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ABSTRACT 

Deep metric learning aims to construct an embedding space where 

samples of the same class are close to each other, while samples 

of different classes are far away from each other. Most existing 

deep metric learning methods attempt to maximize the difference 

of inter-class features. And semantic related information is 

obtained by increasing the distance between samples of different 

classes in the embedding space. However, compressing all 

positive samples together while creating large margins between 

different classes unconsciously destroys the local structure 

between similar samples. Ignoring the intra-class variance 

contained in the local structure between similar samples, the 

embedding space obtained from training receives lower 

generalizability over unseen classes, which would lead to the 

network overfitting the training set and crashing on the test set. To 

address these considerations, this paper designs a self-supervised 

generative assisted ranking framework that provides a semi-

supervised view of intra-class variance learning scheme for 

typical supervised deep metric learning. Specifically, this paper 

performs sample synthesis with different intensities and diversity 

for samples satisfying certain conditions to simulate the complex 

transformation of intra-class samples. And an intra-class ranking 

loss function is designed using the idea of self-supervised learning 

to constrain the network to maintain the intra-class distribution 

during the training process to capture the subtle intra-class 

variance. With this approach, a more realistic embedding space 

can be obtained in which global and local structures of samples 

are well preserved, thus enhancing the effectiveness of 

downstream tasks. Extensive experiments on four benchmarks 

have shown that this approach surpasses state-of-the-art methods. 
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1 INTORDUCTION 

Deep metric learning aims to learn an embedding space where 

samples of the same class are close and samples of different 

classes are far from. In this way, deep metric learning captures 

semantic similarity information between samples and has 

excellent generalization over unseen classes [1]. With its robust 

instance representation capabilities, deep metric learning is now 

widely used in computer vision tasks, including content-based 

image retrieval [2, 3], medical image processing [4-6], person re-

identification [7, 8].  

The paradigm of deep metric learning centers on constructing 

of proper loss functions to constrain the distance between the 

anchor point and its positive and negative samples [9-11]. The 

common goal of these loss functions is to increase the distance 

between the anchor point and its negative samples while decrease 

the distance between the anchor point and its positive samples, 

thus maintaining an appropriate margin between the positive and 

negative samples. These methods rely on sample mining [12, 13], 

sample enhancement [14-16], and pair weighting strategies [17] to 

construct valid sample pairs and mine effective information 

between difficult sample pairs in a minibatch. Generally, these 

methods learn more discriminative embedding space by 

maximizing the variance between different classes. In this 

embedding space, samples of the same classes are compressed 

into individual clusters, while samples of different classes are far 

apart. 

However, compressing similar samples together in a violent 

way completely ignores the variance between them during 

training. Traditional deep learning methods treat all positive 

samples equally due to the lack of sufficiently fine-grained sample 
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labels, and focus attention on distinguishing negative samples. 

This can lead to unconscious disruption of the local structure 

among similar samples.  

 

Figure 1: Example of intra-class variance, and the effect on 

the embedding space. (a) 𝒖𝒊 is semantic direction (bird pose). 

𝒓 is the strength of semantic change. The images with greater 

semantic strength (greater pose changes) are obviously less 

similar to the anchor. (b) Embedding space ignoring intra-

class variance. (c) Embedding space considering intra-class 

variance. 

As shown in Figure 1(a), even similar samples have different 

intra-class variances. and previous deep metric learning methods 

ignore this property. Their embedding space is shown in Figure 

1(b). Simply making the distance between similar positive 

samples and anchor less than a fixed margin does not reflect the 

difference between like samples, which decreases the quality of 

the embedding space. This reduces the generalizability of the 

model, making it overfit on the training set and perform poorly on 

the test set or on tasks where a large number of positive samples 

exist. Therefore, we designed a model that maximizes the inter-

class variance while maintaining the intra-class variance. The 

distribution of samples in the embedding space learned by our 

method is shown in Figure 1(c). In this space, while the distance 

between positive samples and the anchor point is preserved less 

than the positive margin, the ranking relationship between 

positive samples is maintained according to their intra-class 

variance. For this consideration, we propose a self-supervised 

generative assisted ranking (SGAR) framework, which uses 

samples which satisfy the conditions to generate similar samples 

with measurable intra-class variance. Then we utilize the idea of 

self-supervised learning to design a ranking loss function to 

maintain the ranking relationships of the generated samples. It is 

worth noting that, in contrast typical deep metric learning methods 

which focus on inter-class variance, our method focuses on intra-

class variance as a complement to inter-class variance. In contrast 

to self-supervised contrastive learning which use one sample 

within a class to construct augmented samples and compute loss 

function such as InfoNCE loss [18] to emphasize distinguishing 

between intra-class samples and inter-class samples, our method 

uses several intra-class samples to generate similar samples with 

measurable semantic variations and computes and designs a 

ranking loss to construct a ranking relationship between similar 

positive samples in the embedding space. In contrast to semi-

supervised methods such as Fixmatch [19] which stress consistent 

output of intra-class samples across tasks, our method stresses the 

difference of intra-class samples. Figure 2 is the overall 

framework of our proposed method.  

In conclusion, our method makes full use of the neglected 

information between positive samples to mine the intra-class 

variance through a self-supervised process, and protects the local 

structure of samples in the embedding space from being 

destroyed. The similar work as ours is [20]. The difference is that 

we design a dynamic sample selection strategy that applies the 

mining of intra-class variance dynamically during training. And in 

addition, we design a powerful ranking loss function to better 

constrain the ranking relationship. To verify the validity of our 

method, we perform a wide range of experiments on four 

commonly used fine-grained datasets, including CUB-200-2011 

(CUB) [21], Cars-196 (CARS) [22], Stanford Online Products 

(SOP) [23] and In-shop Clothes Retrieval (In-Shop) [24].  

The main contributions of our work are as follows: 

(1) We make full use of the positive samples which are 

ignored in typical deep metric learning methods to generate 

similar samples whose intra-class variance is metrizable. Based on 

this, we use the idea of self-supervised learning to maintain the 

intra-class ranking relationship on the basis of the generated 

samples, thus mining the intra-class variance, protecting the local 

structure of the embedding space from being destroyed, and 

improving the quality of the embedding space. 

(2) We design an efficient loss function that allows the model 

to better mine intra-class variance while also ensuring inter-class 

variance to learn a more discriminative embedding space.  

(3) We conducted extensive experiments and made extensive 

comparisons with other methods to demonstrate the effectiveness 

of our proposed method. 

The rest of this paper is divided into four sections. Section 2 

presents related work about deep metric learning, self-supervised 

learning and sample generation. Section 3 describes our proposed 

method and loss function in detail. Section 4 is our experiment. 

Section 5 is the conclusions of our SGRA method. 

2 RELATED WORK 

2.1 Deep Metric Learning 

Deep metric learning aims to learn an embedding space in 

which the similarity or distance between samples can be well 

measured, while samples of the same class are close to each other, 

and samples of the different class are far from each other. It is 

wildly used in the field of content-based image retrieval [2, 3], 

medical image processing [4-6], person re-identification [7, 8] and 

face recognition [25]. Deep metric learning mainly focuses on the 

design of loss functions, which are currently divided into two 

main categories: pair-based losses [26, 27] and proxy-based losses 

[28]. Pair-based losses construct sample pairs from the training 

batch, and design optimizing objective based on the pairs. Typical 

pair-based losses include Contrastive loss [26, 27], Triplet loss 

[11], Lifted structured loss [23], N-pair loss [29], Margin-based 
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loss [30] and Multi-Similarity loss [10]. However, the training 

complexity of pair-based losses, due to the need to construct 

sample pairs, often reaches 𝑂(𝑁2)  or 𝑂(𝑁3) , where 𝑁  is the 

number of samples in the training set. Proxy-based losses [28] can 

reduce the high complexity of pair-based losses. The common 

idea of proxy-based losses is to assign one or more proxies to each 

class, and use sample-to-proxy interactions instead of sample-to-

sample interactions to learn the global structure of embedding 

space. The training complexity of proxy-based losses is 𝑂(𝑀𝑁), 

where 𝑀 is the number of classes and 𝑁 is the number of samples. 

Because the number of classes is much smaller than the number of 

samples for most datasets, the training complexity of proxy-based 

losses is much lower than that of pair-based losses. Typical proxy-

based losses including Proxy-NCA loss [28] and Proxy Anchor 

loss [9]. 

 

Figure 2: The overall framework of our proposed approach. The part in red background is a typical deep metric learning 

framework and  𝑳𝒎𝒆𝒕𝒓𝒊𝒄 is a deep metric learning loss. And the part in blue background is our self-supervised generative assisted 

ranking framework. Our framework selects appropriate features to generate similar samples 𝒓𝒊
𝒋
 from the latent embedding space 

𝒓𝒊 obtained from the backbone  𝒇𝜽. Then we map these generated samples to a new embedding space 𝒛𝒊
𝒋
 via projector  𝒒𝜽 and use a 

powerful self-supervised ranking loss function 𝑳𝒓𝒂𝒏𝒌𝒊𝒏𝒈 to constrain the ranking relationship of similar samples. Eventually, 𝑳𝒎𝒆𝒕𝒓𝒊𝒄 

and 𝑳𝒓𝒂𝒏𝒌𝒊𝒏𝒈 are combined and optimize the network by backpropagation. In testing, we only use the trained backbone to extract 

features, calculate the similarity and return the retrieval results. 

2.2 Intra-class Variance 

Intra-class variance refers to the difference between samples of 

the same class. Most researches focus on the differences between 

samples of different classes, which is the inter-class variance, and 

ignore the intra-class variance. However, some recent studies 

learn intra-class variance in different way and show that the intra-

class variance contributes significantly to the quality of the 

embedding space. Wang et al. [31] designed a dynamic margin 

instead of the fixed margin used in typical deep metric learning 

loss functions, which dynamically selects the size of the margin 

according to the intra-class variance of different classes and better 

maintains the intra-class variance. Fu et al. [32] use different 

scales of image augmentation to model the intra-class variation of 

samples, and in their another work [20] devise a better sample 

generation approach to generate samples with measurable intra-

class variance in the embedding space, and then maintaining the 

intra-class variance by constraining the ranking relationship 

between them. 

3 METHOD 

3.1 Intra-class Variance 

Intra-class variance refers to the difference between samples of 

the same class. The opposite is inter-class variance, which means 

the difference between samples of different classes. We suppose 

that the image set is denoted as 𝑋 =  {𝑥1,∙∙∙, 𝑥𝑀} , and the 

corresponding label set is 𝑌 =  {𝑦1,∙∙∙, 𝑦𝑀}, where M denotes the 

size of the set. For a sample 𝑥a, we define the positive sample 

𝑥𝑝 ∈ 𝑋𝑃 and negative sample 𝑥𝑛 ∈ 𝑋𝑁, while 𝑦a = 𝑦p ≠ 𝑦n. After 

mapping 𝑥a, 𝑥𝑝 and 𝑥𝑛 to embedding space through a deep neural 

network, they are denoted as 𝑧a , 𝑧p  and 𝑧n . Then intra-class 

variance and the inter-class variance can be represented as 

𝑑(𝑧a, 𝑧p) and 𝑑(𝑧a, 𝑧n). Typical deep metric learning methods use 

pulling close and pushing away positive and negative sample pairs 
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to learn the embedding space, where the following constraint is 

guaranteed: 

 max
𝑥𝑝∈𝑋𝑝

𝑑(𝑧a, 𝑧p) < min
𝑥𝑛∈𝑋𝑛

𝑑(𝑧a, 𝑧n) (1) 

However, the constraint focuses on maximizing inter-class 

variance and insufficiently exploits intra-class variance. This 

unconsciously destroys the local structure between similar 

samples and waste the information contained in the intra-class 

variance. In order to use this information, we hope that samples 

with smaller intra-class variance in the original space will also be 

closer in the embedding space: 

 𝑖𝑓 𝑑𝑜𝑟𝑖𝑔𝑖𝑛(𝑥𝑎, 𝑥𝑝1) <  𝑑𝑜𝑟𝑖𝑔𝑖𝑛(𝑥𝑎, 𝑥𝑝2)  

 𝑡ℎ𝑒𝑛 𝑑(𝑧a, 𝑧p1) < 𝑑(𝑧a, 𝑧p2) (2) 

Under this constraint, the local structure between similar 

samples is also well preserved, which is useful for distinguishing 

fine-grained datasets and increasing generalizability over unseen 

classes. 

3.2 Sample Generation 

The precondition for generating samples in embedding space is 

that the deep neural network can capture the semantic features of 

the image [33]. Several researches [34, 35] have shown that 

translating a feature along certain semantic directions in the 

embedding space produces features with meaningful different 

identities. Recently, some work [36, 37] has made promising 

progress by generating samples in embedding space instead of 

traditional data augmentation. Fu et al. [20] proposed a sample 

generation method with measurable semantic variance, which 

provides the possibility of capturing intra-class variance.  

Specifically, input samples into a Convolutional Neural 

Network (CNN), we can get the features 𝑅 =  {𝑟1,∙∙∙, 𝑟𝐾} in the 

latent space through a non-linear transformation 𝑟𝑖 = 𝑓(𝑥𝑖 , 𝜃𝑓) , 

where 𝑓(∙) denotes the embedding and the 𝜃𝑓 is the parameters of 

a CNN.  

For sample 𝑟𝑖 and its generated sample 𝑟𝑖
𝑗
, we can decompose 

the relationship between them into scalar and direction in the 

polar coordinate system: 

 𝑟𝑖
𝑗

= 𝑟𝑖 + 𝛼𝑢𝑖
𝑗
  (3) 

where 𝛼 = ‖𝑟𝑖
𝑗

− 𝑟𝑖‖
2
 and 𝑢𝑖

𝑗
=

𝑟𝑗−𝑟𝑖

‖𝑟𝑗−𝑟𝑖‖
2

. In this way, we can 

use existing samples to synthesize similar samples by controlling 

the strength (scalar in polar coordinate) and semantic direction 

(direction in polar coordinate). The final generation formula is as 

follows: 

 𝑟𝑖
𝑗

= 𝑟𝑖 + 𝑗𝛼𝑢𝑖
𝑗
  𝑗 = 1,2, … , 𝑁    ‖𝑢𝑖

𝑗
‖

2
= 1 (4) 

where 𝑗 is a positive integer from 1 to 𝑁 which used to control 

the number of generated samples, 𝛼 is a hyperparameter to ensure 

sample 𝑟𝑖
𝑁  which generated using the maximum semantic 

variation 𝑁𝛼  is still similar to the original sample 𝑟𝑖 , and 𝑢𝑖
𝑗
 is 

sampled from the standard Gaussian distribution.  

As the intra-class variance space of 𝑟𝑖  is consistent of the 

generated local neighbor 𝑟𝑖
𝑗

 in latent space, the following 

constraint is satisfied: 

 𝑖𝑓 𝑗1 < 𝑗2   𝑡ℎ𝑒𝑛 𝑑𝑙(𝑟𝑖 , 𝑟𝑖
𝑗1) <  𝑑𝑙(𝑟𝑖 , 𝑟𝑖

𝑗2) (5) 

where 𝑑𝑙(𝑟𝑖 , 𝑟𝑖
𝑗
)  denotes the distance between 𝑟𝑖  and 𝑟𝑖

𝑗
 in 

latent space. In this way, we can generate similar samples 

according to different semantic variations by controlling 𝑗 , and 

the intra-class variance between them is measurable. As the 

samples are generated dynamically in embedding space during 

training, when the model is not well trained, the generated 

samples have a high error rate, which will instead affect the 

effectiveness of subsequent training. For this consideration, we 

propose a dynamic sample selection strategy which uses a 

generation margin 𝛾  to control the selection of samples for 

generation, as shown in figure 3, which adaptively selects the 

samples used for generation with the quality of the embedding 

space. 

 

Figure 3: Dynamic sample selection strategy. Only positive 

samples within generation margin (positive sample 1) are 

selected for sample generation. Negative sample 1 satisfies 

generation margin but not the positive margin and should be 

pushed away. Positive sample 2 is within positive margin and 

outside the generation margin, so it is not processed. Positive 

sample 3 is outside positive margin and should be pulled 

towards the anchor. Negative sample 3 is outside the positive 

margin and is not processed. 

In the early training period, the distance between most positive 

samples and anchor points is greater than the generation margin, 

and only a small number of positive samples are smaller than the 

generation margin. At this time, our generation strategy is very 

conservative, and generates few samples. When the network is 

well trained, more samples are smaller than the generation margin 

and are selected for generation. This strategy is motivated by an 

intuition that inter-class variance plays a major role in 

discrimination between samples of different classes, and using 

intra-class variance alone cannot distinguish samples of different 
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classes well. However, focusing only on inter-class variance leads 

the model ignoring the intra-class distribution of samples and 

overfitting the training samples. Therefore, we want to use intra-

class variance as an assist of inter-class variance to maintain intra-

class distribution and improve the generalization of the model. 

Hence, in the preliminary of training, we want to focus on inter-

class variance to initially construct a reasonable embedding space, 

and gradually increase the weight of intra-class variance as the 

quality of the embedding space improves to maintain the local 

distribution of similar samples.    

With our designed generation strategy, the mining of intra-

class variance is adaptively applied in training process. In 

addition, our strategy can improve the accuracy of the generated 

samples and avoid the slow training due to all or random selection 

of positive samples for generation. 

3.3 Self-supervised Ranking Preserving 

Using the sample generation strategy, we obtain the original 

sample 𝑟𝑖 and its generated samples 𝑟𝑖
𝑗
 in the latent space, where 

𝑟𝑖
𝑗

∈  {𝑟𝑖
1,∙∙∙, 𝑟𝑖

𝑁} and N is the number of samples generated per 

positive sample. Afterwards, we apply the idea of self-supervised 

learning, using a projector 𝑞(∙) to map the latent space into a new 

embedding space, where 𝑧𝑖 = 𝑞(𝑟𝑖 , 𝜃𝑞) and 𝑧𝑖
𝑗

= 𝑞(𝑟𝑖
𝑗
, 𝜃𝑞). And 

we design an efficient loss function to learn the local ranking 

structure. For a uniform representation, in the later we use the 

cosine similarity instead of the distance above, since all 

embedding space are L2-normalized. 

Our loss function is based on a ranking loss function as Eq. 

(6): 

 𝐿ℎ𝑎𝑛𝑑−𝑖𝑛−ℎ𝑎𝑛𝑑 =
1

𝑀
∑ ∑ [−𝑆𝑖,𝑥 + 𝑆𝑖+1,𝑥 + 𝛿]

+
𝑁−1
𝑖=1

𝑀
𝑥=1  (6) 

where 𝑆𝑖,𝑥 denotes the similarity of the i-th generated sample 

to the original sample, 𝛿  is the margin between two adjacent 

generated samples. By compute this loss function, the similarity 

between every two adjacent generated samples differs by a fixed 

margin 𝛿, and the smaller numbered generated samples (samples 

with lower intra-class variance strength) are more similar to the 

original samples. However, in this loss function, for a generated 

sample, only the two samples before and after it are considered. 

We therefore split it into left part and right part, and add 

consideration of the global ranking of the generated samples as 

Eq. (7) and Eq. (8): 

 𝐿𝑙𝑒𝑓𝑡_𝑏𝑎𝑠𝑒 =
1

𝑀
∑ ∑ [𝑆𝑖,𝑥 − min

𝑗∈[1,𝑖−1]
𝑆𝑗,𝑥 + 𝛿]

+

𝑁
𝑖=2

𝑀
𝑥=1  (7) 

 𝐿𝑟𝑖𝑔ℎ𝑡_𝑏𝑎𝑠𝑒 =
1

𝑀
∑ ∑ [ max

𝑗∈[𝑖+1,𝑁]
𝑆𝑗,𝑥 − 𝑆𝑖,𝑥 + 𝛿]

+

𝑁−1
𝑖=1

𝑀
𝑥=1  (8) 

 

For a generated sample, Eq. (7) constrains the least similar one 

(has the lowest similarity) among all samples to its left (smaller 

numbering) to be ranked ahead of it. While Eq. (8) constrains the 

sample with the greatest similarity on the right side to be ranked 

after the current sample. Figure 4 illustrates how our loss works: 

 

Figure 4: Explanation of Eq. (7) and Eq. (8). 𝒛𝒙  is original 

sample. 𝒛𝒙
𝟏  to 𝒛𝒙

𝑵  are the samples generated using 𝒛𝒙  as the 

prototype. For 𝒛𝒙
𝒊 , Eq. (7) constraints the sample with the least 

similarity on its left side to be greater than its similarity by a 

margin 𝜹. And Eq. (8) constraints the sample with the largest 

similarity on its right side to be less than its similarity by a 

margin 𝜹. 

we apply the LogSumExp [10] and SoftPlus [38] functions, 

and finally get a smooth version of our function. The loss 

becomes: 

 𝐿𝑙𝑒𝑓𝑡 =
1

𝑀
∑

1

𝜏
log(1 + ∑ ∑ 𝑒𝜏(𝑆𝑖,𝑥−𝑆𝑗,𝑥+𝛿)𝑖−1

𝑗=1
𝑁
𝑖=2 )𝑀

𝑥=1  (9) 

 𝐿𝑟𝑖𝑔ℎ𝑡 =
1

𝑀
∑

1

𝜏
log(1 + ∑ ∑ 𝑒𝜏(𝑆𝑗,𝑥−𝑆𝑖,𝑥+𝛿)𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1 )𝑀

𝑥=1  (10) 

where 𝜏 is scaling parameter. Our sorting loss is combined by 

𝐿𝑙𝑒𝑓𝑡 and 𝐿𝑟𝑖𝑔ℎ𝑡 as Eq. (11): 

 𝐿𝑠𝑜𝑟𝑡 = 𝐿𝑙𝑒𝑓𝑡 + 𝐿𝑟𝑖𝑔ℎ𝑡 (11) 

The problem of Eq. (7) and Eq. (8) is that they have a fixed 

gradient which values of 1 or -1. This approach lacks the ability to 

mine informative sample pairs [10] and leads to trivial samples 

[39]. In contrast, the derivatives of Eq. (9) and Eq. (10) assign 

weights more dynamically to the degree of violation of the 

constraint by sample pairs. And compare to Eq. (6), Eq. (9) and 

Eq. (10) comprehensively consider the effect of all samples before 

and after the current sample. As shown in Eq. (12) and Eq. (13):  

 
𝜕𝐿𝑙𝑒𝑓𝑡

𝜕𝑆𝑖,𝑥
=

∑ 𝑒
𝜏(𝑆𝑖,𝑥−𝑆𝑗,𝑥+𝛿)𝑖−1

𝑗=1

1+∑ ∑ 𝑒
𝑆𝑖,𝑥−𝑆𝑗,𝑥+ 𝛿𝑖−1

𝑗=1
𝑁
𝑖=2

 (12) 

 
𝜕𝐿𝑟𝑖𝑔ℎ𝑡

𝜕𝑆𝑖,𝑥
= −

∑ 𝑒
𝜏(𝑆𝑗,𝑥−𝑆𝑖,𝑥+𝛿)𝑁

𝑗=𝑖+1

1+∑ ∑ 𝑒
𝑆𝑗,𝑥−𝑆𝑖,𝑥+ 𝛿𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1

 (13) 

Although our method produces generated samples through a 

series of semantic transformations, these samples are of the same 

class as the original sample and need to maintain the constraint 

with the anchor: 

 𝐿𝑎𝑛𝑐ℎ𝑜𝑟 =
1

|𝑃+|
∑

1

𝛽
∑ (log (1 + ∑ 𝑒𝛽(𝜑−𝑆𝑖,𝑝)𝑁

𝑖=1 ))𝑥∈𝑋𝑃𝑝∈𝑃+ (14) 

where 𝑃+ is the set of positive anchors, 𝑝 ∈ 𝑃+ is the positive 

anchor, 𝛽 is the scaling parameter, 𝜑 is a margin and 𝑆𝑖,𝑝 denotes 

the similarity of generated samples and the positive anchor. The 

derivate of Eq. (14) is shown as Eq. (15), where the pairs with 

lower similarity have a larger weight. 

 
𝜕𝐿𝑎𝑛𝑐ℎ𝑜𝑟

𝜕𝑆𝑖,𝑝
= −

𝑒
𝛽(𝜑−𝑆𝑖,𝑝)

1+∑ 𝑒
𝛽(𝜑−𝑆𝑖,𝑝)𝑁

𝑖=1

 (15) 
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Combining Eq. (11) and Eq. (14), we finally propose the 

ranking loss as: 

 𝐿𝑟𝑎𝑛𝑘𝑖𝑛𝑔 = 𝐿𝑠𝑜𝑟𝑡 + 𝐿𝑎𝑛𝑐ℎ𝑜𝑟 (16) 

Our method can be viewed as an independent module and can 

be plug-and-play combined with typical metric learning methods. 

We balance our ranking loss 𝐿𝑟𝑎𝑛𝑘𝑖𝑛𝑔  and metric learning loss 

𝐿𝑚𝑒𝑡𝑟𝑖𝑐  with a hyperparameter 𝜆. 

 𝐿 = 𝐿𝑚𝑒𝑡𝑟𝑖𝑐 + 𝜆𝐿𝑟𝑎𝑛𝑘𝑖𝑛𝑔 (17) 

4 EXPERIMENTS 

4.1 Dataset 

We use four widely-used dataset to evaluate our proposed 

method. They are CUB-200-2011 (CUB) [21], Cars-196 (CARS) 

[22], Stanford Online Product (SOP) [23] and In-shop Clothes 

Retrieval (InShop) [24]. CUB is a bird dataset containing 200 

different classes with 11,788 images. For CUB, we use 5864 

images from the first 100 classes for training, and 5924 images 

from the other 100 classes for testing. CARS is a car dataset 

containing 196 different car models with 16185 images. For 

CARS, we use 8,054 images of the first 98 classes for training, 

and the other for testing. SOP contains 120,053 images of 22,634 

classes, which is online product sold on eBay.com. For SOP, we 

use the same split as [23], 59,551 images of 11,318 classes is used 

for training, and the other is used for testing. InShop is a clothes 

dataset, which contains 72,712 images of 7986 classes. For 

InShop, we use the same split as [24], which use 25,882 images of 

the first 3,997 classes for training and the other for testing. The 

testing set is further divided into query set and gallery set. The 

query set contains 14,218 images of 3,985 classes and the gallery 

set contains 12,612 images of 3,985 classes. 

4.2 Baselines and Evaluation Metrics 

We selected a large number of methods to compare and fully 

evaluate our method. Specifically, the methods used for 

comparison include some robust deep metric learning methods 

such as A-BIER [40], ABE [41], HTL [42] and RLL-H [39], some 

pair-based loss functions such as Circle loss [25] and Multi-

Similarity loss [10] and proxy-based loss such as SoftTriple loss 

[43], Proxy-GML loss [44] and Proxy-Anchor loss [9]. We also 

chose some sample generation methods that are similar to our 

approach including SR [32] and SSR [20]. To ensure 

comprehensive evaluation, we use various evaluation metrics. In 

order to accommodate most of methods, we choose 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 

(𝑅@𝐾), which is commonly used in retrieval, as the evaluation 

metric.  

4.3 Implementation Details 

4.3.1 Embedding Networks 

In order to test the effectiveness of our method on different 

networks and to compare fairly with previous works, we use 

GoogleNet [45] and BN–Inception with batch normalization [46] 

as the backbone network respectively. The backbone is pre-

trained for ImageNet classification [47]. The projector 𝑞𝜃  is 

composed of a fully connected layer, an L2-normalization layer 

and a Relu activation function layer. The dimension of 𝑞𝜃 is 512. 

4.3.2 Training 

We use random crop and random horizontal flip for data 

augmentation in training and only single center crop in testing. 

The size of cropped images is set to 224 × 224  as in most 

previous researches. The AdamW optimizer [48] is used in every 

experiment. For CUB and CARS, we use 10−4 as initial learning 

rate, and train for 40 epochs. For SOP and InShop, the initial 

learning rate is set to 6 ∗ 10−4 and train for 60 epochs. 

4.3.3 Hyperparameters 

We set 𝛿 and 𝜏 to 0.3 and 64 in Eq. (9) and Eq. (10). 𝛼 and 𝑁 

in Eq. (4) is set to 1.0 and 5. Generation margin 𝛾 is set to 0.05. 𝜆 

in Eq. (17) is set to 0.1. 𝜑  in Eq. (14) is set to 0.1. For the batch 

size, we use the settings as [9]. Specifically, we set the batch size 

to 180 on CUB and CARS and 120 on SOP and InShop. 

4.4 Experimental Results and Analysis 

We evaluate our method based on Proxy-Anchor loss [9] and 

using the same settings as in their paper. We select some excellent 

sample generation-based approaches and some landmark works in 

deep metric learning to compare with our method. For fairness, 

we use the same embedding size and backbone. Figure 5 shows 

our qualitative results: 

Figure 5: Qualitative retrieval results of our method. (a), (b), 

(c), (d) is the top-5 recall results on CUB, CARS, SOP and 

Inshop. The left side of the dotted line with blue edge indicates 

query images. The right side of the dotted line shows the 

retrieval results, where the green edges indicate correct 

results and the red edges indicate incorrect results. 

A comparison of our approach with the state-of-art deep metric 

learning methods is presented and the results are shown in Table 

1, Table 2 and Table 3. Since the different backbone and 
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embedding size greatly affect performances, we list the settings 

used by different methods in tables.  

On CUB, for excellent deep metric learning methods such as 

A-BIER, ABE, HTL and RLL-H, we use GoogleNet as backbone 

and achieve improvements of 6.8% , 3.7% , 7.2%  and 6.9%  in 

𝑅@1. For pair-based losses such as Circle and MS, we use BN-

Inception as backbone and achieve improvements of 2.1% and 

3.1% in 𝑅@1. For proxy-based losses such as SoftTriple, Proxy-

GML and Proxy-Anchor, we obtain performance boost in 𝑅@1 

for 3.4%, 2.2% and 0.4%. We still achieve a higher performance 

in 𝑅@1 than SR and SSR by 57.4% → 64.3% and 65.4% →

68.8 

 

Table 1: Comparison with excellent method on CUB and CARS. Method indicates the different methods. Setting indicates the 

backbone used by current method, where G denotes GoogleNet [45], BN denotes BN-Inception with batch normalization [46] and 

RN denotes ResNet50 [49]. The number in the superscript in the setting indicates embedding size. Recall@K is used as evaluation 

metric. R denotes recall and the number after it denote K. Since Proxy-Anchor loss [9] does not report results on GoogleNet, we 

reproduce the results and mark the results with the superscript *. 

  CUB-200-2011 Cars-196 

Method setting R1 R2 R4 R8 R1 R2 R4 R8 

A-BIER [40] G512 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1 

ABE [41] G512 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1 

HTL [42] BN512 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7 

RLL-H [39] G512 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1 

SoftTriple [43] BN512 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9 

Proxy-GML [44] BN512 66.6 77.6 86.4 - 85.5 91.8 95.3 - 

Circle [25] BN512 66.7 77.4 86.2 91.2 83.4 89.8 94.1 96.5 

MS [10] BN512 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5 

SR [32] G512 57.4 69.3 79.8 - 80.9 88.2 92.6 - 

SSR [20] BN512 65.4 76.3 84.3 80.3 80.1 87.3 92.2 95.1 

Proxy-Anchor*  G512 63.9 74.8 83.7 89.9 84.7 90.6 94.5 96.9 

Proxy-Anchor+SGAR G512 64.3 75.1 83.9 90.4 85.7 91.0 94.8 97.1 

Proxy-Anchor [9] BN512 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3 

Proxy-Anchor+SGAR BN512 68.8 79.4 86.9 91.7 86.6 92.0 95.1 97.4 

 

On CARS, we use the same method as on CUB for 

comparison. For A-BIER, ABE, HTL and RLL-H, we obtain 

higher 𝑅@1  with boost of 3.7% , 0.5% , 4.3%  and 11.7% . For 

Circle loss and MS loss, our 𝑅@1 rises by 3.2% and 2.5%. For 

SoftTriple, Proxy-GML and Proxy-Anchor, we boosted 2.1% , 

1.1% and 0.5% on them in 𝑅@1. And we exceed SR and SSR by 

4.8% and 6.5% in 𝑅@1. 

On SOP, we still achieve different degrees of improvement 

compare to other methods. Our results outperform HTL, 

SoftTriple, Proxy-GML, Circle, MS, SR, SSR and Proxy-Anchor 

by 4.6% , 1.1% , 1.4% , 1.1% , 1.2% , 0.8% , 0.5%  and 0.8%  in 

𝑅@1. 

On InShop, our method is presented in 11.0%, 2.2%, 0.9% 

and 0.3% ahead of HTL, MS, SSR and Proxy-Anchor. 

Experiments show that our method achieves the state-of-the-

art results on four benchmark datasets. Our method captures intra-

class variance by constructing intra-class ranking model to 

improve the stability and generalization of the embedding space. 

In the embedding space learned by our method, not only samples 

of different classes are separated, but also ranking relationships 

are maintained between similar samples. In contrast, other 

methods are misled by the presence of various intra-class variance 

in similar samples such as poses, background or viewpoints, 

which leads to worse results. On SOP, our method achieves the 

greatest improvement on the basis of the results of Proxy-Anchor. 

This may be motivated by an observation: SOP is a dataset of 

artificial products with a large perspective transformation between 

similar samples, while compare to CUB, SOP contains fewer 

samples in each class. Therefore, our method plays a more 

significant auxiliary effect. It is worth noting that although our 

method uses BN-Inception as backbone, on SOP it even 

outperforms SR and SSR with ResNet50 as backbone and our 

method also performs well on GoogleNet. Adding our auxiliary 

framework to networks with poorer representation can help the 

network learn more useful knowledge. This indicates the 

effectiveness of the intra-class information mined by our method 

and the prospects of our method for lightweight models. 

4.5 Ablation Study 

In order to verify the effectiveness of our method, we perform 

extensive ablation experiments. Specifically, we use Proxy-

Anchor loss and train on CUB. BN-Inception with 512 embedding 

size is the default backbone. 

Figure 6(a) shows the effect of the hyperparameter 𝜆, which is 

a factor used to balance the benchmark deep metric learning loss 

and our ranking loss, and also reflects the proportion of inter-class 
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variance and intra-class variance during training. When 𝜆 is small, 

the intra-class variance has little impact in training and is not 

sufficiently powerful to optimize the embedding space. And when 

𝜆 is large, the impact of intra-class variance exceeds inter-class 

variance, which leads to severe performance degradation. This is 

in line with our previous consideration that the inter-class 

variance plays a major role in distinguishing different classes of 

samples, but introduction of appropriate intra-class variance helps 

to maintain the local structure of the embedding space and 

improve generalization. The performance is best when 𝜆 = 0.1, so 

we set 𝜆 = 0.1. 

Table 2: Comparison with excellent method on SOP.  

  SOP 

Method setting R1 R10 R100 R1000 

A-BIER [40] G512 74.2 86.9 94.0 97.8 

ABE [41] G512 76.3 88.4 94.8 98.2 

HTL [42] BN512 74.8 88.3 94.8 98.4 

RLL-H [39] G512 76.1 89.1 95.4 - 

SoftTriple [43] BN512 78.3 90.3 95.9 - 

Proxy-GML [44] BN512 78.0 90.6 96.2 - 

Circle [25] BN512 78.3 90.5 96.1 - 

MS [10] BN512 78.2 90.5 96.0 98.7 

SR [32] RN512 78.6 90.6 96.2 98.7 

SSR [20] RN512 78.9 91.0 96.2 98.8 

Proxy-Anchor [9] BN512 78.6 90.3 95.9 98.6 

Proxy-

Anchor+SGAR 

BN512 79.4 91.0 96.4 98.8 

Table 3: Comparison with excellent method on Inshop. 

  InShop 

Method setting R1 R10 R20 R40 

A-BIER [40] G512 83.1 95.1 96.9 97.8 

ABE [41] G512 87.3 96.7 97.9 98.5 

HTL [42] BN512 80.9 94.3 95.8 97.4 

MS [10] BN512 89.7 97.9 98.5 99.1 

SR [32] RN128 88.0 97.3 98.2 - 

SSR [20] BN512 91.0 98.0 98.7 - 

Proxy-Anchor 

[9] 

BN512 91.6 98.1 98.8 99.1 

Proxy-

Anchor+SGAR 

BN512 91.9 98.3 98.9 99.1 

 

Figure 6(b) shows the results for different generation margin γ. 

The best result is obtained when γ=0.05, so we set γ=0.05. Only 

samples with a similarity greater than the generation margin γ are 

selected for generation and calculate the ranking loss, thus γ has a 

significant impact in training. A small γ indicates that the more 

samples used for generation, and more impact the intra-class 

variance has in training. But excessively decreasing γ will result 

in low quality of generated samples, which in turn misleads the 

training of the network. Using a large γ means that few samples in 

the training satisfy the generation condition, which reduces the 

performance of the intra-class variance.  

Figure 6(c) and Figure 6(d) shows the results of α and δ. α and δ 

control the generation strength and the margin to be maintained 

between neighboring samples. According to the experimental 

results we set them respectively as 1.0 and 0.3. Figure 6(e) shows 

the results of τ and we set is to 64.  

Figure 6(f) shows our result on N, where N represents the number 

of samples generated for each sample. Since our loss needs to 

consider the left and right parts, N is at least 3. A larger N means 

a larger number of generated samples, which leads to more time 

complexity for training, and a larger scale of variation in 

generated samples, which is difficult to control. A smaller N 

means a smaller number of generated samples and a more 

conservative use of intra-class variance. On balance, we set N to 5. 

5 CONCLUSION 

In this paper, we present a novel self-supervised generative 

assisted ranking framework that provides a semi-supervised 

perspective on the typical supervised deep metric learning 

methods as a boosting scheme. Our method does not require 

additional labels, generates samples using existing positive  

 

 

Figure 6: R@1 with different settings of six significant 

hyperparameters. (a) factor 𝝀  used to balance 𝑳𝒎𝒆𝒕𝒓𝒊𝒄  and 

𝑳𝒓𝒂𝒏𝒌𝒊𝒏𝒈, (b) generation margin 𝜸, (c) generate strength scalar 

𝜶, (d) margin between neighbors 𝜹, (e) scale factor 𝝉, and (f) 

number of generated samples of each sample 𝑵. 

samples. Inspired by the idea of self-supervised learning, we 

design a powerful ranking loss function to preserve the ranking 

relationship among similar samples in the local space of the 

embedding space. Extensive experiments demonstrate that our 

approach can combine with and improve the performance of 

typical supervised deep metric learning methods and outperforms 

state-of-the-art methods on four benchmark datasets. 
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