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Abstract

Network flow formulations are among the most successful tools to solve optimization prob-
lems. Such formulations correspond to determining an optimal flow in a network. One particular
class of network flow formulations is the arc flow, where variables represent flows on individual
arcs of the network. For NP-hard problems, polynomial-sized arc flow models typically provide
weak linear relaxations and may have too much symmetry to be efficient in practice. Instead, arc
flow models with a pseudo-polynomial size usually provide strong relaxations and are efficient
in practice. The interest in pseudo-polynomial arc flow formulations has grown considerably
in the last twenty years, in which they have been used to solve many open instances of hard
problems. A remarkable advantage of pseudo-polynomial arc flow models is the possibility to
solve practical-sized instances directly by a Mixed Integer Linear Programming solver, avoiding
the implementation of complex methods based on column generation.

In this survey, we present theoretical foundations of pseudo-polynomial arc flow formulations,
by showing a relation between their network and Dynamic Programming (DP). This relation
allows a better understanding of the strength of these formulations, through a link with models
obtained by Dantzig-Wolfe decomposition. The relation with DP also allows a new perspective
to relate state-space relaxation methods for DP with arc flow models. We also present a dual
point of view to contrast the linear relaxation of arc flow models with that of models based on
paths and cycles. To conclude, we review the main solution methods and applications of arc
flow models based on DP in several domains such as cutting, packing, scheduling, and routing.

Keywords: Combinatorial Optimization; Arc Flow; Dynamic Programming; Acyclic Network;
Pseudo-Polynomial.

1 Introduction

Optimization problems can assume different characterizations, each allowing the reduction of the
original problem to other optimization problems, leading to, possibly, different solution methods.
One of such characterizations is based on a network, that is, a directed graph with costs on the
arcs, and is the base of the well-known network flow problems (see, e.g., Ahuja et al. [1]). A
network flow problem is an optimization problem that requires to determine an optimal flow on a
network, by satisfying flow conservation on each node and possible additional side constraints on
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the flow on the arcs. The list of real-life problems that can be solved as network flow problems is
extensive, including not only direct applications (i.e., the network is an input of the problem), as
vehicle routing, telecommunication network planning, and train scheduling (see, e.g., Gouveia et al.
[51], Minoux [77], and Cacchiani and Toth [16]), but also indirect ones (i.e., the network must be
constructed), as cutting and packing, scheduling, and project management (see, e.g., Delorme and
Iori [32], Kramer et al. [62], and Riedler et al. [93]).

In general, any formulation that corresponds to solving a network flow problem is called network
flow formulation. Following Ahuja et al. [1], the two main classes of network flow formulations are
the path (and cycles) flow formulations and the arc flow formulations. Path (and cycles) flow
formulations (called path flow formulations for short in the following) have variables corresponding
to flow on paths and cycles of the network, and are frequently associated with set-covering, set-
packing, or set-partitioning models. In contrast, arc flow formulations have variables corresponding
to flow on individual arcs of the network. The Flow Decomposition Theorem by Ahuja et al. [1]
guarantees that the two formulations produce equivalent models when based on the same network,
in the sense that any solution of one model can be mapped into a solution of the other model.

Arc flow formulations have a linear number of variables with respect to the number of arcs in
the network. Often, such formulations can be used to solve medium-sized instances directly by
a commercial Mixed Integer Linear Programming (MILP) solver, avoiding the implementation of
complex methods. On the other hand, path flow formulations may have a much larger number
of variables, as the number of paths and cycles can be exponential with respect to the number of
arcs of the network. Such exponential path flow formulations are typically solved by sophisticated
methods based on column generation and branch-and-price algorithms (see, e.g., Desaulniers et al.
[35] and Sadykov and Vanderbeck [96]).

Many NP-hard problems can be formulated as compact (i.e., polynomial-sized) models. Al-
though their size is favorable, these models are usually associated with weak linear relaxations and
very symmetrical solution spaces, leading to an overly extensive enumeration on branch-and-bound
algorithms. To overcome such inefficiency, one may rely on the Dantzig-Wolfe (DW) decomposition
(see Dantzig and Wolfe [29]), which can lead to models with stronger linear relaxations and less
symmetry. The models resulting from DW decomposition usually have exponentially more variables
than the original model and are solved by column generation. When the associated pricing problem
is solved by Dynamic Programming (DP), the model can be seen as a path flow formulation, where
each variable corresponds to a path in the network inherent from the DP problem. From this
observation, one can devise an equivalent arc flow model based on the DP network. Originated by
a DW decomposition, the resulting arc flow model will, possibly, have a strong linear relaxation
and a less symmetrical solution space, compared to the original polynomial-sized model.

To obtain strong models by a DW decomposition, one may have to pay the price of having an in-
creased complexity on the pricing problem, as such complexity usually becomes pseudo-polynomial
or exponential. When the size of the DP network from the pricing problem is pseudo-polynomial,
the resulting arc flow model can still be used in practice to solve medium-sized instances by means
of a MILP solver. On the other hand, when the DP network is too large (possibly exponential),
one can obtain smaller (yet still strong) pseudo-polynomial arc flow models relying on a state-space
relaxation of the DP. Different state-space relaxations lead to arc flow models with different sizes
and different strength, allowing a flexible possibility to balance size and strength of arc flow models.

Seminal works and previous surveys

To the best of our knowledge, Ford and Fulkerson [45] were the first to propose a pseudo-polynomial
arc flow model, which was based on a time-expanded network and was used to solve the maximal
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dynamic flow problem. Already in the sixties, Shapiro [97] studied the relation between DP and
Integer Programming, by modeling the knapsack problem as a pseudo-polynomial network flow
problem. More than ten years later, Wolsey [114] proposed a general methodology to build packing
and covering models from the set of feasible solutions of DP problems. As an application, he
introduced a pseudo-polynomial arc flow model based on a DP network of the knapsack problem
for the cutting stock problem (CSP), a strongly NP-hard problem. Due to the context, Wolsey
[114] did not present computational experiments for the model, and such formulations did not get
much attention for decades. It was more than twenty years later that Valério de Carvalho [104]
independently proposed this model, used it to solve to (integer) optimality open instances in the
CSP literature, and showed that it is equivalent to the Gilmore-Gomory model [48, 49], a path flow
model obtained from a DW decomposition.

Since the work by Valério de Carvalho [104], the popularity of pseudo-polynomial arc flow
formulations based on DP has grown considerably, and several different applications to NP-hard
problems have appeared in the literature. Large instances have been solved for the first time to
proven optimality by arc flow models in several cutting, packing, and scheduling problems. In
addition, arc flow formulations have effectively modeled complex problems involving, for instance,
multiple-stage cutting processes or the presence of setups.

Some previous surveys considered arc flow models on specific applications (see, e.g., Valério de
Carvalho [105] and Delorme et al. [33] for bin packing and cutting stock problems, and Cattaruzza
et al. [21] for vehicle routing problems with multiple trips).

Skutella [99] presented a survey on problems based on dynamic flow, which is also called ”flows
over time”. One of the main formulations for this class of problems is the arc flow model based
on time-expanded networks, introduced by Ford and Fulkerson [45], which is derived from DP
graphs of pseudo-polynomial size. A generalization of such networks is the layered graph approach
which considers, for instance, capacity-indexed networks for vehicle routing problems. Modeling
techniques and efficient solution methods for pseudo-polynomial arc flow formulations based on
layered graphs were surveyed by Gouveia et al. [51]. Other surveys, such as that by Sadykov
and Vanderbeck [96], focused instead on how arc flow formulations can be used to devise effective
branch-and-price algorithms. Conforti et al. [27] and Lancia and Serafini [64] studied techniques to
transform large extended formulations into compact ones. In the case of network flow formulations,
this occurs when path flow models are transformed into equivalent arc flow models with (possibly
exponentially) fewer variables.

Contents

In this survey, we extend the previous studies to provide a base for some reasons behind the (primal)
strength of pseudo-polynomial arc flow formulations. Based on the Flow Decomposition Theorem,
we show how DW decomposition can derive arc flow models with a strong linear relaxation. We
also discuss how the state-space relaxation method may allow one to obtain a balance between
strength and complexity when constructing arc flow models. This relation between state-space
relaxation and arc flow formulations can implicitly relate different arc flow models in the literature
(see Section 4). We provide a dual insight that may explain arc flow models’ practical computational
efficiency over their equivalent path flow models, which is the richer description of the dual space.
The relevance is that a better description of the dual space leads to less primal degeneracy, which
is headwind for Linear Programming (LP) simplex (vertex) algorithms used in branch-and-bound
techniques. We also discuss the main solution methods to solve large-scale arc flow models and
present the main applications studied in the literature.

The remainder of this paper is organized as follows. Section 2 presents the theoretical founda-
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tions of network flow formulations and DP. The relationship between arc flow models with a strong
relaxation and DW decomposition is presented in Section 3. In Section 4, we present a discussion
on how the state-space relaxation can be used to obtain smaller arc flow models. In Section 5, we
show how arc flow formulations present a more detailed dual space than path flow formulations,
which leads to a better convergence of the LP solution. The state-of-the-art methods to solve
large-scale arc flow models and the main applications are shown in Sections 6 and 7, respectively.
Finally, our concluding thoughts are presented in Section 8.

2 Network Flow Formulations and Dynamic Programming

A network N is composed of a directed graph G = (V,A), where V is the set of nodes (vertices)
and A ⊆ V × V is the set of arcs, and of a cost function c : A → R that maps each arc (u, v) to
a cost c(u, v). In addition, a network has two special nodes in V, called source (vsource) and sink
(vsink), such that no arcs in A enters vsource or leaves vsink. Depending on the context, we may
denote the set of nodes and the set of arcs of a network N as V(N ) and A(N ), respectively.

A flow in a network is a function f : A → R+ that satisfies the flow conservation constraints:

∑

(u,v)∈A

f((u, v)) =
∑

(v,w)∈A

f((v,w)), ∀v ∈ V \ {vsource, vsink}, (1)

i.e., the flow entering a node is equal to the flow leaving it, except for vsource and vsink, where there
is only outgoing and incoming flow, respectively. By the flow conservation constraints, the flow
leaving vsource is equal to the flow entering vsink.

Definition 1. A network flow problem is an optimization problem which requires to determine
a flow f that satisfies side constraints and optimizes

∑

(u,v)∈A c(u, v)f((u, v)). In addition, any
formulation that corresponds to solving a network flow problem is referred to as a network flow
formulation.

A path in a graph is a sequence of arcs which joins a sequence of nodes. A cycle is a path in
which the first and the last nodes are the same. We denote by P the set of all paths from vsource
to vsink, and by A(p) the set of arcs of a path p ∈ P. The cost of a path p ∈ P is given by
c̃p =

∑

(u,v)∈A(p) c(u, v). In practice, the solution of network flow problems can be given as a set of
paths and cycles with a positive flow or as the flow on each arc of the network. Following Ahuja
et al. [1], this gives rise to two different classes of network flow formulations: path flow formulations
and arc flow formulations.

Definition 2. Path flow formulations are network flow formulations where decision variables cor-
respond to the non-negative flow on each path and each cycle of the network.

Path flow formulations are also referred to in the literature as path-based formulations. In path
flow formulations, the flow conservation is implicitly imposed on the variables. Since |P(N )| can be
exponential with respect to |A(N )|, path flow formulations usually have a huge number of variables.
Nonetheless, such formulations have been successfully solved in the literature by column generation
based algorithms (see, e.g., Poggi and Uchoa [88]).

Definition 3. Arc flow formulations are network flow formulations where decision variables cor-
respond to the non-negative flow on each arc of the network.
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In contrast to path flow formulations, arc flow formulations impose the flow conservation explic-
itly as linear constraints. For instance, let variable ϕ(u,v) ∈ R+, for each arc (u, v) ∈ A, represent
the flow on arc (u, v), and let variable z ∈ R+ represent the total flow on the network. Flow
conservation constraints can be formulated as:

∑

(u,v)∈A

ϕ(u,v) −
∑

(v,w)∈A

ϕ(v,w) =











−z, if v = vsource,

z, if v = vsink,

0, otherwise,

∀v ∈ V. (2)

The underlying matrix from (2) is totally unimodular (see, e.g., Nemhauser and Wolsey [81]),
which is an interesting property, as LP models with a totally unimodular constraint matrix have
the integrality property, i.e., every vertex of the corresponding polytope is integer, implying the
existence of an integer optimal solution if the right-hand side of the constraints is integer.

Although flow conservation constraints (2) must be explicitly included, differently from path
flow formulations, arc flow formulations have a polynomial number of variables with respect to
network size. An important result that relates these two classes of formulations is the following:

Theorem 1 (Flow Decomposition Theorem (Ahuja et al. [1])). Every path and cycle flow has
a unique representation as non-negative arc flows. Conversely, every non-negative arc flow can
be represented as a path and cycle flow (though not necessarily uniquely) with the following two
properties:

(a) Every directed path with a positive flow connects the source to the sink;

(b) At most |V| + |A| paths and cycles have nonzero flow; out of these, at most |A| cycles have
nonzero flow.

Theorem 1 proves the equivalence between arc flow and path flow formulations: an arc flow
solution can be transformed into positive flow on a set of paths and cycles, and a solution of path
flow formulations can be decomposed into flow on individual arcs. Consequently, arc flow and path
flow formulations based on the same network produce the same linear relaxation bounds for integer
problems.

A fundamental network flow problem is the longest path problem (LPP): find a longest path,
i.e., a unitary flow of maximum cost, from vsource to vsink. When the network does not have cycles
of negative cost, a longest path can be found in polynomial time with respect to the network size.
In particular, when the network is acyclic, a longest path can be found in O(|A|) by a topological
ordering of the nodes (see, e.g., Ahuja et al. [1]). The LPP often appears in solution methods for
more complex network flow problems. Such problems have, for instance, side constraints charac-
terized by generalized upper and lower bounds on the flow on subsets of arcs (see, e.g., Clautiaux
et al. [25]). In the remainder of this section, we formally define Dynamic Programming and its
relation to acyclic network flow formulations and the LPP.

2.1 Dynamic Programming and Arc Flow Formulations

(Discrete) Dynamic Programming (DP) is a well-known method, proposed in the fifties (see, e.g.,
Bellman [4]), to solve combinatorial optimization problems that can be decomposed into a sequence
of decisions, often represented by stages, each corresponding to a decision step. DP models are
defined by a state space S, where each state s ∈ S is characterized by a set of entities. Each
state is defined, for instance, by the subset of clients already visited in routing problems (see, e.g.,
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Desrochers et al. [37]) or by the level of usage of a given resource in, e.g., cutting, packing or
scheduling problems (see, e.g., Christofides and Hadjiconstantinou [22]).

A key aspect in DP modeling is the fact that the description of a state s ∈ S should be
sufficient to recognize the admissible decisions for s, which is coined as the no-memory property
of DP. Then, when stages are considered, problems are divided into a sequence of sub-problems,
so that the solution of a sub-problem depends only on the sub-problems from the previous stage.
Nowadays, some authors changed the perspective of DP from the stage-dependent description to a
table-filling method, as described by, e.g., Ahuja et al. [1].

A DP model can be represented by a recursive function, in which the value of a state is only
based on the values of the precedent states and the cost (contribution) of the decisions leading to
that state. Formally, for each state s ∈ S, let ∆(s) be the set of precedent states, and c(r, s) ∈ R

be the cost required to move from r ∈ ∆(s) to s. The state space S contains two special states, s0
and s∗, representing the initial condition of the recursion and the optimal solution of the problem,
respectively. No state precedes s0 (∆(s0) = ∅) and s∗ does not precede any other state (s∗ /∈
∆(s),∀s ∈ S). The DP recursion we consider is given by:

fDP (s) =

{

max{r∈∆(s)}{fDP (r) + c(r, s)}, if s 6= s0,

0, if s = s0,
∀s ∈ S. (3)

A priori, the DP recursion (3) denotes a maximization problem, but it can easily be considered
as a minimization problem by inverting the sign of all decision costs. Based on recursion (3), a DP
model can be defined on a directed acyclic graph (DAG), where vertices and arcs correspond to
states and decisions, respectively. In this characterization, the DP solution is given by a longest
path, that is, a path from s0 to s∗ with maximum total cost (profit). In some cases, the description
of the recursion produces states that are not in any solution from the initial state to the goal state,
and such states can be disregarded.

The previous characterization of DP is a classical definition, and one of the most used by the
integer programming literature. Nevertheless, other definitions of DP were proposed. For instance,
Martin et al. [71] defined DP over a directed acyclic hypergraph, to obtain a better polyhedral
characterization of a class of combinatorial optimization problems. This generalization was later
used to solve network flow problems (see, e.g., Clautiaux et al. [26]).

Following our DP definition, the DAG from a DP model produces the dynamic programming
network NDP . Each node is associated with a state, that is, V(NDP ) ≡ S, where states s0 and s∗

correspond to nodes vsource and vsink, respectively. The set of arcs is defined by A(NDP ) = {(r, s) |
s ∈ S, r ∈ ∆(s)}, and the cost c(r, s) of an arc (r, s) ∈ A is equivalent to the decision cost c(r, s)
for moving from state r to state s.

The fact that DP can be seen as a LPP in the DP network provides a generic recipe to transform
a DP model into the arc flow model given by:

max
∑

(u,v)∈A(NDP )

c(u, v)ϕ(u,v), (4)

s.t.:
∑

(u,v)∈A(NDP )

ϕ(u,v) −
∑

(v,w)∈A(NDP )

ϕ(v,w) =











−1, if v = vsource,

1, if v = vsink,

0, otherwise,

∀v ∈ V(NDP ), (5)

ϕ(u,v) ∈ {0, 1}, ∀(u, v) ∈ A(NDP ). (6)

Model (4)–(6) considers flow conservation constraints with a unitary flow (z = 1) and side
constraints impose that the flow on each arc is binary. The objective function is to maximize the
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cost of the selected path, given by the sum of the contributions of the state decisions. As this
model has only flow conservation constraints, it has the integrality property, because, as previously
discussed, its underlying matrix is totally unimodular. This property is linked with the fact that
the LPP on a DAG can be solved in linear time with respect to the number of arcs (see, e.g.,
Bellman [4]).

In strongly NP-hard problems, DP often provides pseudo-polynomial algorithms to solve sub-
problems that determine partial plans. Examples of such sub-problems are: finding a single cut-
ting/packing pattern on cutting and packing problems (see, e.g., Valério de Carvalho [105]); obtain-
ing a schedule in a single machine in scheduling problems (see, e.g., Kramer et al. [62]); determining
a route of a single vehicle on vehicle routing problems (see, e.g., Poggi and Uchoa [88]).

The DP network from the sub-problems (partial plans) may be used to derive arc flow models
to solve the main problem (global plan). If the global plan is a strongly NP-hard problem (which
is often the case), these models do not have the integrality property, unless P = NP , but they
usually provide strong relaxations. We provide examples of DP networks of two problems that are
often associated with partial plans.

2.2 Example on the Knapsack Problem

Let us consider an example on the knapsack problem (KP): given a knapsack with capacity W ∈ Z+

and a set I = {1, 2, . . . , n} of items, each item i ∈ I with a weight wi ∈ Z+, a profit pi ∈ Z+, and a
maximum number of copies di ∈ Z+, determine the number xi (with 0 ≤ xi ≤ di) of copies of each
item i ∈ I in the solution, so that

∑

i∈I wixi ≤ W and
∑

i∈I pixi is maximum (see, e.g., Martello
and Toth [70]). The optimal solution value fKP (i,W

′) of a knapsack sub-problem that considers
the items {1, 2, . . . , i} and a partial capacity W ′ can be recursively computed by:

fKP (i,W
′) =

{

maxl∈{0,1,...,min{di,⌊W ′/wi⌋}}{fKP (i− 1,W ′ − wil) + pil}, if i > 0 and W ′ > 0,

0, otherwise.

(7)

The optimal KP solution value is given by OPT (I,W ) = max{0<W ′≤W} fKP (|I|,W
′) and it

is associated with a DP model where the state space S is a subset of {(i,W ′) | i ∈ I,W ′ ∈
{0, 1, . . . ,W}} ∪ {s∗}, each partial set of items corresponds to a stage, the initial condition state is
s0 = (0, 0), and the goal is represented by a dummy state s∗, so that the precedent states in ∆(s∗) are
related to the recursion of OPT (I,W ). The set of precedent states of each state (i,W ′) ∈ S \{s∗},
where i > 0, is ∆((i,W ′)) = {(i−1,W ′−wil) | wil ≤ W ′, l ∈ {0, 1, . . . , di}}, and the decision cost for
reaching (i,W ′) from a precedent state (i−1,W ′−wil) ∈ ∆((i,W ′)) is c((i − 1,W ′ − wil), (i,W

′)) =
pil. The set of precedent states of s∗ is ∆(s∗) = {(|I|,W ′) | W ′ ∈ {0, 1, . . . ,W}} and the cost to
move from a precedent state (|I|,W ′) ∈ ∆(s∗) to s∗ is c((|I|,W ′), s∗) = 0.

Let NKP be a DP network for the KP. The set of nodes V(NKP ) ≡ S corresponds to the set
of states, where vsource and vsink are associated with s0 and s∗, respectively. The set of arcs is
A(NKP ) = ∪{i∈I,l∈{0,1,...,min{di,⌊W ′/wi⌋}}Ail ∪ AS . For each i ∈ I, the set Ail = {((i − 1,W ′ −
wil), (i,W

′)) | (i,W ′) ∈ S, (i − 1,W ′ − wil) ∈ ∆((i,W ′))} contains the arcs corresponding to
the decision of choosing l copies of i in the solution, and these arcs have profit pil. The set
AS = {((n,W ′), vsink) | (n,W

′) ∈ S} contains arcs, called loss arcs, that link the nodes from the
last stage to vsink, and their profit is 0.

As an example, Figure 1 shows the network for a KP with capacity W = 8, and three items
having w1 = 4, w2 = 3, w3 = 2, p1 = 8, p2 = 5, p3 = 4, and d1 = d2 = d3 = 1. There is a node
s∗ representing vsink, a node (i,W ′) for each state, and vsource = (0, 0). Arcs AS are depicted as
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dotted links, and for every item i ∈ I, the arcs in Ai1 and Ai0 are depicted as full and dashed
links, respectively. The arcs that do not belong to any path from (0, 0) to s∗ are disregarded. By
definition, the only non-zero profit arcs are the ones from Ai1, and their profits are shown in the
figure. The bold arcs are from the longest path, i.e., the optimal solution, which contains items 1
and 2 and has total profit 13.

1, 0

2, 0

3, 0

1, 1

2, 1

3, 1

1, 2

2, 2

3, 2

1, 3

2, 3

3, 3

1, 4

2, 4

3, 4

1, 5

2, 5

3, 5

1, 6

2, 6

3, 6

1, 7

2, 7

3, 7

1, 8

2, 8

3, 8

0 , 0

s∗

8

5 5

4 44

Figure 1: Example of network NKP for the knapsack problem.

The network NDP can be used in the generic recipe previously discussed, to derive an arc flow
model for the KP with O(|I|W ) nodes and arcs. Although the resulting arc flow model has pseudo-
polynomial size and has the integrality property, solving it with LP algorithms is usually not as
fast as solving the problem by DP. However, the LP model can be a base for interesting results.
For instance, Boyd [11] extended this model to solve the knapsack separation problem, which is a
generic tool to generate cutting planes for MILP formulations.

2.3 Example on the Elementary Shortest Path Problem with Resource Con-

straints

The elementary shortest path problem with resource constraints (ESPPRC) is linked with determin-
ing the best route of a single vehicle in vehicle routing problems (see, e.g., Irnich and Desaulniers
[55]). In the ESPPRC there is a resource capacity and a directed graph. Each vertex is associated
with a resource consumption and each arc is associated with a cost. The objective is to find a
path with minimum cost such that: (i) each vertex is visited at most once (elementary constraint);
and (ii) the total resource consumption from the vertices in the path does not exceed the resource
capacity (resource constraint).

In the context of vehicle routing, the vertices are given by I = {0, 1, . . . , n}, where 0 represents
the depot and the other n vertices represent the clients. The solution must start and finish at
the depot. Generally, the ESPPRC might consider a set of resources, but in this example we are
concerned only with a single resource W , which is associated with the load capacity of a vehicle.
Let e(i,j) ∈ R be the cost of arc (i, j) ∈ I × I and wi ∈ R+ be the resource consumption of i ∈ I.

Given a set of clients S ⊆ I \ {0} that satisfies the resource constraint (i.e.,
∑

j∈S wj ≤ W ), we
denote by fESPPRC(S, i) the cost of a path of minimum cost from the depot 0 to a client i ∈ S
that visits every client in S exactly once. A client j ∈ S \ {i} that precedes i in an optimal path
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{}, 0

{1}, 1 {2}, 2 {3}, 3 {4}, 4

{1,2}, 2 {1,3}, 3 {1,4}, 4 {1,2}, 1 {2,3}, 3 {1,3}, 1 {2,3}, 2 {1,4}, 1

{1,2,3}, 3 {1,2,3}, 2 {1,2,3}, 1

s∗

-5 -3 1 -2

6 2 -2 -7 -1 2 -5 -2

-1 -52 26 -7

Figure 2: Example of network NESPPRC for the elementary shortest path problem with resource
constraints.

related to fESPPRC(S, i) is one that minimizes the sum of the cost e(j,i) from j to i and the cost
fESPPRC(S \ {i}, j) of a path of minimum cost that visits every client in S \ {i} exactly once and
finishes in j ∈ S \ {i}. This relation can be mapped into the following recursion:

fESPPRC(S, i) =

{

minj∈S\{i}{fESPPRC(S \ {i}, j) + e(j,i)}, if S 6= ∅ and i > 0,

0, otherwise.
(8)

The optimal ESPPRC solution value is given by OPT (I, e, r) = min{fESPPRC(S, i) + e(i,0) |
S ⊆ I, i ∈ S,

∑

j∈S wj ≤ W}. The recursion can be transformed into a maximization problem,
by inverting the sign of each e(i,j), resulting in a DP model. The state space S is a subset of
{(S, i) | S ⊆ I, i ∈ S,

∑

j∈S wj ≤ W} ∪ {s∗}, where the initial state is s0 = (∅, 0) and the goal state
s∗ has precedent states related to the recursion of OPT (I, e, r). For each state (S, i) ∈ S \{s∗}, the
set of precedent states is ∆((S, i)) = {(S \ {i}, j) | j ∈ S \ {i}}, and the decision cost to move from
state (S \ {i}, j) ∈ ∆((S, i)) to (S, i) is c((S \ {i}, j), (S, i)) = e(j,i). The set of precedent states of
s∗ is ∆(s∗) = S \ {s∗}, and the cost to move from state (S, i) ∈ ∆(s∗) to s∗ is c((S, i), s∗) = e(i,0).

Let NESPPRC be the DP network for the ESPPRC obtained from the state space S presented
above. The set of nodes V(NESPPRC) ≡ S corresponds to the state space, where vsource and vsink
are associated with (∅, 0) and OPT (I, e, r), respectively. The set of arcs A(NESPPRC) = ∪i∈IAi

contains arcs Ai = {((S \{i}, j), (S, i)) ∈ V ×V} related to the decision of visiting client i ∈ I \{0},
and arcs A0 = {((S, j), vsink) ∈ V × V} related to the decision of returning to the depot.

Figure 2 illustrates the network for an example with W = 6 and 4 clients, with w1 = 1, w2 = 2,
w3 = 2, and w4 = 5. In this example, the costs are the following: c(0,1) = −5, c(0,2) = −3, c(0,3) = 1,
c(0,4) = −2, c(1,0) = 0, c(1,2) = 6, c(1,3) = 2, c(1,4) = −3, c(2,0) = 0, c(2,1) = −7, c(2,3) = −1, c(2,4) = 5,
c(3,0) = 0, c(3,1) = 2, c(3,2) = −5, c(3,4) = 5, c(4,0) = 0, c(4,1) = −2, c(4,2) = 5, c(4,3) = 5. On each arc,
we present its associated cost, except for the arcs that enter s∗, which for the sake of conciseness we
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consider their cost to be 0 and present such arcs as dotted lines. The arcs of the optimal solution are
highlighted in bold, and they correspond to visit the sequence of clients 3, 2, and 1, and returning
to the depot. The optimal solution has value −11.

The network NESPPRC can be the base of an arc flow model for the ESPPRC, following the
generic recipe previously presented. However, the number of subsets S ⊆ I such that

∑

j∈S wj ≤ W
is exponential, implying that the state space presented for the ESPPRC is also exponential. Conse-
quently, the corresponding arc flow model has an exponential number of variables and constraints,
and it is not practical to solve it directly. Practical techniques that can be used to overcome
this inconvenience are described in Section 4. In particular, Section 4.2 presents a network of
pseudo-polynomial size for a version of the ESPPRC where the elementary constraints are partially
relaxed.

3 Dantzig-Wolfe Decomposition and Network Flow Formulations

Several challenging problems admit compact MILP models that, although having a reasonable
(polynomial) size, are usually associated with weak linear relaxations. In such cases, reformulation
methods can obtain models with stronger linear relaxation. One of such methods is the well-known
Dantzig-Wolfe (DW) decomposition (see Dantzig and Wolfe [29]), which has been successfully used
in many applications. The resulting models may be stronger, but they usually have an exponential
number of variables, and complex methods are required to solve them in practice. In the following,
we show how models obtained from DW decomposition can be the base to derive equivalent arc
flow models with smaller (and possibly practical) size.

First, we show how the DW decomposition can be applied to Linear Programming (LP) models.
Let us express the feasible solution region of the LP model as:

XLP = {x ∈ R
n
+ | Ax ≥ b, x ∈ X}, (9)

where A ∈ R
m×n, b ∈ R

m, and X is a bounded convex polytope of a set of constraints. According
to the Minkowski’s Theorem, any point in X can be represented as a convex combination of the
vertices (extreme points) of X (for the general case of an unbounded polytope, it is also necessary to
consider a non-negative linear combination of the extreme rays of the polytope, see, e.g., Nemhauser
and Wolsey [81]). Then, by defining Q(X) as the set of vertices of X, it follows:

X = {x ∈ R
n
+ | x =

∑

q∈Q(X)

qλq,
∑

q∈Q(X)

λq = 1, λq ≥ 0,∀q ∈ Q(X)}. (10)

By substituting x as in (10) in (9), the feasible region in the space of the variables of the
reformulated model becomes:

XLPDW = {λ ∈ R
|Q(X)|
+ |

∑

q∈Q(X)

(Aq)λq ≥ b,
∑

q∈Q(X)

λq = 1}. (11)

The reformulated problem, called DW model, has a variable associated with each vertex of
X, and a new set of constraints, usually referred to as convexity constraints (see, e.g., Lübbecke
and Desrosiers [67]). The DW model is just another way of expressing the same solution space.
Therefore, the decomposition applied to LP models preserves the optimal solution value.

However, in the context of MILP, to obtain linear models stronger than the original linear
relaxation, the integrality constraints must be implicitly considered in the reformulated variables.
A possibility is to impose the integrality constraints just in the set X, reformulating over the vertices
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of Conv{x ∈ X and integer}, the convex hull of the integer points in X (see, e.g., Nemhauser and
Wolsey [81]), to optimize over the set:

XDW = {x ∈ R
n
+|Ax ≥ b, x ∈ Conv{x ∈ X and integer}}. (12)

Note indeed that XDW ⊆ XLP , and the relation can be strict when the set X does not have
the integrality property. When that happens, the reformulated model is stronger. The strength
of a model can have a strong impact on the search for the optimal integer solution. Typically the
length of the search is smaller with stronger models, leading to smaller computational times. For
further details, the reader is referred to Nemhauser and Wolsey [81], which discusses at length the
importance of deriving stronger models in the context of MILP.

A typical issue from the DW decomposition is that the resulting model may have an exponential
number of variables. This issue is usually addressed by relying on the column generation method, a
technique to solve LP models with a large number of variables (see, e.g., Lübbecke and Desrosiers
[67]). The method solves a restricted version of the LP model with only a subset of variables by
iteratively solving a pricing problem. The pricing generates non-basic variables (columns) that are
candidates to improve the current restricted model. If no such variable exists, then the current basis
of the restricted model is optimal for the original model, and the method halts. Column generation
algorithms are complex, but it pays off to solve models resulting from a DW decomposition, because
they may be stronger when the set X does not have the integrality property and integrality is
enforced in the pricing problem.

When the pricing problem of a DW model can be solved by DP, each column of the model can be
associated with a path in the DP network, and the model can be seen as a path flow formulation. In
such cases, the coefficients of a column are given as contributions from the arcs of the corresponding
path. In addition, due to the no-memory property of the DP, for each column, the contribution
ℓk(u,v) ∈ R of an arc (u, v) to a row coefficient k ∈ C, where C is the set of constraints, is independent
of other arcs. Then, given a DP network N , and dk ∈ R, for every constraint k ∈ C, we obtain a
general path flow formulation:

min
∑

p∈P(N )

c̃pλp, (13)

s.t.:
∑

p∈P(N )

∑

(u,v)∈A(p)

ℓk(u,v)λp ≥ dk, ∀k ∈ C, (14)

λp ∈ Z+, ∀p ∈ P(N ). (15)

The objective function (13) minimizes the total cost from the paths in the solution, and (14) is
a set of general linear constraints. As discussed previously, due to the flow decomposition theorem,
the path flow formulation (13)–(15) can be reformulated as the following arc flow formulation:

min
∑

(u,v)∈A(N )

c(u, v)ϕ(u,v), (16)

s.t.:
∑

(u,v)∈A(N )

ϕ(u,v) −
∑

(v,w)∈A(N )

ϕ(v,w) =











−z, if v = vsource,

z, if v = vsink,

0, otherwise,

∀v ∈ V(N ), (17)

∑

(u,v)∈A(N )

ℓk(u,v)ϕ(u,v) ≥ dk, ∀k ∈ C, (18)

z ≥ 0, (19)
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ϕ(u,v) ∈ Z+, ∀(u, v) ∈ A(N ). (20)

The objective function (16) minimizes the total cost from the arcs in the solution, (17) are the
flow conservation constraints, and (18) are general linear constraints, adapted from (14).

DW decomposition can generate path flow formulations that are usually associated with strong
linear relaxations, and equivalent arc flow formulations can be derived from the DP network of
the underlying pricing problem. As pointed before, to obtain stronger relaxations, one should
reformulate over the convex hull of the integer points in a polytope that does not have the integrality
property. Although a stronger linear relaxation is obtained, this kind of reformulation leads to
pricing problems that are NP-hard.

On the other hand, for arc flow models, the price to pay to obtain a stronger relaxation (i.e.,
to obtain a set equivalent to XDW ) is to use a set of constraints that defines a DP network with a
pseudo-polynomial or an exponential number of arcs.

Usually, arc flow models of practical size can be derived when the resulting pricing problem
has pseudo-polynomial complexity. However, when the pricing problem is strongly NP-hard, the
resulting arc flow model is generally too large to be solved in practice. When the pricing problem
from path flow formulations is too difficult in practice, one may rely on relaxation methods. We
show in Section 4 one of such relaxation methods, which can be used to derive smaller networks
and obtain arc flow formulations that are still strong and have practical size. In the next sections,
we present two examples of arc flow formulations derived from DW decomposition, with pseudo-
polynomial and exponential size, respectively.

3.1 Example on the Cutting Stock Problem

We present an example of an arc flow model derived from a DW decomposition for the Cutting
Stock Problem (CSP). In the CSP, a roll of width W and a set I = {1, 2, . . . , n} of items are given,
such that each item i ∈ I has a positive demand di and a width wi. The objective is to cut the
demand of all items from the minimum number of rolls.

Given an upper bound K on the minimum number of rolls, following Martello and Toth [70],
the CSP can be formulated as:

min
K
∑

j=1

yj, (21)

s.t.:

n
∑

i=1

wixij ≤ Wyj, j = 1, 2, . . . ,K, (22)

K
∑

j=1

xij ≥ di, ∀i ∈ I, (23)

yj ∈ {0, 1}, j = 1, 2, . . . ,K, (24)

xij ∈ Z+, ∀i ∈ I, j = 1, 2, ...,K. (25)

Each roll j = 1, 2, . . . ,K is associated with a binary variable yj that is equal to 1 if and only
if roll j is used in the solution. The integer variable xij represent the number of copies of item
i ∈ I that is cut from roll j. The objective function (21) minimizes the number of rolls cut in the
solution. Constraints (22) ensure that the size of each roll is satisfied and that no item is cut from
an unused roll, whereas constraints (23) ensure that the demand of each item is satisfied.

According to Martello and Toth [70], the optimal solution value of the linear relaxation of
(21)–(25) is equivalent to the continuous lower bound that is obtained from the minimum length
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required to cut all of the demand from a stock with unlimited width, i.e.,
∑

i∈I widi/W . This
bound is known to be weak in practice, and its worst-case performance ratio asymptotically tends
to 1/2. To obtain a stronger bound, a DW decomposition can be applied to the model above (see,
e.g., Vance [109]).

Constraints (22) correspond to K identical fractional knapsack polytopes. When integrality
constraints (24) and (25) are taken into account, theK identical polytopes correspond toK identical
sets PCSP of integer knapsack solutions. A DW decomposition that includes constraints (22), (24),
and (25) in the sub-problem results in the following set-covering model:

min
∑

p∈PCSP

λp, (26)

s.t.:
∑

p∈PCSP

aipλp ≥ di, ∀i ∈ I, (27)

λp ∈ Z+, ∀p ∈ PCSP . (28)

In the CSP, the integer knapsack solutions from PCSP are called cutting patterns (or just pat-
terns, for short, in the following), and each of them represents the cutting of a single piece of stock.
The objective function (26) minimizes the number of cutting patterns. Constraints (27) ensure
that the demand of each item is satisfied, where aip is the number of copies of item i in pattern p.

In cutting and packing problems, a proper pattern is a pattern that respects the maximum
number of copies of the items, whereas a non-proper pattern does not. The set-covering model by
Gilmore and Gomory [48, 49] for the CSP is similar to (26)–(28), but it includes non-proper patterns
that are obtained from the polytope of an unbounded knapsack problem (UKP), a variant of the
KP where each item has an unlimited number of copies. The linear relaxation of (26)–(28), often
referred to as proper relaxation (see, e.g., Kartak et al. [58]), is stronger than the linear relaxation
of the model by Gilmore and Gomory [48, 49], but the optimal solution values of the corresponding
MILP models are equal.

The linear relaxation of (26)–(28) is strong and often the number of rolls in the optimal solution
is the rounded up optimal solution value from this relaxation. In fact, there is a conjecture related
to the strength of this relaxation (see, e.g., Caprara et al. [20] and Kartak et al. [58]):

Conjecture 1 (Modified Integer Round-Up Property (MIRUP)). The difference between the opti-
mal solution value of the CSP and the rounded-up solution value of the linear relaxation of (26)–(28)
is at most one.

The pricing problem of the set-covering model is a KP (where each item has di copies), which,
as shown in Section 2.2, can be solved by DP, implying on the existence of a DP network NKP . As
every column from the set-covering model can be represented as a path in NKP , this network can
be the base of an arc flow model for the CSP:

min z, (29)

s.t.:
∑

(u,v)∈A(NKP )

ϕ(u,v) −
∑

(v,w)∈A(NKP )

ϕ(v,w) =











−z, if v = vsource,

z, if v = vsink,

0, otherwise,

∀v ∈ V(NKP ), (30)

∑

(u,v)∈Ai(NKP )

ℓi(u,v)ϕ(u,v) ≥ di, ∀i ∈ I, (31)

z ∈ Z+, (32)
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ϕ(u,v) ∈ Z+, ∀(u, v) ∈ A(NKP ). (33)

The objective function (29) minimizes the total flow. Constraints (30) impose the flow conser-
vation and constraints (31) are related to the demand of each item. Following the definitions in
Section 2.2, we further define Ai(NKP ) = ∪l∈{0,1,...,di}Ail(NKP ), for each i ∈ I, and the contribu-
tion ℓi(u,v) of arc (u, v) ∈ Ai(NDP ) is the number of copies of i associated with (u, v). The arc flow

model (29)–(33), corresponds to the arc flow model proposed by Cambazard and O’Sullivan [17],
under the name DP-flow, for the bin packing problem (BPP), a particular case of the CSP where
di = 1 for every i ∈ I. The DP-flow is equivalent to the set-covering model (26)–(28) (see, e.g.,
Delorme and Iori [32]), and it follows the proper relaxation.

In this example, we started from a model that is associated with a weak linear relaxation. A
DW decomposition resulted in a model with a stronger relaxation, but with the drawback of having
a potentially exponential number of variables. Then, we showed how the DP network related to
the pricing problem of the exponential model derives an equivalent pseudo-polynomial network flow
model. Practical successful applications of this idea are shown in Section 7.

3.2 Example on the Capacitated Vehicle Routing Problem

In the capacitated vehicle routing problem (CVRP), we are given a set K of identical vehicles and
a set I = {0, 1, . . . , n} of vertices where vertex 0 corresponds to a depot, and vertices 1, . . . , n
correspond to n clients. Each vehicle has a load capacity W , each client i ∈ I \ {0} has a non-
negative demand wi, and each pair of vertices i, j ∈ I is associated with a cost c(i, j). The CVRP
aims at determining a routing plan with the minimum total cost, such that: (i) exactly |K| routes
are considered; (ii) each route starts and ends at the depot; (iii) each client is visited exactly once;
and (iv) the total demand from the clients of a route does not exceed the load capacity W .

In this example, we apply a DW decomposition on a compact arc flow model for the CVRP,
obtaining a set partitioning model that derives an equivalent arc flow model of exponential size.

Let I∗ = {I \{0}}∪{0+, 0−} be the set of clients with two additional vertices 0+ and 0−, which
are copies of the depot, each corresponding to the source and the sink of a route, respectively. Two
additional sets of arcs, {(0+, j) | j ∈ {I \ {0}}} and {(i, 0−) | i ∈ {I \ {0}}}, are considered. The
following compact arc flow model, also known as three-index (vehicle-flow) formulation (see, e.g.,
Irnich et al. [57]), solves the CVRP:

min
∑

k∈K

∑

i∈I∗

∑

j∈I∗\{i}

c(i, j)φk
(i,j), (34)

s.t.:
∑

j∈I∗\{i}

φk
(i,j) −

∑

j∈I∗\{i}

φk
(j,i) =











−1, if i = 0+,

1, if i = 0−,

0, otherwise,

∀k ∈ K, i ∈ I∗, (35)

∑

k∈K

∑

j∈I∗\{i}

φk
(i,j) = 1, ∀i ∈ I \ {0}, (36)

ωik − ωjk +Wφk
(i,j) ≤ W − wj , ∀i, j ∈ I∗, i 6= j, k ∈ K, (37)

ωik ≤ W, ∀i ∈ I∗, k ∈ K, (38)

φk
(i,j) ∈ {0, 1}, ∀i, j ∈ I∗, k ∈ K, (39)

ωik ≥ 0, ∀i ∈ I∗, k ∈ K. (40)

Model (34)–(40) considers a copy of the original graph for each vehicle k ∈ K. The binary
variable φk

(i,j) is equal to 1 if and only if vehicle k moves from client i to client j, and the variable
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ωik indicates the accumulated demand already distributed by the vehicle k when arriving at client
i. The objective function (34) minimizes the total cost of the routes. Constraints (35) guarantee
the conservation of a unitary flow (representing a single route) for each of the |K| vehicles. Con-
straints (36) guarantee that each client is visited exactly once. Constraints (37) and (38) model
the propagation of the accumulated demand of the load capacity of each vehicle, and they are also
used to ensure that the route of each vehicle is a single connected component (path).

Although model (34)–(40) has a polynomial number of variables, it has a large number of
symmetries that makes it inefficient in practice (see, e.g., Irnich et al. [57]). Each possible route
can be attributed to any vehicle, so each solution (routing plan) has |K|! equivalent permutations.
Next, we present a DW decomposition that eliminates this symmetry.

Flow conservation constraints (35) correspond to |K| identical polytopes, each containing all
paths from 0+ to 0−, whose vertices are always integer. By including constraints (37) and (38),
each of the |K| resulting polytopes contains all paths from 0+ to 0− satisfying the load capacity,
but the integrality property is lost. Let us consider the DW decomposition over the set PCV RP of
vertices of the convex hull of constraints (35), (37), (38), and (40), that represent the set of integer
paths that satisfy the load capacity. The resulting DW model is:

min
∑

p∈PCV RP

c̃pλp, (41)

s.t.:
∑

p∈PCV RP

apiλp = 1, ∀i ∈ I \ {0}, (42)

∑

p∈PCV RP

λp = |K|, (43)

λp ∈ {0, 1}, ∀p ∈ PCV RP . (44)

The set partitioning model (41)–(44) provides a strong lower bound and it is among the most
successful formulations to solve the CVRP in practice (see, e.g., Poggi and Uchoa [88] and Pecin
et al. [83]). This model associates with each path p ∈ PCV RP a variable λp. The binary coefficient
aip is equal to 1 if and only if client i ∈ I \{0} is visited in p. The objective function (41) minimizes
the total cost, where the cost c̃p of a path p is the sum of the costs of the arcs in A(p). Constraints
(42) guarantee that each client is visited by exactly one route. As each variable represents a unique
path, the symmetry from the model (34)–(40) is eliminated.

The pricing problem associated with model (41)–(44) is equivalent to the ESPPRC. In Section
2.3, we presented the exponential DP network NESPPRC for the ESPPRC. Based on this network,
and recalling that Ai(NESPPRC) is the set of arcs that visit i ∈ I, we can reformulate the set
partitioning model into the following arc flow model:

min
∑

(u,v)∈A(NESPPRC)

c(u, v)ϕ(u,v), (45)

s.t.:
∑

(u,v)∈A(NESPPRC)

ϕ(u,v) −
∑

(v,w)∈A(NESPPRC)

ϕ(v,w) =











−|K|, if v = vsource,

|K|, if v = vsink,

0, otherwise,

∀v ∈ V(NESPPRC), (46)
∑

(u,v)∈Ai(NESPPRC)

ϕ(u,v) = 1, ∀i ∈ I \ {0}, (47)

ϕ(u,v) ∈ {0, 1}, ∀(u, v) ∈ A(NESPPRC). (48)
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The objective function (45) minimizes the total cost of the routing plan. Constraints (46)
impose the flow conservation, and constraints (47) imply that each client is visited exactly once.

As network NESPPRC is possibly exponential, the arc flow model (45)–(48) may be too large
to be used in practice. Nonetheless, this model is presented so as to provide an example in Section
4.2 on how a relaxation for the pricing problem of (41)–(44) derives a pseudo-polynomial arc flow
model for the CVRP.

4 State-Space Relaxation on Arc Flow Formulations

Dynamic programming is often an efficient tool to solve hard problems. However, when the number
of states from a DP model is very large, it is not practical to solve it by enumerating all states, and
more sophisticated methods are needed. From that observation, Christofides et al. [23] proposed a
general relaxation procedure for DP, called state-space relaxation, which aggregates subsets of states
in order to obtain a smaller state space which provides a bound for the original problem. Such
relaxation can be embedded in exact solution methods to find the optimal solution for the original
state space by (partially) disaggregating the relaxed state space during the search for feasible
solutions. Since a state space may allow many different relaxations, it is desirable to determine
relaxations that provide a good balance between number of states and strength of the relaxation.

Formally, a state-space relaxation consists of a mapping function g : S → G between two
state spaces, where |G| < |S|. For every s ∈ S and r ∈ ∆(s), function g must guarantee
that g(r) ∈ ∆(g(s)), and the decision cost of going from g(r) to g(s) is defined as c̄(g(r),g(s)) =
max{p,q∈S}{c(p, q) | g(p) = g(r), g(q) = g(s)}. The DP recursion of the resulting state-space
relaxation is given by:

fSSR(g(s)) =

{

max{p∈∆(g(s))}(fSSR(p) + c̄(p,g(s))), if s 6= s0,

0, if s = s0,
∀s ∈ S. (49)

As a relaxation, recursion (49) guarantees that fSSR(g(s)) ≥ fDP (s), i.e., it produces an upper
bound for the original recursion fDP . In the context of arc flow formulations induced by DP, the
size of the LP formulation is strictly related to the size of the state space. In this case, smaller
arc flow formulations can be obtained from state-space relaxations. Solutions obtained with the
state-space relaxation may be unfeasible for the original problem. However, there are many cases
in which arc flow formulations based on networks from state-space relaxations are guaranteed to
produce optimal integer solutions that are feasible for the original problem. The main drawback of
state-space relaxations is that they lead to arc flow formulations with weaker linear relaxation. This
weakness occurs as the relaxation can profit from paths that are not feasible in the original network,
generating, for instance, non-proper patterns in cutting and packing problems or non-elementary
routes in vehicle routing problems. However, in many cases, the reduction on the size of the model
pays off the loss in the linear relaxation strength.

Strong pseudo-polynomial arc flow formulations can be obtained from state-space relaxations
of both pseudo-polynomial and exponential state spaces. Motivated by vehicle routing problems,
Gouveia et al. [51] studied modeling and solution methods of a class of pseudo-polynomial arc
flow formulations obtained from state-space relaxation of exponential state-spaces, named by the
authors as layered graph formulations.

Next, we present two examples of pseudo-polynomial arc flow formulations obtained from state-
space relaxations over a pseudo-polynomial and an exponential state space.
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Figure 3: Example of network NKP−SSR obtained from a state-space relaxation of NKP .

4.1 Example on the State Space for the Cutting Stock Problem

In Section 2.2, we presented recursion (7) to solve the KP. This recursion produces network NKP ,
which has O(|I|W ) nodes and O(|I|W ) arcs. Then, in Section 3.1, network NKP was the base of
arc flow model (29)–(33) for the CSP, i.e., the DP-Flow model of Cambazard and O’Sullivan [17].

Let NKP−SSR be the network of a state-space relaxation of NKP based on the mapping function
g((i,W ′)) = (W ′), for every state (i,W ′) ∈ V(NKP ). This mapping function disregards the dimen-
sion related to the partial set of items and merges states representing the same partial capacities,
into a single state. Network NKP−SSR is smaller than NKP , with O(W ) nodes, but it may contain
paths that violate the maximum number of copies of each item. Then, an arc flow model for the
KP, based on NKP−SSR, needs additional side constraints to impose limits on the number of copies
of items, while in NKP , such constraints are implicitly imposed by the configuration of the network.

In the CSP, as each demand constraint (31) imposes only a minimum and not a maximum
number of items, there is no problem in considering a network that has paths representing cutting
patterns with more copies of a single item than the required one. Hence, the arc flow model obtained
by substituting NKP by NKP−SSR on model (29)–(33) still solves the CSP, because unnecessary
items copies, if any, can be removed from the solution without affecting its cost. The resulting
model is equivalent to the arc flow model for the CSP proposed by Valério de Carvalho [104].

The model withNKP−SSR is smaller than the original model, withO(|I|+W ) constraints instead
of O(|I|W ), but its linear relaxation is weaker. Nonetheless, NKP−SSR was obtained by Valério de
Carvalho [104] after reducing the DP network of the UKP, implying the graph of NKP−SSR is a
subgraph of the underlying graph from a DP for the UKP. This implies that the linear relaxation
of the model with NKP−SSR is at least as strong as the relaxation of the model by Gilmore and
Gomory [48, 49], whose sub-problem is the UKP. Thus, the resulting linear relaxation still follows
the MIRUP conjecture, implying that it is still strong. In practice, the arc flow model by Valério
de Carvalho [104], which is associated with NKP−SSR, is preferable than the model by Cambazard
and O’Sullivan [17], which is associated with NKP , as its linear relaxation is still strong and it is
substantially smaller.

To exemplify, Figure 3 shows the network NKP−SSR obtained from the example of Figure 1.
We conclude that state-space relaxation can be considered to reduce the size of pseudo-polynomial
arc flow formulations and obtain models with a linear relaxation that is still strong. This modeling
technique to derive smaller, but yet efficient, pseudo-polynomial models from the relaxation of
pseudo-polynomial state spaces has been mainly used, even without mentioning it, to model one-
and two-dimensional cutting and packing problems and scheduling problems (see Section 7).
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Figure 4: Example of network NSSR−ESPPRC obtained from a state-space relaxation of NESPPRC .

4.2 Example on the State Space for the Capacitated Vehicle Routing Problem

In Section 3.2, we presented a DW decomposition for the CVRP that resulted in the path flow
model (41)–(44), which is known to have a strong linear relaxation. Then, we presented the
corresponding arc flow model (45)–(48), which is based on the network NESPPRC for the ESPPRC
and has exponential size. In the following, we present a state-space relaxation for NESPPRC that
leads to a pseudo-polynomial arc flow model for the CVRP.

A pseudo-polynomial state space NESPPRC−SSR can be obtained from a state-space relax-
ation of NESPPRC based on the mapping function g((S, i)) = (

∑

j∈S rj , i), for every state (S, i) ∈
NESPPRC. This mapping function (originally proposed by Christofides et al. [23]) merges states
with the same total load from the visited clients into a single state. The resulting network
NESPPRC−SSR, which has O(|I|W ) nodes and O(|I|2W ) arcs, preserves the resource constraints of
the ESPPRC, but it may consider non-elementary paths (clients may be visited more than once).

In the exponential arc flow model (45)–(48) for the CVRP, the side constraints guarantee that
clients are visited exactly once. Hence, by changing network NESPPRC by NESPPRC−SSR in model
(45)–(48), the resulting model still solves the CVRP and has pseudo-polynomial size. This resulting
model is often referred to as capacity-indexed formulation (see, e.g., Poggi and Uchoa [88]), and it
has been studied as a layered graph formulation by Gouveia et al. [51].

Figure 4 illustrates the network NSSR−ESPPRC obtained from the state-space relaxation of the
network from Figure 2. It can be noticed that nodes ({1, 2}, 1) and ({1, 3}, 1) have been aggregated
into a single node (3, 1). As a result, NSSR−ESPPRC has one node and one arc less than NESPPRC .
This is a minimal example of a reduction provided by NSSR−ESPPRC that could be presented
within the limits of this paper. However, due to the contrast of the exponential size of NESPPRC

and the pseudo-polynomial size of NSSR−ESPPRC, there are many practical instances where the
state-space relaxation provides a huge reduction on the size of the network.

This example shows how state-space relaxation derives pseudo-polynomial arc flow models from
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a network of exponential size. This kind of modeling technique is often used in vehicle routing
problems, as the combinatorial structure of such problems usually leads to exponential state spaces
in DW decompositions (see, e.g., Righini and Salani [95]).

5 Dual Insight

Research has shown that controlling the values of the dual-variables when using the primal simplex
algorithm may improve computational times substantially. This happens, for instance, by modifying
the model adding extra primal variables (corresponding to extra dual constraints) that must take
null values at the end of the solution process. The use of this strategy may help in reducing
difficulties related with instability of dual variables, primal degeneracy and long-tail effects, which
are known to occur in column generation.

Other than the considerably smaller size, the use of more dual information is another advantage
of the arc flow formulations over path flow formulations. Dual constraints (i.e., dual optimality
conditions) of path flow formulations are non-negative combinations of dual constraints of arc-
flow formulations. From a primal point of view, this competitive advantage can be interpreted as
resulting from the possible recombination of basic variables to generate different paths in column
generation algorithms (see, e.g., Sadykov and Vanderbeck [96]).

5.1 On the Dual Space of Network Flow Formulations

Many state-of-the-art algorithms to solve LP models are based on iteratively pivoting from one
vertex of the LP polytope to a better neighboring vertex until an optimal solution is found. An
issue that may be critical for the computational time is degeneracy. A solution is degenerate when
there are basic variables with a null value; in such cases, there may be degenerate pivots that
lead to the same degenerate vertex, with no change in the primal solution, nor improvement in
the objective function. Hard combinatorial optimization problems are often associated with highly
degenerate models, and stalling, which is a sequence of degenerate pivots, occurs in practice (see,
e.g., Bazaraa et al. [3]). In fact, in a degenerate pivot, there is no change in the primal solution,
but the new set of basic variables yields a change in the dual solution, leading to an alternative
dual solution, often with a high oscillation of the values of the dual variables.

This instability often happens with master problems of DW reformulations, which may have
a huge number of dual solutions associated to each primal solution. Several strategies showed
that controlling the dual-variable values in the primal simplex algorithm may make the column
generation procedure more efficient. For instance, du Merle et al. [38] introduced a stabilization
procedure, combining a perturbation method and a penalty method, that amounts to penalizing
dual variables when they lie outside a predefined box. Wentges [113] searches dual solutions in
the neighborhood of the best dual solution found so far, thus reducing instability. Other strategies
include aggregating primal constraints (aggregation may change dynamically along the solution
process), which enables transferring degeneracy to a complementary problem that is able to select
a more central dual solution, as in Elhallaoui et al. [40, 41]. Further improvements aim at identifying
a set of non-basic variables that are pivoted together into the basis, avoiding degeneracy and strictly
decreasing the objective function value, by solving a problem, coined as complementary problem,
in Bouarab et al. [10]. For other strategies and insights on overcoming instability in combinatorial
optimization algorithms, the reader is referred to, e.g., Lemaréchal [66].

Another strategy to deal with primal degeneracy and instability is to develop strong models
with a more restricted dual space. When comparing different LP models for the same problem with
the same primal strength, the one with a tighter description of the dual space eliminates alternative
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dual solutions, potentially reducing degeneracy. This concept has been used in column generation
algorithms by adding dual cuts that preserve all dual optimal solutions or even at least just one
dual optimal solution, leading to significant speed-ups and reductions in the number of degenerate
pivots (see, e.g., Valério de Carvalho [106], Lübbecke and Desrosiers [67], and Ben Amor et al. [5]).

LP solvers rely on the dual solution to prove optimality, and each dual constraint is an optimality
condition. In the following, we show that arc flow formulations provide a tighter description of
the dual space than their corresponding path flow formulations, with a richer description of the
optimality conditions of the LP models. For instance, consider the dual of the linear relaxation of
the path flow formulation (13)–(15), given by:

max
∑

k∈C

dkβk, (50)

s.t.:
∑

k∈C

∑

(u,v)∈A(p)

ℓk(u,v)βk ≤ c̃p, ∀p ∈ P(N ), (51)

βk ≥ 0, ∀k ∈ C, (52)

where dual variable βk correspond to the constraints (14). Now, consider the dual of the linear
relaxation of the corresponding arc flow formulation (16)–(20), given by:

max
∑

k∈C

dkβk, (53)

s.t.: αv − αu +
∑

k∈C

ℓk(u,v)βk ≤ c(u, v), ∀(u, v) ∈ A(N ), (54)

αsource − αsink ≤ 0, (55)

αv ≥ 0, ∀v ∈ V(N ), (56)

βk ≥ 0, ∀k ∈ C. (57)

Each dual variable αv corresponds to the flow conservation of node v ∈ V(N ), and each dual
variable βk corresponds to the side constraint k ∈ C. For a given path p ∈ P(N ), by performing a
non-negative linear combination of the dual constraints (54) of every arc on A(p), we obtain:

∑

(u,v)∈A(p)

(αv − αu) +
∑

(u,v)∈A(p)

∑

k∈C

ℓk(u,v)βk ≤
∑

(u,v)∈A(p)

c(u, v) = c̃p. (58)

Note that, each node v ∈ p, except vsource and vsink, is the head of an arc (u, v) ∈ A(p) and the
tail of an arc (v,w) ∈ A(p), producing in the first summation, respectively, the terms αv and −αv

that cancel each other. Then, (58) can be rewritten as:

(αsink − αsource) +
∑

k∈C

∑

(u,v)∈A(p)

ℓk(u,v)βk ≤ c̃p, (59)

which is equivalent to the dual constraint from (51) for the path p, with an additional term
(αsink − αsource). From (55), we know that this term is always non-negative, implying a tighter
constraint. Thus, we conclude that every dual constraint of the path flow formulation is a redundant
dual constraint for the arc flow formulation, implying that the arc flow formulation provides a tighter
dual space than the path flow formulation.

Generally, when the linear relaxation of either path flow or arc flow models is solved by simplex
algorithms, the basis at each iteration is associated with a set of paths forming a primal-feasible
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solution. This set of paths is unique in the case of path flow, but not necessarily unique in the case
of arc flow. If a same set of paths is considered to form the basis of an arc flow and of a path flow
model, the basis of the former will be larger, due to the additional flow conservation constraints and
the fact that each path is decomposed in a set of arcs in this model. But, in fact, the arc flow basis
can be seen as obtained from a disaggregation of the path flow basis, which directly implies more
optimality conditions. This guarantees a better description of the dual space, which, as already
discussed, provides a number of practical benefits.

Concluding, in practice, each simplex iteration of an arc flow model can be more expensive
when compared to a path flow model (due to the larger basis), but the number of pricing iterations
needed to reach proven optimality can be substantially smaller, which in many cases is a significant
advantage.

5.2 Example on the Cutting Stock Problem

We present a numerical example to compare the dual of the classical arc flow model from Valério
de Carvalho [104] (see Section 4.1) to solve the CSP and the dual of its corresponding path flow
model. The dual of the linear relaxation of this arc flow model is given by:

max
∑

i∈I

βi, (60)

s.t.: − αv + αv+wi
+ βi ≤ 0, ∀i ∈ I, (v, v + wi) ∈ Ai(NKP−SSR), (61)

αsource − αsink ≤ 1, (62)

αv ≥ 0, ∀v ∈ V(NKP−SSR), (63)

βi ≥ 0, ∀i ∈ I. (64)

Variables αv are related to the flow conservation constraints of each v ∈ V(NKP−SSR), and
variables βi are related to the demand constraint of each i ∈ I. Constraints (61) are related to the
arc variables, and constraint (62) is related to the flow variable. The dual of the linear relaxation
corresponding path flow model is given by:

max
∑

i∈I

βi, (65)

s.t.:
∑

i∈I

aipβi ≤ 1, ∀p ∈ P(NKP−SSR), (66)

βi ≥ 0, ∀i ∈ I. (67)

The variables βi are related to the demand constraints of each i ∈ I, and constraints (66) are
related to each path (cutting pattern) p of NKP−SSR, where aip is an integer coefficient representing
the number of times item i is cut from pattern p.

Consider again the example from Figure 3, with bin capacity 8 and three items having w1 = 4,
w2 = 3, w3 = 2, and d1 = d2 = d3 = 1. Tables 1 and 2 present, respectively, model (60)–(64) and
(65)–(67) for this example. In the dual of the linear relaxation of the arc flow model, vsource and
vsink are represented by 0 and S, respectively. In this example, the path flow model is relatively
smaller than the arc flow model, which is not common for practical instances, as the former may
have exponentially more primal variables. However, our goal here is only to exemplify how the
dual constraints (optimality conditions) of the path flow model are redundant dual constraints for
the arc flow model. This can be observed as each dual constraint of the path flow model related
to a pattern can be obtained by a non-negative linear sum of the dual constraints of the arc flow
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model related to the arcs that form this pattern. In particular: pattern {1, 2} can be formed by
arcs (0, 4), (4, 7), (7, S) and (S, 0); pattern {1, 3} by arcs (0, 4), (4, 6), (6, S) and (S, 0); pattern
{2, 3} by arcs (0, 3), (3, 5), (5, S) and (S, 0); pattern {1} by arcs (0, 4), (4, S) and (S, 0); pattern
{2} by arcs (0, 3), (3, S) and (S, 0); pattern {3} by arcs (0, 2), (2, S) and (S, 0).

Table 1: Example of a dual arc flow formulation for the CSP.

α0 α1 α2 α3 α4 α5 α6 α7 α8 αS β1 β2 β3

arc (0, 4) -1 1 1 ≤ 0
(0, 3) -1 1 1 ≤ 0
(4, 7) -1 1 1 ≤ 0
(0, 2) -1 1 1 ≤ 0
(3, 5) -1 1 1 ≤ 0
(4, 6) -1 1 1 ≤ 0
(0, S) -1 1 ≤ 0
(2, S) -1 1 ≤ 0
(3, S) -1 1 ≤ 0
(4, S) -1 1 ≤ 0
(5, S) -1 1 ≤ 0
(6, S) -1 1 ≤ 0
(7, S) -1 1 ≤ 0

flow (S, 0) 1 -1 ≤ 1

max 1 1 1

Table 2: Example of a dual path formulation for the CSP.

β1 β2 β3

patterns {1, 2} 1 1 ≤ 1
{2, 3} 1 1 ≤ 1
{1, 3} 1 1 ≤ 1
{1} 1 ≤ 1
{2} 1 ≤ 1
{3} 1 ≤ 1

max 1 1 1

6 General Solution Methods

As previously discussed, an advantage of arc flow formulations over their equivalent path flow
formulations is that they can be much smaller and often can be solved directly by a MILP solver
(which is not practical for path flow models). However, pseudo-polynomial arc flow models can still
be too large, depending on the size of the parameters of an instance. In such cases, one has to rely
on more sophisticated methods to solve these models. An advantage of arc flow models derived
from DW decompositions is that, since their networks are based on the underlying pricing problem,
it is not always necessary to load the full network in the computer memory. Instead, one can use
the structure of the pricing problem to derive methods based on column generation or iterative
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aggregation/disaggregation to solve the problem to integer optimality while avoiding to generate
the full network. Such methods can lead to an increase in practical efficiency and avoid memory
overflow when solving instances associated with huge networks.

Column Generation

The column generation method (introduced in Section 3) solves the linear relaxation of models
with a large number of variables, and is a popular tool to solve path flow models. The method was
proposed by Ford and Fulkerson [44] to solve a path flow model for a maximal multi-commodity
network flow problem and three years later generalized by Dantzig and Wolfe [29] to solve the
models resulting from DW-decompositions. Gilmore and Gomory [48, 49] solved a path flow model
for the CSP by a column generation algorithm and were the first to show the practical efficiency
of the method. Since then, column generation has been the base of several methods to solve
path flow models. For references on column generation algorithms not strictly related to arc flow
formulations, we refer the interested reader to the survey by Lübbecke and Desrosiers [67] and the
book by Desaulniers et al. [35].

Column generation was applied to solve an arc flow model for the first time by Valério de
Carvalho [104], who proposed a column-and-row generation algorithm. In the context of arc flow
models, column-and-row generation iteratively generates arcs to enter the simplex base, while the
flow conservation constraints (rows) are restricted to nodes where there exists at least one incoming
and one outgoing arc in the restricted problem. Sadykov and Vanderbeck [96] studied the column-
and-row generation method and experimentally compared the solution of path flow models by
column generation, with the solution of equivalent arc flow models by column-and-row generation,
and observed a faster convergence of the latter, which follows the discussion in Section 5.

In column generation algorithms (and lagrangian relaxations where only flow conservation con-
straints are left in the master) to solve arc flow models, an LPP on the underlying network is
iteratively solved, and its computational efficiency is strictly related to the network size. In this
context, when the network is too large, one may rely on dynamic graph generation methods to solve
the LPP, as proposed by, e.g., Fischer and Helmberg [43], to solve LPPs that arise as sub-problems
from arc flow models based on large-scale time-expanded networks.

Iterative Aggregation/Disaggregation Method

Several authors have studied state-space relaxation techniques to reduce the size of arc flow formu-
lations (see, e.g., Macedo et al. [69], Clautiaux et al. [25], Voge and Clautiaux [110], Boland et al.
[7], Boland and Savelsbergh [9], Riedler et al. [92]). These techniques are equivalent to applying a
surrogate relaxation to the flow conservation constraints related to subsets of nodes. Theoretically,
this only reduces the number of constraints. Practically speaking, after an aggregation, many arcs
(variables) associated with the same decision become equivalent in the reduced network and can be
merged. From an initial relaxation, these methods use iterative techniques in which the relaxation
is refined, typically by splitting nodes that have been aggregated, until the solution produced by
the relaxation is feasible for the original problem, or its value is equal to a known primal bound.

Macedo et al. [69] were the first to use these techniques in pseudo-polynomial arc flow models.
The authors used two aggregations: one produces a relaxation, the other a heuristic solution. These
results were later generalized by Voge and Clautiaux [110] and Clautiaux et al. [25], who studied the
difficulty of the different sub-problems and the performance ratio obtained by an aggregated model.
More efficient refining strategies are studied in Riedler et al. [92]. The authors show that their
path-based techniques are more effective and underline the importance of heuristic methods in the
algorithm. In early works, the elements to be aggregated were decided beforehand. In Boland and
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Savelsbergh [9], the authors introduced the paradigm of dynamic discretization discovery, in which
the discretization is constructed on the fly, producing a better relaxation, by using information
from the network construction process.

Such aggregation techniques have been generalized to flows in hypergraphs by Benkirane et al.
[6] to solve a joint rolling-stock and train selection problem for the French railway company. The
authors show that even for hypergraphs, one can safely use reduced-cost filtering on aggregated
variables. Another type of relaxation is used in Nadarajah and Cire [80] to deal with problems where
several constraints can be reformulated as network-flow constraints. In their model, a network is
created for each constraint, and the flow conservation constraints of all networks but one are relaxed
in a Lagrangian way.

Graph Reduction Methods

An important element of efficient solution methods for arc flow models is to determine arcs that can
be removed from the network without losing optimality. Removing redundant arcs is important,
as a smaller network may lead to a reduction in symmetry, a tighter relaxation, and a smaller
branch-and-bound tree. Many techniques to reduce the number of arcs are problem-dependent,
usually based on dominance criteria of the underlying DP, and we discuss some of them in Section
7, under specific applications. Nonetheless, general reduction techniques have been used to enhance
arc flow models, as, for instance, the reduced-cost variable-fixing method (see, e.g., Pessoa et al.
[85] and Kramer et al. [60]).

Given a MILP minimization model, the reduced-cost variable-fixing method performs a domain
propagation based on a dual-feasible solution of the corresponding linear relaxation and an upper
bound value zub corresponding to an available feasible solution. The idea is that, given the objective
value zlb of the dual-feasible solution, any integer variable with a reduced cost greater than or equal
to zub − zlb can be removed from the model. Irnich et al. [56] proposed an efficient reduced-cost
variable fixing algorithm for eliminating arcs in network flow models that computes a bound on
the reduced cost of the arcs in arc flow models based on a dual solution of the linear relaxation
of its equivalent path flow model. This method was later extended by Desaulniers et al. [36] to
determine and efficiently handle pairs of sequential arcs that cannot be in the same path in an
optimal solution. The impact of different dual solutions in reduced-cost variable-fixing for network
flow models has been recently discussed by de Lima et al. [30].

7 Successful Applications of Pseudo-Polynomial Arc Flow Models

In this section, we discuss the main applications of arc flow models, and discuss problem-dependent
solution methods and reduction criteria.

7.1 Cutting and Packing Problems

Arc flow models have been used in a variety of cutting and packing problems, both in one and
multiple dimensions.

One-dimensional Problems

The classical arc flow model for the CSP in Valério de Carvalho [104] has a node for each partial
stock size, the arcs relate the items with cut positions (item arcs) or represent loss stock (loss arcs),
and the combination of arcs into paths represents cutting patterns. To solve this model to integer
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optimality, Valério de Carvalho [104] proposed a branch-and-price algorithm based on column-and-
row generation. To accelerate the column generation’s convergence, the pricing problem generates
paths (instead of single arcs). Valério de Carvalho [104] proved that the arc flow model is equivalent
to the path (set-covering) model by Gilmore and Gomory [48, 49], whereas Martinovic et al. [74]
and Delorme and Iori [32] proved that the arc flow model is equivalent to the one-cut model by
Rao [90] and Dyckhoff [39]. The one-cut is a pseudo-polynomial model where variables represent
cutting operations on the roll.

To reduce the number of arcs, Valério de Carvalho [104] constructs the graph considering that
items of a single roll can always be ordered by non-increasing width. The resulting graph indepen-
dently follows the state-space relaxation discussed in Section 4.1. To obtain even smaller networks,
Côté and Iori [28] proposed the meet-in-the-middle technique: each path representing a cutting
pattern can be transformed into an equivalent one by left aligning the items whose left border is
at the left of a given threshold parameter t, and right aligning the remaining items. Recently, de
Lima et al. [30] proposed a new way to reduce the graph in [104] by considering a maximum waste
for each roll. They developed a branch-and-price framework in which the branching produces a
series of small arc flow models which are solved one at a time by a general purpose MILP solver.

Cambazard and O’Sullivan [17] proposed the DP-flow, an arc flow model for the CSP (already
introduced in Section 3.1) based on the DP network of the KP. Differently from the classical arc
flow model for the CSP, which considers a node for each partial stock size, the DP-flow considers
a node for each pair of items and partial stock size. The network has a level for each item, and
each feasible path visits the level of each item exactly once. Although this modeling technique can
substantially increase the number of nodes, it allows one to consider only proper patterns. On the
other hand, the classical arc flow model is smaller, but it cannot distinguish between proper and
non-proper patterns, so its relaxation can be weaker than the one of the DP-flow.

A generalization of the classical arc flow model for the CSP was proposed by Brandão and Pe-
droso [14]. This generalization can model related problems, such as the vector BPP, the BPP with
conflicts, the cardinality constrained BPP and CSP, and the graph coloring problem. The resulting
network may be significantly large, but several techniques (referred to as graph compression) are
proposed to reduce the network size. To break symmetry, the authors proposed a modeling tech-
nique similar to the graph construction of the DP-flow, considering an extra dimension, related to
the items, on the nodes.

Delorme and Iori [32] proposed the reflect formulation, a pseudo-polynomial model for the CSP
that considers nodes and arcs only from half of the stock size. In practice, this formulation is
significantly smaller than the classical arc flow model. Besides, the reflect formulation has been
proven to be as strong as the classical arc flow model without reduction criteria. Other than the
CSP, Delorme and Iori [32] extended the reflect formulation to solve the variable-sized BPP and
the BPP with item fragmentation. Dell’Amico et al. [31] adapted the reflect formulation to solve a
feasibility problem in a Benders’ decomposition algorithm for the multiple knapsack problem.

Alves and Valério de Carvalho [2] presented a branch-and-price-and-cut algorithm for the mul-
tiple length CSP that solves the Gilmore and Gomory [49] machine balance model, which is a path
flow formulation, using the original arc flow model to generate attractive columns in a single sub-
problem and the variables of the arc flow model to implement a branching scheme, by expressing the
branching constraints in terms of the Gilmore and Gomory model variables. The equivalence of the
path and arc flow models ensures a correct transferral of dual information. Valid dual inequalities
are used to stabilize and accelerate the search in the entire branch-and-bound tree.

Recently, arc flow models were proposed for the skiving stock problem (SSP), which is strongly
related to the dual BPP. In the SSP, we are given a set of items, each having a length and a
maximum number of copies, to be combined into the maximum number of larger items of minimum
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length W . Martinovic and Scheithauer [73] proposed an arc flow model for the SPP where nodes
represent the length sum of combinations of items, arcs represent the positioning of the items in
a combination, and paths represent a combination of items. This model, which is similar to the
classical arc flow model for the CSP, cannot distinguish between proper and non-proper patterns.
Martinovic and Scheithauer [72] proposed an arc flow model that considers only proper patterns,
which, similarly to the DP-flow model, considers a node for each pair of items and possible length
sum, and the network has a level for each item. Martinovic et al. [75] proposed two arc flow models
for the SSP: one considers reversed loss arcs, which lead to a reduction of the worst-case number
of nodes from 2W to W , and the other is based on the reflect model for the CSP.

Multi-dimensional Problems

Macedo et al. [68] extended the classical arc flow model to minimize the number of bins in the
two-stage two-dimensional guillotine CSP. Their model has a one-dimensional arc flow graph for
the first stage cuts (which cut the bins to obtain strips), and a one-dimensional arc flow graph
for each possible strip size to determine the second stage cuts (which produce the items from the
strips, possibly admitting a final trim loss cut). To reduce symmetry, the flow in the second stage
graph of a given strip size is equal to the sum of the flows for that strip size in the first stage graph.
Note that these strips may belong to the same bin or different bins. Procedures to reduce the size
of the graph and a new family of cutting planes based on the height of the items were proposed.
The arc flow model in [68] was later adapted by Mrad [78] to solve the two-stage two-dimensional
guillotine strip packing problem.

Nesello et al. [82] proposed an arc flow model, similar to the one by Macedo et al. [68], to solve
a three-stage two-dimensional strip packing problem where a limit is imposed on the number of
shelves and setup times between items must be taken into account. Delorme et al. [34] adapted the
classical arc flow model for the CSP to solve the one-dimensional contiguous bin packing problem,
which often appears as a sub-problem in two-dimensional cutting and packing solution methods.
The authors used it to solve the sub-problem of a Benders’ decomposition algorithm for the two-
dimensional strip packing with item rotations and for the pallet loading problem.

Clautiaux et al. [26] solved the four-stage two-dimensional guillotine bounded knapsack problem
with a network flow model based on a directed acyclic hypergraph. They compared the efficiency
of several algorithms based on this representation, including a MILP model and an iterative state-
space relaxation based on the corresponding DP.

7.2 Scheduling Problems

In the scheduling field, both time-indexed (see, e.g., Sousa and Wolsey [100]) and path flow (see,
e.g., van den Akker et al. [107]) formulations have been widely used to solve a variety of optimization
problems. In a closely related context, polynomial arc flow models have been proposed more than
three decades ago by Eppen and Martin [42] to solve a lot-sizing problem. However, pseudo-
polynomial arc flow formulations have only been adopted for scheduling problems during the last
decade. It is worth mentioning that time-indexed formulations can be used to derive arc flow
models of the same strength, which are associated to a sparser constraint matrix. The equivalence
between time-indexed and arc flow formulations has been shown in different contexts starting from
Valério de Carvalho [105], who proved such equivalence by a unimodular transformation, in the
context of the CSP.

Pessoa et al. [85] developed a branch-and-cut-and-price algorithm for the problem of minimizing
weighted tardiness on identical parallel machines (denoted as P ||

∑

wjTj in the three-field classi-
fication of Graham et al. [52]). Their algorithm is based on an arc-time-indexed formulation and
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is improved with a number of combinatorial techniques, including variable fixing by reduced costs,
extended capacity cuts, dual stabilization, and the direct solution of the formulation by a MILP
solver if the fixing procedure had consistently reduced the number of variables. The method in [85]
was later extended by Bulhões et al. [15], who proposed a branch-and-cut-and-price algorithm to
solve a path flow formulation for parallel machine scheduling in which the branching is based on
the variables of the arc flow model.

Lancia et al. [65] developed a branch-and-price algorithm for the job shop problem with a
general min-sum objective function. Their algorithm is based on the solution of an arc flow model
in which a path has to be chosen for each job (which is composed of multiple operations). The
model was strengthened by clique inequalities.

Ratli et al. [91] presented a comprehensive list of mathematical models for scheduling jobs
on a single machine by minimizing weighted earliness and tardiness. The problem, denoted as
1||

∑

αjEj +
∑

βjTj, is relevant in the context of just-in-time production. In computational tests
on random instances, the arc flow model achieved the lowest optimality gaps.

Mrad and Souayah [79] presented a direct extension of the arc flow formulation by Valério de
Carvalho [104] to the problem of scheduling jobs on identical parallel machines with the objective
of minimizing the makespan (P ||Cmax).

Kramer et al. [59] considered again the problem of scheduling jobs on identical parallel machines,
but focused on the minimization of the weighted sum of the completion times (P ||

∑

wjCj). They
presented an arc flow model, and then enhanced it by grouping jobs having the same weight
and processing time and creating time windows for each group by considering job priorities. A
computational comparison showed that the enhanced arc flow performed very well compared to
other time-indexed, convex integer quadratic programming, and path flow models.

Kramer et al. [62] extended the work in [59] to deal with the case of family setup times
(P |si|

∑

wjCj). The authors proposed three different arc flow models. In the most efficient one, the
network is divided into a set of layers, one layer per family. Arcs within the same layer considered
only the processing time of a job, whereas arcs connecting two layers considered both setup and
processing times. Computational results showed that setup times worsen the linear relaxation value
of the arc flow models, which outperformed a path flow model only on a handful of instances.

A further generalization of [59] was provided in Kramer et al. [61], who considered the case of
release dates (P |rj |

∑

wjCj) and obtained stricter time windows for the jobs. The resulting arc
flow model obtained better results than a branch-and-price based on the path flow formulation on
instances having jobs of small and moderate processing time.

We also mention that interesting integrations between scheduling and other combinatorial prob-
lems have been tackled in the literature. Cappanera and Scutellà [18] considered a joint assignment,
scheduling, and routing problem arising in home care optimization. An arc flow model was used for
the generation of patterns, which represent feasible combinations of the three decision levels of the
problem. Cire et al. [24] proposed an arc flow formulation for a rotation assignment and scheduling
problem arising in the context of clinical rotations. They demonstrate that the network model was
computationally superior to a classical MILP model on a real-world set of instances.

Braga et al. [12] compared two formulations for a combined cutting stock and scheduling prob-
lem: a compact formulation strengthened with knapsack inequalities and an arc flow formulation.
Using a revised version of the latter formulation based on aggregated time periods, they derived a
heuristic solution procedure that proved to be effective for the solution of medium size instances.
Rietz et al. [94] proposed and analyzed an arc flow formulation for a combined cutting stock and
scheduling problem on parallel machines. Different strategies to simplify the formulation by reduc-
ing the number of arcs were presented.

Trindade et al. [102] solved scheduling problems with batch processing machines. In such
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problems, the jobs are grouped into batches to be scheduled in machines, where the batches have a
capacity to be respected by the size of its grouped items. The author proposed arc flow models where
nodes represent a discretization of the capacity of a batch and arcs represent either a scheduled job
in a batch or an unused capacity.

7.3 Routing Problems

In routing problems, the input is usually based on a network, where clients and depots are given as
nodes and arcs are related to transportation between the nodes (see, e.g., Toth and Vigo [101]). For
such problems, arc flow models based on the input network lead to compact models that are small
but may have weak relaxations and too much symmetry to be solved in practice. Examples of such
compact models are the classical MTZ model by Miller et al. [76] for the traveling salesman problem
(TSP) and the three-index formulation (see Section 3.2) for the CVRP. In many routing problems,
the ability to avoid non-elementary routes is an important aspect to determine the strength of a
relaxation. For this reason, the best solution methods for many variants, especially the ones with
multiple vehicles, are usually based on path flow formulations (see, e.g., Poggi and Uchoa [88] and
Pessoa et al. [86]), as they can handle non-elementary routes more easily than arc flow formulations.
However, pseudo-polynomial arc flow formulations have still been used to solve open problems of a
number of variants, and to enhance state-of-the-art methods based on path flow formulations.

Pseudo-polynomial arc flow formulations for vehicle routing problems were first introduced
by Godinho et al. [50] and Pessoa et al. [84], which, inspired by the early work by Picard and
Queyranne [87] for single machine scheduling with minimum tardiness, proposed the capacity-
indexed formulation for the CVRP. The capacity-indexed formulation, which follows the network
from the state-space relaxation in Section 4.2, has a node (i, q) for each pair of client (or depot) i
and partial capacity q, where the partial capacities group the nodes into levels (layers). Then, each
path arriving at a node (i, q) represents a route that finishes in client i and has total load q.

The capacity-indexed formulation is based on a network where paths may be associated with
non-elementary routes (which weakens its linear relaxation), and may be too large to be solved in
practice (see, e.g., Pessoa et al. [84]). The main interest in this formulation is that its variables
can be used to define cutting planes (e.g., the extended capacity cuts) to strengthen path flow
formulations for vehicle routing problems (see, e.g., Poggi and Uchoa [88]). According to Uchoa
[103], cutting planes based on the capacity-indexed formulation have been successfully used in other
vehicle routing problems, and even in parallel machine scheduling problems.

Macedo et al. [69] proposed an iterative aggregation/disaggregation algorithm to solve an arc
flow formulation for the vehicle routing problem with time windows and multiple routes. In the
underlying network, each node corresponds to a time instant, and each arc corresponds to a possible
subtour. Aggregation based on rounding procedures was used to make the routes with non-integer
travel times fit the model’s graph. Whenever an infeasible solution was found, the nodes involved
in the infeasibility were disaggregated, and the resulting model was solved again.

Braga et al. [13] proposed an arc flow formulation for the multi-trip inventory routing problem
where vehicles can perform more than a single route per time period. Following Macedo et al. [69],
nodes and arcs of the underlying network correspond to, respectively, time instants and routes that
may be assigned to a vehicle.

Algorithms based on iterative aggregation/disaggregation were later proposed to solve time-
expanded arc flow formulations for the TSP with time windows (TSPTW). The network of time-
expanded formulations has a node (i, t) for each client i and time instant t. Each path from the
source to a node (i, t) represents a path arriving at client i at time t. Boland et al. [8] and Riedler
et al. [92] proposed iterative aggregation/disaggregation algorithms to solve a time-expanded model
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for the TSPTW, starting with a reduced network that is sufficient to produce a bound for the
problem and is iteratively refined to find an optimal solution. The method in Boland et al. [8] was
later extended by Vu et al. [111] to solve the generalization where travel times are time-dependent.
This kind of approach was also used by Boland et al. [7] to solve a continuous-time service network
design problem without the need to approximate the solution by a discretization of the time-horizon.

7.4 Miscellaneous

Earth Observation Satellite scheduling requires to determine the pictures to be taken by a set of
satellites in a given time period, so as to satisfy side constraints and optimize an objective function.
Pseudo-polynomial arc flow models have been proposed to solve such problems by Gabrel and Murat
[47] and Wang et al. [112]. In these models, the nodes are related to a discretization of the time
horizon, and the arcs are related to the decisions on the pictures to be taken.

Kramer et al. [60] solved the dynamic berth allocation problem, which aims at allocating vessels
into quays that are divided into berths, while optimizing an objective function based on the service
time of each vessel. The authors proposed an arc flow model where nodes are associated with
time instants and arcs are related to vessels serving. Problem-dependent reduction criteria and a
reduced-cost variable-fixing algorithm were proposed to improve the solution time.

In the capacitated p-center problem, a set of customers must be attributed to capacitated
facility locations, minimizing the maximum distance between each client and its facility. To solve
this problem, Kramer et al. [63] proposed an arc flow model where the underlying graph has a
component for each location, in which nodes correspond to partial filling of the facility capacity,
and arcs correspond to customers and unused capacity.

Ramos et al. [89] described an arc flow formulation for the multi-trip production, inventory,
distribution, and routing problem with time windows. Nodes and arcs represent time instants and
vehicle routes, respectively.

Train timetabling problems require to determine a periodic timetable for a set of trains that
satisfies operational constraints and optimizes an objective function (see, e.g., Cacchiani and Toth
[16]). The input for such problems is based on a graph where nodes represent stations and arcs
represent tracks. Train timetabling problems have been successfully solved by arc flow models
based on time-expanded networks by Caprara et al. [19] and Fischer and Helmberg [43].

Recently, van Hoeve [108] proposed an arc flow model to solve the graph coloring problem, which
asks to partition a graph into the minimum number of independent sets. The proposed arc flow
model is based on decision diagrams, which are closely related to DP (see, e.g., Hooker [54]) and
result in acyclic graphs. The resulting network in [108] is equivalent to a DP network to solve the
maximum independent set problem, which is usually the pricing problem of path (set-partitioning)
formulations for the graph coloring problem (see, e.g., Gualandi and Malucelli [53]). An iterative
refinement method is proposed by the authors to deal with the exponential size of the model.

8 Conclusion and Future Research Directions

In this survey, we reviewed over one hundred papers related to arc flow formulations. Many of these
papers present arc flow models having pseudo-polynomial size and a strong linear relaxation. The
number of applications of pseudo-polynomial arc flow formulations has grown considerably since
the work by Valério de Carvalho [104], making them a valid alternative to path flow formulations.
For many combinatorial optimization problems, path flow formulations are still the best alternative,
because they can embed difficult constraints in the subproblem solved to build the paths. However,
arc flow formulations have many positive aspects, among which we highlight that: they are powerful
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modeling tools that allow one to model complex issues from real systems; pseudo-polynomial arc
flow models are often related to DW decompositions, providing strong linear relaxations; differently
from path flow formulations, they provide models that usually have a number of variables which
allows practical solutions directly by general MILP solvers, avoiding complex implementations;
compared to equivalent path flow formulations, they have a richer description of the dual space,
leading to a faster convergence of simplex-based methods; pseudo-polynomial arc flow models can
be derived from state-space relaxations from the underlying DP network from path flow models.

This survey is a contribution to a systematic study of arc flow formulations, but we would like
to point out that there are many open questions and research lines to be pursued. Some of them
are the following.

One of the advantages of arc flow formulations is that they provide a tighter description of
the dual feasible space keeping the primal strength. Besides the methodologies presented in this
paper, are there any general hints on how to do both primal and dual strengthening in arc flow
models? For example, in extended formulations, using new sets of variables may strengthen the
primal model and, as new (primal) variables are dual cuts, there is also a richer description of the
dual feasible space.

Models presented in this survey explore solution spaces that are convex combinations of flows,
each corresponding to an s − t path, which is a sequence of arcs and vertices. Are there other
types of structures (e.g., involving sequences of operations) that also lead to models with strong
bounds? In fact, there are pseudo-polynomial models that, instead of using a sequence of arcs to
form a path (which is an extremal solution), use a sequence of operations to form a solution that
is extremal. Examples are Dyckhoff [39] for the CSP, and Silva et al. [98] and Furini et al. [46] for
the two-dimensional CSP with guillotine cuts. In these cases, one-cut operations are/have to be
combined to form a cutting pattern (the extremal solution).

There are pseudo-polynomial models that do not provide LP lower bounds as strong as those of
column generation (e.g., position indexed models for two-dimensional non-guillotine CSP). Is there
any structural (extremal) property, in these cases, that can be explored and may lead to models
with stronger bounds?

Several solution methods for large-scale arc flow models, like the ones presented in Section 6,
are general and can be applied to any arc flow model based on DP. A software/library containing
such general tools to solve general large-scale arc flow models would be an interesting contribution
to the optimization and operations research community.
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