/14
contains a sparse half. Our proof uses structural characterization of these graphs found
by Jin, Chen and Koh in [2, 7]. To state their result we need a few additional definitions.

A mapping ϕ : V (G) → V (H) for graphs G and H is a homomorphism from G to
H, if it is edge-preserving, that is, for any pair of adjacent vertices u, v ∈ V (G), ϕ(u)
and ϕ(v) are adjacent in H. We say that G is of H-type if there exists a homomorphism
from G to H. Let ϕ be a surjective homomorphism and ω be a weight function on G.
We define a weight function ωϕ on H in the following way. For every vertex v ∈ V (H),
let ωϕ(v) := ω(ϕ−1(v)). The next lemma shows that a sparse half in a homomorphic
image of a graph G can be lifted to a sparse half in the graph G.

Lemma 2.2. Let G,H be graphs and ϕ : V (G) → V (H) be a surjective homomor-
phism. Then for any weight function ω, if (H,ωϕ) has a sparse half, then so does
(G,ω).

Proof. Let sH be a sparse half on (H,ωϕ). Define

sG(v) :=
ω(v)

ωϕ(ϕ(v))
sH(ϕ(v))

for every v ∈ V (G). It is easy to check that sG is a sparse half of G.

Now let us introduce a family of graphs that plays a key role in our results. For an
integer d ≥ 1, let Fd be the graph with

V (Fd) = {v1, v2, ..., v3d−1},

such that the vertex vj has neighbors vj+d, . . . , vj+2d−1 (all indices larger than 3d − 1
are taken modulo 3d− 1). It is easy to see that F1 = K2, F2 = C5 and F3 is a Möbius
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Figure 2: The Möbius ladder F3

ladder (see Figure 2). Clearly, if a graph is of Fd-type, it is of Fk-type, for all k > d.
These graphs were first introduced by Woodall [14]. In 1973 he conjectured that if the
binding number of a graph G is at least 3/2 then G contains a triangle. Graphs Fd are
in the family of graphs constructed by Woodall to explain that 3/2 in his conjecture is
the least possible. Let us state some general properties of these graphs that we will use
implicitly or explicitly throughout the paper. These can be easily checked.

Fact 2.3. For every d ≥ 1, Fd is triangle-free, 3-colorable and the only maximum
independent sets are vertex neighborhoods, in particular, α(Fd) = d.

In 1974 Andrasfai, Erdős and Sos [1] showed that every triangle-free graph G of
order n with δ(G) > 2n/5 is bipartite (in other words, F1-type). In a similar spirit,
Häggkvist [6] proved that every triangle-free graph G of order n with δ(G) > 3n/8 is of
F2-type (i.e. C5-type). In 1995 Jin [7] improved Häggkvist’s result as following.

Theorem 2.4 (Jin, [7]). Every triangle-free graph G of order n with minimum degree
δ(G) > 10n/29 is of F9-type.

Note that the results of Andrasfai, Erdős and Sos [1], Häggkvist [6] and Jin [7]
are sharp. In [2] the authors extended all the results mentioned above and proved the
following stronger statement.

Theorem 2.5 (Chen, Jin, Koh, [2]). Let d ≥ 1, G be a triangle-free graph of order n

with χ(G) ≤ 3 and δ(G) >
⌊
(d+1)n
3d+2

⌋
, then G is of Fd-type.

For our purposes, we use the following statement which follows from Theorem 2.4,
Theorem 2.5 and Fact 2.3.

Corollary 2.6 (Chen, Jin, Koh [2], [7]). Every triangle-free graph G of order n with
δ(G) ≥ 5

14
n is of F5-type.

To use Lemma 2.1 and Corollary 2.6 together we need to make sure that the homo-
morphism in the statement of Corollary 2.6 is surjective. Fortunately, this is not difficult
if we allow ourselves to change the target graph.
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Lemma 2.7. Let ϕ be a homomorphism from graph G to Fd, d ≥ 2. Then either ϕ is
surjective or there exists a homomorphism ϕ′ from G to Fd−1.

Proof. Suppose ϕ is a homomorphism from graph G to Fd that is not surjective. Let
Vi = ϕ−1(vi) for all i = 1, 2, . . . , 3d−1. Without loss of generality suppose V1 is empty.
Define a mapping ϕ′ : V (G)→ V (Fd−1) as follows,

ϕ′(v) =



vi−1, if v ∈ Vi and 2 ≤ i ≤ d− 1,

vd−1, if v ∈ Vd ∪ Vd+1,

vi−2, if v ∈ Vi and d+ 2 ≤ i ≤ 2d− 2,

v2d−3, if v ∈ V2d−1 ∪ V2d,
vi−3, if v ∈ Vi and 2d+ 1 ≤ i ≤ 3d− 1.

It is easy to check that ϕ′ is a homomorphism from G to Fd−1.

In the next section we show that for 1 ≤ d ≤ 4 the weighted graph (Fd, ω) with
minimum degree at least 5/14, has a sparse half for any weight function ω. In particular,
if ϕ : V (G) → Fd is a surjective homomorphism, then the weighted graph (Fd, ωϕ)
has a sparse half. By Lemma 2.1 this implies that graph G has a sparse half. Hence
Theorem 1.1 will follow from the results of the next section.

3. Weighted triangle-free graphs with minimum de-
gree ≥ 5

14

Theorem 3.1. For all 1 ≤ d ≤ 5, if (Fd, ω) is a weighted graph with minimum degree
at least 5/14, then it has a sparse half.

Proof. The argument is separated into cases based on the value of d.

d=1: Suppose V (F1) = {v1, v2} then since ω(v1) + ω(v2) = 1, either ω(v1) ≥ 1
2

or
ω(v2) ≥ 1

2
, therefore v1 or v2 supports a sparse half in (F1, ω).

d=2: Let V (F2) = {v1, v2, . . . , v5}. If any two consecutive vertices together have total
weight at least 1/2, then they induce an independent set, which means that they support
a sparse half.

Now suppose that no two consecutive vertices have total weight at least 1/2, then
any three consecutive vertices have total weight at least 1/2. We define the following
halves si for each i = 1, 2, . . . , 5 on the vertices of the graph and prove that there is at
least one sparse half among them.

si(v) =


ω(v), if v = vi or v = vi+1,
1
2
− (ω(vi) + ω(vi+1)) , if v = vi+2,

0, otherwise.
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Figure 3: A sparse half in uniformly weighted C5

Note that
si(E(G)) = ω(vi) (1/2− (ω(vi) + ω(vi+1))) . (1)

Summing up the equations (1) over all i = 1, . . . , 5, we get

5∑
i=1

si(E(G)) = 1/2−
5∑
i=1

ω(vi) (ω(vi) + ω(vi+1))

=
1

2
− 1

2

5∑
i=1

(ω(vi) + ω(vi+1))
2

≤ 1

2
− 1

2
· 5 · 4

25
=

1

10
,

using Jensen’s inequality for the function x2. Thus one of the functions si is a sparse
half. Note that the proof above did not use the minimum degree condition, while we
use it in the other two cases.

d=3: Let F3 = {v1, v2, . . . , v8}. As the minimum degree of (F3, ω) is at least 5/14, we
have

ω(vj) + ω(vj+1) + ω(vj+2) ≥ δ(F3, ω) ≥ 5/14, (2)

for all j = 1, 2, . . . , 8. Summing these inequalities for j = i, i + 3 and j = i + 6, we
obtain ω(vj) ≥ 1/14 for j = 1, 2, . . . , 8.

As in the case of d = 2, if there exist three consecutive vertices of total weight at
least 1/2, then we are done, since they induce an independent set. Suppose not, then
every five consecutive vertices have total weight more than 1/2. We define the following
halves si, for each i = 1, 2, . . . , 8 on the vertices of the graph and prove that there is at
least one sparse half among them.

si(v) =


ω(v), if v = vi+1, vi+2, vi+3

1
2

(
1
2
− (ω(vi+1) + ω(vi+2) + ω(vi+3))

)
, if v = vi or v = vi+4,

0, otherwise.

Claim 3.2. For each i = 1, 2, . . . , 8, si is a half.

7



Proof. It suffices to show that

1

2

(
1

2
− (ω(vi+1) + ω(vi+2) + ω(vi+3))

)
≤ ω(vi),

1

2

(
1

2
− (ω(vi+1) + ω(vi+2) + ω(vi+3))

)
≤ ω(vi+4).

By symmetry it suffices to prove the first inequality. By (2) we get that

1

2

(
1

2
− (ω(vi+1) + ω(vi+2) + ω(vi+3))

)
≤ 1

2
·
(

1

2
− 5

14

)
=

1

14
≤ ω(vi).

This finishes the proof of the claim.

We relegate the proof of the following lemma, which ensures that one of the halves
si is sparse, to the Appendix.

Lemma 3.3. Let 1/14 ≤ xi ≤ 1 for i = 1, 2, . . . , 8. If
∑8

i=1 xi = 1 and xi + xi+1 +
xi+2 ≥ 5/14 for every i, then there exists i such that

1

2

(
1

2
− (xi + xi+1 + xi+2)

)
(xi + xi+2) +

1

4

(
1

2
− (xi + xi+1 + xi+2)

)2

≤ 1

50
. (3)

d=4: Let F4 = {v1, v2, . . . , v11}. The minimum degree condition gives us the following
inequality

ω(vi) + ω(vi+1) + ω(vi+2) + ω(vi+3) ≥ 5/14, (4)

for all i = 1, 2, . . . , 11. It follows, as in the case d = 3, ω(vi) ≥ 1/14 for all i. We may
assume that no four consecutive vertices have total weight at least 1/2, otherwise, we
are done - these four vertices induce an independent set. Therefore, we can assume that

ω(vi) + ω(vi+1) + · · ·+ ω(vi+6) > 1/2,

for all i = 1, 2, . . . , 11. This allows us to define halves si in the following way:

si(v) =


ω(v), if v = vi+1, vi+2, vi+3, vi+4,
1
2

(
1
2
− (ω(vi+1) + ω(vi+2) + ω(vi+3) + ω(vi+4))

)
, if v = vi or v = vi+5,

0, otherwise.

As in the previous case, it is easy to verify that each si is a half, and the following
lemma proved in the Appendix implies that at least one of these halves is sparse.

Lemma 3.4. Suppose x1, x2, . . . , x11 are reals such that 1/14 ≤ xi ≤ 1 for each
i = 1, 2, . . . , 11 and

∑11
i=1 xi = 1. If xi + xi+1 + xi+2 + xi+3 ≥ 5/14 for every i, then

there exists i such that

1

2

(
1

2
− (xi+1 + xi+2 + xi+3 + xi+4)

)
(xi+1 + xi+4)

+
1

4

(
1

2
− (xi+1 + xi+2 + xi+3 + xi+4)

)2

≤ 1/50.
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d=5: Let F5 = {v1, v2, . . . , v14}. As in the previous cases, the minimum degree
condition gives us ω(vi) ≥ 1

14
for every i = 1, 2, . . . , 14. But on the other hand,∑14

i=1 ω(vi) = 1, hence ω(vi) = 1/14, for each i = 1, 2, . . . , 14. Define

s(v) =

{
ω(v), if v = v1, v2, v3, v4, v5, v6, v7

0, otherwise.

It is easy to check that s is a half. In fact, it is a sparse half. Indeed, s(E(G)) = 3
142
≤

1
50

.

Proof of Theorem 1.1. Let G be a triangle-free graph on n vertices with minimum degree
≥ 5n/14. By Lemma 2.1 it suffices to prove that the uniformly weighted graph (G,ω)
has a sparse half. By Theorem 2.6 and Lemma 2.7, the graph G admits a surjective
homomorphism ϕ to Fd for 1 ≤ d ≤ 5. Clearly, (Fd, ωϕ) has minimum degree≥ 5/14 and
thus has a sparse half by Theorem 3.1. Theorem 1.1 now follows from Lemma 2.2.

4. Uniform sparse halves, balanced weights and dis-
turbed subgraphs

The purpose of this section is to develop a set of tools, that, under fairly general cir-
cumstances, allow us to show that graphs “close” to a fixed graph have sparse halves. A
number of technical definitions will be necessary. We start by a variant of the definition
of edit distance (see e.g. [11]).

Definition 4.1. Given graphs G and H of orders n and k respectively, we say that G
can be ε-approximated by H, if there exists a partition V = {V1, V2, . . . , Vk} of V (G)
such that ∣∣∣|Vi| − n

k

∣∣∣ ≤ εn, for all i = 1, 2, . . . k, and e(G4HV) ≤ εn2,

where HV is a graph on vertex set V (G) with adjacency defined as follows. Each HV [Vi]
is an independent set, (Vi, Vj) induces a complete bipartite graph in HV if vivj ∈ E(H)
and an empty graph, otherwise.

We will also need a stronger notion of distance defined as follows.

Definition 4.2. Given a graph G and F ⊆ E(G), we say that D ⊆ V (G) is an
ε-covering set for F , if |D| ≤ εv(G) and every edge in F has at least one end in D.

Definition 4.3. We say that the graph G is an ε-disturbed subgraph of G′ for some
0 < ε < 1, if the following conditions hold:

1. V (G) = V (G′),

2. there exists an ε-covering set for E(G) \ E(G′) in G,

3. |NG(v) \NG′(v)| ≤ εv(G′) for every vertex v ∈ V (G′).

9



Note that if G is an ε-disturbed subgraph of some graph G′, it does not imply that
G is a subgraph of G′, as one might expect. However, from our definition, it follows
that G is not ”far” from some subgraph of G′ and that is why we use ε-disturbed term.

For a graph H, let N (H) be the set of neighborhoods of vertices of H and I(H) be
the set of maximum independent sets of H. Let I∗(H) = I(H) \N (H). We construct
a graph H∗ as follows. Let V (H∗) = V (H)∪I∗(H), H be an induced subgraph of H∗,
and let every I ∈ I∗(H) be adjacent to every v ∈ I and no other vertex of H∗. We say
that a weighted graph (H∗, ω) is ε-balanced if |ω(v)−1/v(H)| ≤ ε for every v ∈ V (H)
and ω(v) ≤ ε for every v ∈ V (H∗) \ V (H). We are now ready for our first technical
result.

Theorem 4.4. Let H be a maximal triangle-free graph. For every ε > 0 there exists
δ > 0 such that if G is a triangle-free graph which can be δ-approximated by H then there
exists a graph G′ and a homomorphism ϕ from G′ to H∗ with the following properties.

(i) G is an ε-disturbed subgraph of G′,

(ii) (H∗, ωϕ) is ε-balanced, where ω is the uniform weight function defined on G,

(iii) ϕ is a strong homomorphism, that is, uv 6∈ E(G′) implies ϕ(u)ϕ(v) 6∈ E(H∗) for
every pair of vertices u, v ∈ V (G′).

Proof. We assume that V (H) = {1, 2, . . . , k}. We show that δ > 0 satisfies the theorem
if (k+ 2)

√
δ ≤ min(ε, 1/k). Let V = (V1, V2, . . . , Vk) be the partition of V (G), and the

graph HV be as in Definition 4.1. Let n := v(G), F := E(G)4E(HV) and J be the set
of all vertices of G incident to at least

√
δn edges in F . We have 1

2

√
δn|J | ≤ |F | ≤ δn2.

It follows that |J | ≤ 2
√
δn.

We define a map ϕ : V (G)→ V (H∗), as follows. If v ∈ Vi \ J for some i ∈ V (H)
then ϕ(v) := i. Now consider v ∈ J and let

I0(v) := {i ∈ V (G) | |N(v) ∩ Vi| >
√
δn}.

Then I0(v) is independent, as otherwise there exist i, j ∈ [k], such that ij ∈ E(H),
|N(v) ∩ Vi| >

√
δn and |N(v) ∩ Vj| >

√
δn. As G is triangle-free it follows that

e(HV4G) > εn2, contradicting the choice of V . Let I(v) be a maximal independent
set containing I0(v), chosen arbitrarily. Define ϕ(v) := i, if I(v) = NH(i) for some
i ∈ V (H), and ϕ(v) := I(v), otherwise.

Let G′ be the graph with V (G′) = V (G) and the vertices uv ∈ E(G′) if and only if
ϕ(u)ϕ(v) ∈ E(H∗). Then ϕ is a strong homomorphism from G′ to H∗. For i ∈ V (H)
we have Vi \ J ⊆ ϕ−1(i) ⊆ Vi ∪ J and, therefore, ||ϕ−1(i)|/n − 1/k| ≤ δ + 2

√
δ. For

I ∈ V (H∗) \ V (H) we have |ϕ−1(I)| ≤ |J | ≤ 2
√
δn. Thus (ii) holds, as ε ≥ δ + 2

√
δ.

It remains to verify (i). We will show that J is an ε-covering set for F ′ := E(G) \
E(G′) for δ sufficiently small. First, we show that every edge of F ′ has an end in J .
Indeed suppose that uv ∈ E(G) for some u ∈ Vi, v ∈ Vj with i, j ∈ V (H) not necessarily
distinct and ij 6∈ E(H). Then there exists h ∈ V (H) adjacent to both i and j, as H
is maximally triangle-free. It follows that both v and u have at least (1/k − δ −

√
δ)n

neighbors in Vh and share a common neighbor if 2(1/k− δ−
√
δ) > 1/k. Thus our first

claim holds, as δ +
√
δ < 1/k.

10



Consider now v ∈ J and let N ′(v) be the set of neighbors of v in V (G)\V (J) joined
to v by edges of F ′. Then |N ′(v) ∩ Vi| ≤

√
δn for every i ∈ V (H) by the choice of

ϕ(v). It follows that |N ′(v)| ≤ k
√
δn. Therefore v is incident to at most (k + 2)

√
δn

edges in F , as |J | ≤ 2
√
δn. Thus J is an ε-covering set for F ′, as (k+ 2)

√
δn ≤ ε.

We say that H is entwined if I∗(H) is intersecting. Note that, using Fact 2.3, one
can see that Fd is entwined for every d ≥ 1, as I∗(Fd) is empty. It is routine to check
that the Petersen graph is entwined. We say that a graph G of order n is c-maximal
triangle-free if it is triangle-free and adding any new edge to G creates at least cn
triangles. For a weighted graph (G,ω), we say that it is c-maximal triangle-free if G is
triangle-free and adding any new edge to G creates triangles of total weight at least c.

Lemma 4.5. Let H be an entwined maximal triangle-free graph, and let 0 < ε <
1/v(H). If (H∗, ω) is ε-balanced then it is (1/v(H)− ε)-maximal triangle-free.

Definition 4.6. For a weighted graph (G,ω) we call a distribution s defined on the set
of halves of (G,ω) a c-uniform sparse half for some 0 < c ≤ 1, if

1. for every edge e ∈ E(G), E [s(e)] ≥ c ω(e),

2. E [s(E(G))] ≤ 1
50

.

Whenever we refer to c-uniform sparse halves in unweighted graphs, they are under-
stood as the c-uniform sparse halves in the corresponding uniformly weighted graphs.

Theorem 4.7. Let 0 < c < 1 be real, G′ be a c-maximal triangle-free graph and G be
a triangle-free c2

2(1+c)
-disturbed subgraph of G′. If G′ has a c-uniform sparse half then G

has a sparse half.

Proof. Let ε = c2

2(1+c)
, F := E(G) − E(G′) and let M be a maximal matching in F .

Suppose |M | = δn for some 0 ≤ δ ≤ 1/2. Since G is an ε-disturbed subgraph of G′,
it has an ε-covering set for F . Let D be the minimum one. By the choice of M every
edge of F has at least one end in V (M). It follows that |D| ≤ |V (M)| = 2|M |. By the
third condition in the definition of ε-disturbed subgraph, |F | ≤ εn|D| ≤ 2δεn2.

Let F ′ := E(G′) \ E(G). For an edge e ∈M , let T (e) be the set of edges e′ ∈ F ′,
such that the only vertex of V (M) that e′ is incident to, is an end of e. Let u, v be the
ends of e. By the c-maximality of G′, we have |NG′(u) ∩ NG′(v)| ≥ cn for every pair
of vertices u, v ∈ V (G′) non-adjacent in G′. Since e ∈ E(G) and G is triangle-free,
for every vertex w ∈ NG′(u) ∩ NG′(v), either uw ∈ F ′ or vw ∈ F ′. It follows that
|Te| ≥ |NG′(u) ∩NG′(v)| − |V (M)| ≥ (c− 2δ)n. Thus |F ′| ≥ (c− 2δ)n · δn.

Let s be a c-uniform sparse half in the graph G′. Then

E [s(E(G))− s(E(G′))] = E [s(F )− s(F ′)]

= E [s(F )]− E [s(F ′)] ,

by linearity of the expectation. We have

E [s(F ′)] =
∑
e∈F ′

E [s(e)] ≥
∑
e∈F ′

c ω(e) = c
∑
e∈F ′

1

n2
≥ c|F ′|

n2
.

11



On the other hand,

E [s(F )] =
∑
e∈F

E [s(e)] ≤
∑
e∈F

ω(e) =
|F |
n2
.

Finally, note that δ ≤ ε, since every edge in M has at least one of its ends in D. Hence,

E [s(E(G))− s(E(G′))] ≤ |F |
n2
− c|F ′|

n2
≤ 2δε− c(c− 2δ)δ

= δ(2δc+ 2ε− c2) ≤ 0,

where the last inequality holds, as 2δc + 2ε − c2 ≤ 2(1 + c)ε − c2 = 0. Therefore,
E [s(E(G))] ≤ E [s(E(G′))] ≤ 1

50
, and the graph G has a sparse half by Lemma 2.1.

We are now ready to prove the main result of this section.

Theorem 4.8. Let H be an entwined maximal triangle-free graph. Suppose that there
exists α > 0 such that, if (H∗, ω) is α-balanced, then (H∗, ω) has an α-uniform sparse
half. Then there exists δ > 0 such that every triangle-free graph G which can be
δ-approximated by H has a sparse half.

Proof. Let ε := min
(

1
3v(H)2

, α2

2(1+α)

)
, and let δ be chosen so that there exist ϕ and

G′ satisfying the conclusion of Theorem 4.4. The weighted graph (H∗, ωϕ) has an α-
uniform sparse half, as ε ≤ α. Therefore, the graph G′ has an α-uniform sparse half.
By Lemma 4.5, the graph (H∗, ωϕ) is (1/v(H) − ε)-triangle-free. Therefore, the graph
G′ is ε-triangle-free, because ϕ is a strong homomorphism. Let c := min(α, 1/2v(H)).
Then ε ≤ c2/(2(1 + c)) and c ≤ 1/v(H) − ε, by the choice of ε. It follows that the
conditions of Theorem 4.7 are satisfied for G′ and G. Thus G has a sparse half, as
desired.

5. Triangle-free graphs with at least (1/5−γ)n2 edges

In order to establish the conjecture for the triangle-free graphs with average degree(
2
5
− γ
)
n we separate the cases when the graphs under consideration are close in the

sense of Definition 4.1 to the blowup of C5 and when they are not. In the second case,
we use the main result of Keevash and Sudakov from [8]. Note that this statement
follows from their proof method but it is not explicitly stated as such in [8].

Theorem 5.1. Let G be a triangle-free graph on n vertices such that one of the following
conditions holds

(a) either 1
n

∑
v∈V (G) d

2(v) ≥
(
2
5
n
)2

and ∆(G) <
(
2
5

+ 1
135

)
n, or

(b) ∆(G) ≥
(
2
5

+ 1
135

)
n and 1

n

∑
v∈V (G) d(v) ≥

(
2
5
− 1

125

)
n.

Then G has a sparse half.

The next theorem represents the main technical step in the proof of Theorem 1.2.
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Theorem 5.2. For every ε > 0 there exists δ > 0 such that the following holds. If G is
a triangle-free graph with v(G) = n and e(G) ≥ (1

5
− δ)n2 then either

(i) G can be ε-approximated by C5,

(ii) or at least δn vertices of G have degree at least
(
2
5

+ δ
)
n,

(iii) or there exists an F ⊆ E(G) with |F | ≤ εn2 such that the graph G − F is
bipartite.

The proof of Theorem 5.2 uses the following technical lemmas.

Lemma 5.3. For δ > 0 let G be a graph with v(G) = n and e(G) ≥ (1
5
− δ)n2. Then

either

(1) at least δn vertices have degree at least (2
5

+ δ)n,

(2) or at most 2
√
δn vertices have degree at most (2

5
− 2
√
δ)n.

Proof. Suppose that the outcome (1) does not hold. Let tn be the number of vertices
that have degree at most (2

5
− 2
√
δ)n. Then

2

(
1

5
− δ
)
n2 ≤ 2e(G) =

∑
v∈V

d(v)

=
∑
v∈V

d(v)≤( 2
5
−2
√
δ)n

d(v) +
∑
v∈V

( 2
5
−2
√
δ)n<d(v)<( 2

5
+δ)n

d(v) +
∑
v∈V

d(v)≥( 2
5
+δ)n

d(v)

< tn

(
2

5
− 2
√
δ

)
n+ (1− t)n

(
2

5
+ δ

)
n+ δn2

=

(
2

5
−
√
δt+ 2δ − tδ

)
n2.

Thus −2δ < 2δ − 2t
√
δ − δt, and

t <
4δ

2
√
δ + δ

< 2
√
δ,

as desired.

Lemma 5.4. Let H be a graph on n vertices with minimum degree at least
(
2
5
− δ
)
n.

Let ϕ be a surjective homomorphism from H to C5. Then(
1

5
− 3δ

)
n ≤ |ϕ−1(v)| ≤

(
1

5
+ 2δ

)
n, (5)

for every v ∈ V (C5).
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Proof. Let the vertices of C5 be labelled v1, v2, . . . , v5 such that the neighbors of vi
are vi+2 and vi+3. Define Vi := ϕ−1(vi) for i = 1, 2, . . . , 5. By the minimum degree
condition on H, we have

|Vi|+ |Vi+1| ≥
(

2

5
− δ
)
n (6)

|Vi+2|+ |Vi+3| ≥
(

2

5
− δ
)
n (7)

|Vi+4|+ |Vi| ≥
(

2

5
− δ
)
n, (8)

therefore

|Vi|+
(

2

5
− δ
)
n+

(
2

5
− δ
)
n ≤ |Vi|+ (|Vi+1|+ |Vi+2|) + (|Vi+3|+ |Vi+4|) ≤ n,

which gives us the desired upper bound.
For the lower bound summing inequalities (6)-(8) we get

n+ |Vi| ≥
5∑
j=1

|Vj|+ |Vi| ≥ 3

(
2

5
− δ
)
n,

which gives us |Vi| ≥
(
1
5
− 3δ

)
n, as desired.

Proof of Theorem 5.2. We show that δ := (ε/40)2 satisfies the theorem for ε ≤ 1. We
apply Lemma 5.3. The first outcome of Lemma 5.3 corresponds to the outcome (ii)
of the theorem. Therefore we assume that the second outcome holds: There exists
|S| ≤ ε

20
n such that every vertex in V (G) \ S has degree at least

(
2
5
− ε

20

)
n in G. It

follows that G′ := G− S has the minimum degree at least
(
2
5
− ε

10

)
n.

Since
(
2
5
− ε

10

)
n ≥ 3

8
|V (G′)|, Theorem 2.5 implies that there exists a homomorphism

ϕ from G′ to C5. Let V (C5) = {v1, v2, . . . , v5} and Vi = ϕ−1(vi) for each i = 1, 2, . . . , 5.
If the homomorphism ϕ is not surjective then by Lemma 2.7 the graph G′ is bipartite

and therefore the graph G∗ = (V (G), E(G′)) is also bipartite. We have e(G)− e(G′) ≤
|S|n ≤ εn2. Thus outcome (iii) holds. Hence we can suppose that the homomorphism
ϕ is surjective. Applying Lemma 5.4 to the graph G′ with δ = ε

10
, we get that(

1

5
− 2ε

5

)
n ≤ |Vi| ≤

(
1

5
+
ε

5

)
n. (9)

Let V := (V1∪S, V2, . . . , V5) be a partition of V (G). From (9) we have
∣∣|Vi| − n

5

∣∣ ≤ εn.
Let HV be as in Definition 4.1. Then

e(G4HV) ≤ |S|n+ e(HV)− e(G′) ≤ ε

20
n2 +

n2

5
− 1

2

(
2

5
− ε

10

)(
1− ε

20

)
n2

≤ εn2.

Thus outcome (i) holds.
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If outcome (i) of Theorem 5.2 holds, our goal is to apply Theorem 4.8. To do that
we need to ensure that a c-balanced weighting of C5 has a c-uniform sparse half for some
c > 0.

Theorem 5.5. Any (1/50)-balanced weighted graph (C5, ω) has a (1/30)-uniform sparse
half.

Proof. Let δ := 1/50, V (C5) = {v1, v2, . . . , v5} and E(C5) = {vivi+2}5i=1, as in the
proof of Theorem 3.1. We define a distribution on the set of halves of the graph
C5. Recall the halves si, 1 ≤ i ≤ 5 that we have defined earlier in the proof of the
Theorem 3.1.

Let the probability mass of the distribution s be 1
5

on every si, i = 1, 2, . . . , 5. We
show that s is a 1

30
-uniform sparse half. Let us begin by showing that E [s(e)]) ≥ 1

30
ω(e)

for every e ∈ E(C5). Let e = (vi, vi+2), then

E [s(e)] =
1

5
· ω(vi)

(
1

2
− (ω(vi) + ω(vi+1))

)
.

Hence,

E [s(e)] ≥ 1

5

(
1

5
− δ
)(

1

2
− 2

(
1

5
+ δ

))
=

1

5
·
(

1

5
− δ
)(

1

10
− 2δ

)
.

On the other hand,

ω(e) = ω(vi) · ω(vi+2) ≤
(

1

5
+ δ

)2

.

Thus it suffices to show that

1

5

(
1

5
− δ
)(

1

10
− 2δ

)
≥ 1

30

(
1

5
+ δ

)2

,

which can be easily verified. It is shown in the proof of Theorem 3.1 that E [s(E(G))] ≤
1
50
. Thus, s is a 1

30
-uniform sparse half of G, as claimed.

We need a final technical lemma.

Lemma 5.6. For every δ > 0 there exists γ > 0 such that if G is a graph on n vertices
with at least

(
1
5
− γ
)
n2 edges and at least δn vertices of degree at least (2

5
+ δ)n then

1

n

∑
v∈V (G)

d2(v) ≥
(

2

5
n

)2

.

Proof. Suppose that G contains αn vertices of degree at most 2
5
n and βn vertices of

degree at least
(
2
5

+ δ
)
n. We may assume that the average degree of G is less than 2

5
n,

as otherwise lemma clearly holds. Thus,

2

5
n > (1− α− β)

2

5
n+ β

(
2

5
+ δ

)
n,
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hence α > 5
2
βδ ≥ 5

2
δ2. We have

n
∑

v∈V (G)

d2(v)−

 ∑
v∈V (G)

d(v)

2

=
1

2

∑
u6=v

(d(u)− d(v))2

≥ αδ

(
2

5
+ δ − 2

5

)2

n4 >
5

2
δ5n4.

Hence

1

n

∑
v∈V (G)

d2(v) ≥ 1

n2

 ∑
v∈V (G)

d(v)

2

+
5

2
δ5n2 ≥ 4

(
1

5
− γ
)2

n2 +
5

2
δ5n2

≥ 4

25
n2 +

(
5

2
δ5 − 8

5
γ

)
n2 ≥ 4

25
n2,

if we choose γ = 25
16
δ5.

Proof of Theorem 1.2. By Theorem 5.5, α = 1/50 satisfies the conditions in the state-
ment of Theorem 4.8 for H := C5. Thus by Theorem 4.8 there exists 0 < ε ≤ 1/50
such that every triangle-free graph G that can be ε-approximated by C5 has a sparse
half. Let δ be such that Theorem 5.2 holds, and finally let γ be such that Lemma 5.6
holds. We show that Theorem 1.2 holds for this choice of γ.

We distinguish cases based on the outcome of Theorem 5.2 applied to G.
Case (i): If G can be ε-approximated by C5 then the theorem holds by the choice of
ε.
Case (ii): Now suppose that at least δn vertices of G have degree at least

(
2
5

+ δ
)
n.

If ∆(G) ≥
(
2
5

+ 1
135

)
n then Theorem 5.1 (b) implies that there is a sparse half in G.

Therefore we assume that ∆(G) <
(
2
5

+ 1
135

)
n. By Lemma 5.6 and the choice of γ we

have 1
n

∑
v∈V (G) d

2(v) ≥
(
2
5
n
)2

. Hence Theorem 5.1 (a) implies that there is a sparse
half in G.
Case (iii): Lastly, suppose there exists an F ⊆ E(G) with |F | ≤ εn2 such that the

graph G′ = (V (G), E(G) \ F ) is bipartite with bipartition (U, V ). Then either |U | ≥ n
2

or |V | ≥ n
2

. Without loss of generality suppose |U | ≥ n
2

. The set U is independent in

G′, while in G it might not be, but e(G[U ]) ≤ |F | ≤ εn2 ≤ n2

50
. Hence U supports a

sparse half in graph G.

6. Neighbourhood of the Petersen Graph

The uniform blowup of the Petersen graph P , is an extremal example for Conjecture 1.1,
that is every set of bn/2c vertices spans at least n2/50 edges. Here we show that the
Conjecture 1.1 holds for any graph that is close to a uniform blowup of Petersen graph
in the sense of Definition 4.1. By Theorem 4.8 it is enough to show that sufficiently
balanced blowups of P ∗ (see Figure 4) have uniform sparse halves.

Lemma 6.1. Let the weighted graph (P ∗, ω) be (1/500)-balanced. Then it has a 1
80

-
uniform sparse half.
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Figure 4: The graph P ∗.
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Proof. Let δ := 1/500 and the vertices of P ∗ be labeled as in Figure 4, where V :=
V (P ) = {v1, v2, . . . , v10} and W := V (P ∗) \ V (P ) = {w1, w2, . . . , w5}. We define a
collection {si,j}i∈[5],j∈[4] of halves of (P ∗, ω). Fix i ∈ [5] and consider the vertex wi. Let
Mi := V \ N(wi) and not that Mi induces a matching of size three. Choose vertices
{vi1 , vi2 , vi3} ⊆ V (Mi) such that they are independent and there exist unique wij 6= wi
such that every v ∈ V (Mi)\{vi1 , vi2 , vi3} is adjacent to wij . Note that for every i there
exist four such choices of {vi1 , vi2 , vi3}, fix one of them and assign

si,j(wq) =


ω(wq), if q = i,
1
4
ω(wq), if q = ij,

0, otherwise.

and

si,j(vk) =


0, if vk /∈ V (Mi)

ω(vk), if k = j1, j2, j3,
1
3

(
1
2
− (ω(vi1) + ω(vi2) + ω(vi3) + ω(wi) + 1

4
ω(wij))

)
, otherwise.

It is easy to check that every si,j is a half. Let s be a distribution concentrated on
{si,j}i∈[5],j∈[4] with each of the halves having the same probability 1/20. We show that
s is a (1/80)-uniform sparse half for ω.

First, we show that E [s(e)] ≥ 1
80
·ω(e) for every edge e ∈ E(P ∗). It can be routinely

checked that for our choice of δ one has

1

3

(
1

2
− (ω(vi1) + ω(vi2) + ω(vi3) + ω(wi) +

1

4
ω(wij))

)
≥ 1

3
ω(vk), (10)

for every vk ∈ V (Mi) \ {vi1 , vi2 , vi3}. If both ends v, v′ of e ∈ E(P ∗) lie in V then,
using (10), we have

E [s(e)] ≥ 4

20
· 1

3
ω(v)ω(v′) =

1

15
ω(e) ≥ 1

80
ω(e).

If e joins v ∈ V and w ∈ W then

E [s(e)] ≥ 3

20
· 1

4
ω(wi) ·

1

3
ω(vj) =

1

80
ω(e)

It remains to prove that E [s(E(G))] ≤ 1
50
. Note that,

si,j(E(G)) =

(
1

2
− (ω(vi1) + ω(vi2) + ω(vi3) + ω(wi) +

1

4
ω(wij))

)
×

×
(

1

4
ω(wij) +

1

3
(ω(vi1) + ω(vi2) + ω(vi3))

)
.

We finish the proof using the following technical lemma, the proof of which is included
in the appendix.
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Lemma 6.2. Suppose given are x1, x2, . . . , x10, y1, y2, . . . y5 reals and

L(yi) = {xi+1, xi+2, xi+4, xi+5, xi+8, xi+9},

for each 1 ≤ i ≤ 5 such that 0 ≤ xi ≤ 1 , 0 ≤ yj ≤ 1 and
∑10

i=1 xi +
∑5

j=1 yj = 1. If

there exists some 0 < δ ≤ 1
90

such that xi ≥ 1
10
− δ for each i = 1, 2, . . . , 10 then

∑
i 6=j

xi,j1
,xi,j2

,xi,j3
∈L(yi)∩L(yj)

(
1

2
− xi,j1 − xi,j2 − xi,j3 − yi −

1

4
yj

)(
1

4
yj +

1

3

(
xi,j1 + xi,j2 + xi,j3

))
≤ 2

5
.

(11)

It is easy to see that E [s(E(G))] ≤ 1
50
. follows from Lemma 6.2 applied with xi :=

ω(vi) and yj := ω(wj). Thus s is a 1/80-uniform sparse half, as claimed.

As promised, Lemma 6.1 implies the main theorem of this section.

Theorem 6.3. There exists δ > 0 such that any triangle-free graph G on n vertices
which can be δ-approximated by the Petersen graph has a sparse half.

Proof. The theorem follows from Theorem 4.8, as the Petersen graph satisfies the re-
quirements of that theorem with α = 1/500 by Lemma 6.1.
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[6] R. Häggkvist, Odd cycles of specified length in non-bipartite graphs, Annals of
Discrete Mathematics 13 (1982), 89–100.

[7] G.P. Jin, Triangle-free chromatic grpahs, Discrete Mathematics (1995), no. 145,
151–170.

[8] P. Keevash and B. Sudakov, Sparse halves in triangle-free graphs, Journal of Com-
binatorial Theory (2006), no. 96, 614–620.

19



[9] M. Krivelevich, On the edge distribution in triangle-free graphs, J. Comb. Theory,
Ser. B 63 (1995), no. 2, 245–260.

[10] L. Lovász, Subgraph densities in signed graphons and the local Simonovits-Sidorenko
conjecture, The Electronic Journal of Combinatorics [electronic only] 18 (2011),
no. 1, Research Paper P127, 21 p., electronic only (eng).

[11] L. Lovász and B. Szegedy, Testing properties of graphs and functions, Israel Journal
of Mathematics (2010), no. 178, 113–156.
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7. Appendix

Proof of Lemma 3.3

Suppose the Lemma is false. Then for each i = 1, 2, . . . , 8

1

2

(
1

2
− xi − xi+1 − xi+2

)
(xi + xi+2) +

1

4

(
1

2
− xi − xi+1 − xi+2

)2

>
1

50
. (12)

Summing up these inequalities over all i = 1, 2, . . . , 8 we get that

8

50
<

8∑
i=1

1

2

(
1

2
− xi − xi+1 − xi+2

)
(xi + xi+2) +

8∑
i=1

1

4

(
1

2
− xi − xi+1 − xi+2

)2

=
1

2

8∑
i=1

xi −
8∑
i=1

(xi + xi+1 + xi+2)xi +
1

4
· 1

4
· 8− 1

4

8∑
i=1

(xi + xi+1 + xi+2)

+
1

4

8∑
i=1

(xi + xi+1 + xi+2)
2

=
1

2
−

8∑
i=1

(xi + xi+1 + xi+2)xi +
1

2
− 3

4
+

1

4

8∑
i=1

(xi + xi+1 + xi+2)
2

=
1

4
− 1

4

8∑
i=1

xi
2 − 1

2

8∑
i=1

xixi+2. (13)
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Let us find the maximum value under the conditions of the lemma. To find the
maximum value of the expression in (13), we need to find the minimum value of

S :=
1

4

8∑
i=1

xi
2 +

1

2

8∑
i=1

xixi+2.

Claim 7.1. For every 1 ≤ i ≤ 8

xi+1 + xi+2 + xi+3 < 0.394

Proof. By inequality (12)

1

2

(
1

2
− (xi+1 + xi+2 + xi+3)

)
(xi+1 + xi+3) +

1

4

(
1

2
− (xi+1 + xi+2 + xi+3)

)2

>
1

50
.

Let α = xi+1 + xi+2 + xi+3. Then xi+1 + xi+3 = α− xi+2 ≤ α− 1
14
. Therefore

1

2

(
1

2
− α

)(
α− 1

14

)
+

1

4

(
1

2
− α

)2

= −α
2

4
+
α

28
+

5

112
>

1

50
,

which reduces to the inequality

α2

4
− α

28
− 69

2800
< 0.

This quadratic inequality gives us the desired α < 0.393412 bound.

It is easy to check that the following claim is true.

Claim 7.2.

S ≥ 1

2

4∑
i=1

zi
2 +

4∑
i=1

zizi+2,

where zi = (xi + xi+4)/2 for all 1 ≤ i ≤ 4.

Claim 7.3. For every 1 ≤ i ≤ 4, zi > 0.106.

Proof. For every 1 ≤ i ≤ 4 we have

1 = (xi + xi+4) + (xi+1 + xi+2 + xi+3) + (xi+5 + xi+6 + xi+7)
(7.1)
< 2zi + 2 · 0.394,

therefore zi > 0.106.

Let β = z1 + z3. Then

S
(7.2)

≥ 1

2
(z1 + z3)

2 +
1

2
(z2 + z4)

2 + z1z3 + z2z4

=
1

2
β2 +

1

2

(
1

2
− β

)2

+ z1z3 + z2z4

(7.3)

≥ 1

2
β2 +

1

2

(
1

2
− β

)2

+ 0.106 · (β − 0.106) + 0.106

(
1

2
− β − 0.106

)
= β2 − 1

2
β + 0.155528

> 0.093
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The last two inequalities hold because for fixed β the expression z1z3 + z2z4 achieves
its minimum value when z1 = z2 = 0.106, z3 = β − 0.106 and z4 = 1

2
− β − 0.106.

The expression β2− 1
2
β + 0.155528 achieves its minimum for β = 1

4
. It follows from the

inequality above that

1

4
− 1

4

8∑
i=1

xi
2 − 1

2

8∑
i=1

xixi+2 =
1

4
− S < 8

50
,

a contradiction that finishes the proof of the lemma.

Proof of Lemma 3.4

Suppose the lemma is false. Then for all 1 ≤ i ≤ 11 we have

1

2

(
1

2
− (xi+1 + xi+2 + xi+3 + xi+4)

)
(xi+1 + xi+4)

+
1

4

(
1

2
− (xi+1 + xi+2 + xi+3 + xi+4)

)2

> 1/50.

Summing these inequalities for 1 ≤ i ≤ 11 we obtain

11

50
<

11∑
i=1

1

2

(
1

2
− (xi+1 + xi+2 + xi+3 + xi+4)

)
(xi+1 + xi+4)

+
11∑
i=1

1

4

(
1

2
− (xi+1 + xi+2 + xi+3 + xi+4)

)2

=
1

4

11∑
i=1

(xi+1 + xi+4)−
11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4)xi+1

+
11

16
− 1

4

11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4) +
1

4

11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4)
2

=
3

16
−

11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4)xi+1 +
1

4

11∑
i=1

(xi+1 + xi+2 + xi+3 + xi+4)
2

=
3

16
+

1

2

11∑
i=1

xi(xi+1 − xi+3)

≤ 3

16
+

1

2

(
11∑
i=1

xixi+1 −
11

196

)
. (14)

We claim that

f(x1, . . . , x11) :=
11∑
i=1

xixi+1 ≤
77

784
.

Indeed, consider any pair (xi, xj), such that j 6= i ± 1, let α = xi + xj is fixed. Note
that f is linear as a function of (xi, xj). Therefore f(xi, xj) achieves its maximum value
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on the region R := {0 ≤ xi ≤ 1/14 for 1 ≤ 1 ≤ 14,
∑11

i=1 xi = 1}, when xi = 1
14

and
xj = α − 1

14
, or when xj = 1

14
and xi = α − 1

14
. Thus f attains its maximum on R

when all variables are equal 1
14

except possibly two of them whose indices are consecutive,
without loss of generality, say x10 and x11. It is easy to see that the maximum is achieved
for x10 = x11 = 5

28
and is equal to 77

784
, as claimed.

Thus (14) implies

11

50
<

3

16
+

1

2

(
11∑
i=1

xixi+1 −
11

196

)
≤ 3

16
+

1

2
·
(

77

784
− 11

196

)
=

327

1568
<

11

50
,

a contradiction that finishes the proof.

Proof of Lemma 6.2

Let Y :=
∑5

i=1 yi. Summing inequalities (11) over all i, j such that i 6= j and
xi,j1 , xi,j2 , xi,j3 ∈ L(yi) ∩ L(yj). We get

∑
i 6=j

(
1

2
− (xi,j1 + xi,j2 + xi,j3 + yi +

1

4
yj)

)(
1

4
yj +

1

3

(
xi,j1 + xi,j2 + xi,j3

))

=
1

8

∑
i 6=j

yj −
1

4

∑
i 6=j

yj
(
xi,j1 + xi,j2 + xi,j3

)
+

1

6

∑
i 6=j

(xi,j1 + xi,j2 + xi,j3)

− 1

3

∑
i 6=j

(
xi,j1 + xi,j2 + xi,j3

)2 − 1

3

∑
i 6=j

(
yi +

1

4
yj

)(
xi,j1 + xi,j2 + xi,j3

)
− 1

4

∑
i 6=j

yj

(
yi +

1

4
yj

)

≤ 1

2
Y − 3Y

(
1

10
− δ
)

+ (1− Y )− 36(1− Y )2

60
− 5Y

(
1

10
− δ
)

=
2

5
− Y

10
− 3

5
Y 2 + 8δY

≤ 2

5
,

since δ ≤ 1
90

.
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