
Deep Metric Learning Assisted by Intra-variance in A Semi-

supervised View of Learning

Insert Subtitle Here

Liu Pingping†
 College of Computer Science and

Technology

 Jilin University

 Changchun China

 liupp@jlu.edu.cn

Liu Zetong
 College of Computer Science and

Technology

Jilin University

 Changchun China

ztliu21@mails.jlu.edu.cn

Lang Yijun
 College of Computer Science and

Technology

 Jilin University

 Changchun China

ABSTRACT

Deep metric learning aims to construct an embedding space where

samples of the same class are close to each other, while samples

of different classes are far away from each other. Most existing

deep metric learning methods attempt to maximize the difference

of inter-class features. And semantic related information is

obtained by increasing the distance between samples of different

classes in the embedding space. However, compressing all

positive samples together while creating large margins between

different classes unconsciously destroys the local structure

between similar samples. Ignoring the intra-class variance

contained in the local structure between similar samples, the

embedding space obtained from training receives lower

generalizability over unseen classes, which would lead to the

network overfitting the training set and crashing on the test set. To

address these considerations, this paper designs a self-supervised

generative assisted ranking framework that provides a semi-

supervised view of intra-class variance learning scheme for

typical supervised deep metric learning. Specifically, this paper

performs sample synthesis with different intensities and diversity

for samples satisfying certain conditions to simulate the complex

transformation of intra-class samples. And an intra-class ranking

loss function is designed using the idea of self-supervised learning

to constrain the network to maintain the intra-class distribution

during the training process to capture the subtle intra-class

variance. With this approach, a more realistic embedding space

can be obtained in which global and local structures of samples

are well preserved, thus enhancing the effectiveness of

downstream tasks. Extensive experiments on four benchmarks

have shown that this approach surpasses state-of-the-art methods.

CCS CONCEPTS

• Insert CCS text here • Insert CCS text here • Insert CCS

text here

KEYWORDS

Deep metric learning, Image retrieval, Self-supervised learning,

Semi-supervised learning, Intra-class variance, Feature ranking

ACM Reference format:

FirstName Surname, FirstName Surname and FirstName Surname. 2018.

Insert Your Title Here: Insert Subtitle Here. In Proceedings of ACM

Woodstock conference (WOODSTOCK’18). ACM, New York, NY, USA, 2

pages. https://doi.org/10.1145/1234567890

1 INTORDUCTION

Deep metric learning aims to learn an embedding space where

samples of the same class are close and samples of different

classes are far from. In this way, deep metric learning captures

semantic similarity information between samples and has

excellent generalization over unseen classes [1]. With its robust

instance representation capabilities, deep metric learning is now

widely used in computer vision tasks, including content-based

image retrieval [2, 3], medical image processing [4-6], person re-

identification [7, 8].

The paradigm of deep metric learning centers on constructing

of proper loss functions to constrain the distance between the

anchor point and its positive and negative samples [9-11]. The

common goal of these loss functions is to increase the distance

between the anchor point and its negative samples while decrease

the distance between the anchor point and its positive samples,

thus maintaining an appropriate margin between the positive and

negative samples. These methods rely on sample mining [12, 13],

sample enhancement [14-16], and pair weighting strategies [17] to

construct valid sample pairs and mine effective information

between difficult sample pairs in a minibatch. Generally, these

methods learn more discriminative embedding space by

maximizing the variance between different classes. In this

embedding space, samples of the same classes are compressed

into individual clusters, while samples of different classes are far

apart.

However, compressing similar samples together in a violent

way completely ignores the variance between them during

training. Traditional deep learning methods treat all positive

samples equally due to the lack of sufficiently fine-grained sample

mailto:ztliu21@mails.jlu.edu.cn

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

labels, and focus attention on distinguishing negative samples.

This can lead to unconscious disruption of the local structure

among similar samples.

Figure 1: Example of intra-class variance, and the effect on

the embedding space. (a) 𝒖𝒊 is semantic direction (bird pose).

𝒓 is the strength of semantic change. The images with greater

semantic strength (greater pose changes) are obviously less

similar to the anchor. (b) Embedding space ignoring intra-

class variance. (c) Embedding space considering intra-class

variance.

As shown in Figure 1(a), even similar samples have different

intra-class variances. and previous deep metric learning methods

ignore this property. Their embedding space is shown in Figure

1(b). Simply making the distance between similar positive

samples and anchor less than a fixed margin does not reflect the

difference between like samples, which decreases the quality of

the embedding space. This reduces the generalizability of the

model, making it overfit on the training set and perform poorly on

the test set or on tasks where a large number of positive samples

exist. Therefore, we designed a model that maximizes the inter-

class variance while maintaining the intra-class variance. The

distribution of samples in the embedding space learned by our

method is shown in Figure 1(c). In this space, while the distance

between positive samples and the anchor point is preserved less

than the positive margin, the ranking relationship between

positive samples is maintained according to their intra-class

variance. For this consideration, we propose a self-supervised

generative assisted ranking (SGAR) framework, which uses

samples which satisfy the conditions to generate similar samples

with measurable intra-class variance. Then we utilize the idea of

self-supervised learning to design a ranking loss function to

maintain the ranking relationships of the generated samples. It is

worth noting that, in contrast typical deep metric learning methods

which focus on inter-class variance, our method focuses on intra-

class variance as a complement to inter-class variance. In contrast

to self-supervised contrastive learning which use one sample

within a class to construct augmented samples and compute loss

function such as InfoNCE loss [18] to emphasize distinguishing

between intra-class samples and inter-class samples, our method

uses several intra-class samples to generate similar samples with

measurable semantic variations and computes and designs a

ranking loss to construct a ranking relationship between similar

positive samples in the embedding space. In contrast to semi-

supervised methods such as Fixmatch [19] which stress consistent

output of intra-class samples across tasks, our method stresses the

difference of intra-class samples. Figure 2 is the overall

framework of our proposed method.

In conclusion, our method makes full use of the neglected

information between positive samples to mine the intra-class

variance through a self-supervised process, and protects the local

structure of samples in the embedding space from being

destroyed. The similar work as ours is [20]. The difference is that

we design a dynamic sample selection strategy that applies the

mining of intra-class variance dynamically during training. And in

addition, we design a powerful ranking loss function to better

constrain the ranking relationship. To verify the validity of our

method, we perform a wide range of experiments on four

commonly used fine-grained datasets, including CUB-200-2011

(CUB) [21], Cars-196 (CARS) [22], Stanford Online Products

(SOP) [23] and In-shop Clothes Retrieval (In-Shop) [24].

The main contributions of our work are as follows:

(1) We make full use of the positive samples which are

ignored in typical deep metric learning methods to generate

similar samples whose intra-class variance is metrizable. Based on

this, we use the idea of self-supervised learning to maintain the

intra-class ranking relationship on the basis of the generated

samples, thus mining the intra-class variance, protecting the local

structure of the embedding space from being destroyed, and

improving the quality of the embedding space.

(2) We design an efficient loss function that allows the model

to better mine intra-class variance while also ensuring inter-class

variance to learn a more discriminative embedding space.

(3) We conducted extensive experiments and made extensive

comparisons with other methods to demonstrate the effectiveness

of our proposed method.

The rest of this paper is divided into four sections. Section 2

presents related work about deep metric learning, self-supervised

learning and sample generation. Section 3 describes our proposed

method and loss function in detail. Section 4 is our experiment.

Section 5 is the conclusions of our SGRA method.

2 RELATED WORK

2.1 Deep Metric Learning

Deep metric learning aims to learn an embedding space in

which the similarity or distance between samples can be well

measured, while samples of the same class are close to each other,

and samples of the different class are far from each other. It is

wildly used in the field of content-based image retrieval [2, 3],

medical image processing [4-6], person re-identification [7, 8] and

face recognition [25]. Deep metric learning mainly focuses on the

design of loss functions, which are currently divided into two

main categories: pair-based losses [26, 27] and proxy-based losses

[28]. Pair-based losses construct sample pairs from the training

batch, and design optimizing objective based on the pairs. Typical

pair-based losses include Contrastive loss [26, 27], Triplet loss

[11], Lifted structured loss [23], N-pair loss [29], Margin-based

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

loss [30] and Multi-Similarity loss [10]. However, the training

complexity of pair-based losses, due to the need to construct

sample pairs, often reaches 𝑂(𝑁2) or 𝑂(𝑁3) , where 𝑁 is the

number of samples in the training set. Proxy-based losses [28] can

reduce the high complexity of pair-based losses. The common

idea of proxy-based losses is to assign one or more proxies to each

class, and use sample-to-proxy interactions instead of sample-to-

sample interactions to learn the global structure of embedding

space. The training complexity of proxy-based losses is 𝑂(𝑀𝑁),

where 𝑀 is the number of classes and 𝑁 is the number of samples.

Because the number of classes is much smaller than the number of

samples for most datasets, the training complexity of proxy-based

losses is much lower than that of pair-based losses. Typical proxy-

based losses including Proxy-NCA loss [28] and Proxy Anchor

loss [9].

Figure 2: The overall framework of our proposed approach. The part in red background is a typical deep metric learning

framework and 𝑳𝒎𝒆𝒕𝒓𝒊𝒄 is a deep metric learning loss. And the part in blue background is our self-supervised generative assisted

ranking framework. Our framework selects appropriate features to generate similar samples 𝒓𝒊
𝒋
 from the latent embedding space

𝒓𝒊 obtained from the backbone 𝒇𝜽. Then we map these generated samples to a new embedding space 𝒛𝒊
𝒋
 via projector 𝒒𝜽 and use a

powerful self-supervised ranking loss function 𝑳𝒓𝒂𝒏𝒌𝒊𝒏𝒈 to constrain the ranking relationship of similar samples. Eventually, 𝑳𝒎𝒆𝒕𝒓𝒊𝒄

and 𝑳𝒓𝒂𝒏𝒌𝒊𝒏𝒈 are combined and optimize the network by backpropagation. In testing, we only use the trained backbone to extract

features, calculate the similarity and return the retrieval results.

2.2 Intra-class Variance

Intra-class variance refers to the difference between samples of

the same class. Most researches focus on the differences between

samples of different classes, which is the inter-class variance, and

ignore the intra-class variance. However, some recent studies

learn intra-class variance in different way and show that the intra-

class variance contributes significantly to the quality of the

embedding space. Wang et al. [31] designed a dynamic margin

instead of the fixed margin used in typical deep metric learning

loss functions, which dynamically selects the size of the margin

according to the intra-class variance of different classes and better

maintains the intra-class variance. Fu et al. [32] use different

scales of image augmentation to model the intra-class variation of

samples, and in their another work [20] devise a better sample

generation approach to generate samples with measurable intra-

class variance in the embedding space, and then maintaining the

intra-class variance by constraining the ranking relationship

between them.

3 METHOD

3.1 Intra-class Variance

Intra-class variance refers to the difference between samples of

the same class. The opposite is inter-class variance, which means

the difference between samples of different classes. We suppose

that the image set is denoted as 𝑋 = {𝑥1,∙∙∙, 𝑥𝑀} , and the

corresponding label set is 𝑌 = {𝑦1,∙∙∙, 𝑦𝑀}, where M denotes the

size of the set. For a sample 𝑥a, we define the positive sample

𝑥𝑝 ∈ 𝑋𝑃 and negative sample 𝑥𝑛 ∈ 𝑋𝑁, while 𝑦a = 𝑦p ≠ 𝑦n. After

mapping 𝑥a, 𝑥𝑝 and 𝑥𝑛 to embedding space through a deep neural

network, they are denoted as 𝑧a , 𝑧p and 𝑧n . Then intra-class

variance and the inter-class variance can be represented as

𝑑(𝑧a, 𝑧p) and 𝑑(𝑧a, 𝑧n). Typical deep metric learning methods use

pulling close and pushing away positive and negative sample pairs

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

to learn the embedding space, where the following constraint is

guaranteed:

 max
𝑥𝑝∈𝑋𝑝

𝑑(𝑧a, 𝑧p) < min
𝑥𝑛∈𝑋𝑛

𝑑(𝑧a, 𝑧n) (1)

However, the constraint focuses on maximizing inter-class

variance and insufficiently exploits intra-class variance. This

unconsciously destroys the local structure between similar

samples and waste the information contained in the intra-class

variance. In order to use this information, we hope that samples

with smaller intra-class variance in the original space will also be

closer in the embedding space:

 𝑖𝑓 𝑑𝑜𝑟𝑖𝑔𝑖𝑛(𝑥𝑎, 𝑥𝑝1) < 𝑑𝑜𝑟𝑖𝑔𝑖𝑛(𝑥𝑎, 𝑥𝑝2)

 𝑡ℎ𝑒𝑛 𝑑(𝑧a, 𝑧p1) < 𝑑(𝑧a, 𝑧p2) (2)

Under this constraint, the local structure between similar

samples is also well preserved, which is useful for distinguishing

fine-grained datasets and increasing generalizability over unseen

classes.

3.2 Sample Generation

The precondition for generating samples in embedding space is

that the deep neural network can capture the semantic features of

the image [33]. Several researches [34, 35] have shown that

translating a feature along certain semantic directions in the

embedding space produces features with meaningful different

identities. Recently, some work [36, 37] has made promising

progress by generating samples in embedding space instead of

traditional data augmentation. Fu et al. [20] proposed a sample

generation method with measurable semantic variance, which

provides the possibility of capturing intra-class variance.

Specifically, input samples into a Convolutional Neural

Network (CNN), we can get the features 𝑅 = {𝑟1,∙∙∙, 𝑟𝐾} in the

latent space through a non-linear transformation 𝑟𝑖 = 𝑓(𝑥𝑖 , 𝜃𝑓) ,

where 𝑓(∙) denotes the embedding and the 𝜃𝑓 is the parameters of

a CNN.

For sample 𝑟𝑖 and its generated sample 𝑟𝑖
𝑗
, we can decompose

the relationship between them into scalar and direction in the

polar coordinate system:

 𝑟𝑖
𝑗

= 𝑟𝑖 + 𝛼𝑢𝑖
𝑗
 (3)

where 𝛼 = ‖𝑟𝑖
𝑗

− 𝑟𝑖‖
2
 and 𝑢𝑖

𝑗
=

𝑟𝑗−𝑟𝑖

‖𝑟𝑗−𝑟𝑖‖
2

. In this way, we can

use existing samples to synthesize similar samples by controlling

the strength (scalar in polar coordinate) and semantic direction

(direction in polar coordinate). The final generation formula is as

follows:

 𝑟𝑖
𝑗

= 𝑟𝑖 + 𝑗𝛼𝑢𝑖
𝑗
 𝑗 = 1,2, … , 𝑁 ‖𝑢𝑖

𝑗
‖

2
= 1 (4)

where 𝑗 is a positive integer from 1 to 𝑁 which used to control

the number of generated samples, 𝛼 is a hyperparameter to ensure

sample 𝑟𝑖
𝑁 which generated using the maximum semantic

variation 𝑁𝛼 is still similar to the original sample 𝑟𝑖 , and 𝑢𝑖
𝑗
 is

sampled from the standard Gaussian distribution.

As the intra-class variance space of 𝑟𝑖 is consistent of the

generated local neighbor 𝑟𝑖
𝑗

 in latent space, the following

constraint is satisfied:

 𝑖𝑓 𝑗1 < 𝑗2 𝑡ℎ𝑒𝑛 𝑑𝑙(𝑟𝑖 , 𝑟𝑖
𝑗1) < 𝑑𝑙(𝑟𝑖 , 𝑟𝑖

𝑗2) (5)

where 𝑑𝑙(𝑟𝑖 , 𝑟𝑖
𝑗
) denotes the distance between 𝑟𝑖 and 𝑟𝑖

𝑗
 in

latent space. In this way, we can generate similar samples

according to different semantic variations by controlling 𝑗 , and

the intra-class variance between them is measurable. As the

samples are generated dynamically in embedding space during

training, when the model is not well trained, the generated

samples have a high error rate, which will instead affect the

effectiveness of subsequent training. For this consideration, we

propose a dynamic sample selection strategy which uses a

generation margin 𝛾 to control the selection of samples for

generation, as shown in figure 3, which adaptively selects the

samples used for generation with the quality of the embedding

space.

Figure 3: Dynamic sample selection strategy. Only positive

samples within generation margin (positive sample 1) are

selected for sample generation. Negative sample 1 satisfies

generation margin but not the positive margin and should be

pushed away. Positive sample 2 is within positive margin and

outside the generation margin, so it is not processed. Positive

sample 3 is outside positive margin and should be pulled

towards the anchor. Negative sample 3 is outside the positive

margin and is not processed.

In the early training period, the distance between most positive

samples and anchor points is greater than the generation margin,

and only a small number of positive samples are smaller than the

generation margin. At this time, our generation strategy is very

conservative, and generates few samples. When the network is

well trained, more samples are smaller than the generation margin

and are selected for generation. This strategy is motivated by an

intuition that inter-class variance plays a major role in

discrimination between samples of different classes, and using

intra-class variance alone cannot distinguish samples of different

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

classes well. However, focusing only on inter-class variance leads

the model ignoring the intra-class distribution of samples and

overfitting the training samples. Therefore, we want to use intra-

class variance as an assist of inter-class variance to maintain intra-

class distribution and improve the generalization of the model.

Hence, in the preliminary of training, we want to focus on inter-

class variance to initially construct a reasonable embedding space,

and gradually increase the weight of intra-class variance as the

quality of the embedding space improves to maintain the local

distribution of similar samples.

With our designed generation strategy, the mining of intra-

class variance is adaptively applied in training process. In

addition, our strategy can improve the accuracy of the generated

samples and avoid the slow training due to all or random selection

of positive samples for generation.

3.3 Self-supervised Ranking Preserving

Using the sample generation strategy, we obtain the original

sample 𝑟𝑖 and its generated samples 𝑟𝑖
𝑗
 in the latent space, where

𝑟𝑖
𝑗

∈ {𝑟𝑖
1,∙∙∙, 𝑟𝑖

𝑁} and N is the number of samples generated per

positive sample. Afterwards, we apply the idea of self-supervised

learning, using a projector 𝑞(∙) to map the latent space into a new

embedding space, where 𝑧𝑖 = 𝑞(𝑟𝑖 , 𝜃𝑞) and 𝑧𝑖
𝑗

= 𝑞(𝑟𝑖
𝑗
, 𝜃𝑞). And

we design an efficient loss function to learn the local ranking

structure. For a uniform representation, in the later we use the

cosine similarity instead of the distance above, since all

embedding space are L2-normalized.

Our loss function is based on a ranking loss function as Eq.

(6):

 𝐿ℎ𝑎𝑛𝑑−𝑖𝑛−ℎ𝑎𝑛𝑑 =
1

𝑀
∑ ∑ [−𝑆𝑖,𝑥 + 𝑆𝑖+1,𝑥 + 𝛿]

+
𝑁−1
𝑖=1

𝑀
𝑥=1 (6)

where 𝑆𝑖,𝑥 denotes the similarity of the i-th generated sample

to the original sample, 𝛿 is the margin between two adjacent

generated samples. By compute this loss function, the similarity

between every two adjacent generated samples differs by a fixed

margin 𝛿, and the smaller numbered generated samples (samples

with lower intra-class variance strength) are more similar to the

original samples. However, in this loss function, for a generated

sample, only the two samples before and after it are considered.

We therefore split it into left part and right part, and add

consideration of the global ranking of the generated samples as

Eq. (7) and Eq. (8):

 𝐿𝑙𝑒𝑓𝑡_𝑏𝑎𝑠𝑒 =
1

𝑀
∑ ∑ [𝑆𝑖,𝑥 − min

𝑗∈[1,𝑖−1]
𝑆𝑗,𝑥 + 𝛿]

+

𝑁
𝑖=2

𝑀
𝑥=1 (7)

 𝐿𝑟𝑖𝑔ℎ𝑡_𝑏𝑎𝑠𝑒 =
1

𝑀
∑ ∑ [max

𝑗∈[𝑖+1,𝑁]
𝑆𝑗,𝑥 − 𝑆𝑖,𝑥 + 𝛿]

+

𝑁−1
𝑖=1

𝑀
𝑥=1 (8)

For a generated sample, Eq. (7) constrains the least similar one

(has the lowest similarity) among all samples to its left (smaller

numbering) to be ranked ahead of it. While Eq. (8) constrains the

sample with the greatest similarity on the right side to be ranked

after the current sample. Figure 4 illustrates how our loss works:

Figure 4: Explanation of Eq. (7) and Eq. (8). 𝒛𝒙 is original

sample. 𝒛𝒙
𝟏 to 𝒛𝒙

𝑵 are the samples generated using 𝒛𝒙 as the

prototype. For 𝒛𝒙
𝒊 , Eq. (7) constraints the sample with the least

similarity on its left side to be greater than its similarity by a

margin 𝜹. And Eq. (8) constraints the sample with the largest

similarity on its right side to be less than its similarity by a

margin 𝜹.

we apply the LogSumExp [10] and SoftPlus [38] functions,

and finally get a smooth version of our function. The loss

becomes:

 𝐿𝑙𝑒𝑓𝑡 =
1

𝑀
∑

1

𝜏
log(1 + ∑ ∑ 𝑒𝜏(𝑆𝑖,𝑥−𝑆𝑗,𝑥+𝛿)𝑖−1

𝑗=1
𝑁
𝑖=2)𝑀

𝑥=1 (9)

 𝐿𝑟𝑖𝑔ℎ𝑡 =
1

𝑀
∑

1

𝜏
log(1 + ∑ ∑ 𝑒𝜏(𝑆𝑗,𝑥−𝑆𝑖,𝑥+𝛿)𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1)𝑀

𝑥=1 (10)

where 𝜏 is scaling parameter. Our sorting loss is combined by

𝐿𝑙𝑒𝑓𝑡 and 𝐿𝑟𝑖𝑔ℎ𝑡 as Eq. (11):

 𝐿𝑠𝑜𝑟𝑡 = 𝐿𝑙𝑒𝑓𝑡 + 𝐿𝑟𝑖𝑔ℎ𝑡 (11)

The problem of Eq. (7) and Eq. (8) is that they have a fixed

gradient which values of 1 or -1. This approach lacks the ability to

mine informative sample pairs [10] and leads to trivial samples

[39]. In contrast, the derivatives of Eq. (9) and Eq. (10) assign

weights more dynamically to the degree of violation of the

constraint by sample pairs. And compare to Eq. (6), Eq. (9) and

Eq. (10) comprehensively consider the effect of all samples before

and after the current sample. As shown in Eq. (12) and Eq. (13):

𝜕𝐿𝑙𝑒𝑓𝑡

𝜕𝑆𝑖,𝑥
=

∑ 𝑒
𝜏(𝑆𝑖,𝑥−𝑆𝑗,𝑥+𝛿)𝑖−1

𝑗=1

1+∑ ∑ 𝑒
𝑆𝑖,𝑥−𝑆𝑗,𝑥+ 𝛿𝑖−1

𝑗=1
𝑁
𝑖=2

 (12)

𝜕𝐿𝑟𝑖𝑔ℎ𝑡

𝜕𝑆𝑖,𝑥
= −

∑ 𝑒
𝜏(𝑆𝑗,𝑥−𝑆𝑖,𝑥+𝛿)𝑁

𝑗=𝑖+1

1+∑ ∑ 𝑒
𝑆𝑗,𝑥−𝑆𝑖,𝑥+ 𝛿𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1

 (13)

Although our method produces generated samples through a

series of semantic transformations, these samples are of the same

class as the original sample and need to maintain the constraint

with the anchor:

 𝐿𝑎𝑛𝑐ℎ𝑜𝑟 =
1

|𝑃+|
∑

1

𝛽
∑ (log (1 + ∑ 𝑒𝛽(𝜑−𝑆𝑖,𝑝)𝑁

𝑖=1))𝑥∈𝑋𝑃𝑝∈𝑃+ (14)

where 𝑃+ is the set of positive anchors, 𝑝 ∈ 𝑃+ is the positive

anchor, 𝛽 is the scaling parameter, 𝜑 is a margin and 𝑆𝑖,𝑝 denotes

the similarity of generated samples and the positive anchor. The

derivate of Eq. (14) is shown as Eq. (15), where the pairs with

lower similarity have a larger weight.

𝜕𝐿𝑎𝑛𝑐ℎ𝑜𝑟

𝜕𝑆𝑖,𝑝
= −

𝑒
𝛽(𝜑−𝑆𝑖,𝑝)

1+∑ 𝑒
𝛽(𝜑−𝑆𝑖,𝑝)𝑁

𝑖=1

 (15)

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

Combining Eq. (11) and Eq. (14), we finally propose the

ranking loss as:

 𝐿𝑟𝑎𝑛𝑘𝑖𝑛𝑔 = 𝐿𝑠𝑜𝑟𝑡 + 𝐿𝑎𝑛𝑐ℎ𝑜𝑟 (16)

Our method can be viewed as an independent module and can

be plug-and-play combined with typical metric learning methods.

We balance our ranking loss 𝐿𝑟𝑎𝑛𝑘𝑖𝑛𝑔 and metric learning loss

𝐿𝑚𝑒𝑡𝑟𝑖𝑐 with a hyperparameter 𝜆.

 𝐿 = 𝐿𝑚𝑒𝑡𝑟𝑖𝑐 + 𝜆𝐿𝑟𝑎𝑛𝑘𝑖𝑛𝑔 (17)

4 EXPERIMENTS

4.1 Dataset

We use four widely-used dataset to evaluate our proposed

method. They are CUB-200-2011 (CUB) [21], Cars-196 (CARS)

[22], Stanford Online Product (SOP) [23] and In-shop Clothes

Retrieval (InShop) [24]. CUB is a bird dataset containing 200

different classes with 11,788 images. For CUB, we use 5864

images from the first 100 classes for training, and 5924 images

from the other 100 classes for testing. CARS is a car dataset

containing 196 different car models with 16185 images. For

CARS, we use 8,054 images of the first 98 classes for training,

and the other for testing. SOP contains 120,053 images of 22,634

classes, which is online product sold on eBay.com. For SOP, we

use the same split as [23], 59,551 images of 11,318 classes is used

for training, and the other is used for testing. InShop is a clothes

dataset, which contains 72,712 images of 7986 classes. For

InShop, we use the same split as [24], which use 25,882 images of

the first 3,997 classes for training and the other for testing. The

testing set is further divided into query set and gallery set. The

query set contains 14,218 images of 3,985 classes and the gallery

set contains 12,612 images of 3,985 classes.

4.2 Baselines and Evaluation Metrics

We selected a large number of methods to compare and fully

evaluate our method. Specifically, the methods used for

comparison include some robust deep metric learning methods

such as A-BIER [40], ABE [41], HTL [42] and RLL-H [39], some

pair-based loss functions such as Circle loss [25] and Multi-

Similarity loss [10] and proxy-based loss such as SoftTriple loss

[43], Proxy-GML loss [44] and Proxy-Anchor loss [9]. We also

chose some sample generation methods that are similar to our

approach including SR [32] and SSR [20]. To ensure

comprehensive evaluation, we use various evaluation metrics. In

order to accommodate most of methods, we choose 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾

(𝑅@𝐾), which is commonly used in retrieval, as the evaluation

metric.

4.3 Implementation Details

4.3.1 Embedding Networks

In order to test the effectiveness of our method on different

networks and to compare fairly with previous works, we use

GoogleNet [45] and BN–Inception with batch normalization [46]

as the backbone network respectively. The backbone is pre-

trained for ImageNet classification [47]. The projector 𝑞𝜃 is

composed of a fully connected layer, an L2-normalization layer

and a Relu activation function layer. The dimension of 𝑞𝜃 is 512.

4.3.2 Training

We use random crop and random horizontal flip for data

augmentation in training and only single center crop in testing.

The size of cropped images is set to 224 × 224 as in most

previous researches. The AdamW optimizer [48] is used in every

experiment. For CUB and CARS, we use 10−4 as initial learning

rate, and train for 40 epochs. For SOP and InShop, the initial

learning rate is set to 6 ∗ 10−4 and train for 60 epochs.

4.3.3 Hyperparameters

We set 𝛿 and 𝜏 to 0.3 and 64 in Eq. (9) and Eq. (10). 𝛼 and 𝑁

in Eq. (4) is set to 1.0 and 5. Generation margin 𝛾 is set to 0.05. 𝜆

in Eq. (17) is set to 0.1. 𝜑 in Eq. (14) is set to 0.1. For the batch

size, we use the settings as [9]. Specifically, we set the batch size

to 180 on CUB and CARS and 120 on SOP and InShop.

4.4 Experimental Results and Analysis

We evaluate our method based on Proxy-Anchor loss [9] and

using the same settings as in their paper. We select some excellent

sample generation-based approaches and some landmark works in

deep metric learning to compare with our method. For fairness,

we use the same embedding size and backbone. Figure 5 shows

our qualitative results:

Figure 5: Qualitative retrieval results of our method. (a), (b),

(c), (d) is the top-5 recall results on CUB, CARS, SOP and

Inshop. The left side of the dotted line with blue edge indicates

query images. The right side of the dotted line shows the

retrieval results, where the green edges indicate correct

results and the red edges indicate incorrect results.

A comparison of our approach with the state-of-art deep metric

learning methods is presented and the results are shown in Table

1, Table 2 and Table 3. Since the different backbone and

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

embedding size greatly affect performances, we list the settings

used by different methods in tables.

On CUB, for excellent deep metric learning methods such as

A-BIER, ABE, HTL and RLL-H, we use GoogleNet as backbone

and achieve improvements of 6.8% , 3.7% , 7.2% and 6.9% in

𝑅@1. For pair-based losses such as Circle and MS, we use BN-

Inception as backbone and achieve improvements of 2.1% and

3.1% in 𝑅@1. For proxy-based losses such as SoftTriple, Proxy-

GML and Proxy-Anchor, we obtain performance boost in 𝑅@1

for 3.4%, 2.2% and 0.4%. We still achieve a higher performance

in 𝑅@1 than SR and SSR by 57.4% → 64.3% and 65.4% →

68.8

Table 1: Comparison with excellent method on CUB and CARS. Method indicates the different methods. Setting indicates the

backbone used by current method, where G denotes GoogleNet [45], BN denotes BN-Inception with batch normalization [46] and

RN denotes ResNet50 [49]. The number in the superscript in the setting indicates embedding size. Recall@K is used as evaluation

metric. R denotes recall and the number after it denote K. Since Proxy-Anchor loss [9] does not report results on GoogleNet, we

reproduce the results and mark the results with the superscript *.

 CUB-200-2011 Cars-196

Method setting R1 R2 R4 R8 R1 R2 R4 R8

A-BIER [40] G512 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1

ABE [41] G512 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1

HTL [42] BN512 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7

RLL-H [39] G512 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1

SoftTriple [43] BN512 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9

Proxy-GML [44] BN512 66.6 77.6 86.4 - 85.5 91.8 95.3 -

Circle [25] BN512 66.7 77.4 86.2 91.2 83.4 89.8 94.1 96.5

MS [10] BN512 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5

SR [32] G512 57.4 69.3 79.8 - 80.9 88.2 92.6 -

SSR [20] BN512 65.4 76.3 84.3 80.3 80.1 87.3 92.2 95.1

Proxy-Anchor* G512 63.9 74.8 83.7 89.9 84.7 90.6 94.5 96.9

Proxy-Anchor+SGAR G512 64.3 75.1 83.9 90.4 85.7 91.0 94.8 97.1

Proxy-Anchor [9] BN512 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3

Proxy-Anchor+SGAR BN512 68.8 79.4 86.9 91.7 86.6 92.0 95.1 97.4

On CARS, we use the same method as on CUB for

comparison. For A-BIER, ABE, HTL and RLL-H, we obtain

higher 𝑅@1 with boost of 3.7% , 0.5% , 4.3% and 11.7% . For

Circle loss and MS loss, our 𝑅@1 rises by 3.2% and 2.5%. For

SoftTriple, Proxy-GML and Proxy-Anchor, we boosted 2.1% ,

1.1% and 0.5% on them in 𝑅@1. And we exceed SR and SSR by

4.8% and 6.5% in 𝑅@1.

On SOP, we still achieve different degrees of improvement

compare to other methods. Our results outperform HTL,

SoftTriple, Proxy-GML, Circle, MS, SR, SSR and Proxy-Anchor

by 4.6% , 1.1% , 1.4% , 1.1% , 1.2% , 0.8% , 0.5% and 0.8% in

𝑅@1.

On InShop, our method is presented in 11.0%, 2.2%, 0.9%

and 0.3% ahead of HTL, MS, SSR and Proxy-Anchor.

Experiments show that our method achieves the state-of-the-

art results on four benchmark datasets. Our method captures intra-

class variance by constructing intra-class ranking model to

improve the stability and generalization of the embedding space.

In the embedding space learned by our method, not only samples

of different classes are separated, but also ranking relationships

are maintained between similar samples. In contrast, other

methods are misled by the presence of various intra-class variance

in similar samples such as poses, background or viewpoints,

which leads to worse results. On SOP, our method achieves the

greatest improvement on the basis of the results of Proxy-Anchor.

This may be motivated by an observation: SOP is a dataset of

artificial products with a large perspective transformation between

similar samples, while compare to CUB, SOP contains fewer

samples in each class. Therefore, our method plays a more

significant auxiliary effect. It is worth noting that although our

method uses BN-Inception as backbone, on SOP it even

outperforms SR and SSR with ResNet50 as backbone and our

method also performs well on GoogleNet. Adding our auxiliary

framework to networks with poorer representation can help the

network learn more useful knowledge. This indicates the

effectiveness of the intra-class information mined by our method

and the prospects of our method for lightweight models.

4.5 Ablation Study

In order to verify the effectiveness of our method, we perform

extensive ablation experiments. Specifically, we use Proxy-

Anchor loss and train on CUB. BN-Inception with 512 embedding

size is the default backbone.

Figure 6(a) shows the effect of the hyperparameter 𝜆, which is

a factor used to balance the benchmark deep metric learning loss

and our ranking loss, and also reflects the proportion of inter-class

WOODSTOCK’18, June, 2018, El Paso, Texas USA F. Surname et al.

variance and intra-class variance during training. When 𝜆 is small,

the intra-class variance has little impact in training and is not

sufficiently powerful to optimize the embedding space. And when

𝜆 is large, the impact of intra-class variance exceeds inter-class

variance, which leads to severe performance degradation. This is

in line with our previous consideration that the inter-class

variance plays a major role in distinguishing different classes of

samples, but introduction of appropriate intra-class variance helps

to maintain the local structure of the embedding space and

improve generalization. The performance is best when 𝜆 = 0.1, so

we set 𝜆 = 0.1.

Table 2: Comparison with excellent method on SOP.

 SOP

Method setting R1 R10 R100 R1000

A-BIER [40] G512 74.2 86.9 94.0 97.8

ABE [41] G512 76.3 88.4 94.8 98.2

HTL [42] BN512 74.8 88.3 94.8 98.4

RLL-H [39] G512 76.1 89.1 95.4 -

SoftTriple [43] BN512 78.3 90.3 95.9 -

Proxy-GML [44] BN512 78.0 90.6 96.2 -

Circle [25] BN512 78.3 90.5 96.1 -

MS [10] BN512 78.2 90.5 96.0 98.7

SR [32] RN512 78.6 90.6 96.2 98.7

SSR [20] RN512 78.9 91.0 96.2 98.8

Proxy-Anchor [9] BN512 78.6 90.3 95.9 98.6

Proxy-

Anchor+SGAR

BN512 79.4 91.0 96.4 98.8

Table 3: Comparison with excellent method on Inshop.

 InShop

Method setting R1 R10 R20 R40

A-BIER [40] G512 83.1 95.1 96.9 97.8

ABE [41] G512 87.3 96.7 97.9 98.5

HTL [42] BN512 80.9 94.3 95.8 97.4

MS [10] BN512 89.7 97.9 98.5 99.1

SR [32] RN128 88.0 97.3 98.2 -

SSR [20] BN512 91.0 98.0 98.7 -

Proxy-Anchor

[9]

BN512 91.6 98.1 98.8 99.1

Proxy-

Anchor+SGAR

BN512 91.9 98.3 98.9 99.1

Figure 6(b) shows the results for different generation margin γ.

The best result is obtained when γ=0.05, so we set γ=0.05. Only

samples with a similarity greater than the generation margin γ are

selected for generation and calculate the ranking loss, thus γ has a

significant impact in training. A small γ indicates that the more

samples used for generation, and more impact the intra-class

variance has in training. But excessively decreasing γ will result

in low quality of generated samples, which in turn misleads the

training of the network. Using a large γ means that few samples in

the training satisfy the generation condition, which reduces the

performance of the intra-class variance.

Figure 6(c) and Figure 6(d) shows the results of α and δ. α and δ

control the generation strength and the margin to be maintained

between neighboring samples. According to the experimental

results we set them respectively as 1.0 and 0.3. Figure 6(e) shows

the results of τ and we set is to 64.

Figure 6(f) shows our result on N, where N represents the number

of samples generated for each sample. Since our loss needs to

consider the left and right parts, N is at least 3. A larger N means

a larger number of generated samples, which leads to more time

complexity for training, and a larger scale of variation in

generated samples, which is difficult to control. A smaller N

means a smaller number of generated samples and a more

conservative use of intra-class variance. On balance, we set N to 5.

5 CONCLUSION

In this paper, we present a novel self-supervised generative

assisted ranking framework that provides a semi-supervised

perspective on the typical supervised deep metric learning

methods as a boosting scheme. Our method does not require

additional labels, generates samples using existing positive

Figure 6: R@1 with different settings of six significant

hyperparameters. (a) factor 𝝀 used to balance 𝑳𝒎𝒆𝒕𝒓𝒊𝒄 and

𝑳𝒓𝒂𝒏𝒌𝒊𝒏𝒈, (b) generation margin 𝜸, (c) generate strength scalar

𝜶, (d) margin between neighbors 𝜹, (e) scale factor 𝝉, and (f)

number of generated samples of each sample 𝑵.

samples. Inspired by the idea of self-supervised learning, we

design a powerful ranking loss function to preserve the ranking

relationship among similar samples in the local space of the

embedding space. Extensive experiments demonstrate that our

approach can combine with and improve the performance of

typical supervised deep metric learning methods and outperforms

state-of-the-art methods on four benchmark datasets.

Insert Your Title Here WOODSTOCK’18, June, 2018, El Paso, Texas USA

ACKNOWLEDGMENTS

Insert paragraph text here. Insert paragraph text here. Insert

paragraph text here. Insert paragraph text here. Insert paragraph

text here. Insert paragraph text here. Insert paragraph text here.

Insert paragraph text here. Insert paragraph text here. Insert

paragraph text here. Insert paragraph text here.

REFERENCES
[1] Zhao H., Yuan L., Zhao H. and Wang Z. 2021. Global-Aware Ranking Deep

Metric Learning for Remote Sensing Image Retrieval. IEEE Geoscience and Remote

Sensing Letters PP, 99 (2021), 1-5.

[2] Liu Pingping, Liu Zetong, Shan Xue and Zhou Qiuzhan. 2022. Deep Hash

Remote-Sensing Image Retrieval Assisted by Semantic Cues. Remote Sensing 14, 24

(2022), 6358.

[3] Wang J., Zhang Z., Huang D., Song W. and Li X. Y. 2021. A Ranked Similarity

Loss Function with pair Weighting for Deep Metric Learning.

[4] Geng M., Meng X., Yu J., Zhu L., Jin L., Jiang Z., Qiu B., Li H., Kong H. and

Yuan J. 2021. Content-Noise Complementary Learning for Medical Image Denoising.

IEEE transactions on medical imaging PP (2021).

[5] Rajangam Vijayarajan, Kandikattu Dheeraj, Kumar Mukul and Raj Alex Noel

Joseph. 2022. Texture Aware Deep Feature Map Based Linear Weighted Medical

Image Fusion. IEEE Access 10 (2022), 88787-88797.

[6] Ji Yu, Zhu Zhenyu and Wei Ying. 2022. Fusion-based multimodal medical image

registration combining inter-modality metric and disentanglement. IEEE. 1-5.

[7] Rao W., Xu M. and Zhou J. 2020. Improved Metric Learning Algorithm for

Person Re-Identification Based on Asymmetric Metric.

[8] Wu W., Yang Z., Tao D., Zhang Q. and Cheng J. 2019. On Comparing Different

Metric Learning Schemes for Deep Feature based Person Re-identification with

Camera Adaption.

[9] Kim Sungyeon, Kim Dongwon, Cho Minsu and Kwak Suha. 2020. Proxy anchor

loss for deep metric learning. 3238-3247.

[10] Wang Xun, Han Xintong, Huang Weilin, Dong Dengke and Scott Matthew R.

2019. Multi-similarity loss with general pair weighting for deep metric learning.

5022-5030.

[11] Schroff Florian, Kalenichenko Dmitry and Philbin James. 2015. Facenet: A

unified embedding for face recognition and clustering. 815-823.

[12] Kertész Gábor. 2022. Combining Negative Selection Techniques for Triplet

Mining in Deep Metric Learning. IEEE. 000155-000160.

[13] Chen Kezhou, Chen Yang, Han Chuchu, Sang Nong, Gao Changxin and Wang

Ruolin. 2018. Improving person re-identification by adaptive hard sample mining.

IEEE. 1638-1642.

[14] Yuwei Li, Linyu Yang, Xiangyu Liu and Long Cheng. 2021. Summary of Data

Mining and Analysis of Launch Vehicle Test Based on Small Sample Learning

Method. IEEE. 158-161.

[15] Yuxin Ding, Guangbin Wang, Yubin Ma and Haoxuan Ding. 2021. Data

augmentation in training deep learning models for malware family classification.

IEEE. 1-6.

[16] Jacob Pierre, Picard David and Histace Aymeric. 2022. Improving Deep Metric

Learning With Virtual Classes And Examples Mining. IEEE. 2696-2700.

[17] Rezaei Mina, Dorigatti Emilio, Rügamer David and Bischl Bernd. 2022. Joint

Debiased Representation Learning and Imbalanced Data Clustering. IEEE. 55-62.

[18] He Kaiming, Fan Haoqi, Wu Yuxin, Xie Saining and Girshick Ross. 2020.

Momentum contrast for unsupervised visual representation learning. 9729-9738.

[19] Sohn Kihyuk, Berthelot David, Carlini Nicholas, Zhang Zizhao, Zhang Han,

Raffel Colin A, Cubuk Ekin Dogus, Kurakin Alexey and Li Chun-Liang. 2020.

Fixmatch: Simplifying semi-supervised learning with consistency and confidence.

Advances in neural information processing systems 33 (2020), 596-608.

[20] Fu Zheren, Mao Zhendong, Yan Chenggang, Liu An-An, Xie Hongtao and

Zhang Yongdong. 2021. Self-supervised synthesis ranking for deep metric learning.

IEEE Transactions on Circuits and Systems for Video Technology 32, 7 (2021),

4736-4750.

[21] Wah Catherine, Branson Steve, Welinder Peter, Perona Pietro and Belongie

Serge. 2011. The caltech-ucsd birds-200-2011 dataset. (2011).

[22] Krause Jonathan, Stark Michael, Deng Jia and Fei-Fei Li. 2013. 3d object

representations for fine-grained categorization. 554-561.

[23] Oh Song Hyun, Xiang Yu, Jegelka Stefanie and Savarese Silvio. 2016. Deep

metric learning via lifted structured feature embedding. 4004-4012.

[24] Liu Ziwei, Luo Ping, Qiu Shi, Wang Xiaogang and Tang Xiaoou. 2016.

Deepfashion: Powering robust clothes recognition and retrieval with rich annotations.

1096-1104.

[25] Sun Yifan, Cheng Changmao, Zhang Yuhan, Zhang Chi, Zheng Liang, Wang

Zhongdao and Wei Yichen. 2020. Circle loss: A unified perspective of pair similarity

optimization. 6398-6407.

[26] Bromley Jane, Guyon Isabelle, LeCun Yann, Säckinger Eduard and Shah

Roopak. 1993. Signature verification using a" siamese" time delay neural network.

Advances in neural information processing systems 6 (1993).

[27] Chopra Sumit, Hadsell Raia and LeCun Yann. 2005. Learning a similarity

metric discriminatively, with application to face verification. IEEE. 539-546.

[28] Movshovitz-Attias Yair, Toshev Alexander, Leung Thomas K, Ioffe Sergey and

Singh Saurabh. 2017. No fuss distance metric learning using proxies. 360-368.

[29] Sohn Kihyuk. 2016. Improved deep metric learning with multi-class n-pair loss

objective. Advances in neural information processing systems 29 (2016).

[30] Wu Chao-Yuan, Manmatha R, Smola Alexander J and Krahenbuhl Philipp.

2017. Sampling matters in deep embedding learning. 2840-2848.

[31] Wang Yifan, Liu Pingping, Lang Yijun, Zhou Qiuzhan and Shan Xue. 2022.

Learnable dynamic margin in deep metric learning. Pattern Recognition 132 (2022),

108961.

[32] Fu Zheren, Li Yan, Mao Zhendong, Wang Quan and Zhang Yongdong. 2021.

Deep metric learning with self-supervised ranking. 1370-1378.

[33] Bengio Yoshua, Mesnil Grégoire, Dauphin Yann and Rifai Salah. 2013. Better

mixing via deep representations. PMLR. 552-560.

[34] DeVries Terrance and Taylor Graham W. 2017. Dataset augmentation in feature

space. arXiv preprint arXiv:1702.05538 (2017).

[35] Wei Jason. 2021. Good-enough example extrapolation. arXiv preprint

arXiv:2109.05602 (2021).

[36] Wang Yulin, Pan Xuran, Song Shiji, Zhang Hong, Huang Gao and Wu Cheng.

2019. Implicit semantic data augmentation for deep networks. Advances in neural

information processing systems 32 (2019).

[37] Lin Xudong, Duan Yueqi, Dong Qiyuan, Lu Jiwen and Zhou Jie. 2018. Deep

variational metric learning. 689-704.

[38] Yi Dong, Lei Zhen, Liao Shengcai and Li Stan Z. 2014. Deep metric learning

for person re-identification. IEEE. 34-39.

[39] Wang Xinshao, Hua Yang, Kodirov Elyor, Hu Guosheng, Garnier Romain and

Robertson Neil M. 2019. Ranked list loss for deep metric learning. 5207-5216.

[40] Opitz Michael, Waltner Georg, Possegger Horst and Bischof Horst. 2018. Deep

metric learning with bier: Boosting independent embeddings robustly. IEEE

Transactions on Pattern Analysis and Machine Intelligence 42, 2 (2018), 276-290.

[41] Kim Wonsik, Goyal Bhavya, Chawla Kunal, Lee Jungmin and Kwon Keunjoo.

2018. Attention-based ensemble for deep metric learning. 736-751.

[42] Ge Weifeng. 2018. Deep metric learning with hierarchical triplet loss. 269-285.

[43] Qian Qi, Shang Lei, Sun Baigui, Hu Juhua, Li Hao and Jin Rong. 2019.

Softtriple loss: Deep metric learning without triplet sampling. 6450-6458.

[44] Zhu Yuehua, Yang Muli, Deng Cheng and Liu Wei. 2020. Fewer is more: A

deep graph metric learning perspective using fewer proxies. Advances in neural

information processing systems 33 (2020), 17792-17803.

[45] Szegedy Christian, Liu Wei, Jia Yangqing, Sermanet Pierre, Reed Scott,

Anguelov Dragomir, Erhan Dumitru, Vanhoucke Vincent and Rabinovich Andrew.

2015. Going deeper with convolutions. 1-9.

[46] Ioffe Sergey and Szegedy Christian. 2015. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. pmlr. 448-456.

[47] Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai and Fei-Fei Li. 2009.

Imagenet: A large-scale hierarchical image database. Ieee. 248-255.

[48] Loshchilov Ilya and Hutter Frank. 2017. Decoupled weight decay regularization.

arXiv preprint arXiv:1711.05101 (2017).

[49] He Kaiming, Zhang Xiangyu, Ren Shaoqing and Sun Jian. 2016. Deep residual

learning for image recognition. 770-778.

