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Jesús A. Rodŕıgueza,b, Miguel F. Anjosb,e, Pascal Côtéd,b, Guy Desaulniersb,c
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Abstract

Maintenance of power generators is essential for reliable and efficient electricity

production. Because generators under maintenance are typically inactive, optimal

planning of maintenance activities must consider the impact of maintenance

outages on the system operation. However, in hydropower systems finding a

minimum cost maintenance schedule is a challenging optimization problem due to

the uncertainty of the water inflows and the nonlinearity of the hydroelectricity

production.

Motivated by an industrial application problem, we formulate the hydropower

maintenance scheduling problem as a two-stage stochastic program, and we

implement a parallelized Benders decomposition algorithm for its solution. We

obtain convex subproblems by approximating the hydroelectricity production

using linear inequalities and indicator variables, which account for the nonlinear

effect of the number of active generators in the solution.

For speeding up the execution of our decomposition algorithm, we tailor

and test seven techniques, including three new applications of special ordered
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sets, presolve and warm start for Benders acceleration. Given the large number

of possible configurations of these acceleration techniques, we illustrate the

application of statistical methods and computational experiments to identify

the best performing configuration, which achieved a fourfold speedup of the

decomposition algorithm. Results in an industrial setting confirm the high

scalability on the number of scenarios of our parallelized Benders implementation.

Keywords: (R) Benders decomposition, Stochastic programming,

Decomposition methods, Parallel computing, Hydroelectricity.

1. Introduction

Power producers carry out preventive maintenance activities on a regular

basis to prevent costly unplanned generation outages and to extend the lifespan

of the equipment. However, shutting down generators for maintenance tempor-

arily reduces the capacity, reliability and efficiency of the system. Therefore,

maintenance scheduling must anticipate the economic impact of maintenance

outages. In hydropower systems this impact is difficult to estimate due to the

nonlinearity of the hydroelectric generation, the uncertainty of the water inflows

and the interdependence between multiple physical variables of the system.

1.1. Operational characteristics of hydropower systems

A hydropower system is composed of powerhouses with turbine-generator

units driven by the potential and kinetic energy of water. In each powerhouse

the hydroelectric production is a nonlinear function of the number of active

generators, the turbine discharges, and the water head of the feeding reservoir

or river (see Fig. 1). We refer to this function as the Hydropower Production

Function (HPF). In operational hydropower problems the HPF has been rep-

resented by nonlinear functions (Finardi & da Silva, 2006; Arce, 2001; Catalão

et al., 2009), non-convex piecewise linear approximations (Conejo et al., 2002;

Borghetti et al., 2008), convex linear approximations (Diniz & Maceira, 2008;

Rodŕıguez et al., 2018) and smoothing splines (Séguin et al., 2016).
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Figure 1: Hydropower Production Function in a powerhouse, for different numbers of generators

and different values of turbine discharges and stored water levels.

The hydropower operation is also affected by spatial and temporal interde-

pendencies, since water discharges can feed downstream reservoirs, and current

decisions determine future costs of the system, due to the effect of the water

discharges on the stored water level. Furthermore, hydroelectric generation relies

on natural inflows from tributary rivers, snow-melt or rainfall which tend to be

difficult to predict and can exhibit large variability (Beven, 2011).

Due to the uncertainty of the natural inflows, any current hydropower

operation decision must estimate its impact on the future cost of the system,

considering the possible sequences of water inflow realizations (see Fig. 2).

Although stochastic dynamic programming can model this multi-stage decision

problem, its application is limited by the curse of dimensionality (Bertsekas,

1995). Due to this challenge, several techniques have been applied to hydropower

operation under uncertainty, such as multi-stage stochastic programming with

scenario trees (Séguin et al., 2017b), progressive hedging (Carpentier et al., 2013),

affine decision rules (Gauvin et al., 2017), dual dynamic programming (Pereira &

Pinto, 1991; Cerisola et al., 2012) and Benders decomposition with Lagrangian

relaxation (Steeger & Rebennack, 2017).

1.2. Hydropower Maintenance Scheduling (HMS)
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Given a list of maintenance activities to be completed within a planning

horizon, the Generator Maintenance Scheduling Problem (GMS) consists in

determining a calendar of maintenance outages with the best performance with

respect to some criteria (e.g., profit or total cost). Such calendar must satisfy

operational requirements as well as maintenance constraints, such as the time

windows of maintenance activities.

In hydropower systems, GMS must consider the operational characteristics

of hydroelectricity production (see Section 1.1). We refer to this problem as

Hydropower Maintenance Scheduling (HMS).

Despite the extensive literature on GMS (see Froger et al. (2016) for a review),

few works have focused on HMS, and some of these studies did not consider the

main operational characteristics of hydropower systems (e.g. Foong et al. (2008);

Canto (2008)).

For a deterministic HMS, Rodŕıguez et al. (2018) proposed a mixed-integer

program with linear inequalities and indicator variables for approximating the

three-dimensional nonlinearity of the HPF. More recently, Ge et al. (2018) and

Helseth et al. (2018) applied piecewise linear approximations of the HPF, but

without considering the nonlinear effect of water head and number of active

generators. Given the uncertainty in HMS, Ge et al. (2018) implemented a

chance-constrained formulation, whereas Helseth et al. (2018) formulated a

stochastic program with maintenance decisions in the first-stage and hydropower

4



operation decisions in multiple stages, solved by dual dynamic programming.

Motivated by an industrial application problem, this paper presents a

stochastic programming approach for HMS, incorporating a detailed approx-

imation of the HPF. As in Rodŕıguez et al. (2018), we use linear inequalities

and indicator variables to approximate the three-dimensional nonlinearity of the

HPF with respect to the number of active generators, turbine discharges and

water head. Because the resulting mathematical program is hard to solve when

considering multiple inflow scenarios, we apply Benders decomposition (Benders,

1962) to partition the problem into a maintenance-only scheduling problem and

scenario-wise convex operation subproblems.

Although the divide and conquer principle of Benders decomposition is a

promising idea to reduce the computational effort, especially when the formula-

tion is tight and the resulting master problem and subproblems are easy-to-solve

(Magnanti & Wong, 1981), a straightforward implementation of the Benders

algorithm can exhibit poor convergence and time-consuming iterations (Rah-

maniani et al., 2017). Therefore, we implement seven acceleration techniques,

including three new applications of presolve, warm start and special ordered sets

for Benders acceleration, and we parallelize our decomposition algorithm. Using

statistical methods and sequential computational experiments, we select the best

combination of the implemented acceleration techniques for the decomposition

method, and we compare its performance against a commercial MILP solver. For

the tests, we generate instances from a real four-powerhouse system in Quebec,

with up to 200 inflow scenarios.

Our Benders approach is not standard due to practical limitations in an

industrial setting, regarding the access to computing facilities, commercial

software and problem data. Moreover, in contrast with other applications of

decomposition methods to GMS (Froger et al., 2016; Helseth et al., 2018), we

focus on Benders acceleration in response to the computational challenge of

accounting for the nonlinear effect of the number of active generators on the

hydropower production (see Fig. 1), under uncertain inflows (Fig. 2).

The rest of this article is organized as follows: Section 2 introduces our
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modeling approach. Section 3 presents the stochastic program for HMS. Section

4 introduces the Benders decomposition method and defines our problem parti-

tioning for this method. Section 5 discusses acceleration strategies for Benders

decomposition, and describes our tailored acceleration techniques. Section 6

details our methodology for selecting a best performing Benders configuration,

and discusses results under various experimental conditions. Section 7 presents

our summary and conclusions. Additional modeling details, results, and a no-

menclature list are included in the Appendices.

2. Modeling approach

As maintenance decisions determine the set of available generators for elec-

tricity production, we compactly represent the HMS problem as

max
y ∈Y

Q(y)− cᵀy, (1)

where y is a maintenance schedule vector with feasible set Y, and c is the cost

vector of the maintenance activities. The feasible set Y is defined by the maximum

number of simultaneous outages, the time windows of maintenance activities

and other relevant maintenance constraints. Q(y) represents the objective value

of the operational subproblem, i.e., the expected profit from hydroelectricity

production during a planning horizon T , considering operational decisions and

constraints, such as turbine water discharges, which depend on the maintenance

schedule y and the realization of the natural inflows.

Because the subproblem Q(y) is only necessary to estimate the impact of

the maintenance schedule y on the expected profit, rather than to compute the

exact values of operational decisions, we relax the non-anticipacity constraints of

the subproblem Q(y) in order to reduce the complexity of (1). This relaxation

leads to a two-stage stochastic formulation of (1), with maintenance scheduling

decisions in the first stage, and senario-wise independent subproblems in the

second stage (see Fig. 3). Moreover, this formulation allows us to represent

the inflows uncertainty using a scenario fan of hydrological forecast sequences
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(see Fig. 2), rather than a scenario tree (with a limited number of nodes for

approximating the stochastic inflows).
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Figure 3: Two-stage stochastic approach, with maintenance decisions in the first stage and

operating decisions for each inflow scenario.

In numerical experiments on short-term hydropower planning using a scenario

fan formulation with decisions updated in a rolling horizon, Séguin et al. (2017a)

achieved comparable solutions to those obtained from a scenario tree model,

while requiring less computational effort. Although the performance of the

scenario fan and the scenario tree models depend on multiple factors, such as

the specific problem, its formulation and the implemented solution method, the

empirical results in Séguin et al. (2017a) suggest that a scenario fan approach

may be promising in some practical applications where computational times are

critical.

For this work, we use a large set of inflow scenarios from Séguin et al. (2017b).

These scenarios were generated by using a hydrological model with data from

historical precipitations and seven-day precipitation forecasts for multiple regions

in the watershed of a hydropower system in Quebec (Environment Canada, 2019).

7



To obtain the inflow scenarios for each region, Séguin et al. (2017b) identified

a set N of historical precipitations with the closest similarity to the seven-day

precipitation forecast. Then, considering that precipitations in Quebec have

low correlation between consecutive days, Séguin et al. (2017b) extended the

precipitation scenarios up to 30 days by appending to each precipitation series

in N the historical precipitations during the same time of the year, over the past

62 years. To consider the hydrology of the watershed, the precipitation scenarios

were fed into the CEQUEAU hydrological model (Charbonneau et al., 1977;

INRS, 2019), which generated the corresponding inflow scenarios. See Séguin

et al. (2017b,a) for more details about this methodology.

3. Two-stage stochastic program

Following the approach discussed in the previous section, we extend the

MILP in Rodŕıguez et al. (2018) as a two-stage stochastic program for HMS.

Our notation is summarized in Appendix B.

Consider a hydroelectric system with a set of powerhouses I, and with a

number of available generators Ḡit at each time period t ∈ T and powerhouse i ∈

I. We assume that in each powerhouse the generators have similar characteristics.

Let M be a list of maintenance activities to be completed within the planning

horizon T , with each activity requiring one generator outage. We define each

maintenance activity m by i) the powerhouse where the activity must be executed,

ii) the duration of the activity Dm, and iii) the time window T (m) ⊆ T when

the activity can initiate. Let K(i, t) be the set of numbers of generators that can

be active at each time period and powerhouse. For determining the maintenance

schedule, we define the binary variables ymt = 1 if maintenance task m ∈ M

starts at time period t ∈ T (m), 0 otherwise (2). We also define the binary

variables zitk = 1 if k ∈ K(i, t) generators are active in powerhouse i ∈ I at time

period t ∈ T , 0 otherwise (3).

ymt ∈ {0, 1}, ∀ (m, t) ∈M× T (m), (2)

zitk ∈ {0, 1}, ∀ (i, t, k) ∈ I × T × K(i, t). (3)
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In addition, we define the following constraints that involve only first-stage

maintenance decision variables: ∑
t∈T (m)

ymt = 1, ∀ m ∈M, (4)

∑
m∈M(i)

t′ ∈T (m)∩ [ t−Dm+1, t ]

ymt′ = rit, ∀ (i, t) ∈ I × T , (5)

rit +
∑

k∈K(i,t)

kzitk = Ḡit, ∀ (i, t) ∈ I × T , (6)

∑
k∈K(i,t)

zitk = 1, ∀ (i, t) ∈ I × T , (7)

0 ≤ rit ≤ Oit, ∀ (i, t) ∈ I × T . (8)

Constraints (4) enforce the completion of the set of maintenance activities M in

the planning horizon T . Constraints (5) compute the number of maintenance

outages rit at each time period and powerhouse. In (5) the value of rit is

determined by summing the variables ymt′ corresponding to the set of activities

M(i) in powerhouse i that could have started at time t′ ∈ T (m) and still be in

execution at time t ∈ T for having started in the interval [ t−Dm + 1, t ].

Constraints (6) map the number of maintenance outages rit into the indicator

variables zitk with value 1 if k generators are active at time period t and

powerhouse i, and value 0 otherwise. By (7) and (3), only one zitk variable is

equal to one for each powerhouse and time period. Constraints (8) define the

non-negativity of rit and limit it to the maximum number of outages Oit at each

time period and each powerhouse.

In addition, for the hydropower operation problem the following constraints

are defined for each water inflow scenario ω ∈ Ω and time period t ∈ T :

9



0 ≤ vit, ∀ (i, t, ω) ∈ I × T × Ω, (9)

0 ≤ uitω ≤ Ūit (αu
itω), ∀ (i, t, ω) ∈ I × T × Ω, (10)

¯
Sit ≤ sitω ≤ S̄it (αs

itω), ∀ (i, t, ω) ∈ I × T × Ω, (11)

0 ≤ q+
tω ≤ W̄+

t (α+
tω), ∀ (t, ω) ∈ T × Ω, (12)

0 ≤ q−tω ≤ W̄−t (α−tω), ∀ (t, ω) ∈ T × Ω, (13)

sitω − si(t−1)ω + F

(
uitω + vitω −

∑
g∈U(i)

(ugtω + vgtω)

)
= Fξitω ⊥ πitω, ∀ (i, t, ω) ∈ I × T × Ω, (14)

pitkω − βu
huitω − βs

hsitω ≤ β0
h ⊥ γitkhω,

∀ (i, t, k, h, ω) ∈ I × T × K(i, t)×H(i, k)× Ω, (15)

0 ≤ pitkω ≤ z̄itkP̄ik ⊥ λitkω,

∀ (i, t, k) ∈ I × T × K(i, t), (16)∑
k∈K(i,t)

pitkω − pitω = 0 ⊥ θitω, ∀ (i, t, ω) ∈ I × T × Ω, (17)

∑
i∈I

pitω + q−tω − q+
tω = At ⊥ ψtω, ∀ (t, ω) ∈ T × Ω, (18)

where πitω, γitkhω, λitkω, ψtω and θitω denote the dual variables of (14)-(17),

and ⊥ indicates their complementarity.

Constraints (9)-(13) specify the bounds of the hydropower operation decision

variables: water spill vitω, water discharge uitω, stored water in reservoirs sitω,

electricity purchase q−tω and electricity sale q+
tω, respectively. In (10)-(13), we

denote by α the corresponding dual variable.

Constraints (14) ensure the mass balance at each time period t ∈ T and

reservoir i ∈ I, considering the inflows from upstream reservoirs g ∈ U(i), as well

as the uncertain natural inflows ξitω of the respective scenario ω ∈ Ω. In (14), F

is a scalar that converts the flow units from m3/s to hm3/day, for consistency of

units. Moreover, in (14) we ensure a consistent solution with the initial stored

water by specifying si(t−1) = Si0 for t = 1.

10



For each powerhouse i and number of active generators k, the set of hyper-

planes H(i, k) with parameters β0
h, βu

h and βs
h in (15) define an outer approx-

imation of the power output pitkω corresponding to values of water discharge

uitω and stored water level sitω, when k generators are active. For each (i, k) we

compute H(i, k) as a subset of facets of the convex hull of the HPF, as follows:

first we apply a facet enumeration algorithm to a grid of points on the surface

of HPF for (i, k) (see Fig. 1); second, we sequentially remove the facet of the

convex hull that yields the minimum approximation error of the power output in

the remaining polyhedron, until reaching a specified number of hyperplanes. In

preliminary tests with 30 hyperplanes, this approach overestimated by around

0.25% the electricity production. Such an overestimate can be reduced using an

auxiliary constraint derived from a regression model (Rodŕıguez et al., 2018) or

by increasing the number of approximation hyperplanes.

Constraints (16) restrict the generation capacity according to the number

k of active generators, which is indicated by the binary variable zitk. Thus,

when the number of active generators is not equal to k̄ (zitk̄ = 0), the power

production for this number of generators is set to zero (pitk̄ω = 0). Constraints

(17) compute the power generation pitω in each powerhouse, time period and

scenario by summing the power production pitkω over the set of numbers of

active generators K(i, t).

At each time period and scenario, the power balance is enforced by (18).

In this balance, the total power injections into the system equal the power

withdrawals. The injections correspond to the sum of the hydroelectric generation

pitω and the electricity purchase q−tω. The power withdrawals are the electricity

load At and the electricity sales q+
tω.

Finally, the objective function of the complete problem is the sum of the expected

profit from electricity trade minus the cost of maintenance activities,

maximize
q+,q−,u,v,s,

r,p,y,z

∑
t∈T
ω∈Ω

ϕω

(
B+

t q
+
tω −B−t q−tω

)
−

∑
m∈M
t∈T (m)

Cmtymt,
(19)

where ϕω is the probability of scenario ω ∈ Ω, Cmt is the cost of maintenance
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activity m starting at time t, and B−t , B+
t are the electricity prices of purchase

and sale at period t, respectively. Therefore, the two-stage stochastic program

for the hydropower GMS is

maximize (19) subject to (2)− (18). (P)

To reduce the number of variables in (3) and the number of constraints in (15),

(16) we define the set K(i, t) using the time windows of the maintenance activities,

as proposed in Rodŕıguez et al. (2018) (see Appendix A.1).

4. Benders reformulation

Although several scenarios could be included into P for a richer representation

of the natural inflows uncertainty (Fig. 2), the resulting large-size model would

be difficult to solve in practice. Thus, we implement Benders decomposition

to exploit the two-stage structure of the problem. In this section we describe

our problem partitioning based on Benders decomposition, and in Section 5 we

discuss and detail some acceleration strategies for this method.

4.1. The Benders decomposition method

Benders decomposition (Benders, 1962) is a solution procedure for math-

ematical programs with complicating variables, based on the principle that a

polyhedron can be described by the convex combination of its extreme dual

solutions. This method iteratively fixes candidate solutions for the complicating

variables to obtain convex, easy to solve subproblems. Using the extreme dual

solutions of the subproblems, the Benders algorithm generates optimality cuts

(resp. feasibility cuts) that approximate the cost function (feasible space) of

the subproblem into a master problem with the complicating variables (Lasdon,

1970). Since the set of extreme solutions of the subproblems is potentially large,

the Benders algorithm solves a relaxed master problem (with only a subset

of optimality and feasibility cuts), and sequentially includes violated cuts, as

needed, until reaching a specified optimality gap. Because the Benders master
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problem is a relaxation of the original (maximization) problem, any optimal

value of the master problem is an upper bound of the original problem. Similarly,

any feasible master problem solution ȳ that is also feasible for the subproblems

gives a lower bound LBP for the original problem, i.e.,

LBP = Q(ȳ)− cᵀȳ, (20)

where as in (1), we denote by Q(ȳ) the expected optimal value of the subproblems

for solution ȳ.

4.2. Subproblem

For the application of Benders decomposition to the mathematical program P,

we define a master problem with the binary variables of the problem (as defined

in (2), (3)), which we compactly denote y, z. Given a master problem solution

(ȳ, z̄), we set z = z̄ in (16) to obtain the scenario-wise subproblems, which

for a given scenario ω ∈ Ω, consist in maximizing the profit of the electricity

production, subject to the operational constraints, i.e.,

Qω(z̄) = maximize
q+,q−,u,v,s

∑
t∈T

(B+
t q

+
tω −B−t q−tω) (21)

subject to (9)− (18)

To reduce the subproblem size we specify (10)-(13) as variable bounds and not as

general constraints, so that they can be treated implicitly by the linear program-

ming (LP) solver through the bounded variable simplex method. Therefore, for

each bound (10)-(13) the corresponding dual variable α is not explicitly defined,

and so it must be computed as the reduced cost of the corresponding bounded

variable.

4.2.1. Master problem

For the mathematical program P, we define the Benders master problem

with the binary variables (2), (3). This master program maximizes the expected

profit of the electricity production zSP minus the maintenance cost, subject to

13



the optimality cuts and the maintenance scheduling constraints (2)-(8). Thus,

the master problem is

maximize
y,z,zSP

zSP −
∑

m∈M,
t∈T (m)

Cmtymt (22)

subject to

Eqs. (2)− (8),

zSP ≤
∑
ω∈Ω

ϕωbωp, ∀ p ∈ P, (23)

zSP ≤ UBSP , (24)

where (23) are the optimality cuts corresponding to a set P of extreme solutions,

and bωp is the cut term corresponding to a solution p ∈ P , in scenario ω ∈ Ω. In

this master problem no feasibility cuts are necessary due to the partial recourse

property of P (see Appendix A.2).

As the Benders algorithm starts without optimality cuts, (24) prevents the

unboundedness of the master problem at the first iteration. This constraint

defines an initial upper bound UBSP of the subproblem optimal value zSP .

Section 5.1.1 presents a method for computing UBSP .

4.2.2. Optimality cuts

We compute the cut term bωp in (23) as

bωp = bAωp + bBωp, ∀ (ω, p) ∈ Ω× P, (25)

where bAωp is the dual contribution of (14)-(18), and bBωp is the dual contribution

of the variable bounds (10)-(13).

For a given extreme solution p ∈ P, bAωp is the sum of the products between

the right-hand side terms of (14)-(18), and their corresponding dual variables

14



πp
itω, γpitkhω, λpitkω, ψp

tω, i.e.,

bAωp =
∑
t∈T

(
Atψ

p
tω +

∑
i∈I

(
Fξitωπ

p
itω

+
∑

k∈K(i,t)

(
zitkP̄ikλ

p
itkω +

∑
h∈H(i,k)

β0
hγ

p
itkhω

)))
, ∀ (ω, p) ∈ Ω× P.

(26)

Notice that in (26), the terms corresponding to constraints (17) are discarded

because their right-hand side is 0.

For computing bBωp, we multiply each bound by the value of the corresponding

dual variable αpu
itω, αps

itω, αp+
tω , αp−

tω in the solution p ∈ P. That is,

bBωp =
∑
t∈T

(
W̄−t α

p−
tω + W̄+

t α
p+
tω +

∑
i∈I

(
Ūitα

pu
itω

+ S̄itα
ps
itω[αps

itω > 0] +
¯
Sitα

ps
itω[αps

itω < 0]

))
, ∀ (ω, p) ∈ Ω× P.

(27)

Since the water discharge sitω has a lower bound
¯
Sit, for the computation of bBωp

we sum either S̄itα
ps
itω or

¯
Sitα

ps
itω, depending on the sign of the corresponding

dual value αps
itω, as indicated by the Iverson brackets in (27). A positive dual

value means that the upper bound is active, whereas a negative one indicates

that the lower bound is binding.

5. Accelerating Benders decomposition

Because a basic implementation of Benders decomposition can be disap-

pointing in practice (Rahmaniani et al., 2017), several works have proposed

enhancements to speed up its execution. Typical acceleration techniques for

Benders consist in applying special algorithms for solving the master problem or

the subproblems (Magnanti & Wong, 1981; Hooker & Ottosson, 2003; Cordeau

et al., 2001), relaxing the integrality conditions in the initial Benders iterations

(Cordeau et al., 2001), selecting dual solutions that yield the strongest cuts

(Magnanti & Wong, 1981; Papadakos, 2008), improving the approximation of the

original problem in the master problem (Santoso et al., 2005; Crainic et al., 2016;

Gendron et al., 2016), using Benders cuts in a branch-and-cut framework (Fortz
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& Poss, 2009; Gendron et al., 2016; Fischetti et al., 2016; Cordeau et al., 2018),

stabilizing the master problem solutions (Santoso et al., 2005; Ruszczyński &

Świetanowski, 1997; Fischetti et al., 2016), and generating combinatorial cuts and

knapsack cuts (Santoso et al., 2005; Fischetti et al., 2016; Gendron et al., 2016),

among other techniques (see Rahmaniani et al. (2017) for a review). Further-

more, as the subproblems can be solved independently once the master problem

solution is fixed, parallelization of the subproblems is a natural alternative for

speeding up the Benders algorithm when many scenarios are considered (see e.g.

Nielsen & Zenios, 1997; Linderoth & Wright, 2003). However, the efficiency of a

parallel program would depend on technical aspects, such as task concurrency,

data distribution and load balancing.

5.1. Implemented techniques

For speeding up our Benders implementation, we tailored and tested the

following strategies: 1) MILP warm start, 2) presolve, 3) special ordered sets, 4)

multi-phase relaxation, 5) valid inequalities, 6) combinatorial cuts, 7) integer

rounding cuts, and 8) parallelization.

In the remaining of this section we discuss the related literature and the

implementation details about these techniques.

5.1.1. MILP warm start (WS)

At each Benders iteration, we warm start the solution process of the master

problem using solution information from the previous iteration. Notice that this

approach differs from other warm start strategies in the literature, such as cut

initialization (Rahmaniani et al., 2017), subproblem basis initialization (Morton,

1996; Wolf & Koberstein, 2013) or subproblem tree initialization (Hassanzadeh

& Ralphs, 2014).

In a branch and bound process, the objective value of the incumbent solution

(i.e., the current best feasible solution) defines a lower bound that helps to cut off

sections of the branching tree with no potential of harboring an optimal solution.

The tighter the cutoff value, the fewer the number of nodes to be explored in the
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tree. In MILP solvers, cutoff values can be user-defined or can be computed from

user-supplied initial solutions. Even if the initial solution is infeasible, MILP

solvers can apply re-optimization or heuristics to obtain a new feasible solution

and a corresponding cutoff value (FICO, 2107).

In the Benders algorithm, the optimal value of the incumbent solution for the

original problem also defines a lower bound for the master problem. Therefore,

at each Benders iteration we set a cutoff value LBP − ε for the master problem,

where ε is the default absolute optimality tolerance of the MILP solver, and

LBP is the bound computed by (20), corresponding to the incumbent solution.

To further exploit the solver capabilities, at each iteration we supply the MILP

solver with the master problem solution from the previous iteration.

As tightening bounds of variables can also make the search more efficient, at

each iteration we define the current solution value of zSP in the master problem

as the upper bound UBSP for the next iteration. Moreover, at the first step of

the algorithm we define an initial upper bound UBSP for zSP in (24), computed

as

UBSP = z̃P + cᵀy0, (28)

where z̃P is the optimal value of the linear relaxation of P, and cᵀy0 is an upper

bound on the maintenance cost.

Proposition 1. UBSP is a valid upper bound on the expected optimal value of

the subproblem (21), (9)-(18).

Proof. Let y∗ and ỹ denote respectively the optimal integer solution and the

linear relaxation solution of P. By the linear relaxation of P,

z̃P = Q(ỹ)− cᵀỹ ≥ Q(y∗)− cᵀy∗

≥ Q(y∗)− cᵀy0, (29)

since cᵀy0 ≥ cᵀy∗. Adding cᵀy0 on each side of (29) yields z̃P + cᵀy0 ≥ Q(y∗),

which proves that UBSP is an upper bound for Q(y∗).

Notice that a value for cᵀy0 can be obtained by maximizing the maintenance

costs cᵀy, subject to the maintenance constraints (2)-(8).
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5.1.2. Presolve (PS)

Using presolve routines we obtain model reductions that are valid for the

master problem through all iterations. Commercial MILP solvers typically

incorporate presolve routines to reduce the model size before the branch and

cut procedure. Presolve operations include tightening bounds and constraints,

removing redundant columns and rows, and fixing variables, based on logical

implications or dual information (FICO, 2107; Bixby et al., 1999).

By reducing the domain of the variables and removing fractional solutions,

presolve can improve the bounds of MILP problems (Bixby et al., 1999). However,

as in Benders decomposition only part of the original problem information is

included into the relaxed mater problem, the potential of presolving the master

problem is reduced. Furthermore, as new rows are included at each iteration

of the Benders algorithm, presolve operations such as reduced cost fixing can

produce inconsistent solutions if applied to the relaxed master problem and fixed

for subsequent iterations. In contrast, presolving the complete problem gives

problem reductions that are valid for the master problem through all iterations.

Therefore, we can accelerate the Benders algorithm with an initialization step that

1) applies to the complete problem (2)-(19) a presolve routine with all presolve

operations activated, and 2) in the master problem fixes for all iterations of

the Benders algorithm the binary variables that after presolving the complete

problem are set to one of their bounds. Notice that the values of the variables

fixed during presolve must be explicitly retrieved from the MILP solver because

their values can be different from the linear relaxation solution. A similar

application of presolve was only recently reported in Bonami et al. (2020),

without detailing their specific presolve routines.

5.1.3. Special ordered sets (SOS)

In branch and bound algorithms, branching on sets of variables, instead

of individual variables, can reduce the computational time. For this purpose,

Special Ordered Sets (SOS) allow specifying sets of variables for branching

decisions, based on a reference ordering value (Beale & Tomlin, 1970). Following
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this idea, we apply SOS to accelerate the convergence of the Benders algorithm

by using ordering information from the subproblems to guide the branching

process for solving our master problem. Our approach differs from previous

works that have also used SOS in Benders decomposition, but without exploiting

subproblem information (Amjady & Ansari, 2014; Hazır et al., 2010),

In a SOS of type 1 (SOS-1), at most one variable may be non-zero. This set

definition can represent a set of mutually exclusive ordered alternatives. When

branching on a SOS-1, a variable in the ordered set is chosen, and the remaining

variables in the set are fixed to zero (Beale & Tomlin, 1970).

Because the generation capacity P̄ik increases with the number of generators

k, the variables zitk form a set ordered by k, ∀ (t, i) ∈ T × I. Thus, in our master

problem we replace the binary condition on zitk (3) with the SOS-1 definition

SOS-1it = {zitk → k : k ∈ K(i, t)} ∀ (i, t) ∈ {I × T : | K(i, t) | > 2}, (30)

where the arrow symbol→ indicates that k is the ordering value of the set. Since

SOS work better when the cardinality of the set is not very small (FICO, 2107),

we define a SOS-1it only when | K(i, t) |> 2.

Moreover, if B−t ≥ B+
t ≥ 0 ∀ t ∈ T , reselling electricity cannot increase the

profit. Under this condition, we include in the master problem the constraint

zSP ≤
∑
t∈T

B+
t

( ∑
i∈I,

k∈K(i,t)

P̄ikzitk −At

)
, (31)

to reinforce the order of variables zitk through a bound on the expected optimal

value of the subproblem, approximated by zSP .

Proposition 2. If B−t ≥ B+
t ≥ 0 ∀ t ∈ T , (31) is a valid bound on the expected

optimal value of the subproblem (21), (9)-(18).

See Appendix A.4 for a proof of this proposition.

5.1.4. Multi-phase relaxation (MR)

Considering that the linear relaxation solution of the relaxed master problem

can generate valid cuts for the original problem (Cordeau et al., 2001), we
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evaluate the effect of several master problem relaxation schemes for generating

initial cuts. Several authors have applied similar cut initialization methods

(Rahmaniani et al., 2017).

For our master problem we define four relaxation levels of the binary variables

y, z (Table 1). Among the possible sequences for applying these relaxations, we

consider those that start with a complete linear relaxation (relaxation level 3)

and in the subsequent phases solve an integer or partially integer master problem

(relaxation levels 0, 1 or 2). To ensure a feasible solution, the last phase solves

the integer master problem. We compare these relaxation sequences against a

standard single-phase algorithm (without a relaxation phase, defined as sequence

0 in Table 2).

Table 1: Configuration of relaxation levels

Relaxation level Binary variables Linear relaxation type

0 y, z No relaxation

1 y Partial

2 z Partial

3 - Complete

Table 2: Sequences of relaxation levels for multi-phase relaxation

Index sequence Relaxation sequence

0 0

1 3, 0

2 3, 2, 0

3 3, 1, 0

4 3, 1, 2, 0

5 3, 2, 1, 0

The linear relaxation of the master problem at the initial stages helps to

20



quickly generate optimality cuts. Nevertheless, to prevent an excessive number of

cuts that can slow down the decomposition algorithm, we finish each relaxation

stage when conditions on the number of cuts or the optimality gap of the stage

are met.

5.1.5. Valid inequalities (VI)

As tight formulations can improve the convergence of the Benders decom-

position algorithm (Magnanti & Wong, 1981), we test the effect of the valid

inequalities (32)-(33) (Rodŕıguez et al., 2018) and (34) on the performance of

the Benders method for the mathematical program P.∑
m∈M(i)

t′ ∈T (m)∩ [ t−Dm+1, t ]

ymt′ + zitk ≤ 1 (32)

for k = Ḡit,∀ (i,m, t) ∈ I ×M(i)× T ,∑
k∈K(i,t) \{Ḡit}

zitk ≤ rit, ∀ (i, t) ∈ I × T , (33)

rit +
∑

k∈K(i,t) \{
¯
Kit}

(k −
¯
Kit)zitk ≤ R̄it, ∀ (i, t) ∈ I,×T , (34)

where
¯
Kit and R̄it are respectively the minimum number of active generators

and the maximum number of activities simultaneously in execution at (i, t). For

a derivation of (32)-(34), see Appendix A.3.

5.1.6. Combinatorial cuts (CC)

We apply Combinatorial Cuts (CC) for removing fractional solutions to the

master problem. Codato & Fischetti (2006) proposed CC for removing infeasible

solutions in mathematical programs with binary variables. In contrast with the

Benders feasibility cuts, which are computed from the subproblem dual extreme

rays, CC exclude the current binary solution x̄ by forcing a change of value in at

least one variable of x̄. Given the variables xj with index set J , CC are defined

as ∑
j ∈S

(1− xj) +
∑
j /∈S

xj ≥ 1, (35)

21



where S is the set of variables in x̄ with value 1, i.e., S = {j ∈ J : x̄j = 1}, and

its complement is S ′ = {j ∈ J : x̄j = 0}. We obtain a stronger inequality than

(35), by forcing at least one variable in each set, S and S ′, to have a different

value, i.e, ∑
j ∈S

xj ≤ |S| − 1, (36)

∑
j /∈S

xj ≥ 1 (37)

Then, from (36) and (37), we obtain∑
j ∈S

xj −
∑
j /∈S

xj ≤ |S| − 2. (38)

Proposition 3. The combinatorial cut (38) dominates (35).

Proof. Inequality (35) can be rewritten as∑
j ∈S

xj −
∑
j /∈S

xj ≤ |S| − 1. (39)

As (39) and (38) have equal left-hand side, and the right-hand side of (39) is

greater than the right-hand side of (38), then (38) dominates (35).

Applying (38) to cut a suboptimal solution ȳ to the master problem, gives∑
(m,t)∈Sy

ymt −
∑

(m,t) /∈Sy

ymt ≤ |M| − 2, (40)

where Sy = {(m, t) ∈ M× T (m) : ȳmt = 1}. Notice that |Sy| = |M|, since by

(4), for each activity m there is a variable ȳmt = 1.

Furthermore, when the costs of the tasks are independent of the starting time,

i.e., when Cmt = Cm, ∀ (m, t) ∈M×T (m), different solutions ȳ that correspond

to the same solution z̄ would have the same objective value. In this case, a valid

cut is ∑
(i,t,k)∈Sz

zitk −
∑

(i,t,k)/∈Sz

zitk ≤ |I||T | − 2. (41)

In (41), Sz = {(i, t, k) ∈ I × T × K(i, t) : z̄itk = 1}, with cardinality Sz = |I||T |,

since by (7), for each time period t and powerhouse i, exactly one variable z̄itk is
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equal to 1. To prevent removing optimal solutions, we only apply the cuts (40)

and (41) when the objective value of (ȳ, z̄) for the complete problem is lower

than the cutoff value LBP − ε defined in Section 5.1.1.

5.1.7. Integer rounding cuts (IRC)

Similarly, we apply integer rouding cuts for removing fractional master

problem solutions. Let aᵀ and b be, respectively, the coefficient vector and the

independent term of the righ-hand side of the optimality cut (23). Since the

lower bound LBP of the complete problem is also valid for the master problem,

combining the bound LBP ≤ zSP − cᵀy, with the optimality cut zSP ≤ aᵀy + b,

gives the inequality LBP ≤ (a− c)ᵀy + b, which can be tightened with integer

rounding and division by the Greatest Common Divisor (GCD) of da−ce (Santoso

et al., 2005; Chen et al., 2011). Thus,

dLBP − be
GCD

≤
(
da− ce
GCD

)ᵀ

y, (42)

is a valid cut for the master problem.

5.1.8. Parallelization

For the parallelization of the Benders algorithm, we implemented a master-

slave approach, where the slave processors solve the subproblem and compute the

cut terms, and the master process includes the cuts, solves the master problem

and controls the execution of the algorithm (Fig. 4). The master process runs

on a computer server with a MILP solver, and the slave processes run in parallel

on a computational grid.

We used the Message Passing Interface (MPI) standard as a parallel pro-

gramming protocol. Although the MPI standard requires explicit instructions

for communications among processes, it incorporates high-performance commu-

nication routines that are suitable for our master-slave implementation.

5.2. Implementation details

Because this project was motivated by an industrial application, we adapted

our implementation according to the computational resources made available by
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Figure 4: Simplified representation of the implemented parallel Benders algorithm

our industrial partner. The code was written in C++ with the modeling libraries

Xpress BCL. The master problem was solved with the MILP solver Xpress-MP,

and the subproblems were solved with the open-source solver Clp. The motivation

for using an open source solver was to solve the subproblems in parallel without

restrictions on the number of solver licences. For the parallelization we used the

MPICH Library, which is portable, free and can use both shared and distributed

memory.

In BCL, we specified the Benders optimality cuts as delayed rows. This cut

definition is appropriate when most of the cuts are likely inactive, since only the

violated cuts are reintroduced by the solver when a new solution is found. Other

cuts that we implemented (valid inequalities, combinatorial cuts and integer

rounding cuts) were defined in BCL as model cuts, which instructs the solver that

these cuts can be included to remove fractional solutions. Furthermore, to avoid

a large number of combinatorial cuts and integer rounding cuts, we kept only
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Table 3: Basic attributes of the hydropower system. Powerhouses are ordered from upstream to

downstream. Avg. inflows is the average of the forecasted natural inflows for each powerhouse,

in the scenario set from Séguin et al. (2017a). See Rio Tinto (2015) for an overview of the

hydropower system.

Powerhouse
Number of

generators

Gen. capacity

(MW)

Reserv. capacity

(hm3)

Avg. inflows

(m3/s)

Min. Max.

Chute-Du-Diable 5 205 385.0 119.1 327.1

Chute-Savane 5 210 - 18.8 57.9

Isle-Maligne 12 402 4726.4 472.7 1504.5

Shipshaw 17 1587 - 0.0 0.0

Total 39 2404 5111.4 610.6 1889.5

the cuts generated in the previous iteration. The decomposition algorithm was

executed in parallel on a 200-core computational grid, with one thread dedicated

to each subproblem and with up to 10 threads for solving the master problem

on an Intel R© Xeon R© 24-processor computer at 2.7 GHz, with 32.9 GB RAM.

6. Computational experiments

In this section we select the combination of acceleration techniques with the

best performance on a set of test instances and we evaluate the impact of the

parallelization on the computational times of the decomposition algorithm.

Our tests instances are adapted from a hydropower system of Rio Tinto in

Quebec, Canada. We consider a hydro system composed of 4 powerhouses in

cascade, with 39 generators, 2 reservoirs and 2404 MW of generation capacity

(see Table 3). For each powerhouse and number of generators, the hydropower

production function was approximated using 30 hyperplanes in (15).

6.1. Selection of acceleration techniques

Since 7 acceleration techniques of Section 5.1 can be combined in 27 = 128

different ways, we are interested in identifying their best performing combination
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with respect to the computational time. For this purpose, we applied the

experimental methodology summarized in Fig. 5.

1. Generate instances!

2. Run experiments to select configuration of 
individual techniques!

3. Run experiments to define basic !
Benders configuration !

(fix techniques with most significant !
time-reducing effect)!

!
4. Run factorial experiments!

6. Select final Benders configuration!

5. Use ANOVA to discard techniques 
with time-increasing effect or with no 

significant effect!
!

Figure 5: Experimental methodology for selecting a best performing combination of acceleration

techniques

In step 1, we generated a testbed of 24 instances for the experiments. Each

instance represents a HMS problem with 30 inflow scenarios, 15 time periods

and 6 to 8 maintenance tasks. For each task, we randomly specified a duration

between 4 to 8 days, and we defined a maintenance time window of 3 days for

the starting time of each activity.

Because the computational times can differ significantly between instances,

we defined as a performance metric the normalized time t̄jb per instance

t̄jb =
tjb − µj

σj
, (43)

where tjb is the computational time of the instance j ∈ J on treatment b ∈ B, and

µj , σj are respectively, the mean and standard deviation of the computational

times of instance j ∈ J in all treatments. In our experiments, a treatment corres-

ponds to a combination of acceleration techniques or to a specific configuration

of one of them.

In step 2, through preliminary experiments we identified the best configuration
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for MR (relaxation sequence 4) and for VI (valid inequalities (33) and (34)). See

Appendix B for details.

In step 3, we ran experiments applying each of the seven techniques indi-

vidually: valid inequalities (VI), MILP warm start (WS), multi-phase relaxation

(MR), special ordered sets (SOS), combinatorial cuts (CC), presolve (PS) and

integer rounding cuts (IRC). As shown in Fig. 6 and Table 4, WS achieved the

lowest computational times, followed by PS and SOS. Through one-sided t-tests

against the basic method, we confirmed that the effect of these three acceleration

techniques was highly significant on the computational time (p-value < 0.001 in

Table 4). From these results, we fixed, as part of the basic configuration, the

techniques with the lowest computational time (PS, SOS and WS).
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Figure 6: Boxplots of normalized computational times of 7 acceleration techniques and the

basic method

For selecting the final configuration, in step 4 we ran a full factorial experiment

with the remaining 4 techniques: CC, IRC, MR and VI, which corresponds to

24 = 16 treatments. In step 5, an analysis of variance (ANOVA) applied to

the results of this experiment indicates that CC and IRC had a significant

effect (p-value < 0.05) on decreasing the computational time (β < 0), while MR

had the opposite effect and VI was not statistically significant (see Table 5).

Therefore, in a second ANOVA, we considered only the factors CC and IRC and

their interaction term CC·IRC (Table 6). This ANOVA showed that the effects
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Table 4: Summary statistics of the acceleration methods applied independently. The column

Diff. shows the difference between the mean time of each technique and the mean time of the

basic method (first row).

Treatment Mean Std.Dev. Diff. p-value

- 0.62 0.27 0.00 -

CC 0.69 0.31 0.07 0.81

IRC 0.59 0.23 −0.03 0.37

MR 0.62 0.43 0.00 0.53

PS −0.32 0.09 −0.94 6.7e-16

SOS 0.22 0.37 −0.40 5.5e-05

VI 0.56 0.25 −0.06 0.24

WS −1.68 0.14 −2.30 2.2e-16

of CC and IRC were statistically significant (p-value < 0.01) on reducing the

computational time (β < 0). Notice that the main effects of CC and IRC (with

β estimates -0.996 and -0.339, respectively) dominate interaction term CC·IRC

(with β estimate 0.242), which was not statistically significant (p-value 0.169).

Table 5: Summary of linear regression model with techniques VI, MP, CC and IRC as main

factors, with normalized computational time as response variable.

β estimate p-value

(Intercept) 0.288 0.003

VI 0.089 0.295

MP 0.428 7.6e-07

CC −0.875 < 2e-16

IRC −0.218 0.011

From these results, and the previously selected acceleration techniques (Table

4), in step 6 we determined that the recommended combination of the acceleration

techniques for the considered problem is: PS, SOS, WS, CC and IRC. In
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Table 6: Summary of linear regression model with factors CC and IRC and interaction term.

Normalized computational time as response variable

β estimate p-value

(Intercept) 0.607 1.9e-11

CC −0.996 1.2e-14

IRC −0.339 0.006

CC·IRC 0.242 0.169

additional tests, this configuration achieved speedups of up to 4 times, with

respect to a basic Benders implentation.

6.2. Effect of the number of scenarios

Although the representation of the inflows uncertainty can improve with

the number of scenarios, in practice the model size is limited by the available

computational resources and the time limit for obtaining solutions. In this

section we analyze the computational time and the quality of the solutions, for

different number of inflow scenarios.

6.2.1. Effect on computational time

For these experiments we consider instances with 8 maintenance tasks to

be completed in a planning horizon of 15 days, for the same four-powerhouse

system described at the beginning of this section. We specify a time limit of

1000 seconds for each run.

To avoid overlapping of subproblems on the available computing processors,

we generate instances with up to 200 scenarios, and we assign one processor

to each subproblem. The decomposition method was benchmarked against the

straightforward MILP solution approach, i.e., solving model (2)-(19) with the

MILP solver Xpress-MP. To observe the effect of the number of scenarios on

the computational times, we kept constant all the problem parameters, except

the size and composition of the set of inflow scenarios. From an initial set of
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3028 scenarios from Séguin et al. (2017b), we randomly sampled 12 sets of 200

scenarios each, and we ran tests with 1, 50, 100, 150 and 200 scenarios of each

set.

The results indicate that above some point between 50 to 100 scenarios, the

parallel Benders decomposition with acceleration techniques outperformed the

computational time of the solution with the MILP solver (Fig. 7). Furthermore,

in instances with 150 and 200 scenarios, the MILP solver reached the 1000-

second time limit, with average optimality gaps of 4.6 % and 6.3 %, respectively,

while the Benders decomposition approach reached optimal solutions in less

than 800 seconds (Fig. 7). The results also confirm that, in contrast with the

straightforward MILP solution, the parallel Benders decomposition method is

highly scalable on the number of scenarios. For example, between 50 to 100

scenarios the computational time of the MILP solver increased by 231.7 %, while

the computational time via parallel Benders decomposition increased only by

11.5 % (Table 7).

Our results also showed that the computational times of both solution

approaches (Benders decomposition and MILP solver) quickly increased with

the number of maintenance tasks, and that in the tested instances the Benders

method reached optimality gaps of less than 1% within 5 minutes of computation.

6.2.2. Effect on the solution quality

Results from 12 replicates for different numbers of scenarios and a given list

of maintenance tasks, showed that the coefficient of variation of the optimal

values tends to decrease asymptotically with the number of scenarios (see Figure

8). Naturally, this reduction of the solution variability leads to better estimates

of the expected optimal value, as the number of scenarios increases.

We also conducted tests in out-of-sample scenarios to estimate gains from

the stochastic solution. In these experiments we used a set of 15 instances with 4

powerhouses, 25 time periods, and 8 maintenance tasks. To execute these tests,

first we randomly split the original set of 3038 inflow scenarios into two subsets:

an in-sample scenario set for the mathematical program, and an out-of-sample
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Table 7: Statistics on the computational times with parallel Benders decomposition and

MILP-based solution, with different numbers of inflow scenarios

Number of scenarios
Benders Time MILP Time

Mean St. dev. Mean St. dev.

1 338.9 14.0 0.9 0.3

50 421.2 15.4 213.0 14.0

100 469.8 11.3 706.5 86.0

150 616.5 24.0 - -

200 780.7 11.8 - -
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Figure 7: Computational time of solving the problem with a MILP solver and with Benders

decomposition.

scenario set for computing the expected optimal values. For each instance, the

first-stage solutions of the in-sample stochastic program (with 200 scenarios)

and the integer solution of the deterministic program (with one scenario) were

fixed into a set of second-stage subproblems with 200 out-of-sample scenarios.

Finally, we computed the gain from the stochastic solution as the difference in

the average optimal value between the stochastic solution and the deterministic

solution in the out-of-sample subproblems (see Fig. 9). Whereas in eight of

the tested instances the stochastic and the deterministic solutions achieved

the same average out-of-sample optimal values, in seven instances the optimal

value of the stochastic problem was more than $4, 000 higher than the value
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Figure 8: Variability of optimal solutions in a representative instance, with 12 replicates for

each number of scenarios.

K 

2K 

4K 

6K 

8K 

10K 

12K 

14K 

A0 A1 A2 A3 A4 B0 B1 B2 B3 B4 C0 C1 C2 C3 C4 

D
iff

er
en

ce
 [$

] 

Instances 

Figure 9: Absolute difference between the average out-of-sample optimal values of the determ-

inistic solution and the stochastic solution, for 15 instances with 200 scenarios.

corresponding to the deterministic solution, based on an electricity price of 5

¢/kWh, and zero direct maintenance cost, i.e., Cmt = 0 ∀ (m, t) ∈ M× T (m).

In these experiments, the average gain of $2, 787 over a 25-day period would be

equivalent to an annualized gain of $40, 690. Although the expected gain from

the stochastic solution is highly dependent on the specific instance (as shown in

Fig. 9), this gain would be more significant under a high electricity price or a

greater opportunity cost of maintenance, for instance, due to a greater number

of maintenance tasks.
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7. Conclusions

Given a set of forecasted inflow scenarios, we represent the hydropower

maintenance scheduling problem as a two-stage stochastic program with main-

tenance decisions in the first stage, and hydropower operation decisions in the

second stage for each water inflow scenario. This formulation approximates the

three-dimensional nonlinearity of hydroelectric production by means of linear

inequalities and indicator variables for each number of active generators.

To solve instances with a large number of inflow scenarios, we implemented

a parallelized Benders decomposition method, and we tailored and tested seven

techniques for speeding up its execution. Among these techniques, we propose

new applications of presolve, special ordered sets and MILP warm start for

Benders acceleration:

• In presolve we obtained model reductions that are valid for the master

problem through all Benders iterations.

• By means of special ordered sets we incorporated ordering information

from the subproblems to guide the branching process for solving our master

problem.

• Using MILP warm start we speeded up the solution process of the mas-

ter problem by reusing solution information from the previous Benders

iteration. This approach differs from other warm start strategies in the

literature, such as cut initialization or subproblem initialization (Rahmani-

ani et al., 2017; Morton, 1996; Wolf & Koberstein, 2013; Hassanzadeh &

Ralphs, 2014).

In our experience, presolve, special ordered sets and MILP warm start were

easy to implement and they yielded significant reductions in computational time.

Due to a large number of possible configurations of the seven implemented

techniques, we conducted sequential computational experiments to select the

combination of such techniques with the best performance. In our experiments,
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the combination of presolve, special ordered sets, MILP warm start, combinatorial

cuts and integer rounding cuts achieved a four-fold speedup with respect to a

basic Benders implementation. In tests with up to 200 scenarios, we confirmed

the high scalability of the parallelization on the number of scenarios, and the

gains from the stochastic solution in out-of-sample tests.

Because hydropower maintenance scheduling with many maintenance tasks is

still a challenging problem, future works could extend our Benders approach in a

branch-and-cut framework, or they can experiment with different decomposition

strategies. Future works could also incorporate further operational aspects, such

as the capacity of transmission lines. Developing alternative formulations and

conducting computational studies on the value of the stochastic solution are also

avenues of future research.
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Fischetti, M., Ljubić, I., & Sinnl, M. (2016). Redesigning Benders decomposition

for large-scale facility location. Management Science, 63 , 2146–2162.

Foong, W. K., Simpson, A. R., Maier, H. R., & Stolp, S. (2008). Ant colony

optimization for power plant maintenance scheduling optimization-—a five-

station hydropower system. Annals of Operations Research, 159 , 433–450.

Fortz, B., & Poss, M. (2009). An improved Benders decomposition applied

to a multi-layer network design problem. Operations Research Letters, 37 ,

359–364.

Froger, A., Gendreau, M., Mendoza, J. E., Pinson, É., & Rousseau, L.-M.
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Séguin, S., Fleten, S.-E., Côté, P., Pichler, A., & Audet, C. (2017b). Stochastic

short-term hydropower planning with inflow scenario trees. European Journal

of Operational Research, 259 , 1156–1168.

Steeger, G., & Rebennack, S. (2017). Dynamic convexification within nested

Benders decomposition using Lagrangian relaxation: An application to the

strategic bidding problem. European Journal of Operational Research, 257 ,

669–686.

Wolf, C., & Koberstein, A. (2013). Dynamic sequencing and cut consolidation

for the parallel hybrid-cut nested L-shaped method. European Journal of

Operational Research, 230 , 143 – 156. doi:https://doi.org/10.1016/j.ejor.

2013.04.017.

40



Appendix A: Model supplement

A.1 Set reduction

In Rodŕıguez et al. (2018), the set of numbers of generators is defined as

K(i, t) =
{
k ∈ Z :

¯
Kit ≤ k ≤ K̄it

}
, ∀ (i, t) ∈ I × T (44)

where

¯
Kit = max{Ḡit −Oit, Ḡit − R̄it}, (45)

K̄it = Ḡit −
¯
Rit. (46)

In (45)-(46), Ḡit denotes the maximum number of available generators at (i, t) ∈

{I×T }, Oit is the maximum number of maintenance outages, and R̄it,
¯
Rit denote,

respectively, the maximum and minimum number of activities simultaneously in

execution at (i, t), according to their time windows, i.e.,

¯
Rit = |{ (m, t) ∈M(i)× T (m) : Lm ≤ t ≤ Em +Dm }|, (47)

R̄it = |{ (m, t) ∈M(i)× T (m) : Em ≤ t ≤ Lm +Dm }|, (48)

where for each activity m ∈ M, we denote by Dm, Em and Lm its duration,

earliest starting time and latest starting time, respectively.

A.2 Conditions for feasible subproblems

From the viewpoint of computational efficiency, complete recourse and par-

tially complete recourse are desirable properties of stochastic programming

problems (Birge & Louveaux, 2011). In problems with these properties, feas-

ibility cuts are unncecesary since the Benders decomposition method will only

generate feasible solutions at each iteration. A stochastic program is said to

have complete recourse if the second stage problem (i.e., the subproblem) is

always feasible. If the stochastic program has partially complete recourse, the

second stage problem is feasible for any feasible first stage solution and scenario

realization. Following these definitions, we notice that the subproblem (21)-(13)

has partially complete recourse (i.e., is feasible for any inflow scenario and master

problem feasible solution), if the following conditions are met:
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1. The system (14), (9)-(11) is feasible for any inflow realization ξitω, where

(i, t, ω) ∈ {I × T × Ω}.

2. In all time periods, the electricity load At is not greater than the upper

bound of the electricity purchase, i.e., 0 ≤ At ≤ W̄−t , ∀ t ∈ T .

Without loss of generality, we assume that the instances of problem P satisfy

conditions 1 and 2. Notice that these conditions can be guaranteed with proper

values of the variable bounds (10)-(13). If either of these conditions are not

met, it would be necessary to include feasibility cuts at some iterations of the

Benders algorithm. Alternatively, the partial complete recourse property can be

reestablished with the introduction of artificial variables in (14), (18), and with

a penalization of these variables in the objective function (21).

A.3 Valid inequalities

1. The first family of valid inequalities comes from the observation in Rodŕıguez

et al. (2018) that in a powerhouse i, if at least one maintenance task

m ∈M(i) is in execution at time t, then the binary variable corresponding

to Ḡit active generators must be equal to zero, i.e., zitk = 0, for k = Ḡit.

Thus, ∑
t′ ∈{T (m) : (t−Dm+1)≤t′≤ t}

ymt′ + zitk ≤ 1,

for k = Ḡit,∀ (i,m, t) ∈ I ×M(i)× T ,

are valid inequalities. Naturally, such inequalities are unnecessary when

K̄it < Ḡit (44) or when the set {t′ ∈ T (m) : (t−Dm + 1) ≤ t′ ≤ t} is

empty.

2. The second family of valid inequalities comes from the fact that for any

(i, t), when the number of maintenance outages is zero, i.e., rit = 0, then

all Ḡit generators are active (zitk = 1, for k = Ḡit) (Rodŕıguez et al., 2018).

By (7), it follows that zitk = 0 for k < Ḡit, which is equivalent to∑
k∈K(i,t) \{Ḡit}

zitk ≤ rit, ∀ (i, t) ∈ I × T . (49)
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Such inequalities are also unnecessary when K̄it < Ḡit.

3. From (45) we notice that

Ḡit ≤
¯
Kit + R̄it, (i, t) ∈ I × T . (50)

Then, applying (50) on the left hand side of (6) gives

rit +
∑

k∈K(i,t)

kzitk ≤
¯
Kit + R̄it, ∀ (i, t) ∈ I × T ,

which by (7) and (44) leads to

rit +
∑

k∈K(i,t) \{
¯
Kit}

(k −
¯
Kit)zitk ≤ R̄it, ∀ (i, t) ∈ I,×T . (51)

A.4 Proof of Proposition 2

Proof. Recall that we assume B−t ≥ B+
t ≥ 0 ∀ t ∈ T . By (16),∑

i∈I,
k∈K(i,t)

zitkP̄ik ≥
∑
i∈I,

k∈K(i,t)

pitkω, ∀ (t, ω) ∈ T × Ω

=
∑
i∈I

pitω, ∀ (t, ω) ∈ T × Ω [by (17)]. (52)

Then from (52),∑
t∈T

B+
t

( ∑
i∈I

k∈K(i,t)

zitkP̄ik −At

)
≥
∑
t∈T

B+
t

(∑
i∈I

pitω −At

)
, ∀ω ∈ Ω [B+

t ≥ 0]

=
∑
t∈T

B+
t

(
q+
tω − q−tω

)
, ∀ω ∈ Ω [by (18)],

≥
∑
t∈T

(B+
t q+

tω −B−t q−tω), ∀ω ∈ Ω [B−t ≥ B+
t ] (53)

Multiplying each side of (53) by the scenario probability ϕω, and summing over the

elements of Ω yields,∑
t∈T

B+
t

( ∑
k∈K(i,t)

zitkP̄ik −At

)
≥
∑
t∈T
ω∈Ω

ϕω(B+
t q+

tω −B−t q−tω), (54)

where the left-hand side of (54) is simplified due to
∑

ω∈Ω ϕω = 1. Since the right-hand

side of (54) is the expected value of (21) over the set of scenarios Ω, the left-hand side

of (54) is a valid upper bound on the expected optimal value of the subproblem.
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Appendix B: Selecting multiple-phase relaxation sequence and valid

inequalities

B.1 Valid Inequalities

On the set of 24 instances, we ran a factorial experiment with the 23 = 8

combinations of the three families of valid inequalities of Section 5.1.5. To select

the best combination of these inequalities, we sequentially applied analysis of

variance (ANOVA) with normalized computational time as the response variable.

From the results of the first ANOVA, with each family of valid inequalities defined

as a categorical factor (Table 8), we dropped the family 1 of valid inequalities

(factor VI1) for increasing the computational times (β = 0.188) at a significance

level of 0.1 (p-value = 0.055). With the same experimental data, an ANOVA

Table 8: Summary of ANOVA with valid inequalities 1, 2 and 3 as main factors, and normalized

computational time as response variable.

β estimate p-value

(Intercept) 0.078 0.427

VI1 0.188 0.055

VI2 −0.095 0.333

VI3 −0.249 0.011

with the factors VI2 and VI3 and the interaction term VI2·VI3 (see Table 9)

shows that the combination of the valid inequalities 2 and 3 (i.e., the interaction

term VI2·V3) has the lowest average computational time (β = −0.363), at a

significance level of 0.1 (p-value = 0.064).

B.2 Multiple-phase relaxation

We defined the relaxation sequences of Table 2 as treatments. In these

sequences, each phase is completed when either a specified maximum number

of cuts or a maximum optimality gap is reached (Table 10). According to the

results, the sequence without relaxation (i.e., relaxation sequence 0), exhibited
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Table 9: Summary of ANOVA with valid inequalities 1 and 2 and interaction term, and

normalized computational time as response variable.

β estimate p-value

(Intercept) 0.081 0.408

VI2 0.087 0.531

VI3 −0.067 0.627

VI2·VI3 −0.363 0.064

Table 10: Parameters of stages in multi-phase relaxation.

Relax. level Binary var. Max. cuts Max. gap

0 y, z 1000 1.0e-5

1 y 4 0.005

2 z 4 0.005

3 - 20 0.010

the largest variability and the highest computational time (Fig. 10). An analysis

of variance on the 24 instances indicated that the multi-phase relaxation had

a significant effect on the computational times (p-value = 0.00924). Although

the computational times of the relaxation sequences 3, 4 and 5 were similar, the

relaxation sequence 4 showed the most significant effect (p-value = 0.007) in a

one-tailed t-test against the method without relaxation (see Table 11). Therefore,

the best configuration applies the relaxation sequence (y, z)→ (z)→ (y), before

solving the master problem without relaxation.
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Figure 10: Boxplot of the computational times of the multi-phase relaxation sequences on 24

instances.

Table 11: Summary statistics of normalized computational times of multi-phase relaxations.

The column Diff. shows the difference between the mean time of each sequence and the mean

of sequence 0.

Relax. Seq. Mean St. Dev. Diff. p-value

0 0.54 1.51 0.00 -

1 0.21 0.91 −0.33 0.181

2 −0.04 0.71 −0.58 0.048

3 −0.19 0.57 −0.73 0.017

4 −0.34 0.63 −0.88 0.007

5 −0.18 0.60 −0.72 0.019



Appendix C: Nomenclature

Primary sets

I Powerhouses

M Maintenance tasks

T Planning time periods, t ∈ T = {1 . . . T}

Ω Scenarios

Parameters

ξitω Lateral inflows to powerhouse i in period t and scenario ω, [m3/s].

At Electricity load at time period t.

B+
t Electricity sale price in time period t, [$/MWh].

B−t Electricity purchase price in time period t, [$/MWh].

Cmt Total cost of maintenance task m started at time period t, [$].

Dm Duration of maintenance task m [day].

Em Earliest start time period of maintenance task m.

F Factor for conversion from flow per second in m3 to flow per day in hm3 [0.0864·s·hm3 ·/(day’·m3)].

Ḡit Maximum number of available turbines in powerhouse i at time period t, [turbines].

¯
Gi Minimum number of available turbines in powerhouse i [turbines].

Lm Latest start time period of maintenance task m.

Oit Maximum number of turbine outages in powerhouse i at time period t, [turbines].

P̄i Generation capacity in powerhouse i, [MWh/day].

P̄ik Generation capacity in powerhouse i when k turbines are active, [MWh/day].

Q(ȳ) Expected operating cost of solution ȳ [$].

Qω(ȳ) Expected operating cost of solution ȳ in scenario ω [$].

R̄it Number of maintenance activities that can be in execution at powerhouse i in time period t.

¯
Rit Number of maintenance activities that must be in execution at powerhouse i in time period t.

S0i Initial volume in reservoir of powerhouse i, [hm3].

¯
Si, S̄i Limits on stored water in reservoir of powerhouse i at period t [hm3].

Ūit Maximum discharge rate in powerhouse i, [m3/s].

V̄it Maximum water spill in powerhouse i, [m3/s].

W̄+
t Maximum electricity sale at time t [MWh/day].

W̄−t Maximum electricity purchase at time t [MWh/day].

Derived sets

T (m) Time periods when maintenance task m can be initiated in order to be completed within T .

M(i) Maintenance tasks m that should be executed in powerhouse i.

M(i, t) Maintenance tasks m that can be in execution in powerhouse i at time period t.

U(i) Powerhouses upstream of powerhouse i (U(i) ⊂ I).

K(i, t) Numbers of generators that can be active at time period t and powerhouse i.

H(i, k) Hyperplanes for approximating the maximum power of powerhouse i when k turbines are active.

A set of indices (m, t) of variables ymt with value 1 in solution ȳ, i.e, A = {(m, t) ∈M× T | ȳmt = 1}.



Parameters with indexes in derived sets

βu
h Coefficient of uit in hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k

generators are active [MWh· s/(m3·day)].

βs
h Coefficient of sit in hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k

generators are active [MWh/(hm3·day)].

β0
h Independent term of hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k

generators are active [MWh/day].

Decision variables

pitω Generation of powerhouse i during time period t in scenario ω [MWh/day].

pitkω Generation of powerhouse i during time period t in scenario ω when k generators are active [MWh/day].

q+
tω Sale of electricity at period t in scenario ω [MWh].

q−tω Purchase of electricity at period t in scenario ω [MWh].

rit Number of maintenance activities in execution at powerhouse i and time period t.

sitω Content of reservoir in powerhouse i at the end of period t in scenario ω [hm3].

uitω Water discharge of turbines in powerhouse i at time period t in scenario ω [m3/s].

vitω Water spill of reservoir in powerhouse i at time period t in scenario ω [m3/s].

ymt Binary variable with value 1 if maintenance task m initiates at time period t, 0 otherwise.

zitk Binary variable with value 1 if k hydro-turbines are active in powerhouse i at time t, 0 otherwise.

zSP Approximated expected profit of the hydroelectric production [$].

zSP
ω Profit of the hydroelectric production in scenario ω [$].

Dual variables

π
p
itω

of mass balance constraint (14) in solution p.

γ
p
itkhω

of power function (15) in solution p.

λ
p
itkω

of power bound constraint (16) in solution p.

ψ
p
tω of power balance constraint (18) in solution p.

θ
p
itω

of sum of power constraint (17) in solution p.

Reduced costs

α
pu
itω

of water discharge variable uitω in solution p

α
ps
itω

of water level variable sitω in solution p

α
p+
tω of electricity sale variable q+

tω in solution p

α
p−
tω of electricity purchase variable q−tω in solution p
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