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Abstract

We consider the uncapacitated three-level lot-sizing and replenishment problem with a distribution
structure. In this problem, a single production plant sends the produced items to replenish warehouses
from where they are dispatched to the retailers in order to satisfy their demands over a finite planning
horizon. Transfers between warehouses or retailers are not permitted, each retailer has a single predefined
warehouse from which it receives its items, and there is no restriction on the amount that can be produced
or transported in a given period. The goal of the problem is to determine an integrated production and
distribution plan minimizing the total costs, which comprehends fixed production and transportation
setup as well as variable inventory holding costs. We describe new valid inequalities both in the space of
a standard mixed integer programming (MIP) formulation and in that of a new alternative extended MIP
formulation. We show that using such extended formulation, valid inequalities having similar structures
to those in the standard one allow achieving tighter linear relaxation bounds. Furthermore, we propose a
preprocessing approach to reduce the size of an extended multi-commodity MIP formulation available in
the literature. Such preprocessing relies on the removal of variables based on the problem’s cost structure
while preserving optimality guarantees. We also propose a multi-start randomized bottom-up dynamic
programming-based heuristic. The heuristic employs greedy randomization via changes in certain costs
and solves subproblems related to each level using dynamic programming. Computational experiments
indicate that the use of the valid inequalities in a branch-and-cut approach significantly increase the
ability of a MIP solver to solve instances to optimality. Additionally, the valid inequalities for the new
alternative extended formulation outperform those for the standard one in terms of number of solved
instances, running time and number of enumerated nodes. Moreover, the proposed heuristic is able to
generate solutions with considerably low optimality gaps within very short computational times even for
large instances. Combining the preprocessing approach with the heuristic, one can achieve an increase
in the number of solutions solved to optimality within the time limit together with significant reductions
on the average times for solving them.

Keywords: Supply chain management; Multi-level lot-sizing; Mixed integer programming; Preprocess-
ing; Heuristics.

1 Introduction

Supply chain optimization has become a crucial and challenging activity in nowadays competitive indus-
trial and business environments. Very often, integrated supply chain decisions regarding production, storage,
and transportation are made in situations in which the production plants, warehouses, and clients requiring
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the produced items are located in different geographical areas. In this direction, we study the uncapacitated
three-level lot-sizing and replenishment problem with a distribution structure (3LSPD-U), which was intro-
duced in Gruson, Bazrafshan, Cordeau, and Jans (2019). In this three-echelon problem, a single production
plant (level 0) must produce items to replenish multiple warehouses (level 1), from where these items are
dispatched to multiple retailers (level 2) in order to attend their deterministic dynamic demands over a
finite planning horizon. The goal consists of determining an integrated production and distribution plan
minimizing the total costs, which comprise fixed production and transportation setups as well as variable
inventory holding costs.

Multi-level production planning problems, especially those related to two and three-echelon supply chains,
have been studied in several works. Pochet and Wolsey (1991) studied a multi-level lot-sizing problem and
described valid inequalities for the problem, including extensions of the well-known (l, S)-inequalities for
the uncapacitated lot-sizing (Barany, Van Roy, & Wolsey, 1984). Melo and Wolsey (2010) considered the
polynomially solvable uncapacitated two-level lot-sizing and applied the extended formulation resulting from
a dynamic programming algorithm to an NP(nondeterministic polynomial-time)-hard production and dis-
tribution extension of the problem. Akartunalı and Miller (2012) performed a computational analysis of
the lower bounds achieved by several approaches for capacitated multi-level lot-sizing problems. M. Zhang,
Küçükyavuz, and Yaman (2012) studied a multi-echelon uncapacitated lot-sizing problem with intermedi-
ate demands. The authors proposed, for the two-echelon case, a polynomial-time dynamic programming
algorithm and a family of valid inequalities together with a polynomial-time separation algorithm. The
computational experiments showed that extended formulations can be used to successfully solve an uncapac-
itated multi-item two-echelon problem and that a branch-and-cut algorithm using the proposed inequalities
is very effective for dealing with a more general capacitated multi-item multi-echelon problem.

Solyalı and Süral (2012) considered the one-warehouse multi-retailer problem (OWMR) in which a sin-
gle warehouse replenishes multiple retailers with deterministic dynamic demands over a discrete planning
horizon. The authors proposed several mixed integer programming (MIP) formulations for the problem and
compared them both computationally and in terms of the provided linear relaxation bounds. Cunha and
Melo (2016b) extended the study of Solyalı and Süral (2012) for the OWMR. They considered additional
formulations and valid inequalities for the problem, which were also compared theoretically and computa-
tionally. Park (2005) studied the integrated production and distribution planning in a two-level multi-plant,
multi-retailer, and multi-item logistic environment. The author proposed a heuristic approach and showed
that integrated planning could achieve substantial advantages over decoupled planning. Melo and Wolsey
(2012) studied a two-level supply chain with multiple items, production sites, and client areas and a discrete-
time horizon. The authors developed a hybrid heuristic that uses a strong formulation to provide a good dual
bound and suggest certain variables fixing, and a fix-and-optimize approach achieved by fixing variables in
a standard formulation to provide the heuristic solution. They showed for different classes of medium-sized
instances that the hybrid heuristic provides solutions with a guaranteed quality that are as good as or better
than those provided by a commercial MIP solver running for a considerably larger time. Helber and Sahling
(2010) proposed a fix-and-optimize heuristic for a capacitated multi-level lot-sizing problem with lead times.

Several authors considered the optimization of three-level supply chains. Kadadevaramath, Chen, Shankar,
and Rameshkumar (2012) considered a multi-product three-level supply chain problem composed of vendors,
production plants, and distribution centers and proposed variants of a particle swarm optimization meta-
heuristic. Cárdenas-Barrón and Treviño-Garza (2014) tackled the problem studied in Kadadevaramath et
al. (2012) using a MIP formulation and showed that the instances available in the literature could be solved
to optimality within short computational times using a commercial MIP solver. S. Zhang and Song (2018)
developed a decision support system based on operations research tools and techniques for production and
distribution planning at Danone Waters China Division. The authors proposed a MIP formulation and pro-
vided customizable options for company managers. Computational experiments indicated that the proposed
approach could significantly increase efficiency and reduce total costs. Gruson et al. (2019) studied uncapac-
itated and capacitated variants of the three-level lot-sizing and replenishment problem with a distribution
structure (3LSPD-U and 3LSPD-C). The 3LSPD-U, which is the problem we consider in our work, is already
NP-hard as it generalizes the one-warehouse multi-retailer problem. The authors compared several different
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MIP formulations to solve the problem, including extensions of those for the OWMR (Solyalı & Süral, 2012;
Cunha & Melo, 2016b), and performed extensive computational experiments. These experiments showed
that a multi-commodity formulation outperformed all others for uncapacitated instances and echelon stock
reformulations achieved the best results for the capacitated ones.

Besides, extensions of multi-echelon supply chain optimization problems which also take routing decisions
into consideration appeared in various works, which corroborates the importance of effective approaches for
solving multi-echelon production planning problems. Li, Chu, and Chen (2011) studied an infinite hori-
zon inventory routing problem in a three-level distribution system and proposed a decomposition solution
approach based on a fixed partition policy in which retailers are divided into disjoint sets and served by sep-
arate routes. Efficient algorithms were given for the sub-problems by exploring properties of their optimal
solutions and a genetic algorithm was proposed to find near-optimal fixed partitions. Guimarães, Coelho,
Schenekemberg, and Scarpin (2019) applied the well-known vendor-managed inventory paradigm extended
to a two-echelon supply chain. They proposed a mathematical formulation, a branch-and-cut algorithm, and
a matheuristic to tackle the problem. Saragih, Bahagia, Suprayogi, and Syabri (2019) considered a loca-
tion inventory routing problem in a three-echelon supply chain system and proposed a two-stage heuristic.
The heuristic was applied to a real case study and it was compared to a mixed integer nonlinear program-
ming (MINLP) formulation. Abdullah, Shamayleh, and Ndiaye (2019) studied a demand planning problem
in a four-level petrochemical supply chain that integrates lot-sizing, scheduling with sequence-dependent
transient costs, transportation, and warehousing decisions between suppliers, plants, warehouses, and cus-
tomers. They proposed a MIP formulation and an iterative three-stage heuristic to provide quality solutions
within acceptable computational times. A literature review regarding production routing problems can be
encountered in Adulyasak, Cordeau, and Jans (2015).

1.1 Main contributions and organization

The main contributions of our work can be summarized as follows. Firstly, we describe new valid in-
equalities for the 3LSPD-U both in the space of a standard formulation and in the space of a new alternative
extended formulation whose size is asymptotically equivalent to the standard one. Additionally, we provide
a theoretical comparison regarding the strength of the linear relaxations of these two approaches using valid
inequalities. More specifically, we show that one can obtain stronger bounds when using valid inequalities for
the new alternative extended formulation which have structures that are somehow related to those for the
standard one. Secondly, we present a new preprocessing technique to reduce the size of a multi-commodity
formulation, which was shown in Gruson et al. (2019) to be the most effective approach available for the
3LSPD-U from a computational viewpoint. The preprocessing approach allows the removal of variables
based on the problem’s cost structure while preserving optimality guarantees. Last but not least, we propose
a multi-start randomized bottom-up dynamic programming-based heuristic for the problem. The heuristic
follows a nonintegrated planning approach in which subproblems related to each level are solved using dy-
namic programming with randomness achieved by performing controlled changes in certain costs to allow
diversification in the obtained solutions. Namely, the approach uses a greedy randomization idea, which is
widely used for combinatorial optimization problems, but with the difference that such greedy randomiza-
tion is achieved by randomizing the costs rather than the choices during the execution of the algorithm.
Computational experiments evidence that, when implemented in a branch-and-cut procedure, the described
valid inequalities allow an increase in the ability of a standard MIP solver to tackle the available bench-
mark instances when compared with the plain formulations. Besides, the performance of the branch-and-cut
approach using the new alternative extended formulation outperforms that of the one using the standard
formulation. Additionally, the preprocessing approach allows significant reductions considering the candidate
variables to be removed. Furthermore, the multi-start randomized bottom-up dynamic programming-based
heuristic can achieve low optimality gaps within very few seconds on average.

The remainder of this paper is organized as follows. Section 2 formally defines the uncapacitated three-
level lot-sizing and replenishment problem, presents a known standard mixed integer program, and describes
a multi-commodity formulation available in the literature for the problem. Section 3 characterizes new
valid inequalities for the problem, both in the space of the standard formulation as in the space of a new
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alternative extended formulation. Section 4 presents a new preprocessing approach to reduce the size of
the multi-commodity formulation based on the problem’s cost structure. Section 5 proposes a multi-start
randomized bottom-up dynamic programming-based heuristic for the problem. Section 6 summarizes the
performed computational experiments. Concluding remarks are discussed in Section 7.

2 Problem definition and mixed integer programming formula-
tions

The uncapacitated three-level lot-sizing and replenishment problem with a distribution structure (3LSPD-
U) can be formally defined as follows. There is a set F = P ∪W ∪ R of facilities with a singleton P = {p}
containing the plant (level 0), a set W of warehouses (level 1) and a set R of retailers (level 2). The time
horizon is defined as T = {1, . . . , NT}. Each warehouse w ∈ W attends a predefined set of retailers δ(w)
and each retailer r ∈ R has a predefined unique associated warehouse δw(r) ∈ W . Transportation can
only happen between the production plant and the warehouses, and between a warehouse and the retailers
it attends. For each facility i ∈ F , a fixed setup cost scit is incurred whenever production/transportation
occurs in period t ∈ T . Furthermore, a per-unit holding cost hcit is charged whenever items are held in
inventory in facility i at the end of period t ∈ T . Each retailer r ∈ R has its time-varying demands drt for
each period t ∈ T . The problem consists of determining a production/transportation plan minimizing the
total fixed setup and variable inventory costs.

Additionally, define the demands for facility i ∈ P ∪W as

dit =


∑
r∈R

drt , if i = p;∑
r∈δ(i)

drt , if i ∈W.

Moreover, for each facility i ∈ F , define dikt =

t∑
l=k

dil as the cumulative demand from period k up to t for

1 ≤ k ≤ t ≤ |T |.

2.1 Standard mixed integer programming formulation

In order to formulate the 3LSPD-U as a mixed integer program, define variable xit to be the amount
produced at the production plant in period t ∈ T for i = p, and xit to be the amount transported to facility
i ∈ W ∪ R from its predecessor in period t ∈ T . Let variable sit be the amount of stock in facility i ∈ F at
the end of period t ∈ T . Besides, define the setup binary variable yit to be equal to one whenever xit > 0
for i ∈ F and t ∈ T , and to be equal to zero otherwise. The problem can be formulated as the following
standard mixed integer linear program (Gruson et al., 2019):

zSTD = min
∑
t∈T

(∑
i∈F

scity
i
t +

∑
i∈F

hcits
i
t

)
(1)

(STD) sit−1 + xit =
∑
j∈δ(i)

xjt + sit, for i ∈ P ∪W, t ∈ T, (2)

srt−1 + xrt = drt + srt , for r ∈ R, t ∈ T, (3)

xit ≤ dit|T |y
i
t, for i ∈ F, t ∈ T, (4)

xit, s
i
t ≥ 0, for i ∈ F, t ∈ T, (5)

yit ∈ {0, 1}, for i ∈ F, t ∈ T. (6)
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The objective function (1) minimizes the total setup and inventory costs. Constraints (2) define inventory
balance constraints for the production plant and warehouses. Constraints (3) are inventory balance con-
straints for the retailers. Constraints (4) are setup enforcing constraints. Constraints (5) and (6) guarantee
the nonnegativity and integrality requirements on the variables. This formulation has O(|R| × |T |) variables
and constraints.

Note that 3LSPD-U can be seen as an uncapacitated fixed-charge network flow (UFCNF) problem with
a demand node for each pair {r ∈ R, t ∈ T}, with demand drt . Such type of observation is well-known and
widely used in the production planning literature (Pochet & Wolsey, 2006).

2.2 Best performing approach in the literature

In this section, we describe the multi-commodity formulation for 3LSPD-U proposed by Gruson et al.
(2019). Multi-commodity formulations (R. Rardin & Choe, 1979) have been successfully applied for different
production planning problems (Akartunalı & Miller, 2012; Cunha & Melo, 2016a, 2016b). Such formulation
has shown to be very effective computationally and, furthermore, the best performing approach for solv-
ing the uncapacitated instances available in the literature (Gruson et al., 2019). We remark though that
the multi-commodity formulation is not the one available which provides the tightest linear programming
relaxation (Gruson et al., 2019).

Define variable w0r
kt to be the amount produced at the production plant in period k ∈ T to satisfy drt

for r ∈ R and t ∈ T , k ≤ t, variable w1r
kt to be the amount transported from the production plant to the

warehouse of retailer r ∈ R in period k ∈ T to satisfy drt for r ∈ R and t ∈ T , k ≤ t, and variable w2r
kt to

be the amount transported to retailer r ∈ R from its corresponding warehouse in period k ∈ T to satisfy drt
for r ∈ R and t ∈ T , k ≤ t. Additionally, let variable σ0r

kt be the amount stocked at the production plant
in the end of period k ∈ T to satisfy drt for r ∈ R and t ∈ T , k < t, variable σ1r

kt be the amount stocked at
the warehouse of retailer r ∈ R (i.e., δw(r)) in the end of period k ∈ T to satisfy drt for r ∈ R and t ∈ T ,
k < t, and variable σ2r

kt be the amount stocked at the retailer r ∈ R in the end of period k ∈ T to satisfy drt
for r ∈ R and t ∈ T , k < t. Additionally, let λkt be a constant equal to one if k = t and zero otherwise. The
multi-commodity formulation can be defined as

zMC = min
∑
t∈T

∑
i∈F

scity
i
t +

∑
r∈R

∑
k≤t

hcpkσ
0r
kt +

∑
r∈R

∑
k≤t

hc
δw(r)
k σ1r

kt +
∑
r∈R

∑
k≤t

hcrkσ
2r
kt

 (7)

(MC) σ0r
k−1,t + w0r

kt = w1r
kt + σ0r

kt , for r ∈ R, k ∈ T, t ∈ {k, . . . , |T |}, (8)

σ1r
k−1,t + w1r

kt = w2r
kt + σ1r

kt , for r ∈ R, k ∈ T, t ∈ {k, . . . , |T |}, (9)

σ2r
k−1,t + w2r

kt = λktd
r
t + (1− λkt)σ2r

kt , for r ∈ R, k ∈ T, t ∈ {k, . . . , |T |}, (10)

w0r
kt ≤ drty

p
k, for r ∈ R, k ∈ T, t ∈ {k, . . . , |T |}, (11)

w1r
kt ≤ drty

δw(r)
k , for r ∈ R, k ∈ T, t ∈ {k, . . . , |T |}, (12)

w2r
kt ≤ drtyrk, for r ∈ R, k ∈ T, t ∈ {k, . . . , |T |}, (13)

w0r
kt , w

1r
kt , w

2r
kt , σ

0r
kt , σ

1r
kt , σ

2r
kt ≥ 0, for r ∈ R, k ∈ T, t ∈ {k, . . . , |T |}, (14)

yit ∈ {0, 1}, for i ∈ F, t ∈ T. (15)

The objective function (7) minimizes the total setup and inventory costs. Constraints (8),(9), and (10) are
the inventory balance constraints for each commodity at the production plant, warehouses, and retailers,
correspondingly. Constraints (11),(12), and (13) are setup enforcing constraints for the production plant,
warehouses, and retailers, respectively. Constraints (14) and (15) define the nonnegativity and integrality

requirements on the variables. This formulation has O(|R| × |T |2) variables and inequalities.
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3 Valid inequalities

In this section, we describe new valid inequalities for the uncapacitated three-level lot-sizing and replen-
ishment problem with a distribution structure (3LSPD-U). Subsection 3.1 describes the well-known dicut
collection inequalities, which will be used to show that the inequalities proposed in this section are valid. Sub-
section 3.2 describes valid inequalities in the space of the standard formulation. Subsection 3.3 presents an
alternative extended formulation whose size is asymptotically equivalent to that of the standard formulation
and characterizes valid inequalities in this extended space.

3.1 Dicut collection inequalities

The uncapacitated fixed-charge network flow problem (UFCNF) is an NP-hard problem (Garey & John-
son, 1979) that can be defined as follows. Consider a directed graph G = (N,A) with a set of nodes N
and a set of arcs A = (F, F̄ ), where F denotes the set of arcs with fixed-charge and F̄ the set of arcs with
continuous costs. The goal consists of determining a minimum cost combination of arcs to provide flows from
defined supply nodes to a collection of demand nodes. As it was noted earlier in Subsection 2.1, 3LSPD-U
can be seen as an uncapacitated fixed-charge network flow problem.

Let s be a source vertex and define T to be a set of considered sinks. A t-dicut for t ∈ T is a set of arcs
whose removal from A blocks all flow from the source s to the sink t. We remark that although we already
use the notation t for periods, its use whenever we talk about t-dicut is related to a demand node t in the
fixed-charge network. A dicut collection Γ = {Γt}t∈T is a set of t-dicuts. A simple dicut collection is one
with at most a single dicut for every t ∈ T , i.e., Γt ≤ 1 for every t ∈ T .

Consider γtij to be the number of t-dicuts in Γt containing arc (i, j), γij = max{γtij : t ∈ T } and γt = |Γt|.
R. L. Rardin and Wolsey (1993) have shown that every inequality∑

(i,j)∈F̄

γijxij +
∑

(i,j)∈F

∑
t∈T

dtγ
t
ijyij ≥

∑
t∈T

γtdt (16)

derived from a dicut collection is valid for the UFCNF. A simple dicut collection inequality is one obtained
from a simple dicut collection. We remark that, to the best of our knowledge, there is no efficient separation
procedure for separating dicut collection inequalities in general.

In the remainder of this section, we will describe valid inequalities for 3LSPD-U and show that they can
be obtained as simple dicut collection inequalities.

3.2 Valid inequalities in the space of the standard formulation

Define XSTD as the set of integer feasible solutions for the standard formulation, i.e., those satisfying
(2)-(6). Additionally, define δb(i) as the successors of i at level b. In what follows, we characterize single-level,
two-level, and three-level valid inequalities for XSTD. The basic intuition behind the inequalities presented
in this section is the following. Given a facility i and a period l with a cumulative demand di1l to be satisfied,
the inequality provides a proper selection of variables for each period 1 ≤ k ≤ l in the corresponding levels
which guarantee that such cumulative demand is satisfied.

Proposition 1. Consider a facility i ∈ F . Let l ∈ T , Li = {1, . . . , l} and Si ⊆ Li. The single-level
inequalities ∑

k∈Li\Si
xik +

∑
k∈Si

dikly
i
k ≥ di1l (17)

are valid for XSTD.

Proof. Note that (17) are (l, S)-inequalities (Barany et al., 1984) for uncapacitated lot-sizing relaxations
related to a single facility. Given i ∈ F , Li and Si, we show that inequalities (17) can be obtained as simple
dicut inequalities. Define a dicut collection with the t-dicut {xik | k ∈ Li \ Si, k ≤ t} ∪ {yik | k ∈ Si, k ≤ t}
for the nodes associated to each pair {i, t ∈ Li} with demand dit. The result follows using (16).
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Proposition 2. Consider a facility i ∈ P ∪ W and denote its level by b. Let l ∈ {2, . . . , |T |}, Li =
{1, . . . , li} ⊆ L, with li < l, and Si ⊆ Li. Besides, consider level b′ > b and for each j ∈ δb

′
(i), let

Lj = {li + 1, . . . , l} and Sj ⊆ Lj. The two-level inequalities

∑
k∈Li\Si

xik +
∑
k∈Si

dikly
i
k +

∑
j∈δb′ (i)

 ∑
k∈Lj\Sj

xjk +
∑
k∈Sj

djkly
j
k

 ≥ di1l (18)

are valid for XSTD.

Proof. Note that inequalities (18) can be seen as generalized (l, S)-like inequalities for two-level relaxations
of the problem. Given a facility i ∈ P ∪W , L, and Li = {1, . . . , li}, define a dicut collection with the t-dicut
{xik | k ∈ Li \ Si, k ≤ t} ∪ {yik | k ∈ Si, k ≤ t} for the nodes associated with each pair {i, t ∈ Li} with

demand dit, and the t-dicut {xik | k ∈ Li \Si}∪{yik | k ∈ Si}∪{x
j
k | k ∈ Lj \Sj , k ≤ t}∪{y

j
k | k ∈ Sj , k ≤ t}

for the nodes related to each pair {j ∈ δb
′
(i), t ∈ Lj} with demand djt . Using (16), the inequalities are

valid.

Proposition 3. Let l ∈ {3, . . . , |T |}, Lp = {1, . . . , lp}, with lp ≤ l − 2, and Sp ⊆ Lp. Besides, consider
Lw = {lp + 1, . . . , lw}, with lw ≤ l − 1, and Sw ⊆ Lw. Furthermore, let Lr = {lw + 1, . . . , l} and Sr ⊆ Lr.
The three-level inequalities

∑
k∈Lp\Sp

xpk +
∑
k∈Sp

dpkly
p
k +

∑
w∈W

 ∑
k∈Lw\Sw

xwk +
∑
k∈Sw

dwkly
w
k

+
∑
r∈R

 ∑
k∈Lr\Sr

xrk +
∑
k∈Sr

drkly
r
k

 ≥ dp1l (19)

are valid for XSTD.

Proof. Given Lp and Sp, Lw and Sw for each w ∈ W , Lr and Sr for each r ∈ R, define a dicut collection
with the t-dicut {xpk | k ∈ Lp \ Sp, k ≤ t} ∪ {ypk | k ∈ Sp, k ≤ t} for all nodes associated with each pair
{p, t ∈ Lp} with demand dpt , the t-dicut {xpk | k ∈ Lp \ Sp} ∪ {ypk | k ∈ Sp} ∪ {xwk | k ∈ Lw \ Sw, k ≤
t} ∪ {ywk | k ∈ Sw, k ≤ t} for the nodes related to each pair {w ∈ W, t ∈ Lw} with demand dwt , and the

t-dicut {xpk | k ∈ Lp \ Sp} ∪ {y
p
k | k ∈ Sp} ∪ {x

δw(r)
k | k ∈ Lδw(r) \ Sδw(r)} ∪ {yδw(r)

k | k ∈ Sδw(r)} ∪ {xrk | k ∈
Lr \ Sr, k ≤ t} ∪ {yrk | k ∈ Sr, k ≤ t} for the nodes related to each pair {r ∈ R, t ∈ Lr} with demand drt .
Using (16), the inequalities are valid.

3.3 Valid inequalities for an extended three-level lot-sizing based formulation

We now propose an extended three-level lot-sizing based formulation which decomposes the production,
transportation, and stocks in the upper levels (levels 0 and 1) into the specific retailers for which they are
related. We remark that, differently from the multi-commodity formulation, this decomposition does not
determine the specific period of the corresponding retailer to be satisfied, but simply the retailer. The goal
of such formulation is to permit further exploring the structure of the network flow without implying a very
large number of variables. We remark that a similar idea was applied to the one-warehouse multi-retailer
problem in Cunha and Melo (2016b).

Define variable x0r
t to be the amount produced at the production plant in period t ∈ T to satisfy some

demand of retailer r ∈ R, variable x1r
t to be the amount transported from the production plant to the

warehouse of retailer r ∈ R in period t ∈ T to satisfy some demand of r, and variable x2r
t to be the amount

transported to retailer r ∈ R from its warehouse in period t ∈ T to satisfy some of its demands. Additionally,
let variable s0r

t be the amount stocked in the production plant at the end of period t ∈ T to satisfy demand
of retailer r ∈ R, s1r

t be the amount stocked in the warehouse of retailer r ∈ R at the end of period t ∈ T to
satisfy its demand, and s2r

t be the amount stocked in retailer r ∈ R at the end of period t ∈ T . An extended
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three-level lot-sizing based formulation can be defined as

z3LF = min
∑
t∈T

(∑
i∈F

scity
i
t +

∑
r∈R

hcpt s
0r
t +

∑
r∈R

hc
δw(r)
t s1r

t +
∑
r∈R

hcrt s
2r
t

)
(20)

(3LF ) s0r
t−1 + x0r

t = x1r
t + s0r

t , for r ∈ R, t ∈ T, (21)

s1r
t−1 + x1r

t = x2r
t + s1r

t , for r ∈ R, t ∈ T, (22)

s2r
t−1 + x2r

t = drt + s2r
t , for r ∈ R, t ∈ T, (23)

x0r
t ≤ drt|T |y

p
t , for r ∈ R, t ∈ T, (24)

x1r
t ≤ drt|T |y

δw(r)
t , for r ∈ R, t ∈ T, (25)

x2r
t ≤ drt|T |y

r
t , for r ∈ R, t ∈ T, (26)

x0r
t , x

1r
t , x

2r
t , s

0r
t , s

1r
t , s

2r
t ≥ 0, for r ∈ R, t ∈ T, (27)

yit ∈ {0, 1}, for i ∈ F, t ∈ T. (28)

The objective function (20) minimizes the total setup and inventory costs. Constraints (21), (22) and (23)
are inventory balance constraints for, respectively, the production plant, the warehouses and the retailers.
Constraints (24), (25) and (26) are setup enforcing constraints. Constraints (27) ensure the nonnegativity
of the variables. This formulation, similarly to the standard formulation, has O(|R| × |T |) variables and
inequalities.

Define X3LF as the set of feasible solutions for the extended three-level lot-sizing based formulation, i.e.,
those satisfying (21)-(28). Consider Lb ⊆ {1, . . . , l}, 1 ≤ l ≤ |T | , as the set of periods considered for level b,
and let Sb ⊆ Lb. Additionally, denote as δbw(r) the predecessor of r at level b, i.e., δ0

w(r) = p, δ1
w(r) = δw(r),

and δ2
w(r) = r. In what follows, we describe single-level, two-level and three-level valid inequalities for X3LF .

Proposition 4. Consider a retailer r ∈ R, a level b ∈ {0, 1, 2}, and l ∈ T . The single-level inequalities∑
k∈Lb\Sb

xbrk +
∑
k∈Sb

drkly
δbw(r)
k ≥ dr1l (29)

are valid for X3LF .

Proof. Note that (29) are (l, S)-inequalities (Barany et al., 1984) for uncapacitated lot-sizing relaxations
related to a single facility and the demands of a specific retailer. This result can be proven using a reasoning
similar to the one in Proposition 1, but considering the demand of each retailer individually. Given r ∈ R,
b, Lb and Sb, we show that inequalities (29) can be obtained as simple dicut inequalities. Define a dicut

collection with the t-dicut {xbrk | k ∈ Lb \ Sb, k ≤ t} ∪ {yδ
b
w(r)
k | k ∈ Sb, k ≤ t} for the nodes associated to

each pair {r, t ∈ Lb} with demand drt . The result follows using (16).

Proposition 5. Consider a retailer r ∈ R, levels b, b′ ∈ {0, 1, 2}, with b < b′, and l ∈ {2, . . . , |T |}. Let
Lb = {1, . . . , lb}, with lb < l, and Sb ⊆ Lb. Also, let Lb

′
= {lb + 1, . . . , l} and Sb

′ ⊆ Lb
′
. The two-level

inequalities ∑
k∈Lb\Sb

xbrk +
∑
k∈Sb

drkly
δbw(r)
k +

∑
k∈Lb′\Sb′

xb
′r
k +

∑
k∈Sb′

drkly
δb
′
w (r)
k ≥ dr1l (30)

are valid for X3LF .

Proof. Note that (30) can be seen as special cases of the two-echelon inequalities (M. Zhang et al., 2012) for
the multi-echelon lot-sizing with intermediate demands. Besides, the result can be proven using the same
idea as the one in Proposition 2, but taking into consideration the demand of each retailer individually.
Given r ∈ R, b, b′, Lb, and Sb, define a dicut collection with the t-dicut {xbrk | k ∈ Lb \ Sb, k ≤ t} ∪
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{yδ
b
w(r)
k | k ∈ Sb, k ≤ t} for the nodes associated to each pair {r, t ∈ Lb} with demand drt , and the t-dicut

{xbrk | k ∈ Lb \Sb} ∪ {y
δbw(r)
k | k ∈ Sb} ∪ {xb′rk | k ∈ Lb

′ \Sb′ , k ≤ t} ∪ {yδ
b′
w (r)
k | k ∈ Sb′ , k ≤ t} for the nodes

associated to each pair {r, t ∈ Lb′} with demand drt . Using (16), the inequalities are valid.

Proposition 6. Consider a retailer r ∈ R, and l ∈ {3, . . . , |T |}. Let L0 = {1, . . . , l0}, with l0 < l − 1, and
S0 ⊆ L0. Also, let L1 = {l0 + 1, . . . , l1}, with l1 < l, and S1 ⊆ L1. Furthermore, let L2 = {l1 + 1, . . . , l} and
S2 ⊆ L2. The three-level inequalities∑

k∈L0\S0

x0r
k +

∑
k∈S0

drkly
p
k +

∑
k∈L1\S1

x1r
k +

∑
k∈S1

drkly
δw(r)
k +

∑
k∈L2\S2

x2r
k +

∑
k∈S2

drkly
r
k ≥ dr1l (31)

are valid for X3LF .

Proof. The proof can be achieved using a reasoning similar to the one in Proposition 3, but taking into
consideration the demand of each retailer individually. Given L0, S0, L1, S1, L2 and S2, define a dicut
collection with the t-dicut {x0r

k | k ∈ L0 \ S0, k ≤ t} ∪ {ypk | k ∈ S0, k ≤ t} for the nodes related to each
pair {r, t ∈ L0} with demand drt , the t-dicut {x0r

k | k ∈ L0 \ S0} ∪ {ypk | k ∈ S0} ∪ {x1r
k | k ∈ L1 \ S1, k ≤

t} ∪ {yδw(r)
k | k ∈ S1, k ≤ t} for the nodes associated with each pair {r, t ∈ L1} with demand drt , and

the t-dicut {x0r
k | k ∈ L0 \ S0} ∪ {ypk | k ∈ S0} ∪ {x1r

k | k ∈ L1 \ S1} ∪ {yδw(r)
k | k ∈ S1} ∪ {x2r

k | k ∈
L2 \ S2, k ≤ t} ∪ {yrk | k ∈ S2, k ≤ t} for the nodes corresponding to each pair {r, t ∈ L2} with demand drt .
The inequalities are thus valid, using (16).

3.4 Comparing the bounds achieved with the formulations strengthened with
valid inequalities

We now compare the bounds achieved when using the standard (STD) and extended three-level lot-sizing
based (3LF ) formulations when enhanced with the proposed valid inequalities. Denote by zSTD+ and z3LF+,
respectively, the linear relaxation values of STD with the addition of valid inequalities (17), (18) and (19),
denoted as STD+, and of 3LF with the addition of inequalities (29), (30) and (31), denoted as 3LF+.

Define Ri to be the set of all the retailers which are descendants of facility i ∈ F , and let b(i) be the level
of facility i. The proof consists of showing that for any feasible solution to the linear relaxation of 3LF+,
there is a corresponding solution to the linear relaxation of STD+ with the same objective value.

Lemma 7. Given a feasible solution (x̂0, x̂1, x̂2, ŝ0, ŝ1, ŝ2, ŷ) for the linear relaxation of 3LF , there is a
corresponding solution (x̄, s̄, ŷ) for the linear relaxation of STD with the same objective value.

Proof. Note that there is a direct mapping between variables x̄, s̄ of STD and x̂b, ŝb for b ∈ {0, 1, 2} of 3LF ,
which is expressed for each i ∈ F and k ∈ T as

x̄ik =
∑
r∈Ri

x̂
b(i),r
k (32)

and
s̄ik =

∑
r∈Ri

ŝ
b(i),r
k . (33)

For each facility i ∈ P and period t ∈ T , and for each facility i ∈ W and period t ∈ T , if we sum,
respectively, constraints (21) and (22) for every r ∈ Ri, we have that∑

r∈Ri
ŝ
b(i),r
t−1 +

∑
r∈Ri

x̂
b(i),r
t =

∑
r∈Ri

drt +
∑
r∈Ri

ŝ
b(i),r
t .
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Using (32) and (33), this guarantees that

s̄it−1 + x̄it = dit + s̄it,

implying that constraints (2) are satisfied by (x̄, s̄, ŷ).
For each r ∈ R and t ∈ T , constraints (23) ensure that

ŝ2r
t−1 + x̂2r

t = drt + ŝ2r
t ,

which, using (32) and (33), guarantee that

s̄rt−1 + x̄rt = drt + s̄rt ,

and thus, constraints (3) are satisfied by (x̄, s̄, ŷ).
For each facility i ∈ F and period t ∈ T , if we sum the corresponding inequalities (24), (25) or (26) for

every r ∈ Ri, we have that ∑
r∈Ri

x̂b(i),r ≤
∑
r∈Ri

drt|T |ŷ
i
t,

which, using (32) and (33), guarantee that
x̄it ≤ dit|T |ŷ

i
t,

implying that constraints (4) are satisfied by (x̄, s̄, ŷ).
Constraints (27) and (28) ensure (x̄, s̄, ŷ) satisfy, respectively, constraints (5) and (6). Therefore, the result

holds as the objective functions (1) and (20) are equivalent given the mapping represented by equations (32)
and (33).

Lemma 8. Given a feasible solution (x̂0, x̂1, x̂2, ŝ0, ŝ1, ŝ2, ŷ) for the linear relaxation of 3LF satisfying in-
equalities (29), then solution (x̄, s̄, ŷ) obtained with the mapping (32) and (33) for the linear relaxation of
STD satisfies inequalities (17).

Proof. Consider an inequality (17) for predefined i ∈ F , l ∈ T and Si∑
k∈Li\Si

xik +
∑
k∈Si

dikly
i
k ≥ di1l.

Let Sb = Si and sum inequalities (29) for every r ∈ Ri to obtain∑
r∈Ri

∑
k∈Li\Si

x̂
b(i),r
k +

∑
r∈Ri

∑
k∈Si

drklŷ
δbw(r)
k ≥

∑
r∈Ri

dr1l.

Using (32) and (33), this is equivalent to∑
k∈Li\Si

x̄ik +
∑
k∈Si

diklŷ
i
k ≥ di1l,

and thus, (x̄, s̄, ŷ) satisfies (17).

Lemma 9. Given a feasible solution (x̂0, x̂1, x̂2, ŝ0, ŝ1, ŝ2, ŷ) for the linear relaxation of 3LF satisfying in-
equalities (30), then solution (x̄, s̄, ŷ) obtained with the mapping (32) and (33) for the linear relaxation of
STD satisfies inequalities (18).
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Proof. Consider an inequality (18) for specific i ∈ P ∪W , l, Li, Si, b′, as well as, Lj and Sj for each j ∈ δb′(i)

∑
k∈Li\Si

xik +
∑
k∈Si

dikly
i
k +

∑
j∈δb′ (i)

 ∑
k∈Lj\Sj

xjk +
∑
k∈Sj

djkly
j
k

 ≥ di1l.
Let Sb(i) = Si, and for each j ∈ δb′(i) choose Sb

′
as Sj and sum inequalities (30) with these choices for every

r ∈ Ri to obtain

∑
r∈Ri

∑
k∈Li\Si

x̂brk +
∑
r∈Ri

∑
k∈Si

drklŷ
δbw(r)
k +

∑
j∈δb′ (i)

∑
r∈Rj

∑
k∈Lb′(r)\Sb′(r)

x̂b
′r
k +

∑
r∈Rj

∑
k∈Sb′(r)

drklŷ
δb
′
w (r)
k

 ≥ ∑
r∈Ri

dr1l.

Thus, using (32) and (33) we have

∑
k∈Li\Si

x̄ik +
∑
k∈Si

diklŷ
i
k +

∑
j∈δb(i)

 ∑
k∈Lj\Sj

x̄jk +
∑
k∈Sj

djklŷ
j
k

 ≥ di1l,
implying that (x̄, s̄, ŷ) satisfies (18).

Lemma 10. Given a feasible solution (x̂0, x̂1, x̂2, ŝ0, ŝ1, ŝ2, ŷ) for the linear relaxation of 3LF satisfying
inequalities (31), then solution (x̄, s̄, ŷ) obtained with the mapping (32) and (33) for the linear relaxation of
STD satisfies inequalities (19).

Proof. Consider an inequality (19) for specified l, Lp, Sp, Lw, Sw, Lr and Sr∑
k∈Lp\Sp

xpk +
∑
k∈Sp

dpkly
p
k +

∑
k∈Lw\Sw

xwk +
∑
k∈Sw

dwkly
w
k +

∑
k∈Lr\Sr

xrk +
∑
k∈Sr

drkly
r
k ≥ d

p
1l.

Let L0 = Lp and S0 = Sp, L1 = Lw and S1 = Sw for every w ∈W , and L2 = Lr and S2 = Sr for every
r ∈ R. Summing inequalities (31) with the aforementioned choices for every r ∈ R, we obtain∑

r∈R

∑
k∈Lp\Sp

x̂0r
k +

∑
r∈R

∑
k∈Sp

drklŷ
p
k +

∑
r∈R

∑
k∈Lδw(r)\Sδw(r)

x̂1r
k +

∑
r∈R

∑
k∈Sδw(r)

drklŷ
δw(r)
k +

∑
r∈R

∑
k∈Lr\Sr

x̂2r
k +

∑
r∈R

∑
k∈Sr

drklŷ
r
k ≥

∑
r∈R

dr1l.

This, together with (32) and (33), ensures that∑
k∈Lp\Sp

x̄pk +
∑
k∈Sp

dpklŷ
p
k +

∑
k∈Lw\Sw

x̄wk +
∑
k∈Sw

dwklŷ
w
k +

∑
k∈Lr\Sr

x̄rk +
∑
k∈Sr

drklŷ
r
k ≥ d

p
1l,

implying that (x̄, s̄, ŷ) satisfies (19).

Proposition 11. zSTD+ ≤ z3LF+.

Proof. It follows from Lemmas 7, 8, 9 and 10.
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4 Preprocessing the multi-commodity formulation

This section details a preprocessing technique to reduce the size of the multi-commodity formulation for
the uncapacitated three-level lot-sizing and replenishment problem with a distribution structure (3LSPD-U).
It has been noted in the literature that extended formulations can become computationally intractable as
the sizes of the instances increase (Van Vyve & Wolsey, 2006). The proposed preprocessing goes into the
direction of attempting to reduce the size of the formulation and make it more manageable to be tackled by
a commercial mixed integer programming solver. Consider the multi-commodity formulation described in
Section 2.2. In what follows we show that, under certain conditions, variables can be set to zero (i.e., can be
removed from the formulation) and an optimal solution for the problem can still be encountered, whenever
one exists.

Firstly, remember that 3LSPD-U can be seen as an uncapacitated fixed-charge network flow problem
(UFCNF). It is well known that, in an extreme-point optimal solution for UFCNF, the underlying graph
associated with the variables which assume values strictly between their lower and upper bounds is acyclic
(see Pochet and Wolsey (2006)). This implies that, for 3LSPD-U, there is an optimal solution in which,
whenever items are transported from the warehouse to the retailer, they are used to satisfy all the demands
of a set of consecutive periods for that retailer.

Proposition 12. Consider a retailer r ∈ R and periods 1 ≤ k < t ≤ |T | for which

drt ×
t−1∑
l=k

hcrl ≥ drt ×
t−1∑
l=k

hc
δw(r)
l + scrt . (34)

Variables w2r
kt′ can be set to zero for every t′ ∈ {t, . . . , |T |}, and the guarantee of encountering an optimal

solution, whenever it exists, is preserved.

Proof. Note that the left-hand side of (34) defines the total cost of storing the demand drt from periods
k up to t at the retailer, while its right-hand side establishes the total cost of storing this demand from
periods k up to t at the warehouse plus the setup cost implied for transporting it from the warehouse to
the retailer in period t. Consider a solution (ŵ, σ̂, ŷ) in which the conditions of the proposition hold such
that ŵ2r

kt = drt and the cost is ẑ. We build a new solution (w̄, σ̄, ȳ) in which w̄2r
kt = 0, w̄2r

tt = ŵ2r
kt = drt ,

ȳrt = 1, and all other variables assume the same values as in (ŵ, σ̂, ŷ). Due to (34), the new cost is thus

z̄ ≤ ẑ + drt ×
∑t−1
l=k hc

δw(r)
l + scrt − drt ×

∑t−1
l=k hc

r
l ≤ ẑ. This implies that variable w2r

kt can be set to zero.
Consequently, due to the property of an extreme-point optimal solution, w2r

kt′ can also be set to zero for
t ≤ t′ ≤ |T |.

We remark that, as can be observed in inequality (34), the potential reductions can be very sensitive to
the costs and demands received as inputs.

5 Multi-start randomized bottom-up dynamic programming-based
heuristic

In this section, we provide an easy-to-implement multi-start randomized bottom-up dynamic programming-
based heuristic. As commercial solvers can sometimes encounter difficulties in obtaining good quality feasible
solutions earlier in the enumeration process using general mixed integer programming heuristics, the goal of
the proposed heuristic is to fastly provide such solutions in an attempt to speed up the process of solving
instances to optimality. The proposed approach is somehow related to the work of Dellaert and Jeunet
(2003). Each iteration of the proposed heuristic follows a level-by-level nonintegrated planning in which
levels are sequentially tackled in a bottom-up fashion using dynamic programming, considering that certain
costs receive controlled randomized changes. It applies greedy randomization (Resende & Ribeiro, 2003),
which is widely used in combinatorial optimization, in order to allow diversification in the obtained solutions,

12



but in an alternative manner. More specifically, the costs are randomized with certain control, differently
from the standard way of randomizing the choices during the execution of the algorithm. In this way, one
can still take advantage of the effectiveness of the dynamic programming approaches for the subproblems to
be solved.

The heuristic is described in Algorithm 1. It takes as inputs the instance, a randomization factor α,
and the allowed number of iterations itmax. The best known objective value is set as ∞ in line 1. Next, a
randomized solution is constructed at each iteration of the for loop of lines 2-9. Firstly, the setup costs are
randomized in line 3 according to parameter α. Namely, for each facility i ∈ W ∪R and each period t ∈ T ,
the randomized setup cost is calculated as

s̄cit = scit + rand(0, α)scit, (35)

where rand(0, α) returns a random value using a uniform distribution U [0, α]. Next, the amounts to be
transported from the warehouses to the retailers are determined in line 4 by solving an uncapacitated lot-
sizing for each retailer using dynamic programming (Wagner & Whitin, 1958; Wagelmans, Van Hoesel, &
Kolen, 1992). Afterwards, the amounts to be transported from the production plant to the warehouses are
determined in line 5 by solving an uncapacitated lot-sizing for each warehouse, considering that the demands
are given by the amounts to be transported to the retailers previously determined in line 4. Finally, the
amounts to be produced at the production plant in each period are determined in line 6 by solving an
uncapacitated lot-sizing, considering that the demands are given by the amounts to be transported to the
warehouses previously determined in line 5. Whenever the objective value ẑ of the new obtained solution
improves over the best-known, the best-known solution and value are updated (lines 7-9).

Algorithm 1: MS-R-BU-DPH (instance, α, itmax)

1 z∗ ←∞;
2 for it = 1, ..., itmax do
3 Calculate the randomized setup costs for the facilities in W ∪R according to parameter α;

4 Determine (x̂R, ŷR, ŝR) by optimally solving an uncapacitated lot-sizing for each retailer r ∈ R
with randomized setup costs, using dynamic programming;

5 Determine (x̂W , ŷW , ŝW ) by optimally solving an uncapacitated lot-sizing for each warehouse

w ∈W with the demands determined by x̂R and randomized setup costs, using dynamic
programming;

6 Determine (x̂p, ŷp, ŝp) by optimally solving an uncapacitated lot-sizing for the plant with the

demands determined by xW , using dynamic programming, and set ẑ as the cost of the complete
solution considering the original setup costs;

7 if ẑ < z∗ then
8 (x∗, y∗, s∗)← (x̂, ŷ, ŝ);
9 z∗ ← ẑ;

10 return (x∗, y∗, s∗);

6 Computational experiments

This section reports the computational experiments conducted to assess the performance of the pro-
posed approaches. All computational experiments were carried out on a machine running under Ubuntu
GNU/Linux, with an Intel(R) Core(TM) i5-3740 CPU @ 3.20GHz processor and 8Gb of RAM. The algo-
rithms were coded in Julia v1.4.2, using JuMP v0.18.6. The formulations were solved using Gurobi 9.0.2
with the standard configurations, except the relative optimality tolerance gap which was defined as 10−6 due
to the magnitude of the costs and the algorithm to solve the root node of the multi-commodity formulation
which was set to the barrier method given the characteristics of the formulation in question (large and with
many equality constraints). A time limit of 3600 seconds was imposed for every execution of the MIP solver.
The goals of the performed experiments were twofold. Firstly, we wanted to analyze the effectiveness of
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the described valid inequalities both in terms of the offered bounds and of the improvements achieved over
the plain formulations to optimally solve the problem. Secondly, we desired to assess the quality of the
solutions obtained by the proposed multi-start randomized bottom-up dynamic programming-based heuris-
tic as well as the speed up achieved by using the heuristic together with the preprocessing when using the
multi-commodity formulation.

6.1 Benchmark instances

The computational experiments were executed using the instances proposed in Gruson et al. (2019),
where more details can be obtained. For the instances in this benchmark set, P is a singleton with a unique
plant, |R| ∈ {50, 100, 200} , |W | ∈ {5, 10, 15, 20}, and |T | ∈ {15, 30}. The demands of each retailer were
generated using a uniform distribution U [5, 100]. The fixed costs for the production plant were defined using
a uniform distribution U [30000, 45000]. The fixed costs for the warehouses were determined using a uniform
distribution U [1500, 4500]. The fixed costs for the retailers were specified using a uniform distribution
U [5, 100]. The unit inventory holding costs for the production plant were set to 0.25. The unit inventory
holding costs for the warehouses were set to 0.5 and the unit inventory holding costs for the retailers were
generated using a uniform distribution U [0.5, 1]. The demands and fixed costs are generated as integer values
and the holding costs take continuous values. The instances are organized in instance groups containing five
instances each with similar characteristics. Each instance group is identified by |R| |T | |W | typeD typeF,
where typeD and typeF define respectively the characteristics of the demands and fixed costs, which can be
either static (S) or dynamic (D). The instances can be classified as balanced or unbalanced. In the balanced
networks, each warehouse has nearly the same number of retailers. In the unbalanced networks, around 20%
of the warehouses concentrate 80% of the retailers. Notice that there are 960 instances (half of them are
balanced while the other half are unbalanced).

We remark that each line in the tables presented in the remainder of this section corresponds to the
instances belonging to the appropriate instance group.

6.2 Implementation details and settings

The separations of inequalities (17), (18), (19), (29), (30) and (31) were performed with straightforward
implementations. Namely, with all the parameters fixed but the choices of the x and y variables composing
the inequality, the approach defines for each involved combination of facility and time period, whether the x
or y variables will compose the inequality, and thus the separation can be performed by inspection similarly
to the (l, S)-inequalities for the uncapacitated lot-sizing (Barany et al., 1984; Pochet & Wolsey, 2006).
The separations were implemented as callbacks and are only executed at the root node. All the violated
inequalities are provided to the solver.

All the settings and parameters were defined based on preliminary experiments which took into con-
sideration a small subset containing ≈ 3% of the instances, randomly selected, with varying sizes and
characteristics. For the separation procedures, the tolerance for violation was set to 10.0 (the values 1.0,
10.0, and 100.0 were tested). The maximum number of cutting plane rounds was set to 20 (the values 20,
30, and 40 were tested). Inequalities (17) and (29) are separated in every round. Inequalities (18) and (30)
are separated every five rounds. Inequalities (19) and (31) are separated every ten rounds. This difference in
the frequency of separation for the different families of inequalities is motivated by the large difference in the
number of inequalities that can be violated for these families in a given round as well as the computational
complexity for performing such tasks.

The settings for the multi-start randomized bottom-up dynamic programming-based heuristic were de-
termined as follows. The maximum number of iterations itmax was set to 500 (the values 100, 200, 500, 700,
and 1000 were tested, but 500 offered a good compromise between running time and solution quality). The
randomization parameter α was set to 0.20 (the values 0.05, 0.10, 0.15, 0.20, and 0.25 were tested).
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6.3 Results analyzing the use of valid inequalities

The computational experiments assessing the effectiveness of the proposed valid inequalities are summa-
rized in Tables 1-4. Results are presented for the standard formulation (STD), the standard formulation
strengthened with valid inequalities (STD+), the three-level lot-sizing based formulation (3LF), and the
three-level lot-sizing based formulation strengthened with valid inequalities (3LF+). In each of these tables,
the first column represents the instance group. Next, for each of the formulations, the table presents the
number of instances solved to optimality, the average time in seconds (time), and the average number of
nodes (nodes) for the instances solved to optimality as well as the average open gap (gap) for the unsolved
instances, calculated as 100 × bestsol−bestbound

bestsol for each instance in the group. The presence of a ’–’ in the
columns time and nodes indicate that none of the instances in the group were solved to optimality, while
its presence in the column gap means that they were all solved to optimality. The last two lines provide,
respectively, the average and total sum considering the lines in the table.

Table 1 shows the results when using STD, 3LF, STD+ and 3LF+ for the balanced instances with
|T | = 15. All instances with |R| = 50 were solved to optimality using all the formulations. It can be observed
that 3LF usually presented lower average times, while 3LF+ achieved lower averages for the number of nodes.
For the instances with |R| = 100, STD+ presents lower average times for most of the instance groups, while
3LF+ presents again better results when it comes to the average number of nodes. It is possible to see that
STD already started finding difficulties to solve instances of this size to optimality. For those instances with
|R| = 200, only 3LF+ solved all of them to optimality, and it also obtained the best results regarding the
average number of nodes.

Table 2 summarizes the results for the unbalanced instances with |T | = 15. All instances with |R| = 50
were solved to optimality with all the formulations. STD and 3LF had similar performance when it comes
to the average times, whereas 3LF+ achieved better results when we consider the average number of nodes.
For the instances with |R| = 100, 3LF+ outperformed all other formulations when we consider the average
times. For those instances with |R| = 200, only 3LF+ was able to solve all of them to optimality.

Table 3 presents the results for the balanced instances with |T | = 30. For the instances with |R| = 50,
only 3LF+ was able to solve all of them to optimality. We can see that STD+ usually presents lower average
times and 3LF+ outperforms the others when it comes to the average number of nodes. For those with
|R| = 100, STD+ solved more instances to optimality than 3LF+, and STD+ and 3LF+ achieved lower
optimality gaps for the unsolved instances. For the instances with |R| = 200, the table shows that none of
them were solved to optimality, and STD+ achieved better results when it comes to the open gaps.

Table 4 displays the results for the unbalanced instances with |T | = 30. For the instances with |R| = 50,
we can see that only 3LF+ solved all of them to optimality. Additionally, 3LF+ achieved the majority of
the best average values when considering the time and number of nodes. For those instances with |R| = 100,
3LF+ was the only formulation to solve some of them to optimality and, besides, achieved lower gaps for
most of the unsolved instance groups. None of the instances with |R| = 200 were solved to optimality. For
these instances, the majority of the lower gaps were obtained by 3LF+.
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Table 1: Results obtained by STD, 3LF, STD+ and 3LF+ for balanced instances with |T | = 15.
STD 3LF STD+ 3LF+

instancegroup opt time nodes gap opt time nodes gap opt time nodes gap opt time nodes gap
50 15 5 DD DF 5 9.0 4617.6 – 5 8.9 510.6 – 5 4.0 1135.2 – 5 6.3 20.4 –
50 15 5 DD SF 5 102.4 70486.4 – 5 20.9 1569.2 – 5 4.1 1270.2 – 5 6.9 27.0 –
50 15 5 SD DF 5 11.5 5068.0 – 5 6.6 367.4 – 5 3.8 708.6 – 5 5.7 26.2 –
50 15 5 SD SF 5 83.4 61234.0 – 5 10.3 860.2 – 5 3.9 300.4 – 5 5.7 22.8 –
50 15 10 DD DF 5 1.3 797.0 – 5 1.9 2.6 – 5 3.4 129.2 – 5 3.2 1.0 –
50 15 10 DD SF 5 3.3 1821.8 – 5 3.5 44.8 – 5 3.5 187.2 – 5 4.0 3.8 –
50 15 10 SD DF 5 2.1 2349.4 – 5 3.4 120.4 – 5 3.5 268.4 – 5 3.7 2.0 –
50 15 10 SD SF 5 18.0 15720.6 – 5 3.2 426.0 – 5 3.8 313.4 – 5 3.1 1.0 –
50 15 15 DD DF 5 1.2 171.8 – 5 1.0 1.0 – 5 3.9 142.0 – 5 3.3 1.0 –
50 15 15 DD SF 5 2.0 2148.4 – 5 1.1 1.0 – 5 3.7 14.0 – 5 3.1 1.0 –
50 15 15 SD DF 5 1.1 172.2 – 5 1.0 2.4 – 5 3.7 111.8 – 5 3.2 1.0 –
50 15 15 SD SF 5 5.6 2515.2 – 5 2.0 213.4 – 5 3.8 101.2 – 5 3.2 1.0 –
50 15 20 DD DF 5 1.1 74.4 – 5 0.8 1.0 – 5 3.8 51.6 – 5 3.1 1.0 –
50 15 20 DD SF 5 1.1 68.2 – 5 1.0 1.0 – 5 3.5 3.0 – 5 3.0 1.0 –
50 15 20 SD DF 5 1.2 64.4 – 5 0.8 1.0 – 5 3.8 29.6 – 5 3.0 1.0 –
50 15 20 SD SF 5 1.7 1007.6 – 5 1.2 1.0 – 5 3.4 3.8 – 5 3.2 1.0 –
100 15 5 DD DF 5 399.9 56341.0 – 5 78.1 1339.4 – 5 25.4 9653.6 – 5 41.3 21.8 –
100 15 5 DD SF 4 1868.4 288582.2 0.02 5 575.9 19476.2 – 5 78.6 33150.2 – 5 39.5 47.8 –
100 15 5 SD DF 5 292.0 65225.2 – 5 69.2 1276.2 – 5 29.4 12777.4 – 5 31.1 43.4 –
100 15 5 SD SF 5 1249.2 497633.0 – 5 1025.4 349851.4 – 5 21.4 7565.4 – 5 23.5 89.4 –
100 15 10 DD DF 3 2325.5 654996.7 1.13 5 136.8 4764.6 – 5 17.2 5038.6 – 5 31.1 50.8 –
100 15 10 DD SF 3 1886.2 583844.0 0.02 5 261.4 17313.0 – 5 11.9 2099.8 – 5 24.0 12.2 –
100 15 10 SD DF 4 494.7 184435.5 0.54 5 119.7 1955.8 – 5 22.1 6022.8 – 5 18.3 9.2 –
100 15 10 SD SF 0 – – 0.07 5 299.0 52669.0 – 5 6.4 589.8 – 5 15.0 73.8 –
100 15 15 DD DF 5 212.9 62496.2 – 5 38.0 403.8 – 5 6.2 701.6 – 5 9.0 1.0 –
100 15 15 DD SF 4 808.5 453046.0 0.03 5 29.7 950.0 – 5 6.7 1122.4 – 5 10.1 1.0 –
100 15 15 SD DF 5 576.5 214981.0 – 5 58.5 1225.4 – 5 9.9 2170.4 – 5 14.0 14.4 –
100 15 15 SD SF 1 270.0 96429.0 0.01 5 62.4 3674.0 – 5 5.9 122.8 – 5 11.2 11.8 –
100 15 20 DD DF 5 77.0 24173.0 – 5 31.3 616.2 – 5 14.5 5551.4 – 5 13.3 13.2 –
100 15 20 DD SF 5 71.5 22093.2 – 5 15.5 153.8 – 5 11.1 2733.6 – 5 8.8 1.0 –
100 15 20 SD DF 5 55.7 16229.2 – 5 25.4 976.2 – 5 7.1 1335.2 – 5 10.1 4.2 –
100 15 20 SD SF 5 435.3 308889.2 – 5 28.3 1281.8 – 5 6.0 118.0 – 5 8.2 1.0 –
200 15 5 DD DF 0 – – 1.09 5 1242.9 4575.2 – 2 2103.4 691950.0 0.05 5 458.5 744.6 –
200 15 5 DD SF 0 – – 2.26 0 – – 2.41 0 – – 0.07 5 1176.6 6776.6 –
200 15 5 SD DF 0 – – 0.97 4 2644.9 15413.2 0.03 2 1103.9 428699.5 0.06 5 334.7 621.8 –
200 15 5 SD SF 0 – – 1.42 1 2353.3 20857.0 0.36 4 1129.8 282235.5 0.01 5 896.7 8899.6 –
200 15 10 DD DF 0 – – 3.25 2 777.2 8539.5 1.20 3 891.9 294587.0 0.03 5 484.8 627.8 –
200 15 10 DD SF 0 – – 2.44 0 – – 2.01 4 993.8 341265.8 0.04 5 348.7 2.0 –
200 15 10 SD DF 0 – – 2.65 5 1822.0 4771.2 – 2 226.0 79713.0 0.04 5 356.6 486.4 –
200 15 10 SD SF 0 – – 2.08 0 – – 0.03 5 137.8 23658.4 – 5 211.4 1.0 –
200 15 15 DD DF 0 – – 3.77 4 1807.9 5400.2 0.03 4 183.8 48555.0 0.03 5 350.9 192.0 –
200 15 15 DD SF 0 – – 4.04 4 2860.7 19021.0 0.01 3 1594.2 605558.7 0.02 5 267.6 1.4 –
200 15 15 SD DF 0 – – 3.98 4 2362.7 20079.5 3.59 3 644.7 193569.3 0.05 5 390.3 1579.0 –
200 15 15 SD SF 0 – – 3.05 1 2352.4 30020.0 0.01 5 56.9 4867.4 – 5 783.0 13235.4 –
200 15 20 DD DF 0 – – 3.65 3 2479.5 13489.3 0.22 5 628.1 196638.0 – 5 271.5 1320.0 –
200 15 20 DD SF 0 – – 2.65 2 2539.6 50112.5 0.27 5 71.5 6053.4 – 5 139.8 1.0 –
200 15 20 SD DF 0 – – 3.40 5 2275.9 6497.4 – 4 1385.1 547147.2 0.00 5 285.8 2157.8 –
200 15 20 SD SF 0 – – 2.58 2 2601.8 64801.5 0.05 5 140.9 27578.2 – 5 225.7 3733.0 –
Average 363.5 119281.0 1.96 689.8 16125.1 0.79 247.5 82289.3 0.04 153.2 851.8 –
Total 144 202 216 240

16



Table 2: Results obtained by STD, 3LF, STD+ and 3LF+ for unbalanced instances with |T | = 15.
STD 3LF STD+ 3LF+

instancegroup opt time nodes gap opt time nodes gap opt time nodes gap opt time nodes gap
50 15 5 DD DF 5 2.2 991.0 – 5 7.5 133.4 – 5 4.6 1737.2 – 5 7.0 1.4 –
50 15 5 DD SF 5 7.3 2321.2 – 5 15.0 888.2 – 5 5.1 2084.2 – 5 5.5 1.0 –
50 15 5 SD DF 5 2.6 1275.4 – 5 6.6 19.0 – 5 5.8 3702.2 – 5 4.4 1.0 –
50 15 5 SD SF 5 6.3 3736.2 – 5 13.6 972.8 – 5 5.1 1273.2 – 5 8.4 389.8 –
50 15 10 DD DF 5 2.0 973.0 – 5 4.0 14.6 – 5 3.7 414.4 – 5 4.0 1.0 –
50 15 10 DD SF 5 15.6 5303.0 – 5 6.5 379.6 – 5 4.4 1590.8 – 5 6.1 4.8 –
50 15 10 SD DF 5 2.3 1426.4 – 5 6.5 129.4 – 5 3.7 416.2 – 5 4.0 3.0 –
50 15 10 SD SF 5 20.0 7578.4 – 5 5.7 219.8 – 5 4.0 442.6 – 5 5.9 13.6 –
50 15 15 DD DF 5 1.1 660.0 – 5 2.0 16.0 – 5 4.0 98.8 – 5 3.6 3.6 –
50 15 15 DD SF 5 6.3 3952.0 – 5 2.7 57.0 – 5 3.6 123.8 – 5 3.2 1.0 –
50 15 15 SD DF 5 1.2 720.4 – 5 2.7 21.6 – 5 3.7 200.8 – 5 3.2 1.0 –
50 15 15 SD SF 5 10.1 4748.4 – 5 3.7 94.4 – 5 3.9 58.4 – 5 3.8 1.0 –
50 15 20 DD DF 5 1.1 85.6 – 5 0.8 1.0 – 5 3.7 30.0 – 5 3.0 1.0 –
50 15 20 DD SF 5 1.4 281.4 – 5 1.1 19.4 – 5 3.6 6.4 – 5 2.9 1.0 –
50 15 20 SD DF 5 1.2 652.8 – 5 0.9 1.0 – 5 3.7 62.2 – 5 3.1 1.0 –
50 15 20 SD SF 5 2.3 696.0 – 5 1.4 1.8 – 5 3.8 28.4 – 5 3.1 1.0 –
100 15 5 DD DF 5 31.4 10049.8 – 5 34.9 209.4 – 5 394.2 333252.6 – 5 21.5 18.2 –
100 15 5 DD SF 5 112.7 34257.6 – 5 34.0 1100.2 – 5 162.4 100392.0 – 5 27.1 95.0 –
100 15 5 SD DF 5 22.4 5764.6 – 5 31.0 185.4 – 5 141.3 105049.2 – 5 14.7 1.0 –
100 15 5 SD SF 5 56.2 10524.0 – 5 65.9 4789.0 – 5 98.0 64757.4 – 5 23.6 1344.6 –
100 15 10 DD DF 5 41.5 13306.0 – 5 44.5 147.8 – 5 70.2 42429.4 – 5 28.2 110.6 –
100 15 10 DD SF 5 150.2 52508.4 – 5 58.9 2198.2 – 5 69.4 30275.8 – 5 29.2 30.2 –
100 15 10 SD DF 5 39.1 10885.2 – 5 32.3 330.8 – 5 49.6 26875.8 – 5 15.9 1.4 –
100 15 10 SD SF 5 65.5 13061.6 – 5 50.5 3549.8 – 5 25.3 10449.2 – 5 17.3 179.4 –
100 15 15 DD DF 5 36.0 4637.4 – 5 53.6 662.8 – 5 21.3 6156.0 – 5 13.5 2.8 –
100 15 15 DD SF 5 74.0 14396.6 – 5 77.7 2152.0 – 5 25.7 6578.0 – 5 27.0 1.8 –
100 15 15 SD DF 5 77.5 42603.0 – 5 39.7 426.4 – 5 36.5 18592.0 – 5 20.0 18.2 –
100 15 15 SD SF 5 102.7 41805.0 – 5 81.0 4226.2 – 5 26.6 10533.6 – 5 22.2 508.6 –
100 15 20 DD DF 5 51.7 10813.6 – 5 33.8 721.8 – 5 26.7 9280.6 – 5 26.1 40.2 –
100 15 20 DD SF 4 134.1 34781.2 0.02 5 63.6 5399.2 – 5 29.8 10807.2 – 5 41.7 914.0 –
100 15 20 SD DF 5 37.4 6834.8 – 5 31.1 435.4 – 5 21.6 6518.6 – 5 17.2 86.8 –
100 15 20 SD SF 5 713.2 632343.8 – 5 144.4 16630.2 – 5 17.9 9950.4 – 5 21.6 161.6 –
200 15 5 DD DF 2 557.2 146939.0 0.02 5 238.5 1200.8 – 3 576.9 215702.7 0.04 5 155.4 323.8 –
200 15 5 DD SF 0 – – 0.03 5 298.4 1829.8 – 0 – – 0.04 5 374.6 4836.4 –
200 15 5 SD DF 2 1550.8 503084.5 0.03 5 275.0 611.2 – 1 126.5 36605.0 0.04 5 102.3 1.0 –
200 15 5 SD SF 1 2593.6 712717.0 0.01 5 934.9 12154.6 – 3 798.1 245763.0 0.00 5 673.4 39953.2 –
200 15 10 DD DF 2 1219.3 264328.5 0.03 5 360.7 1327.8 – 1 958.1 291938.0 0.04 5 219.9 101.2 –
200 15 10 DD SF 0 – – 1.37 4 2133.8 18597.5 0.22 1 2559.0 700171.0 0.04 5 240.0 1349.4 –
200 15 10 SD DF 1 2136.4 631927.0 0.14 5 830.7 4560.4 – 0 – – 0.05 5 275.1 2232.8 –
200 15 10 SD SF 0 – – 0.55 5 1927.0 68226.4 – 5 757.2 141809.8 – 5 565.5 10755.2 –
200 15 15 DD DF 1 1386.2 114121.0 0.02 5 947.5 3190.6 – 1 1195.7 415905.0 0.03 5 221.4 514.8 –
200 15 15 DD SF 1 2910.5 194040.0 1.10 4 1720.8 13740.5 0.01 1 1176.9 140399.0 0.04 5 422.2 3812.4 –
200 15 15 SD DF 1 3025.9 781870.0 0.03 5 1367.0 3352.8 – 1 267.0 61281.0 0.02 5 207.2 1168.0 –
200 15 15 SD SF 0 – – 0.40 4 2713.9 92533.5 0.06 4 681.2 126569.2 0.02 5 634.2 16261.6 –
200 15 20 DD DF 3 1862.2 217406.7 1.09 5 1536.8 12738.2 – 3 839.8 259242.7 0.04 5 347.0 499.0 –
200 15 20 DD SF 0 – – 0.35 5 2394.3 30438.8 – 2 1453.7 518522.5 0.02 5 211.3 1686.2 –
200 15 20 SD DF 0 – – 1.00 5 1859.3 5427.8 – 3 507.2 112870.0 0.02 5 243.5 1470.8 –
200 15 20 SD SF 0 – – 0.55 5 1952.3 52061.8 – 5 1133.6 228909.8 – 5 522.1 6484.2 –
Average 465.1 110741.6 0.40 467.7 7669.3 0.09 311.2 93475.1 0.03 121.9 1987.3 –
Total 173 237 194 240
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Table 3: Results obtained by STD, 3LF, STD+ and 3LF+ for balanced instances with |T | = 30.
STD 3LF STD+ 3LF+

instancegroup opt time nodes gap opt time nodes gap opt time nodes gap opt time nodes gap
50 30 5 DD DF 0 – – 11.15 2 3273.6 10868.5 6.29 5 276.1 90345.0 – 5 428.8 1456.6 –
50 30 5 DD SF 0 – – 16.96 0 – – 9.70 3 884.3 241763.0 0.01 5 1185.7 7318.2 –
50 30 5 SD DF 0 – – 9.27 0 – – 7.07 5 306.6 106711.8 – 5 1009.1 8735.4 –
50 30 5 SD SF 0 – – 14.98 0 – – 10.44 1 778.7 83831.0 0.24 5 1537.7 31528.2 –
50 30 10 DD DF 0 – – 9.72 0 – – 5.25 5 121.6 9546.2 – 5 489.8 3162.6 –
50 30 10 DD SF 0 – – 11.91 0 – – 8.12 5 150.5 28373.8 – 5 433.0 1025.2 –
50 30 10 SD DF 0 – – 11.96 0 – – 7.63 5 136.3 24732.8 – 5 325.6 1207.6 –
50 30 10 SD SF 0 – – 10.53 0 – – 8.67 5 113.0 11270.4 – 5 365.3 1901.6 –
50 30 15 DD DF 0 – – 9.74 0 – – 2.07 5 111.5 11914.8 – 5 238.1 540.4 –
50 30 15 DD SF 0 – – 8.91 0 – – 6.78 5 106.7 21797.0 – 5 206.7 224.8 –
50 30 15 SD DF 0 – – 8.92 0 – – 3.93 5 117.0 13103.8 – 5 198.5 467.2 –
50 30 15 SD SF 0 – – 8.23 0 – – 6.24 5 210.3 71703.6 – 5 166.6 3006.8 –
50 30 20 DD DF 0 – – 7.95 0 – – 4.30 5 142.8 15597.4 – 5 206.4 1606.4 –
50 30 20 DD SF 0 – – 6.47 0 – – 5.47 5 103.8 9378.8 – 5 155.8 3072.8 –
50 30 20 SD DF 0 – – 7.68 0 – – 4.59 5 122.4 11193.2 – 5 143.4 299.0 –
50 30 20 SD SF 0 – – 4.06 0 – – 5.51 5 150.0 46191.6 – 5 121.3 487.8 –
100 30 5 DD DF 0 – – 25.94 0 – – 15.30 0 – – 1.86 0 – – 1.58
100 30 5 DD SF 0 – – 26.29 0 – – 17.55 0 – – 5.14 0 – – 2.90
100 30 5 SD DF 0 – – 19.12 0 – – 16.30 0 – – 1.42 0 – – 1.49
100 30 5 SD SF 0 – – 26.68 0 – – 17.68 0 – – 4.31 0 – – 2.51
100 30 10 DD DF 0 – – 28.45 0 – – 15.95 0 – – 2.01 0 – – 2.83
100 30 10 DD SF 0 – – 28.35 0 – – 18.06 0 – – 3.85 0 – – 3.17
100 30 10 SD DF 0 – – 25.74 0 – – 17.79 0 – – 2.31 0 – – 3.70
100 30 10 SD SF 0 – – 27.43 0 – – 18.30 0 – – 3.40 0 – – 5.17
100 30 15 DD DF 0 – – 25.32 0 – – 14.51 2 2012.8 192681.0 1.60 0 – – 1.96
100 30 15 DD SF 0 – – 25.26 0 – – 16.99 0 – – 1.01 0 – – 1.49
100 30 15 SD DF 0 – – 22.61 0 – – 15.95 0 – – 2.26 0 – – 3.76
100 30 15 SD SF 0 – – 22.57 0 – – 17.06 0 – – 1.46 0 – – 0.88
100 30 20 DD DF 0 – – 22.77 0 – – 13.68 2 1965.8 253676.5 1.84 0 – – 1.18
100 30 20 DD SF 0 – – 24.26 0 – – 16.78 0 – – 0.23 0 – – 0.47
100 30 20 SD DF 0 – – 21.11 0 – – 13.46 0 – – 1.16 0 – – 0.94
100 30 20 SD SF 0 – – 19.42 0 – – 14.48 2 2077.0 167045.0 0.99 2 3135.6 1133.0 0.60
200 30 5 DD DF 0 – – 30.30 0 – – 25.68 0 – – 7.69 0 – – 16.27
200 30 5 DD SF 0 – – 33.46 0 – – 30.70 0 – – 10.65 0 – – 21.83
200 30 5 SD DF 0 – – 28.16 0 – – 22.27 0 – – 8.96 0 – – 10.19
200 30 5 SD SF 0 – – 30.82 0 – – 23.63 0 – – 9.09 0 – – 14.94
200 30 10 DD DF 0 – – 34.76 0 – – 22.42 0 – – 10.94 0 – – 12.81
200 30 10 DD SF 0 – – 34.94 0 – – 22.73 0 – – 13.39 0 – – 12.75
200 30 10 SD DF 0 – – 32.61 0 – – 25.91 0 – – 11.96 0 – – 12.81
200 30 10 SD SF 0 – – 34.11 0 – – 34.22 0 – – 12.02 0 – – 20.20
200 30 15 DD DF 0 – – 34.33 0 – – 23.61 0 – – 10.18 0 – – 12.13
200 30 15 DD SF 0 – – 36.14 0 – – 24.33 0 – – 12.17 0 – – 13.83
200 30 15 SD DF 0 – – 32.98 0 – – 26.72 0 – – 10.62 0 – – 13.57
200 30 15 SD SF 0 – – 33.59 0 – – 27.08 0 – – 10.94 0 – – 13.88
200 30 20 DD DF 0 – – 33.19 0 – – 23.16 0 – – 8.65 0 – – 10.73
200 30 20 DD SF 0 – – 35.01 0 – – 25.51 0 – – 10.29 0 – – 13.68
200 30 20 SD DF 0 – – 31.23 0 – – 25.88 0 – – 8.28 0 – – 11.21
200 30 20 SD SF 0 – – 32.68 0 – – 26.95 0 – – 10.41 0 – – 13.51
Average – – 22.46 3273.6 10868.5 16.10 520.4 74255.6 5.92 608.7 3951.4 8.09
Total 0 2 80 82
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Table 4: Results obtained by STD, 3LF, STD+ and 3LF+ for unbalanced instances with |T | = 30.
STD 3LF STD+ 3LF+

instancegroup opt time nodes gap opt time nodes gap opt time nodes gap opt time nodes gap
50 30 5 DD DF 0 – – 0.79 5 1612.7 6601.8 – 5 256.9 96907.0 – 5 143.6 37.8 –
50 30 5 DD SF 0 – – 7.35 2 2868.1 26976.5 2.27 5 791.5 290772.0 – 5 289.4 4263.8 –
50 30 5 SD DF 4 2545.6 555166.8 0.53 5 1098.4 10613.6 – 5 374.9 201810.0 – 5 241.5 1001.2 –
50 30 5 SD SF 0 – – 3.31 3 2440.1 37522.7 7.19 5 370.0 65685.2 – 5 235.7 2036.4 –
50 30 10 DD DF 0 – – 7.85 2 3014.9 12211.5 4.05 5 272.7 64824.2 – 5 217.2 627.0 –
50 30 10 DD SF 0 – – 13.12 0 – – 6.75 5 883.4 208723.2 – 5 314.9 1522.8 –
50 30 10 SD DF 0 – – 7.57 2 2454.3 19436.0 5.02 5 389.0 114201.0 – 5 220.7 1394.8 –
50 30 10 SD SF 0 – – 10.35 0 – – 5.62 4 771.0 184995.8 0.82 5 382.6 4983.6 –
50 30 15 DD DF 0 – – 10.15 0 – – 3.83 5 138.0 22171.4 – 5 237.9 821.6 –
50 30 15 DD SF 0 – – 9.30 0 – – 7.09 5 296.3 53832.4 – 5 287.2 3821.8 –
50 30 15 SD DF 0 – – 10.25 2 2935.3 42355.0 4.62 5 145.3 31264.8 – 5 200.9 795.8 –
50 30 15 SD SF 0 – – 7.92 0 – – 4.64 5 321.3 72995.8 – 5 259.8 1517.0 –
50 30 20 DD DF 0 – – 8.97 0 – – 5.07 5 112.8 10728.0 – 5 182.5 1943.0 –
50 30 20 DD SF 0 – – 6.28 0 – – 5.57 5 113.3 24250.0 – 5 171.0 292.4 –
50 30 20 SD DF 0 – – 7.65 0 – – 3.94 5 119.7 13094.6 – 5 144.7 611.6 –
50 30 20 SD SF 0 – – 3.72 0 – – 3.85 5 141.1 25953.2 – 5 103.5 480.0 –
100 30 5 DD DF 0 – – 15.34 0 – – 8.11 0 – – 0.04 5 1382.3 2476.2 –
100 30 5 DD SF 0 – – 22.41 0 – – 11.82 0 – – 0.50 0 – – 0.27
100 30 5 SD DF 0 – – 13.82 0 – – 10.46 0 – – 0.25 4 2193.1 4393.8 0.05
100 30 5 SD SF 0 – – 19.96 0 – – 11.18 0 – – 0.71 2 2827.0 21253.0 0.63
100 30 10 DD DF 0 – – 22.80 0 – – 11.52 0 – – 0.44 5 2228.8 2495.6 –
100 30 10 DD SF 0 – – 24.68 0 – – 15.37 0 – – 3.28 0 – – 0.35
100 30 10 SD DF 0 – – 23.24 0 – – 12.74 0 – – 0.70 2 2492.5 2952.5 0.35
100 30 10 SD SF 0 – – 24.65 0 – – 11.87 0 – – 2.15 0 – – 2.54
100 30 15 DD DF 0 – – 21.22 0 – – 12.92 0 – – 0.88 1 2364.2 910.0 0.18
100 30 15 DD SF 0 – – 24.14 0 – – 14.87 0 – – 4.60 0 – – 0.54
100 30 15 SD DF 0 – – 17.84 0 – – 11.82 0 – – 1.63 2 2056.6 4933.0 0.38
100 30 15 SD SF 0 – – 22.25 0 – – 12.42 0 – – 4.56 0 – – 0.82
100 30 20 DD DF 0 – – 18.34 0 – – 12.17 0 – – 1.73 2 2744.5 8036.0 0.43
100 30 20 DD SF 0 – – 20.47 0 – – 14.64 0 – – 4.79 0 – – 0.34
100 30 20 SD DF 0 – – 19.04 0 – – 13.03 0 – – 1.19 1 2085.7 1313.0 0.18
100 30 20 SD SF 0 – – 20.18 0 – – 13.40 0 – – 4.47 0 – – 0.58
200 30 5 DD DF 0 – – 27.67 0 – – 18.12 0 – – 7.36 0 – – 10.01
200 30 5 DD SF 0 – – 27.42 0 – – 26.58 0 – – 4.58 0 – – 15.01
200 30 5 SD DF 0 – – 27.15 0 – – 22.12 0 – – 7.71 0 – – 11.79
200 30 5 SD SF 0 – – 28.38 0 – – 24.10 0 – – 1.74 0 – – 6.67
200 30 10 DD DF 0 – – 28.79 0 – – 20.19 0 – – 8.29 0 – – 7.52
200 30 10 DD SF 0 – – 32.04 0 – – 23.73 0 – – 9.86 0 – – 9.44
200 30 10 SD DF 0 – – 30.32 0 – – 23.26 0 – – 8.25 0 – – 10.52
200 30 10 SD SF 0 – – 31.41 0 – – 23.63 0 – – 9.34 0 – – 10.97
200 30 15 DD DF 0 – – 28.95 0 – – 20.86 0 – – 9.85 0 – – 8.66
200 30 15 DD SF 0 – – 31.66 0 – – 23.85 0 – – 10.79 0 – – 10.10
200 30 15 SD DF 0 – – 29.29 0 – – 20.29 0 – – 9.81 0 – – 7.71
200 30 15 SD SF 0 – – 30.72 0 – – 23.22 0 – – 10.00 0 – – 9.46
200 30 20 DD DF 0 – – 28.88 0 – – 18.99 0 – – 9.53 0 – – 7.15
200 30 20 DD SF 0 – – 31.52 0 – – 22.14 0 – – 11.31 0 – – 10.19
200 30 20 SD DF 0 – – 28.30 0 – – 21.95 0 – – 9.29 0 – – 9.39
200 30 20 SD SF 0 – – 30.67 0 – – 22.83 0 – – 11.10 0 – – 9.22
Average 2545.6 555166.8 19.14 2346.3 22245.3 13.56 343.6 92638.0 5.20 960.3 2996.5 5.38
Total 4 21 79 104
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6.4 Results analyzing the effectiveness of preprocessing and multi-start ran-
domized bottom-up dynamic programming-based heuristic

Tables 5-8 summarize the computational experiments performed to assess the effectiveness of the proposed
preprocessing and multi-start randomized bottom-up dynamic programming-based heuristic, and how their
combination compare against solely using the multi-commodity formulation. Results are displayed for the
multi-commodity formulation (MC), the heuristic (DPH), and the combination of the heuristic with the
preprocessed multi-commodity formulation (DPH-pMC).

In each of these tables, the first column represents the instance group. Columns 2-6 give, for MC,
the average best-encountered solution value (best), the number of instances solved to optimality (opt), the
average time in seconds (time), and the average number of nodes (nodes) for the instances solved to optimality
as well as the average open gap (gap) for the unsolved instances. Columns 7-10 present, for DPH, the best
and average solution values (considering the itmax executions), the time in seconds and the deviation from
the best known solution value (gapb∗), given as gapb∗ = 100 × best−b∗

b∗ , where b∗ denotes the best known
solution value. Columns 11-15 give, for DPH-pMC, the best-encountered solution value (best), the number
of instances solved to optimality (opt), the average time in seconds (time), and the average number of nodes
(nodes) for the instances solved to optimality, the average open gap (gap) for the unsolved instances, and
the percentual reduction considering the potential variables for reduction (red). This last value is calculated
as red = 100× np

pot , where np is the number of removed variables using preprocessing and pot is the number

of potential variables to be removed, i.e., pot = |R|
∑|T |
k=1(|T | − k) = |R| × |T |×(|T |−1)

2 .
Table 5 shows the results using MC, DPH and DPH-pMC for the balanced instances with |T | = 15.

All instances were solved to optimality using both MC and DPH-pMC, with the remark that DPH-pMC
presents lower average times for all but one instance group. The average number of nodes is very similar for
MC and DPH-pMC, with nearly all of them being at most one. DPH achieved solutions with an average
gap of 6.4% in 0.8 seconds on average.

Table 6 displays the results for unbalanced instances with |T | = 15. All instances were solved using MC
and DPH-pMC. DPH-pMC presents lower average times and similar averages for the number of nodes when
compared to MC. Note that MC reaches lower average times for only 12 instance groups. DPH achieved
solutions with an average gap of 4.7% in 0.8 seconds on average.

Table 7 exhibits the results for balanced instances with |T | = 30. All instances were solved using MC and
DPH-pMC, with DPH-pMC presenting lower average times. Differently from what happened to the instances
with 15 periods, the differences in average times for these instances is very considerable. MC only achieved
lower average times for two instance groups. For 14 instance groups, the average times of DPH-pMC were
less than half of those of MC. MC and DPH-pMC present similar averages for the number of nodes. DPH
achieved solutions with an average gap of 8.9% in 1.5 seconds on average.

Table 8 summarizes the results for unbalanced instances with |T | = 30. DPH-pMC solved all the 240
instances to optimality, while 10 of them remained unsolved when using MC. It can be observed that all
instances which were not solved by MC have |R| = 200. Considering the instances which could be solved
to optimality by both formulations, DPH-pMC presents lower average times. Note that MC could not
finish solving the linear relaxation in one instance of group 200 30 10 SD DF , which explains the 100%
gap. Additionally, MC could not solve any of the instances in group 200 30 20 DD SF to optimality. The
average number of nodes was similar for MC and DPH-pMC. DPH achieved solutions with an average gap
of 6.7% in 1.5 seconds on average.
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Table 5: Results obtained by MC and DPH-pMC for balanced instances with |T | = 15.
MC DPH DPH-pMC

instancegroup best opt time nodes gap best avg time gapb∗ best opt time nodes gap red
50 15 5 DD DF 178781.0 5 0.9 0.0 – 184493.0 185434.3 0.5 3.2 178781.0 5 0.9 0.0 – 62.1
50 15 5 DD SF 176582.2 5 0.9 0.0 – 185734.5 188182.1 0.5 5.2 176582.2 5 1.0 0.0 – 56.0
50 15 5 SD DF 177723.0 5 0.9 0.0 – 184359.6 186141.2 0.5 3.7 177723.0 5 1.0 0.0 – 56.1
50 15 5 SD SF 186936.5 5 1.6 0.8 – 195966.8 199006.7 0.5 4.9 186936.5 5 1.6 0.8 – 45.3
50 15 10 DD DF 203922.7 5 1.2 0.0 – 209584.1 211410.9 0.5 2.8 203922.7 5 1.0 0.0 – 63.4
50 15 10 DD SF 211618.1 5 1.3 0.0 – 218486.1 220861.0 0.5 3.3 211618.1 5 1.1 0.0 – 56.6
50 15 10 SD DF 204215.4 5 1.4 0.0 – 209873.2 211822.2 0.5 2.8 204215.4 5 1.0 0.0 – 56.4
50 15 10 SD SF 227013.2 5 1.3 0.0 – 233924.8 235590.8 0.5 3.0 227013.2 5 1.2 0.0 – 45.5
50 15 15 DD DF 224337.5 5 1.2 0.0 – 229290.7 230559.4 0.5 2.2 224337.5 5 0.8 0.0 – 62.5
50 15 15 DD SF 229780.6 5 1.2 0.0 – 240579.5 242858.4 0.5 4.7 229780.6 5 0.9 0.0 – 51.7
50 15 15 SD DF 222972.6 5 1.1 0.0 – 228627.7 229987.9 0.6 2.5 222972.6 5 0.9 0.0 – 53.3
50 15 15 SD SF 239593.8 5 1.2 0.0 – 248231.3 250586.2 0.6 3.6 239593.8 5 0.9 0.0 – 46.5
50 15 20 DD DF 247537.1 5 0.9 0.0 – 255933.1 257977.4 0.6 3.4 247537.1 5 0.8 0.0 – 64.1
50 15 20 DD SF 251127.4 5 1.0 0.0 – 261344.8 264410.6 0.6 4.1 251127.4 5 0.8 0.0 – 56.3
50 15 20 SD DF 255120.9 5 0.9 0.0 – 262770.3 264394.2 0.6 3.0 255120.9 5 0.8 0.0 – 61.6
50 15 20 SD SF 258538.2 5 1.0 0.0 – 268121.7 271474.9 0.6 3.7 258538.2 5 0.8 0.0 – 47.1
100 15 5 DD DF 257450.6 5 2.1 0.2 – 271103.0 274256.9 0.7 5.3 257450.6 5 1.8 0.2 – 63.1
100 15 5 DD SF 258441.1 5 3.1 0.6 – 273882.3 279822.2 0.7 6.0 258441.1 5 2.6 0.6 – 55.0
100 15 5 SD DF 250053.2 5 2.6 0.4 – 265333.5 269227.8 0.7 6.1 250053.2 5 2.0 0.4 – 56.3
100 15 5 SD SF 273377.8 5 4.6 1.0 – 289682.5 297755.5 0.7 6.0 273377.8 5 3.4 1.0 – 47.2
100 15 10 DD DF 287589.0 5 2.4 0.0 – 306051.9 309919.3 0.7 6.4 287589.0 5 1.9 0.0 – 61.8
100 15 10 DD SF 295625.5 5 2.6 0.2 – 320989.6 327593.5 0.8 8.6 295625.5 5 2.1 0.2 – 55.1
100 15 10 SD DF 286684.3 5 2.2 0.0 – 307282.6 311062.5 0.8 7.2 286684.3 5 1.9 0.0 – 56.2
100 15 10 SD SF 305063.7 5 3.5 0.8 – 329739.0 338807.2 0.8 8.1 305063.7 5 3.3 0.8 – 48.0
100 15 15 DD DF 315099.2 5 3.0 0.0 – 340864.6 345628.3 0.8 8.2 315099.2 5 2.2 0.0 – 63.7
100 15 15 DD SF 332588.2 5 3.3 0.0 – 356873.0 363993.0 0.8 7.3 332588.2 5 2.6 0.0 – 54.6
100 15 15 SD DF 311527.6 5 3.2 0.0 – 333838.3 337887.6 0.8 7.2 311527.6 5 2.5 0.0 – 53.5
100 15 15 SD SF 339451.5 5 4.3 0.6 – 366118.4 375251.4 0.8 7.9 339451.5 5 3.7 0.6 – 46.6
100 15 20 DD DF 352544.1 5 2.8 0.2 – 375571.8 379842.0 0.8 6.5 352544.1 5 2.2 0.2 – 61.3
100 15 20 DD SF 364628.0 5 2.9 0.0 – 385364.6 392673.2 0.8 5.7 364628.0 5 2.6 0.0 – 54.9
100 15 20 SD DF 349764.8 5 2.9 0.0 – 369510.7 373736.9 0.8 5.6 349764.8 5 2.3 0.0 – 56.9
100 15 20 SD SF 363580.4 5 3.2 0.0 – 384890.3 393956.0 0.8 5.9 363580.4 5 2.5 0.0 – 48.2
200 15 5 DD DF 373598.8 5 37.5 1.4 – 399634.4 403589.8 1.1 7.0 373598.8 5 16.4 1.4 – 61.9
200 15 5 DD SF 398678.4 5 24.8 4.6 – 431384.0 439316.8 1.2 8.2 398678.4 5 26.8 4.6 – 53.6
200 15 5 SD DF 378962.9 5 4.8 0.0 – 409214.3 415681.9 1.2 8.0 378962.9 5 4.3 0.0 – 57.8
200 15 5 SD SF 399004.6 5 30.5 7.4 – 432607.9 442556.3 1.2 8.4 399004.6 5 29.5 7.4 – 46.1
200 15 10 DD DF 428573.9 5 6.4 0.2 – 463247.5 468906.7 1.2 8.1 428573.9 5 5.4 0.2 – 61.2
200 15 10 DD SF 437410.8 5 5.3 0.0 – 483698.3 493814.7 1.2 10.6 437410.8 5 4.6 0.0 – 54.4
200 15 10 SD DF 422430.2 5 4.6 0.0 – 460606.6 465490.0 1.2 9.0 422430.2 5 4.2 0.0 – 57.4
200 15 10 SD SF 436691.7 5 5.7 0.0 – 485388.8 496283.9 1.2 11.2 436691.7 5 5.1 0.0 – 46.0
200 15 15 DD DF 468277.5 5 5.4 0.0 – 506805.0 513336.9 1.2 8.2 468277.5 5 4.8 0.0 – 62.6
200 15 15 DD SF 470491.5 5 5.8 0.0 – 513548.7 526556.1 1.2 9.2 470491.5 5 5.0 0.0 – 54.1
200 15 15 SD DF 470951.5 5 17.5 1.0 – 510964.1 517099.6 1.2 8.5 470951.5 5 13.6 1.0 – 57.7
200 15 15 SD SF 477258.7 5 5.6 0.0 – 530345.5 542446.8 1.2 11.1 477258.7 5 5.1 0.0 – 44.1
200 15 20 DD DF 504939.6 5 6.9 0.0 – 542696.9 548928.9 1.2 7.5 504939.6 5 5.9 0.0 – 61.8
200 15 20 DD SF 536448.5 5 6.8 0.0 – 587327.0 597830.2 1.2 9.5 536448.5 5 6.3 0.0 – 54.8
200 15 20 SD DF 508508.5 5 12.4 0.6 – 545859.8 551704.5 1.2 7.3 508508.5 5 11.1 0.6 – 55.8
200 15 20 SD SF 540006.2 5 22.5 1.8 – 591287.8 604311.5 1.2 9.5 540006.2 5 18.2 1.0 – 47.1
Average 5.6 0.5 – 0.8 6.4 4.6 0.4 – 55.1
Total 240 240
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Table 6: Results obtained by MC and DPH-pMC for unbalanced instances with |T | = 15.
MC DPH DPH-pMC

instancegroup best opt time nodes gap best avg time gapb∗ best opt time nodes gap red
50 15 5 DD DF 169377.4 5 0.9 0.0 – 173687.7 174894.4 0.5 2.6 169377.4 5 0.9 0.0 – 62.1
50 15 5 DD SF 166826.0 5 0.9 0.0 – 172447.6 174763.2 0.5 3.4 166826.0 5 1.0 0.0 – 56.0
50 15 5 SD DF 168797.0 5 0.8 0.0 – 174562.1 175478.0 0.5 3.4 168797.0 5 0.9 0.0 – 56.1
50 15 5 SD SF 175296.4 5 2.1 1.0 – 181295.5 183633.4 0.5 3.4 175296.4 5 2.2 1.0 – 45.3
50 15 10 DD DF 196472.0 5 0.9 0.0 – 203630.9 205147.5 0.5 3.6 196472.0 5 0.9 0.0 – 63.4
50 15 10 DD SF 199116.1 5 1.0 0.2 – 204951.1 207234.2 0.5 2.9 199116.1 5 1.1 0.2 – 56.6
50 15 10 SD DF 195540.5 5 0.8 0.0 – 201959.3 202976.6 0.5 3.3 195540.5 5 0.9 0.0 – 56.4
50 15 10 SD SF 213232.5 5 1.4 0.8 – 220455.8 222335.0 0.6 3.3 213232.5 5 1.9 0.8 – 45.5
50 15 15 DD DF 217119.7 5 0.9 0.0 – 225328.5 227096.1 0.6 3.8 217119.7 5 0.8 0.0 – 62.5
50 15 15 DD SF 222164.8 5 1.0 0.2 – 228565.8 231042.9 0.6 2.9 222164.8 5 0.8 0.2 – 51.7
50 15 15 SD DF 217499.8 5 0.9 0.0 – 224194.1 225708.4 0.6 3.1 217499.8 5 0.8 0.0 – 53.3
50 15 15 SD SF 232679.2 5 1.1 0.2 – 240566.0 243253.1 0.6 3.4 232679.2 5 0.9 0.2 – 46.5
50 15 20 DD DF 245279.1 5 0.9 0.0 – 255114.2 257156.8 0.6 4.0 245279.1 5 0.8 0.0 – 64.1
50 15 20 DD SF 249786.3 5 1.0 0.0 – 257564.8 260053.6 0.6 3.1 249786.3 5 0.8 0.0 – 56.3
50 15 20 SD DF 253839.5 5 1.0 0.0 – 261452.6 263384.7 0.6 3.0 253839.5 5 0.8 0.0 – 61.6
50 15 20 SD SF 258041.0 5 1.0 0.0 – 267538.1 270195.3 0.6 3.7 258041.0 5 0.9 0.0 – 47.1
100 15 5 DD DF 243090.8 5 2.1 0.0 – 252872.9 254735.8 0.7 4.0 243090.8 5 1.8 0.0 – 63.1
100 15 5 DD SF 242367.0 5 5.3 1.0 – 253282.0 257306.2 0.7 4.5 242367.0 5 5.0 1.0 – 55.0
100 15 5 SD DF 234854.7 5 2.1 0.2 – 248561.9 250284.6 0.8 5.8 234854.7 5 1.9 0.2 – 56.3
100 15 5 SD SF 256258.7 5 5.3 1.0 – 268781.5 272816.6 0.8 4.9 256258.7 5 5.3 1.0 – 47.2
100 15 10 DD DF 271470.0 5 2.2 0.2 – 283902.7 288124.1 0.7 4.6 271470.0 5 1.9 0.2 – 61.8
100 15 10 DD SF 280634.8 5 2.6 0.2 – 294801.4 299741.9 0.8 5.1 280634.8 5 2.2 0.2 – 55.1
100 15 10 SD DF 270399.5 5 2.0 0.0 – 284104.0 287013.8 0.8 5.1 270399.5 5 1.8 0.0 – 56.2
100 15 10 SD SF 289608.0 5 5.0 1.0 – 304635.4 310745.9 0.8 5.2 289608.0 5 3.2 1.0 – 48.0
100 15 15 DD DF 298589.2 5 2.0 0.0 – 311715.4 315344.5 0.8 4.4 298589.2 5 1.7 0.0 – 63.7
100 15 15 DD SF 317730.3 5 2.2 0.0 – 331021.8 336841.0 0.8 4.2 317730.3 5 2.2 0.0 – 54.6
100 15 15 SD DF 293950.1 5 2.0 0.0 – 308703.3 312153.8 0.8 5.0 293950.1 5 1.8 0.0 – 53.5
100 15 15 SD SF 321460.9 5 4.3 1.0 – 336355.5 342644.2 0.8 4.6 321460.9 5 3.2 1.0 – 46.6
100 15 20 DD DF 341631.2 5 2.0 0.0 – 357838.6 361735.8 0.8 4.7 341631.2 5 1.7 0.0 – 61.3
100 15 20 DD SF 356235.2 5 3.2 0.6 – 372378.9 377566.4 0.8 4.5 356235.2 5 2.8 0.6 – 54.9
100 15 20 SD DF 336504.2 5 2.1 0.0 – 351676.0 355794.1 0.8 4.5 336504.2 5 1.8 0.0 – 56.9
100 15 20 SD SF 348827.7 5 4.0 1.0 – 363300.8 370264.8 0.8 4.2 348827.7 5 3.3 1.0 – 48.2
200 15 5 DD DF 355263.6 5 5.1 0.0 – 375261.2 378990.9 1.2 5.6 355263.6 5 4.9 0.0 – 61.9
200 15 5 DD SF 378131.2 5 16.2 2.2 – 398685.2 404177.8 1.2 5.4 378131.2 5 17.9 2.2 – 53.6
200 15 5 SD DF 360583.7 5 4.5 0.0 – 383390.7 388747.3 1.2 6.3 360583.7 5 4.6 0.0 – 57.8
200 15 5 SD SF 377067.9 5 18.7 2.0 – 401018.3 407509.5 1.2 6.4 377067.9 5 18.0 1.6 – 46.1
200 15 10 DD DF 403827.7 5 4.9 0.0 – 426410.3 429850.4 1.2 5.6 403827.7 5 4.3 0.0 – 61.2
200 15 10 DD SF 416943.7 5 17.3 4.0 – 440795.2 446803.4 1.2 5.7 416943.7 5 20.9 4.0 – 54.4
200 15 10 SD DF 398810.8 5 24.8 1.2 – 423256.3 426822.5 1.2 6.1 398810.8 5 13.5 1.2 – 57.4
200 15 10 SD SF 414113.2 5 30.1 11.0 – 439086.7 445643.7 1.2 6.0 414113.2 5 30.6 18.0 – 46.0
200 15 15 DD DF 436027.1 5 7.2 0.2 – 460854.2 465466.3 1.2 5.7 436027.1 5 6.1 0.2 – 62.6
200 15 15 DD SF 443242.5 5 20.6 3.4 – 469023.2 475648.5 1.2 5.8 443242.5 5 23.4 3.4 – 54.1
200 15 15 SD DF 436966.3 5 6.9 0.4 – 464004.1 469006.6 1.2 6.2 436966.3 5 5.2 0.4 – 57.7
200 15 15 SD SF 449052.5 5 25.1 16.6 – 480337.4 487077.1 1.2 7.0 449052.5 5 21.2 7.4 – 44.1
200 15 20 DD DF 473455.7 5 15.1 0.2 – 503505.2 508702.9 1.2 6.3 473455.7 5 20.7 0.8 – 61.8
200 15 20 DD SF 507914.0 5 11.3 1.0 – 539278.4 548248.4 1.2 6.2 507914.0 5 9.7 0.6 – 54.8
200 15 20 SD DF 479440.7 5 26.9 1.8 – 510544.4 516478.1 1.2 6.5 479440.7 5 18.4 1.4 – 55.8
200 15 20 SD SF 506277.9 5 24.0 9.0 – 540235.5 549489.1 1.2 6.7 506277.9 5 18.8 2.6 – 47.1
Average 6.7 1.3 – 0.8 4.7 6.2 1.1 – 55.1
Total 240 240
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Table 7: Results obtained by MC and DPH-pMC for balanced instances with |T | = 30.
MC DPH DPH-pMC

instancegroup best opt time nodes gap best avg time gapb∗ best opt time nodes gap red
50 30 5 DD DF 338701.3 5 7.7 0.2 – 362718.4 368521.6 0.8 7.1 338701.3 5 4.2 0.2 – 76.3
50 30 5 DD SF 369959.3 5 77.9 3.8 – 390501.8 399648.0 0.8 5.6 369959.3 5 60.4 5.8 – 72.7
50 30 5 SD DF 339759.9 5 12.8 0.6 – 360490.3 366564.0 0.8 6.1 339759.9 5 6.8 0.6 – 74.9
50 30 5 SD SF 375954.2 5 83.1 18.0 – 395406.3 407832.0 0.8 5.2 375954.2 5 85.6 28.8 – 61.3
50 30 10 DD DF 392039.9 5 13.8 0.0 – 418206.7 424044.4 0.8 6.7 392039.9 5 6.4 0.0 – 76.5
50 30 10 DD SF 407797.4 5 14.8 0.0 – 442710.1 453062.3 0.8 8.6 407797.4 5 6.8 0.0 – 72.1
50 30 10 SD DF 393979.1 5 14.0 0.0 – 421496.3 427143.8 0.8 7.0 393979.1 5 6.0 0.0 – 72.1
50 30 10 SD SF 429701.0 5 27.4 0.6 – 464157.9 476830.0 0.9 8.0 429701.0 5 15.2 0.6 – 62.1
50 30 15 DD DF 435577.6 5 13.0 0.2 – 465661.4 472284.2 0.9 6.9 435577.6 5 7.3 0.2 – 76.2
50 30 15 DD SF 453096.7 5 11.6 0.0 – 489517.7 500375.5 0.9 8.0 453096.7 5 6.5 0.0 – 73.4
50 30 15 SD DF 432574.3 5 15.0 0.4 – 465765.4 473012.1 0.9 7.7 432574.3 5 7.9 0.4 – 72.8
50 30 15 SD SF 455741.0 5 11.7 0.0 – 494557.6 506917.0 0.9 8.5 455741.0 5 7.3 0.0 – 60.0
50 30 20 DD DF 472504.6 5 9.2 0.0 – 504575.3 510688.4 0.9 6.8 472504.6 5 6.0 0.0 – 76.3
50 30 20 DD SF 503023.8 5 10.1 0.0 – 539547.1 550921.3 0.9 7.2 503023.8 5 6.1 0.0 – 74.2
50 30 20 SD DF 475292.7 5 8.8 0.0 – 508916.8 515947.2 0.9 7.1 475292.7 5 5.8 0.0 – 74.4
50 30 20 SD SF 504533.7 5 13.1 0.2 – 546303.0 557853.1 0.9 8.3 504533.7 5 8.6 0.2 – 59.8
100 30 5 DD DF 498386.9 5 81.9 1.8 – 537965.4 546695.9 1.3 7.9 498386.9 5 58.0 1.8 – 76.5
100 30 5 DD SF 526280.4 5 148.0 18.2 – 565161.1 576626.1 1.3 7.4 526280.4 5 107.8 17.6 – 71.9
100 30 5 SD DF 501113.4 5 108.2 2.6 – 543217.0 550657.1 1.3 8.4 501113.4 5 79.4 2.0 – 73.2
100 30 5 SD SF 526452.2 5 144.4 20.6 – 562327.7 578890.4 1.3 6.8 526452.2 5 170.0 48.6 – 63.1
100 30 10 DD DF 573540.1 5 21.6 0.0 – 623550.4 630947.7 1.3 8.7 573540.1 5 12.1 0.0 – 77.3
100 30 10 DD SF 614187.4 5 68.4 4.6 – 676769.3 691218.3 1.3 10.2 614187.4 5 48.1 2.2 – 71.7
100 30 10 SD DF 565162.5 5 157.3 2.2 – 616561.8 625727.2 1.3 9.1 565162.5 5 103.9 2.6 – 70.9
100 30 10 SD SF 605602.9 5 96.7 12.0 – 660288.3 682739.4 1.3 9.0 605602.9 5 71.3 10.8 – 61.9
100 30 15 DD DF 630630.6 5 50.5 0.0 – 685246.3 695455.3 1.3 8.7 630630.6 5 13.1 0.0 – 80.0
100 30 15 DD SF 665812.1 5 103.0 0.2 – 736500.9 751381.5 1.4 10.6 665812.1 5 28.7 0.2 – 72.1
100 30 15 SD DF 621037.8 5 194.3 1.0 – 675491.6 683373.1 1.4 8.8 621037.8 5 43.0 1.0 – 71.8
100 30 15 SD SF 651822.5 5 122.3 29.4 – 711095.7 738337.6 1.4 9.1 651822.5 5 79.6 21.8 – 62.5
100 30 20 DD DF 676555.6 5 36.4 0.0 – 736012.0 744644.7 1.4 8.8 676555.6 5 18.5 0.0 – 76.9
100 30 20 DD SF 710104.4 5 39.6 0.0 – 784867.0 799465.2 1.4 10.5 710104.4 5 22.2 0.0 – 71.0
100 30 20 SD DF 683630.2 5 35.7 0.0 – 743074.0 753442.6 1.4 8.7 683630.2 5 18.9 0.0 – 73.2
100 30 20 SD SF 711220.4 5 90.5 10.2 – 781146.0 805555.2 1.4 9.8 711220.4 5 59.2 3.4 – 60.8
200 30 5 DD DF 741971.6 5 83.8 3.0 – 810557.9 820845.6 2.3 9.2 741971.6 5 81.8 4.6 – 78.3
200 30 5 DD SF 756470.3 5 1265.6 77.0 – 825926.9 841833.7 2.3 9.2 756470.3 5 977.6 61.2 – 71.3
200 30 5 SD DF 741675.3 5 89.8 4.2 – 816112.5 825673.3 2.3 10.0 741675.3 5 77.1 4.2 – 73.3
200 30 5 SD SF 780264.2 5 1451.0 65.4 – 840709.5 865829.7 2.3 7.8 780264.2 5 1303.9 68.4 – 60.9
200 30 10 DD DF 847135.9 5 103.8 4.4 – 938434.1 949781.2 2.3 10.8 847135.9 5 80.1 4.4 – 77.0
200 30 10 DD SF 894079.0 5 524.1 7.6 – 1002234.7 1021132.3 2.3 12.1 894079.0 5 446.5 7.6 – 71.8
200 30 10 SD DF 851998.3 5 133.8 4.4 – 942194.5 953674.9 2.3 10.6 851998.3 5 116.1 4.8 – 74.2
200 30 10 SD SF 894647.4 5 514.9 7.2 – 991177.9 1022939.4 2.3 10.8 894647.4 5 289.5 6.8 – 63.0
200 30 15 DD DF 926834.5 5 338.1 1.2 – 1029138.0 1040510.7 2.3 11.0 926834.5 5 50.6 0.8 – 77.3
200 30 15 DD SF 947725.1 5 459.9 1.2 – 1071044.8 1092251.2 2.3 13.0 947725.1 5 103.2 1.2 – 69.6
200 30 15 SD DF 940214.5 5 351.7 2.2 – 1045404.0 1056371.8 2.3 11.2 940214.5 5 123.4 2.6 – 73.6
200 30 15 SD SF 977290.3 5 262.0 0.0 – 1090713.2 1129582.0 2.3 11.6 977290.3 5 40.5 0.0 – 60.7
200 30 20 DD DF 988005.4 5 184.5 0.6 – 1095861.9 1108400.4 2.3 10.9 988005.4 5 76.2 0.6 – 77.7
200 30 20 DD SF 1030026.3 5 189.6 0.0 – 1161879.3 1185745.1 2.4 12.8 1030026.3 5 78.5 0.0 – 71.6
200 30 20 SD DF 979052.6 5 233.8 0.6 – 1089293.3 1101685.0 2.3 11.3 979052.7 5 114.8 0.6 – 73.7
200 30 20 SD SF 1039374.6 5 166.2 0.0 – 1130762.2 1197921.5 2.4 8.8 1039374.6 5 79.0 0.0 – 63.1
Average 170.7 6.4 – 1.5 8.9 108.7 6.6 – 71.0
Total 240 240
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Table 8: Results obtained by MC and DPH-pMC for unbalanced instances with |T | = 30.
MC DPH DPH-pMC

instancegroup best opt time nodes gap best avg time gapb∗ best opt time nodes gap red
50 30 5 DD DF 318427.9 5 6.4 0.0 – 336483.7 339823.4 0.8 5.7 318427.9 5 4.3 0.0 – 76.3
50 30 5 DD SF 345570.3 5 61.7 1.6 – 360913.8 367721.7 0.8 4.5 345570.3 5 14.5 0.8 – 72.7
50 30 5 SD DF 316360.1 5 9.4 0.2 – 333803.2 339674.2 0.8 5.5 316360.1 5 5.2 0.2 – 74.9
50 30 5 SD SF 352094.6 5 104.0 25.2 – 371961.8 379128.5 0.8 5.7 352094.6 5 22.7 11.4 – 61.3
50 30 10 DD DF 373732.7 5 12.1 0.2 – 394931.6 400218.5 0.9 5.7 373732.7 5 5.8 0.2 – 76.5
50 30 10 DD SF 391861.6 5 24.5 1.2 – 415140.1 422714.6 0.9 5.9 391861.6 5 8.6 0.4 – 72.1
50 30 10 SD DF 375957.6 5 6.4 0.0 – 400071.0 404819.4 0.9 6.4 375957.6 5 4.6 0.0 – 72.1
50 30 10 SD SF 414796.8 5 22.5 10.8 – 437595.9 448016.2 0.9 5.5 414796.8 5 51.2 9.4 – 62.1
50 30 15 DD DF 426065.9 5 11.1 0.4 – 451045.5 458720.4 0.9 5.9 426065.9 5 7.1 0.4 – 76.2
50 30 15 DD SF 449340.1 5 13.0 0.4 – 478382.1 487911.0 0.9 6.5 449340.1 5 7.9 0.4 – 73.4
50 30 15 SD DF 422631.3 5 9.7 0.2 – 451760.1 458520.5 0.9 6.9 422631.3 5 6.7 0.2 – 72.8
50 30 15 SD SF 450270.2 5 15.1 0.4 – 481762.4 492309.9 0.9 7.0 450270.2 5 9.0 0.4 – 60.0
50 30 20 DD DF 470573.6 5 10.2 0.2 – 499848.2 506893.4 0.9 6.2 470573.6 5 5.6 0.2 – 76.3
50 30 20 DD SF 500931.9 5 11.5 0.2 – 536977.6 547682.1 0.9 7.2 500931.9 5 7.5 0.2 – 74.2
50 30 20 SD DF 474358.5 5 8.6 0.0 – 506004.1 513251.8 0.9 6.7 474358.5 5 5.6 0.0 – 74.4
50 30 20 SD SF 501618.9 5 9.4 0.0 – 541032.7 553791.3 0.9 7.8 501618.9 5 6.7 0.0 – 59.8
100 30 5 DD DF 468289.8 5 836.2 0.0 – 498460.1 506998.6 1.3 6.4 468289.8 5 10.9 0.0 – 76.5
100 30 5 DD SF 495677.2 5 680.2 10.6 – 523243.4 531805.5 1.3 5.6 495677.2 5 57.9 11.0 – 71.9
100 30 5 SD DF 474804.8 5 1324.3 0.4 – 507785.0 514767.0 1.3 6.9 474804.8 5 36.0 0.4 – 73.2
100 30 5 SD SF 495174.5 5 1373.6 100.6 – 519246.8 529159.4 1.3 4.8 495174.5 5 86.0 56.6 – 63.1
100 30 10 DD DF 537879.5 5 17.6 0.0 – 574666.3 581932.3 1.3 6.8 537879.5 5 10.7 0.0 – 77.3
100 30 10 DD SF 585880.3 5 85.5 6.4 – 624431.6 635490.7 1.3 6.6 585880.3 5 57.9 5.0 – 71.7
100 30 10 SD DF 529729.1 5 70.0 2.2 – 565166.5 573255.9 1.3 6.7 529729.1 5 46.6 1.8 – 70.9
100 30 10 SD SF 568114.7 5 113.8 234.2 – 604611.5 616566.5 1.3 6.4 568114.7 5 96.6 173.2 – 61.9
100 30 15 DD DF 591972.7 5 128.0 1.4 – 632603.3 639248.7 1.4 6.9 591972.7 5 62.5 1.4 – 80.0
100 30 15 DD SF 628848.7 5 72.5 23.0 – 670902.2 681860.7 1.4 6.7 628848.7 5 198.4 6.2 – 72.1
100 30 15 SD DF 577253.8 5 74.8 0.8 – 619048.3 625905.2 1.4 7.2 577253.8 5 80.1 1.0 – 71.8
100 30 15 SD SF 614820.7 5 182.3 280.2 – 657066.2 670451.3 1.4 6.9 614820.7 5 113.9 316.4 – 62.5
100 30 20 DD DF 645732.6 5 53.2 1.0 – 690564.3 699704.9 1.4 6.9 645732.6 5 22.4 0.6 – 76.9
100 30 20 DD SF 682747.8 5 77.6 1.8 – 733250.5 747422.6 1.4 7.4 682747.8 5 31.1 1.8 – 71.0
100 30 20 SD DF 650369.9 5 60.5 1.4 – 698496.7 706468.8 1.4 7.4 650369.9 5 44.3 0.6 – 73.2
100 30 20 SD SF 682534.4 5 122.5 38.6 – 737533.2 751841.5 1.4 8.1 682534.4 5 69.4 37.8 – 60.8
200 30 5 DD DF 705795.2 5 99.2 1.2 – 752181.2 759103.6 2.3 6.6 705795.2 5 73.6 0.8 – 78.3
200 30 5 DD SF 719550.3 5 305.7 15.0 – 770774.0 780736.1 2.3 7.1 719550.3 5 245.8 16.2 – 71.3
200 30 5 SD DF 704916.6 5 79.1 2.8 – 758430.7 764760.0 2.2 7.6 704916.6 5 60.9 2.0 – 73.3
200 30 5 SD SF 735354.1 5 178.4 4.0 – 764659.5 803936.7 2.3 4.0 735354.1 5 121.4 3.2 – 60.9
200 30 10 DD DF 792983.7 5 2173.7 2.2 – 856142.9 865450.7 2.4 8.0 792983.7 5 1345.3 2.2 – 77.0
200 30 10 DD SF 842862.9 4 3042.4 4.8 0.36 906003.1 918060.8 2.3 7.5 842501.6 5 2081.1 14.0 – 71.8
200 30 10 SD DF 1153974.7 4 2131.0 1.2 100.00 862047.0 872889.4 2.3 8.3 795863.1 5 1277.8 1.6 – 74.2
200 30 10 SD SF 846511.7 5 2593.1 4.6 – 890846.4 919510.2 2.3 5.2 846511.7 5 2109.5 7.4 – 63.0
200 30 15 DD DF 855959.0 5 1044.1 6.8 – 921752.6 930682.1 2.3 7.7 855959.0 5 111.3 6.4 – 77.3
200 30 15 DD SF 888864.8 5 2352.6 37.4 – 957131.4 970481.7 2.3 7.7 888864.8 5 810.0 25.4 – 69.6
200 30 15 SD DF 865785.8 5 998.4 5.2 – 935148.0 944406.6 2.3 8.0 865785.8 5 85.3 4.4 – 73.6
200 30 15 SD SF 914463.8 5 2568.4 60.0 – 967167.5 990341.7 2.4 5.8 914463.8 5 1176.3 57.8 – 60.7
200 30 20 DD DF 930124.9 5 1249.0 17.0 – 1003038.5 1012228.9 2.3 7.8 930124.9 5 174.2 29.0 – 77.7
200 30 20 DD SF 985825.3 0 – – 0.36 1061655.0 1078288.5 2.4 7.8 984800.1 5 2156.7 71.0 – 71.6
200 30 20 SD DF 923774.7 5 1284.4 2.2 – 1001824.2 1011784.4 2.3 8.4 923774.7 5 139.8 2.2 – 73.7
200 30 20 SD SF 1002248.3 2 3005.5 52.5 0.64 1081590.9 1104916.9 2.4 8.0 1001898.5 5 2448.2 105.4 – 63.1
Average 610.9 20.4 25.34 1.5 6.7 325.3 20.6 – 71.0
Total 230 240
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6.5 Graphical summary

A graphical summary of the obtained results is presented in Figures 1-4. Figures 1 and 2 depict for STD,
3LF, STD+, and 3LF+, respectively, the fraction (in percent) of the instances solved to optimality and the
average running times (in seconds). Figures 3 and 4 exhibit for MC and DPH-pMC, correspondingly, the
fraction (in percent) of the instances solved to optimality and the average running times (in seconds). For
each instance, the considered time to calculate the averages is either the time to prove optimality (if less
than the imposed time limit of 3600 seconds) or the time limit.
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(a) Instances with |T | = 15. (b) Instances with |T | = 30.

Figure 1: The fraction of the instances (in percent) solved to optimality using STD, 3LF, STD+, and 3LF+
considering all the instances with each number of retailers.
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(a) Instances with |T | = 15. (b) Instances with |T | = 30.

Figure 2: Average computational times in seconds for STD, 3LF, STD+, and 3LF+ over all instances with
each number of retailers.
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Figures 1-2 show that 3LF+ outperforms STD, STD+, and 3LF+ for all the numbers of retailers and
periods, but for the combination |T | = 30 and |R| = 200 (in this case, none of these approaches could
solve a single instance to optimality). The figures also evidence the improvements achieved using the valid
inequalities for the instances with |T | = 30.
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(a) Instances with |T | = 15. (b) Instances with |T | = 30.

Figure 3: The fraction of the instances (in percent) solved to optimality using MC and DPH-pMC considering
all the instances with each number of retailers.
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Figure 4: Average computational times in seconds for MC and DPH-pMC over all instances with each
number of retailers.

Figures 3-4 evidence the improvements of DPH-pMC over MC. Firstly, note that nearly all instances
were solved to optimality using both approaches, with an advantage for DPH-pMC considering the larger
instances with |T | = 30 and |R| = 200. Figure 4 shows that the gains achieved by DPH-pMC in the average

26



running times for the instances with |T | = 30 is very remarkable.

7 Concluding remarks

In this work, we considered the NP-hard uncapacitated three-level lot-sizing and replenishment problem
with a distribution structure (3LSPD-U). We proposed new valid inequalities, a preprocessing approach to
reduce the size of an existing multi-commodity formulation for the problem, and a multi-start randomized
bottom-up dynamic programming-based heuristic.

Computational experiments have shown that the valid inequalities can allow improvements in the bounds
and, consequently, increase the solver’s ability to solve instances to optimality when compared to the plain
mixed integer programming formulations. Additionally, the use of valid inequalities using an extended
formulation, which is larger but asymptotically equivalent to the standard one, can allow improvements
in performance over the use of valid inequalities using the standard formulation. The proposed multi-
start randomized dynamic programming-based heuristic was able to encounter solutions with low optimality
gaps (6.6% on average) within very short computational times (1.2 seconds on average). The presented
preprocessing approach has shown to be effective in reducing the size of the multi-commodity formulation.
Combined, these two methods were able to increase the number of instances solved to optimality within
the given time limit and to achieve significant reductions in the times spent to solve instances to optimality
when compared to solely using the multi-commodity formulation.
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