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Abstract

The container pre-marshalling problem involves the sorting of containers in stacks so that there
are no blocking containers and retrieval is carried out without additional movements. This sorting
process should be carried out in as few container moves as possible. Despite recent advancements in
solving real world sized problems to optimality, several classes of pre-marshalling problems remain
difficult for exact approaches. We propose a branch and bound algorithm with new components for
solving such difficult instances. We strengthen existing lower bounds and introduce two new lower
bounds that use a relaxation of the pre-marshalling problem to provide tight bounds in specific
situations. We introduce generalized dominance rules that help reduce the search space, and a
memoization heuristic that finds feasible solutions quickly. We evaluate our approach on standard
benchmarks of pre-marshalling instances, as well as on a new dataset to avoid overfitting to the
available data. Overall, our approach optimally solves many more instances than previous work,
and finds feasible solutions on nearly every problem it encounters in limited CPU times.

Keywords: container pre-marshalling, maritime applications, terminal operations

1. Introduction

Containerization has revolutionized seaborne trade since it was first introduced over 60 years

ago. Nowadays, global containerized trade have reached volumes of around 140 million 20-foot
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equivalent units (TEUSs) and is forecasted to grow by 5% between 2017 and 2022 according to UNC-
TAD (2017). One of the main challenges faced by world container ports is the pressure to accom-
modate ever-larger ships, now exceeding 21,000 TEUs. The ships’ size, together with their draft
restrictions, physical features, and special handling requirements add pressure to berth and crane
operations at ports. To quickly service the larger-sized ships, terminal operators use cranes over
longer working hours and shifts, which leads to overutilization of port capacity on some days and
underutilization on others (Drewry Maritime Research, 2016). The increasing competition between
container ports makes improving container handling operations essential.

There are three stages in a container’s life cycle within the yard. First, the container is placed
on a stack, using assignment strategies, such as stacking containers destined for the same section
of a ship together (Dekker et al., 2006). The goal in this stage is to avoid misoverlaying containers,
which involves blocking the retrieval of containers by placing other containers above them. However,
as container yards are dynamic environments with many containers entering and leaving, it is
difficult to perfectly sort containers in advance. In the second stage, containers wait for extraction.
In this period, the container pre-marshalling problem (CPMP) provides decision support on how
to re-order containers that were or have become misoverlaid. In the third stage, containers are
extracted.

Pre-marshalling is an important mechanism to prepare containers for their onward journey,
since delays of trucks, trains or ships could result in misoverlays even in a previously well-planned
layout. Solving the CPMP can soften the workload peaks, increasing the efficiency of retrieval
operations. The objective is to compute a minimal sequence of container movements, such that no
containers in a set of stacks are misoverlaid. We propose a new branch-and-bound based approach
with the following novel components:

1. an extension of the IBF! bound from Tanaka and Tierney (2018),

2. two new lower bounds to complement IBF!,
3. one new dominance rule and generalizations of the rules from Tanaka and Tierney (2018),
4. and a memoization-based heuristic for finding feasible solutions.

We evaluate our approach on standard pre-marshalling benchmarks, and on a new dataset to

guard against overfitting our algorithm to the available instances. An extended computational

study has been carried out, and it shows the better performance of our algorithm with respect to



the state-of-the-art approaches. Our algorithm dramatically reduces the search space, finding 8%
more optimal solutions and 6% more feasible solutions in the tested instances. Remarkably, it is
able to optimally solve the vast majority of instances tested with 7 tiers and 9-10 stacks, which are
considered difficult, real-world CPMP instances.

We first present an overview of the literature in Section 2, followed by a discussion of the CPMP
and its assumptions in Section 3. Section 4 introduces the iterative deepening branch and bound
algorithm, including new dominance rules. We formalize the new lower bounds in Section 5 and
provide computational results in Section 6. In Section 7, we conclude and offer ideas for future

work.

2. Literature review

(Re-)Stacking and marshalling problems have been studied extensively in the maritime trans-
portation and warehousing/supply chain literature. Stacking problems are identified and catego-
rized from a mathematical perspective in Lehnfeld and Knust (2014), which gives a wide overview
of the area. We discuss first works directly related to pre-marshalling, and then other relevant
problems.

Lee and Hsu (2007) present an integer programming model (IP) using a multi-commodity flow
network. In de Melo da Silva et al. (2018), a unified model for the pre-marshalling and the container
relocation problem (CRP) is proposed. The IP models discretize time and need an upper bound
for the number of moves. Parreno-Torres et al. (2018) develop an iterative solution procedure
making IP models independent from that bound and presents several alternative formulations for
the problem. Even though this approach is not competitive with state-of-the-art techniques for
the problem, it offers significantly more flexibility for adding new side constraints. van Brink and
van der Zwaan (2014) introduce an abstracted IP model suitable for column generation and apply
a branch-and-price technique (BP) to the model.

An A* approach is presented in Expésito-Izquierdo et al. (2012). Its main drawback is high
memory usage due to a best-first branching strategy. They also introduce the lowest priority first
heuristic (LPFH) for greedily solving the problem. The paper from Tierney et al. (2017) uses an
iterative deepening A* (IDA*) that avoids storing solutions in memory, at the expense of extra

CPU time spent on the deepening process. In Prandtstetter (2013), a dynamic programming



(DP) based branch and bound (BB) search is presented that embeds state memoization within the
branch and bound search. Branch-and-bound approaches have been attempted in several works.
Zhang et al. (2015) determine which branches are explored first based on a lower bound. A similar
strategy is used in Tanaka and Tierney (2018), with a different branching rule, an extra dominance
rule, and a new lower bound which extends the lower bound presented in Bortfeldt and Forster

(2012).

The most recent heuristic method for solving the pre-marshalling problem is a deep learning
tree search (Hottung et al., 2017), which uses a tree search guided with branching and bounding
decisions made with deep neural networks. Further heuristic methods include a biased random-
key genetic algorithm (Hottung and Tierney, 2016), target-guided approaches (Wang et al., 2015,
2017) and a heuristic tree search from Bortfeldt and Forster (2012). These methods are capable
of finding solutions even to extremely large pre-marshalling problems, although we note that our
exact method finds optimal solutions to nearly all problems of an industrially relevant size, making
heuristic methods for pre-marshalling unnecessary in practice.

There is also extensive literature on related problems. We highlight the Container Relocation
Problem (CRP) that just differs from the CPMP in that containers are successively removed from
the bay as the CRP is solved (Tanaka and Takii, 2016; Tanaka and Mizuno, 2018). Other related
problems are: the loading of vehicles on a “roll-on roll-off” ship (Hansen et al., 2017); the stacking
of steel coils (Tang et al., 2015); stack loading problems for train cars and assembly lines (Boysen
and Emde, 2016); and the work of Galle et al. (2018) that considers the CRP when deciding where
to store containers in the yard. The blocks world problem from the Al community is also similar
to the CPMP in that a set of blocks (containers) ought to be manipulated from above without

height or stacks number constraints (Slaney and Thiébaux, 2001).

3. Container pre-marshalling

In a container terminal, containers are stored in a buffer area called the yard, in which they
await onward transportation by truck, train, or ship, as shown in Figure la. Within the yard,
containers are organized into blocks that consist of multiple rows of container stacks. Each of these
rows is called a bay, as Figure 1b shows. A bay contains multiple stacks with a height restriction

measured in tiers of containers, due to the height of the crane (see Figure 1c).
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Figure 1: Overview of a sea container terminal’s operations in a yard with rail mounted gantry cranes (RMGCs) and
a RMGC over a yard block, from Tierney (2015) and Tierney et al. (2017).
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Figure 2: An example sequence of moves to solve the CPMP. Misoverlaying containers are shown in gray.

The objective of the CPMP is to eliminate all misoverlays® from the bay with a minimal number
of container movements. Formally, C is the set of containers placed in the bay, S is the set of stacks
of the bay, and T the set of tiers. The non-negative integer-valued function group(s,t) gives the
exit time of the container at stack s, tier t. It equals 0 if no container is located at position (s, ).
Note that a bay has no misoverlays if group(s,t) > group(s,t + 1) for all s € S;t € T'\ {|T|}. We
represent a sequence of n moves as (c1, $1,d1), ..., (¢n, dp, dy), in which container ¢; is moved from
stack s; to stack d; in move ¢. Figure 2 shows an example of an optimal solution to the CPMP.

Although the CPMP is now common in the literature, we discuss the assumptions of the
problem:

- Single bay assumption. The CPMP is solved for a single bay, as it is assumed that moving the
crane between bays not only consumes time, but also potentially violates safety constraints due
to crane-crane or human-crane interactions.

- Uniform mowve cost assumption. As only the number of moves is considered, all crane moves

have an equivalent cost or duration that is not entirely true in practice, as some moves may be

! Misoverlaying containers are those blocking (i.e., on top of) other containers, misoverlaid containers are those
containers that are blocked by others. Similarly, Non-misoverlaying are those containers that are not blocking any
other container, and non-misoverlaid containers are not blocked by any container.
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between stacks that are far apart.

- Single crane assumption. There is just one crane that can only move one container at one time
and all containers are of the same type.

- Full information assumption. We assume that all the groups of the containers are known in
advance. Since delays are common in port operations, in reality the groups of some containers
might change, potentially causing new misoverlays even after pre-marshalling.

We adopt the notation of Tanaka and Tierney (2018) and add several new concepts. We employ
different names for container moves as in Bortfeldt and Forster (2012). A bad-good (BG) move, is
a move in which a misoverlaying container is moved to a stack where it is no longer misoverlaying.
Similarly, a BB (bad-bad) move involves a container being transferred from a misoverlaying position
to a stack where it is still misoverlaying. We can thus define GB and GG moves in a similar way.
Furthermore, BX and GX refer to moves from a misoverlaid or non-misoverlaid stack, respectively,

to any other stack. Table 1 shows the notation used in the following sections.
Table 1: Main notation employed throughout the paper.

Set of stacks.

Set of tiers.

QN »

Set of groups.
C'| Set of containers.

SM| Set of misoverlaid stacks.
SminM | Get, of misoverlaid stacks with the minimum misoverlay height. S™™ .= {s € S | n)' = AM}.
SN | Set of non-misoverlaid stacks.

U | Set of stacks where the misoverlaying containers are “upside down” sorted, i.e., group(s,t) <
group(s,t + 1) for all misoverlaying tiers ¢t. U := {s € SM | nB¢ =1}
U’ | Set of stacks that would be upside down if one misoverlaying container was removed. We
assume U C U'.
ns | Number of containers in stack s.
ns | Number of misoverlaying containers in stack s.
nY | Number of non-misoverlaying containers in stack s.
n Total number of misoverlaying containers in the bay.

AM | Minimum number of misoverlaying containers in misoverlaid stacks. (h™ := min;cgum nl).

g:°P | Group of the topmost container in stack s. If stack s is empty, gi°® := |G|.
9:°° | Group of the second topmost container in stack s. If ny <1, g5*° := |G]|.
ct°P | Topmost container in stack s. If stack s is empty, ci°? = @.

ms | Largest group of the misoverlaying containers in stack s € S™M. If s € U, ms = g°P.
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m? | The group of the ith largest misoverlaying group value in stack s, e.g., m: = m,, m? is the

.

second largest misoverlaying group, etc.

ws | Smallest group of non-misoverlaying containers in stack s. If stack s is empty, ws := |G|. If
s € SN, W = gg‘)p.

Wy Second smallest group of non-misoverlaying containers in stack s. If all the non-misoverlaying
containers in stack ¢ have the same group, wi™ := |G]|.

¢X | Minimum top group of the non-misoverlaid stack necessary for repairing stack s € U’ with

BG moves to the stack and one BX move to another stack.

n2% | Minimum number of non-misoverlaid stacks necessary for repairing stack s with only BG
moves.
gEG Minimum group of the topmost container of the ith non-misoverlaid stack for repairing stack

s. Sorted as gB¢

>gB8 > > gSBT%. We assume g=¢ = 0 for ¢ > nBC.

Minimum/maximum values are computed over the set of stacks U. However, sometimes U is
empty and we define min;eyy (max;err) to be oo (—00), respectively. To determine the highest and
second highest group values of misoverlaid stacks we do the following. First, we sort the containers
from highest to lowest value and then take the first and second containers from this list to be the
highest and second highest (lowest), respectively. This means m, and m?2 could contain the same

group value if multiple containers have the same value.

4. Improved iterative deepening branch and bound

An iterative deepening branch and bound for the CPMP is proposed in Tanaka and Tierney
(2018). We extend this approach by adding tighter lower bounds, a new branching comparison
algorithm, new dominance rules, as well as an initial memoization-based heuristic. In this section,
we briefly describe the iterative deepening branch and bound approach and the heuristics used
during the search. We next present our branching comparison algorithm, we formalize the new
dominance rules used in our approach, and, finally, we provide a memoization-based initial upper

bound heuristic.

4.1. Algorithm overview

Algorithm 1 shows the pseudocode of our approach. Given an initial layout, bay, the algorithm
calculates its lower bound, (b, and tries to obtain a feasible solution, 7, by using the greedy heuristic

presented in Tanaka and Tierney (2018). If a feasible solution is obtained, u denotes its number
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Algorithm 1 Iterative deepening branch and bound algorithm pseudocode.
1: function CPMP-IDBB(bay)
2: b < LB(bay) > Depth lower limit
: u, ™ < GREEDY_HEURISTIC(bay) > Feasible solution, depth upper limit

if m = 2 then
u, ™ < MEMOIZATION_HEURISTIC(bay)

3
4
5:
6: L+ 1b
7.
8

M+ o > Feasible solution to be found in the search
: while [ < u do
9: M + BB-RECUR(M, bay,l,u)
10: if M # @ then return M
11: I+ 1+1
12: return 7

of moves. In a nutshell, this heuristic attempts to make a solution feasible using only BG and GG
moves and stops when this is no longer possible. Although it is not guaranteed to find a solution,
it is extremely quick. When a solution is not found, we apply the memoization-based algorithm
presented later in Section 4.4 before starting the search.

The iterative deepening method uses a depth-first search (DFS) in which the search depth is
limited by a parameter [. The complete tree is searched up to level [, starting at [b and ending at
u. The optimality of a solution is guaranteed when [ equals u. The function BB-RECUR carries
out the DFS up to level I. At each node, all possible non-dominated moves are performed and
the branches are ordered according to our branching comparison algorithm. A move is dominated
when one of the dominance rules is satisfied or the lower bound of the layout is larger than the
current depth limit. We try to complete partial solutions by using the greedy heuristic algorithm.
In this way, the value u is updated during the search every time a better solution is found. The

search ends if a solution of value [ is reached.

4.2. Branching comparison algorithm

The order in which the branches are explored is irrelevant for the correctness of the search.
Nevertheless, a good branching strategy is critical for obtaining a solution quickly. We consider
seven different tie-breaking criteria to order the branches, and they are evaluated in order until
the tie is broken.

1. The branch with the lowest lower bound.



2. The largest difference d, given by equation (1):

d= D g (T =no) | = D D mi (1)
seSN s€SM 1<i<nM

On the one hand, the larger the group of the topmost container of a non-misoverlaid stack is,
the wider the range of containers that can be well-placed (containers with a group less than or
equal to that of the topmost container) above that stack. On the other hand, the lower the
group of a misoverlaying container is, the easier it will be to move it to a good position.

3. The lowest sum of the groups of the misoverlaying containers.

4. The largest number of upside down containers that can be well-placed using only BG moves.

5. The largest difference between initial and final gaps. The initial gap of a move is the difference
between the group of the topmost container of the origin stack after the move and the group of
the container being moved. The final gap is the difference between the group of the container
being moved and the group of the top container on the destination stack before the move.

6. The smallest final gap.

7. The largest group of the container being moved.

4.3. New dominance rules

Dominance rules for (i) unrelated, (i) transitive, (4ii) same group symmetry move avoid-
ance, and (i) empty stacks rules are introduced in Tanaka and Tierney (2018). We use rule
(iv) and propose extensions of the rules (i) to (éii) by introducing the concept of an invariant
stack. We also present a new rule that uses the current upper and lower bounds of a node. In
this section, ng refers to the number of containers in stack s at the end of a given move sequence
(c1,51,d1), (c2,82,d2), ..., (cn—1,8n—1,dn—1), (Cn, Sn,dyn) and J is the Kronecker delta: §,, = 0 if

x #y and d,, = 1 if z = y. The proofs of the propositions appear in Appendix A.

Definition 1. A stack s is invariant to a sequence of moves (c1,51,d1), ..., (Cn, Sn,dyn), i.€, from
move 1 ton, if the layout before and after the sequence of moves is the same and ctop ¢ {c1,...,cn},

the topmost container of stack s in the layout before the sequence is not moved by the sequence.

Given stack s being invariant to (cy, s1,d1), ..., (Cn, Sn, dy), the maximum number of temporary
containers that are simultaneously assigned to s during the sequence involving from move 1 to n

9



1s:

J
£ = max Sud, — Ooss
° jE{l,.._,n} {Z( ,di s )}

i=1

The example in Figure 3 shows a sequence of moves (3,1)(3,1)(3,2)(1, 3)(1, 3) for which stack 1

is invariant. It can be seen that ti"r) = 2.

4.3.1. Unrelated move symmetries
We consider the cases in which a move can be indistinctly placed before and after a sequence

even though its source or destination stack has been temporarily used in that sequence.

Proposition 1. A sequence (c1, s1,d1), (¢2,82,d2), ..., (¢n-1, Sn—1,dn-1), (Cn, Sn,dy) is disallowed
if all of the following conditions are satisfied:

1. 51 > s,

2. s and dy,, are invariant to the sequence (c1,81,d1),(c2,82,d2), ..., (Cn-1,Sn—1,dn—1).

3. ty" 4 na, <|T|

Proposition 1 is reduced to the case s1,d; ¢ {s2,da,...,sp,d,} in Tanaka and Tierney (2018).
Note that condition s ¢ {sa,da, ..., sn,d,} is a particular case of s invariant to (ca, s2,d2), . .., (¢n—1,
Sn—1,dn—1), (Cn, Sn,dy), which satisfies Y 1" 5 ds, s = 0. Given the initial layout of Figure 4, a se-
quence (7,2,1), (6,2,4), (1,2,3), (6,4, 2), (7,1,2), (5, 1,4) equivalent to (5,1,4), (7,2, 1), (6,2,4), (1,2, 3), (6,
4,2),(7,1,2) could be disallowed.

4.8.2. Transitive move avoidance
This kind of moves considers the relocation of a single container twice, once from one stack a

to another stack x, and other from that stack x to another stack c¢. In some cases, the container

N I N SN N

RS e s 1 Ev I S YR W
14 4l1] 4]1] | 4[1] 4)1] | 1]
3[1]4 3[1 3[1] 3[1] 3[1] 3[1]4
3]2]1 3]2 3[2]1 3[2] 3]2[4] 3[2][4
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

counter=1 counter=2 counter=2 counter=1 counter=0

Figure 3: Example in which stack 1 is invariant to the sequence (3,1)(3,1)(3,2)(1,3)(1, 3).
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Figure 4: Initial layout for the unrelated move avoidance example.

can be moved directly from a to c. In other cases, there are several options for stack x and all but

one of them can be disallowed.

Proposition 2. A sequence of moves (ci,s1,d1), (c2,S2,d2), ..., (cn—1,8p—1,dn—1), (c1,d1,dy) is

disallowed if ¢y ¢ {ca,...cn—1} and one of the following conditions is satisfied:

1. Stack s1 is invariant to the sequence (c2,82,d2),. .., (Ch—1,Sn—1,dpn—1) and t?;”” +ng +1<
|T|.

2. Stack dy, is invariant to the sequence (ca, S2,d2), ..., (¢n—1, Sn—1,dn—1) and tfl;n_1+ndn <|T|.

3. There exists a stack s’ < dy invariant to the sequence (cz2,s2,d2), ..., (Chn—1,Sn—1,dn—1) that

satisfies the condition tz,’n_l +ng +1<|T.

4.8.8. Same group symmetries
Symmetries appear when two containers of the same group are relocated in two different moves.
We identify some cases in which an equivalent sequence is obtained by changing the source stack

or the destination stack.

Proposition 3. A sequence of moves (c1,s1,d1), (c2,82,d2), ..., (Cn—1, Sn—1,dn—1), (Cny Sn, dp) s
disallowed if group(c1) = group(c,) and one of the following condition is satisfied:
1. sy =dp, 2" 40y, <|T|, and {s1,sn} or {s1,d1} are invariant from move 2 to (n —1).

2. 81> s, 13" 4+ ng, <|T|, s1 and s, are invariant from move 2 to (n — 1).

2n—1

8. dy >dn, t7" " +ng, < |T|, di and d,, are invariant from move 2 to (n — 1).

4.3.4. BB and GB move avoidance

Let LBBY be the lower bound proposed by Bortfeldt and Forster (2012), [ be the current depth
in the algorithm, and MOVES(z) be the number of moves to reach node z. We only permit BG
and GG moves when [ = MovEes(z) + LBPF and at least one stack is non-misoverlaid. This rule

is validated by the fact that LBPY assumes only BG and GG moves. It is strengthened by only
11



allowing BG moves if | = MovEs(z) +n™ (or BX moves if | = MovEs(z) +n™ + hM and all stacks
in z are misloverlaid).

We also implement a tie-breaking mechanism within this rule. If a container can be moved by a
BG move to either one of two non-misoverlaid stacks with the same height, we choose the one with
the smaller topmost group. Further ties are broken by the stack number. Since this dominance
rule conflicts with (3) of Proposition 3, we modify (3) so that it is applied only when the heights
of stacks d; and d,, are different, at least one of the stacks d; and d,, is misoverlaid, or the group

of the topmost non-misoverlaying container of stack d; is larger than or equal to that of stack d,,.

4.4. Memoization-based upper bound heuristic

In the definition of the CPMP, stacks are essentially interchangeable, i.e., given a layout of the
bay, only the order in which containers are stacked vertically matters, and not the order of the
stacks in the bay. For each arrangement of the bay, there can be up to S! equivalent layouts. The
idea of rearranging the bay to create an abstract configuration is proposed by Ku and Arthanari
(2016) for the CRP and also used in Quispe et al. (2018) for the same problem. We build on this
idea to create an efficient and simple upper bound heuristic.

We design a hash function that allows us to detect layouts corresponding to abstract config-
urations already visited during the search. First, nonempty stacks are ordered by non-increasing
number of containers. In case of a tie, they are examined from top to bottom until a container of
a different group is found at the same tier. In this case, the one with the higher group is ordered
first. If two stacks have the same layout, it does not matter which one is ordered first. The key
concatenates the groups of the containers of each stack in the ordered list from bottom to top.

Since the use of the memoization strategy during the complete iterative deepening has a very
high computational cost, we use it just to obtain a feasible solution. The algorithm starts at the
initial configuration, saving it in the hash table. It then creates all of the initial solution’s children,
pruning those already saved in the hash table and any nodes removed by our dominance rules.
Just the best node according to the branching comparison algorithm is saved and the process is

repeated from this node until a feasible solution is found or a maximum fixed level is reached.
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5. Extended lower bound

BBY proposed by Bortfeldt

In this section we describe our new bounds. First, we introduce L
and Forster (2012), on which all the other bounds are based, and IBF! by Tanaka and Tierney
(2018), which we also extend. Finally, we present our proposed lower bounds IBF?, IBF3, and

IBF*. The proofs of the propositions appear in Appendix B.

5.1. The Bortfeldt and Forster lower bound

The LBBY from Bortfeldt and Forster (2012) is formalized as LBBF .= npx + ngx where

n™M + RM if all stacks are misoverlaid,
nBx =

nM otherwise,

and ngx puts a lower bound on the number of non-misoverlaying containers that must be moved.
First, a slot (s,t) is a potential supply slot if t > n} > 0 and ws = g. Let s¥(g) be the number of
potential supply slots of group g, and S¥(g) = P sP(g") + |T|ng be the cumulative potential
supply of group g, where ng is the number of empty stacks. The demand of group g is given by
d(g), which is the number of misoverlaying containers of group g. Furthermore, D(g) = > e d(g")
is the cumulative demand of g. The cumulative demand surplus for group ¢ is given by DS(g) =
D(g) — S"(9)-

The item group g* = argmax, D3(g) is the item group with the largest cumulative demand
surplus. All stacks s satisfying ws < ¢g* are called potential GX stacks, and there are ncpg( of
them. Assume nt3 > ndy = max(0,[D5(g*)/|T|]. The stacks are now sorted such that potential
GX stacks come first and are then sorted according to the value n9 (s) ascending, where n9(s)
is the number of non-misoverlaying containers with a group ¢’ < g in stack s. Finally, we define

S *
nax = >..9¥n9"(s) and get a lower bound on the number of GX moves. We refer to Bortfeldt

and Forster (2012), for a proof of correctness of the bound.

5.2. IBF" lower bound

Tanaka and Tierney (2018) introduce the lower bounds IBFY and IBF!. When non-full stacks
are all misoverlaid, IBF? increases LBPY by their minimum misoverlay height. Moreover, IBF!

increases IBF? by 1 in the following cases.
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Case 1: All stacks are misoverlaid.
Case 2: One stack is not misoverlaid and it is not full (2a), or it is full (2b).
Case 3: Two stacks are not misoverlaid and at least one is not full.

Case 4: ngx = 0 and only one non-misoverlaid stack is not full.

5.3. Extended lower bound IBF?

We prove that IBF? can be improved not by 1, but by 2 under some conditions in Cases 1, 2b,
3, and 4. This lower bound is denoted by IBF2.

5.8.1. Extension of IBF', case 1: All stacks are misoverlaid

The bound IBF! improves IBFY by 1 through consideration of the moves required to make two
stacks non-misoverlaid. Let IBF! := IBF?+1 if it is impossible to repair a stack with the minimum
number of misoverlaying containers (kM) only using BB moves and then another stack only using
BG moves. We now show that in certain situations we can further improve IBF! by 1. This is
done by checking whether the second stack can be repaired under the assumption that a single

additional GB or BB move is permitted.

Proposition 4. IBF? := IBF! + 1 is a valid lower bound for the CPMP if all of the following
conditions are true:

1. All stacks are misoverlaid

2. IBF! := IBF" + 1
3. min mgy > max W,
sheU 71 sie{seS | nM=hM41}
4. minmg > max wg
S’leU S2€Smml\/l
X
5. min g > max ws,

CsheU! %2 T gy egminm
Example 1. In this example, LBBY = 13 (npx = 10 + 2 = 12, ngx = 1) and IBF! = 14 for the
CV4-4-14 instance in Figure 5a. Consider now solving the given bay in 14 moves. First, examine
the option in which stack 2 (or 4) is repaired first, and then another stack is repaired only by BG
moves. The next stack to repair would be stack 1, since it is upside down. However, the topmost
container with value 15 is larger than the topmost non-misoverlaying container in stack 2 with
a value of 14. Thus, only BG moves will not suffice. Repairing stack 4 first leads to a similar

situation. Alternatively, consider repairing stack 1 (or 3) first. Then, the topmost container of
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(a) CV4-4-14, Case 1. (b) CV-4-6-20, Case 2b. (¢) CV-4-5-16, Case 3 (d) Case 4

Figure 5: Example instances showing the lower bound improvements, IBF2.

stack 1 (resp. 3) is moved by a GB move and another stack must be repaired using only BG moves.
Even if we move the container with group 4 from stack 1 with a GB move, we still cannot repair
any other stack with only BG moves, as only stack 1 is upside down. Repairing stack 3 first also
does not work, since even after removing container 3, the containers from stack 1 cannot be moved
on top of container 6 without creating additional misoverlays. A final option to achieve a 14 move
solution would be as follows. After repairing stack 1 (or 3), another stack is repaired with one BB
move and BG moves. If we consider using BG moves for containers 7 and 1 from stack 2 to 1, the
stack is upside down if we then use the BB move for container 16. However, 7 > 4, thus we cause
a misoverlay in stack 1. The same argument is valid for stacks 3 and 4. Similar arguments can be

made when stack 3 is repaired first, thus IBF? = 15 is a valid lower bound.

5.3.2. Extension of IBF', case 2b: Only one stack is non-misoverlaid and it is not full

The bound IBF! = IBF® + 1 is valid when exactly one stack s is non-misoverlaid and not full,
and ming ey my > w,. Note how this bound only examines the top container of the upside down
stack and the non-misoverlaid stack. If we dig one container deeper, in certain situations we can
improve IBF! by one move. There are two situations to consider, namely when IBF! = IBF? + 1

and when IBF! = IBF.

Proposition 5. IBF? := IBF! + 1 is a valid lower bound for the CPMP if all of the following are
true:
1. Only one stack s is non-misoverlaid and it is not full

2. IBF! = IBF° + 1

3. minmg > wie
s'eU

15



min
s"eu’

gar > ws
Proposition 6. IBF? := IBF! + 1 is a valid lower bound for the CPMP if all of the following are
true:

1. Only one stack s is non-misoverlaid and it is not full

2. Only one stack s’ is upside down and g:;?p < wy.
3. IBF! = IBF’
4

Vs e SMA\ {5}, nBY > 2V ¢BY > max{w!,w!,} v ¢B5 > min{w’, wl,}, holds, where

wy nagx > 0Ang —I—ngfI < |7,

wg  otherwise.

Example 2. Figure 5b shows an example instance where IBF? strengthens the lower bound. Stack
1 is (clearly) the non-misoverlaid, non-full stack, s. Stack 3 is the upside down stack s’ that can
be placed on s with only BG moves. The lower bound is IBF! = LBBF = 15 (nx = 13, ngx = 2).
Since ngx > 0, we can move the container with group 1 from stack 3 to stack 1. We now attempt
to repair the other stacks with BG moves. Since three misoverlaying containers in stack 2 or 5
are in nondecreasing order of groups from top to bottom, at least three non-misoverlaid stacks are
required for repairing them (nSB,,G = 3). Stack 4 needs two stacks that can accept its containers
with groups 23 and 19 (¢8¢ = 23 and ¢B% = 19). Similarly, stack 6 needs two non-misoverlaying
stacks with topmost groups of at least 24 and 20. Thus, we cannot repair stacks 2, 4, 5 and 6, and

the bound IBF? := IBF! + 1 = 16 is obtained.

5.3.3. Extension of IBF', case 3: Two stacks are non-misoverlaid, at least one is not full

Let the two non-misoverlaid stacks be stacks s; and s9 and assume that ws, < ws, without loss
of generality. Let IBF! := IBF? + 1 if we cannot repair any stack only by GG and BG moves.

IBF? tries to increase IBF' by 1 if IBF' = IBF". Let w/ and w/, be the topmost non-
misoverlaying containers in stacks s; and s, respectively, after GG moves between them. If
nax = 0, no GG moves are permitted, so that w}, := w,, and w, := ws,. If ngx = 0 and either
stack s1 or so is full, we consider the lower bound in case 4 rather than here in case 3. When
nax > 0, the following situations set the values of w{ and wy,

(S3.1) If ws, < ws, and stack sy is full (ng, = |T|), then no GG moves are possible, only
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. . s "o "N __
stack s1 is available for repairing, and wy, = ws,, wg, = —o0.

52
(S3.2) Otherwise.

sec sec —
. wi g, < [T, . Wi ngy, < |T| AN ws, = ws,y,
u! i W = (2)
wg,  otherwise, ws, otherwise.

Proposition 7. IBF? := IBF! + 1 is a valid lower bound for the CPMP if all the following are
true:
1. Two stacks are non-misoverlaid and at least one of these is not full

2. IBF! = IBF?

1
81

3. ¥s' € SM, n5C > 2v ¢B¢ > max{w! ,wl } v ¢5S > min{w

" . "
19 wy, } holds with values wy, and

wl  set according to situations (S3.1) and (55.2).

52

Example 3. The instance in Figure 5c has IBF! = IBF® = LB®¥ = 9 (ngx = 8, ngx = 1).
According to our definition, s; = 1 and sg = 4. As ws, < ws, and stack sz is not full, (S3.1)
does not hold and we apply (S3.2) so the topmost groups are 13 and 6. We try to repair stacks
2, 3, or 5 with BG moves to stacks 1 or 4. Stacks 2 and 3 cannot be repaired as groups of the
misoverlaying containers are larger than those of s; and ss. Analyzing stack 5, despite container
12 not causing a problem (¢gB% = 12 < max{cs,,cs,} = 13), the top group of stack 3 is not large
enough to support container 10 (¢%* = 10 > min{cs,,cs,} = 6). Thus, no stack can be repaired

and we obtain IBF? := 9 + 1 = 10.

5.3.4. Extension of IBF', case 4: ngx = 0 and only one non-misoverlaid stack is not full

When IBF! = IBF? + 1, we further try to increase IBF! by 1. Let s be the non-full, non-
misoverlaid stack, and s’ the stack to be repaired. Since ngx = 0, we only need to consider one
GG or BB move in addition to ngx(= IBF’) BG moves. There are two situations to consider,
namely (S4.1) when we perform a GG move from a full, non-misoverlaid stack s” to stack s and
stack s’ is repaired with only BG moves to s and s”, or (S4.2) when stack s’ is repaired by BG
moves with exactly one BB move before, during or after the BG move sequence. Excluding these

two situations, IBF? := IBF' + 1.

Proposition 8. IBF? := IBF! + 1 is a valid lower bound for the CPMP if all the following are

true:
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1. Only one non-misoverlaid stack is not full
2. ngx = 0
3. IBF! = IBF° + 1

4. ming ey g? > Ws

Example 4. Figure 5d shows an example in which IBF® = LB®¥ = 6 (ngx = 6, ngx = 0) and
IBF! = 7. As neither stack 1 nor 2 becomes upside down by removing only one misoverlaying
container, we cannot arrange the bay only with one BB move and BG moves. Therefore, IBF? =

IBF! +1=38.

5.4. Extended lower bound IBF®

We now change our focus to dealing with cases where even IBF? cannot improve the LBBY i.e.,
IBF? = LBBY. If at least one non-misoverlaid stack is not full, IBF? tries to repair each stack in
SM with only BG moves to the stacks in SN, without considering stack height limits. If ngx > 0,
at best these GX moves empty n%x stacks. Considering this, we add n%X dummy empty stacks
to SN. If a misoverlaid stack can be repaired, all of its misoverlaying containers are removed from
the bay, and it is moved from S™ to SN for further repairs. When this process fails to repair all
the stacks, at least one extra move will be necessary and we obtain IBF? := LBPY 4 1. To speed
up the process, we assume that at most three non-misoverlaid stacks are necessary for repairing a

stack, even when more than three are required.

Proposition 9. IBF? is a valid lower bound for the CPMP if IBF? = LBBY.

5.5. Extended lower bound IBF*

When IBF? fails to improve the lower bound over LBBF, IBF* offers one last chance for im-
proving the bound by one move. Recall that in LBBF the supply and demand of each group is
computed. These values try to quantify how many places are available to accept containers of a
particular group or are required for containers of a group, respectively. This bound takes advan-
tage of the situation when at some § the cumulative demand surplus D3(g) = D(g) — S¥(g) = 0.
When supply and demand are balanced at g, it means that the demand with group g < ¢ cannot
be assigned to any supply of group g > §. The groups are thus partitioned by balanced supply
and demand and we examine if containers providing the demand can be moved to stacks providing

supply using only BG moves. In certain situations in which this is not possible, IBF* = IBF3 + 1.
18



We introduce some setup information and several terms to help us describe the IBF* bound.
First, when ngx > 0, assume each n%X stack provides |T'| supply for the largest group. Let [§¥, §*]
be the kth subset of groups partitioned in the above manner, so that DS(gF + 1) = 0 holds. For
each g satisfying ¢F < g < §*, we only consider from now on the demand and supply of groups
g such that § < g < gF. We refer to a stack having one or more containers with demand as a
demand stack. Formally, a stack s is a demand stack if § < m% < §* holds for some i. A stack that
provides supply is referred to as a supply stack: A supply stack s’ satisfies § < wy < §*. We call
a stack “dirty” when it is a demand and supply stack, and the demand and supply from a dirty
stack dirty demand and dirty supply, respectively. The total number of dirty demands in a dirty
stack with groups g satisfying § < g < §* is referred to as the dirty height. We refer to a demand
stack and a supply stack as being clean when they are not dirty, and their demand and supply as

BBF can be

clean demand and clean supply. If one of the following conditions is satisfied, IBF3=L
improved by 1:

1. The minimum dirty height is larger than the clean supply.

2. There is only one clean supply stack, there are no dirty stacks, and there exists a clean demand
stack such that the group of the topmost demand container is smaller than the maximum
group of the demand containers in that stack.

3. There is only one clean supply stack and the maximum group of the dirty demand contain-

ers is larger than the topmost dirty demand containers and the topmost non-misoverlaying

containers in dirty stacks.

Proposition 10. IBF! is a valid lower bound for the CPMP if IBF? = LBBY.

6. Computational experiments

We carry out an extensive computational analysis to assess the performance of the algorithm
proposed for the CPMP, which we refer to as PT*. We test our approach and several algorithm
variants that arise from different combinations of the contributions presented in this study, see
Table 2. The letters U, T, G, and XB, refer to unrelated move, transitive move, same group, and
BB/GB move avoidance dominance rules, respectively. “Gen.” refers to the generalized rules and
BCA! and BCA? to the branching comparison algorithm presented in Tanaka and Tierney (2018)

and our modification in this work, respectively. These novel approaches are evaluated against the
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state-of-art exact algorithm from Tanaka and Tierney (2018), and obtain a significantly larger
number of optimal solutions as well as feasible solutions of unsolved instances. We focus on
answering the following research questions:

1. What effect do the improved lower bounds have on the performance of PTA?

2. What effect do the dominance rules have on the performance of PT#?

3. What is the effect of the new branching strategy?

4. Do the benefits of using the memoization-based upper bound heuristic outweigh the time

invested?

5. Does PTA improve the state-of-the-art exact algorithms?

6. Are we overfitting the well-known datasets?

We conduct all computational experiments on Intel Xeon X5650 CPUs at 2.67 GHz running
CentOS 6.6, with each execution of the algorithms being given a maximum of 3 GB of RAM and
an hour of CPU time.

Table 2: An overview of the algorithms directly compared in this section.

Algorithm Lower bound Branching Dominance rules Hash table
PTA IBFZ, IBF3, IBF4 BCAZ Gen.(T, U, G), XB  Initial UB
pTD IBF?, IBF3, IBF* BCA?Z Gen.(T, U, G), XB -
PT4+ IBF2, IBF3, IBF* BCA?Z T, U, G -
PT*4 IBF2, IBF3, IBF*  BCA! T,U, G -
PT3 IBF2, IBF3 BCA! T, U, G -
PT? IBF? BCA! T, U, G -
TT# (Tanaka and Tierney, 2018) IBF! BCA! T,U, G -
IDA* (Tierney et al., 2017) LBBF Left T, U -

6.1. Test instances

We focus on instance sets from Bortfeldt and Forster (2012) (BF dataset) and Caserta and
Vo (2009) (CV dataset) as they contain the most difficult instances in the literature. In Tanaka
and Tierney (2018) three other datasets were used from van Brink and van der Zwaan (2014)
(BZ dataset), from Expésito-Izquierdo et al. (2012) (EMM dataset), and from Zhang et al. (2015)
(ZJY dataset); however, these instances are all solved to optimality in little runtime by TTA, so
we do not consider them again here. Finally, the CPMP has been thoroughly studied, and most
of the state-of-art exact algorithms use the previous datasets to test their performance. Avoiding
overfitting of the studied methods on these instances is a crucial concern. To ensure that we are

not overfitting, we also consider a fresh dataset, CVX, from Hottung et al. (2017). Experimental
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results on this dataset are conducted at the end of the section, showing that our approach also

performs well on new data and definitely does not overfit. We now briefly describe the datasets.

CV dataset. In these instances, all containers have different groups and stacks are filled to the
same height. The instances range in size from 3 tiers by 3 stacks up to 6 tiers by 10 stacks full of

containers. Two empty tiers are added above the top of each stack.

BF dataset. This dataset is made up of two groups (BF and LC). BF contains 32 categories, having
either 16 or 20 stacks with a height of either 8 or 5 tiers. LC is divided into 5 categories whose
instances are based on the instances by Lee and Chao (2009). They have either 10 or 12 stacks
and either 5 or 6 tiers. Since the load capacity of these instances is under 100%, it is not necessary
to add empty tiers as in the CV dataset. Moreover, unlike the CV dataset, there can be multiple

containers of the same group.

CVX dataset. There are three groups of instances in the CVX dataset: CVX1, CVX2, and CVX3.
Instances in CVX1 follow the structure of CV (all containers have different groups and stacks are
filled to the same height). Stacks are also filled to the same height in CVX2 and CVX3, but
in these cases, there are two and three containers of each group, respectively. The instances in
CVX1-CVX3 range in size from 5 tiers by 7 stacks up to 5 tiers by 10 stacks full of containers,

with two extra empty tiers are added as in the CV dataset.

6.2. Improved lower bounds IBF?, IBF8, IBF*

We evaluate the effectiveness of the improved lower bounds, IBF2, IBF3, and IBF*, presented
in this work. Since IBF? tries to improve the bound only if IBF? fails, and IBF, in turn, only tries

to improve the bound only if IBF? fails, we assess their incremental effectiveness.

Root node analysis. Given the strength of IBF!, it is not surprising that the benefits of the improved
bounds are limited in the root node, except for IBF? on the CV dataset that increases the lower
bound by 1 on 200 of 760 instances. Nevertheless, we now show that they are useful during the

search.

BF Dataset. Figure 6a shows the logarithmic number of nodes searched for solving BF instances
with and without the improved lower bounds. Points below the line indicate improved solving per-

formance from the new lower bound, whereas points above the line indicate degraded performance.
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The most effective bounds on the BF dataset are IBF? and IBF4. We highlight that PT?3 solves
44 more instances than PT? (which solves the same as TT#), as well as dramatically reduces the
number of nodes in all the instances. PT* adds 13 more optimal solutions to that achieved by PT3,
finding 499 optimal solutions instead of the 442 of TTA. The number of nodes decreases again
significantly, especially on the most challenging instances. Considering just the 442 cases in which
PT* and TT# achieve optimal solutions, there are 8 categories in which the reduction percentage

of the number of nodes exceeds 90%, and the CPU time is reduced on average by 76%.
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Figure 6: Number of nodes necessary for finding an optimal solution on all BF and CV instances with the lower

bound improvements (PT?, PT*, PT*) and without (TT?). The graphics uses a log-10 scale and unsolved instances
are assigned a node count of 10,

CV Dataset. In general, PT? finds solutions in slightly fewer nodes than TT#, see Figure 6b. PT3
obtains a greater reduction in the number of nodes over PT? whereas the number of nodes explored

in PT? and PT* is quite similar, with slight gains for PT%. In regards to the number of optimal
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solutions, PT? solves 3 more instances to optimality than TT#, while PT3 and PT* solve 16 more
than PT2. PT* reduces the number of nodes on average by 65% and the CPU time by 71% across
instances optimally solved by both PT# and TTA.

6.3. Branching strategy

We next examine the performance of the branching comparison algorithm BCA? proposed in
Section 4.2 against that used by TT#, changing the branching strategy of PT* and calling this
variant PT*T. PT*+ solves 502 instances to optimality instead of 499 on the BF instances, and
681 instead of 679 cases for the CV instances. The number of feasible solutions goes from 592 to

599 on the BF dataset, and from 710 to 713 on the CV dataset.

6.4. New dominance rules

Figure 7 shows the logarithmic number of nodes explored for solving CV and BF instances
with PT*, and with PTP (including all the new dominance rules), clearly showing that the new

dominance rules introduced in this paper reduce the number of nodes searched.
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Figure 7: Number of nodes necessary for finding an optimal solution on all BF and CV instances with PT** and
PTP. The graphics use a log-10 scale and unsolved instances are assigned a node count of 10*!.

On the BF dataset, PTP solves 7 more instances to optimality and cuts the number of nodes
down on average by 93% and CPU time on average by 47% in those instances optimally solved by
both versions. We obtain new optimal solutions in some of the most challenging categories such
as BF13, BF15, and BF31. The average node count is reduced in almost all categories and the

reduction percentage exceeds 90% in 19 of them. On the CV dataset, PTP optimally solves 3 more
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instances and cuts the number of examined nodes down by 49%. Nevertheless, CPU time increases

by 23%.

6.5. Memoization-based upper bound heuristic

The algorithm PTP finds a feasible solution on the root node in 268 instances of 681 on the BF
dataset and in 16 instances of 760 on the CV dataset. Using the memoization strategy, we obtain
411 and 719 more feasible solutions on the root node on BF and CV instances, respectively, as
shown in Figure 8. This strategy spends an average CPU time higher than 1 second only in three
categories: BF30 (1.03 seconds), BF31 (1.18 seconds), and BF32 (3.58 seconds). Our heuristic
finds a feasible solution for all the instances of these categories while TT# does not provide a

solution in any of them. The average CPU time is still small on the CV dataset, only 0.02 seconds

on average.
P | PT| |
PT® | | PT° || |
> & 8 8 8 3 g 8 ° g g g g
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(a) BF instances (b) CV instances

Figure 8: The gray bars represent feasible solutions found on the root node with PT* and PTP on BF and CV
datasets.

PT* solves the same number of instances as PTP but finds at least one feasible solution on 679
instances of BF instead of 611, and on 751 instances of CV instead of 712. The feasible solutions
achieved during the iterative deepening are progressively closer to the lower bound than those
obtained initially by the memoization strategy, but PT# allows having feasible solutions in a more

significant set of instances in an integrated algorithm.

6.6. Comparison to the state-of-the-art

BF Instances. Table 3 shows the performance of the state-of-the-art approaches Tierney et al.
(2017) and Tanaka and Tierney (2018), together with the proposed approach PT#. PTA solves
15% more instances to optimality, 509 instead of 442. PTA fails to provide a feasible solution in
only two instances of the category BF16, in contrast with the 90 instances in which TT* does not

provide any solution. Furthermore, PT solves 61 more instances of the hardest categories, those
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Table 3: Algorithm performance of the IDA* algorithm from Tierney et al. (2017), the TT# algorithm from Tanaka
and Tierney (2018) and PTP and PT* on the BF dataset from Bortfeldt and Forster (2012) grouped by categories
(Cat).The column #Inst. contains the number of instances tested in each group. The average time and average log
nodes include only instances for which an optimal solution was found.

# Avg. Time Avg. Log Nodes # Optimal # Feasible
Cat. C Imst. IDA* TTA PT» IDA* TTA PTA IDA* TTA PTA IDA* TTA PTA
BF1 48 20 121.77 0.00 0.11 11.05 0.00 0.00 18 20 20 18 20 20
BF2 48 20 175.81 0.00 0.04 873 0.00 000 15 20 20 15 20 20
BF3 48 20 271.40 0.01 0.03 11.10 048 039 11 20 20 11 20 20
BF4 48 20 11.81 0.00 0.05 991 012 012 18 20 20 18 20 20
BF5 64 20 567.62 209.51 19.83 16.57 12.02 7.77 8 18 20 8 20 20

BF6 64 20 504.27 165.47 0.52 20.16 14.39 9.18 1 18 20 1 20 20
BF7 64 20 23797 8.18 2.74 17.74 13.24 10.49 10 20 20 10 20 20
BF8 64 20 845.54 138.56 53.25 19.28 15.49 11.86 3 20 20 3 20 20
BF9 77 20 2084.96 150.59 123.45 21.13 13.98 9.05 5 16 19 5 20 20
BF10 77 20 257.22 0.00 6.14 15.02 1.63 3.37 3 11 18 3 20 20
BF11 77 20 33850 293.10 16.10 18.59 15.51 10.88 3 9 18 3 20 20
BF12 77 20 - 104.23 70.12 - 6.14 5.92 0 12 20 0 20 20
BF13 103 20 - 1013.68 546.06 - 21.80 18.21 0 3 5 0 13 20
BF14 103 20 - - - - - - 0 0 0 0 7 20
BF15 103 20 - - 1556.41 - - 19.55 0 0 2 0 13 20
BF16 103 20 - 165.25 1067.33 - 20.21 19.43 0 1 1 0 6 18
BF17 60 20 0.00 0.01 0.09 6.85 0.66 0.49 6 20 20 6 20 20

BF18 60 20 12.83 0.01 0.19 8.19 0.00 0.00 16 20 20 16 20 20
BF19 60 20 2.55 0.01 0.10 9.87 0.60 0.29 11 20 20 11 20 20
BF20 60 20 24.57 0.01 0.09 9.00 0.00 0.00 14 20 20 14 20 20
BF21 80 20 727.45 145.63 11.54 18.11 14.00 8.25 6 18 20 6 20 20

BF22 80 20 - 212.79 0.87 - 11.87 8.59 0 16 19 0 20 20
BF23 80 20 37.60 186.99 87.24 15.06 12.14 8.82 3 17 20 3 20 20
BF24 80 20 - 566.22 9.44 - 17.34 11.47 0 16 18 0 20 20
BF25 96 20 - 378.14 258.79 - 8.64 7.28 0 8 12 0 20 20
BF26 96 20 - 0.01 22.85 - 1.82 258 0 16 19 0 20 20
BF27 96 20 1203.96 96.61 28.66 20.32 12.75 10.14 2 11 17 2 20 20
BF28 96 20 238.33 0.01 237.67 18.90 2.75 4.12 1 11 15 1 20 20
BF29 128 20 - - 512.44 - - 18.94 0 0 1 0 11 20
BF30 128 20 - - 1538.85 - - 19.77 0 0 2 0 7 20
BF31 128 20 - - 1788.39 - - 19.77 0 0 2 0 9 20
BF32 128 20 - - - - - - 0 0 0 0 4 20
LC1 35 1 0.00 0.00 0.01 5.98 4.48 3.53 1 1 1 1 1 1
LC2a 50 10 208.33 2.67 0.86 13.50 10.32 7.82 9 10 10 9 10 10
LC2b 50 10 312.96 1.91 0.10 17.00 12.71 6.16 6 10 10 6 10 10
LC3a 54 10 331.53 1.27 2.95 18.15 13.24 9.90 6 10 10 6 10 10
LC3b 54 10 403.67 14.22 3.83 18.25 15.50 11.58 7 10 10 7 10 10

Total: 681 - - - - - - 183 442 509 183 591 679

with 8 tiers (BF9 through BF16 and BF25 through BF32). Using PT#, 15 categories through
BF1-BF32 are completely solved to optimality, 5 more categories than TT”. We note the large
reduction in the number of examined nodes provided by the new contributions on categories where

TTA and PTA achieve the same number of optimal solutions.

CV Instances. We refer now to Table 4. TTA solves 660 of 760 instances, while PT# solves 684.
All of the instances ranging in size from 3 tiers by 3 stacks up to 5 tiers by 7 are solved by PT#,

which is two more categories than TT”. We note again that the number of examined nodes and
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Table 4: Algorithm performance of the IDA* algorithm from Tierney et al. (2017), the TT# algorithm from Tanaka
and Tierney (2018) and PT* on the CV dataset from Caserta and Vo8 (2009).The column #Inst. contains the
number of instances tested in each group. The average time and average log nodes include only instances for which
an optimal solution was found.

# Avg. Time Avg. Log Nodes # Optimal # Feasible
|T] |S| C Inst. IDA* TTA PTA IDA* TTA PTA IDA* TTA PTA IDA* TTA PTA

5 3 9 40 0.00 0.00 0.00 6.08 5.02 4.29 40 40 40 40 40 40
5 412 40 0.00 0.00 0.00 6.68 5.11 4.05 40 40 40 40 40 40
5 515 40 0.01 0.00 0.00 7.76 6.15 4.48 40 40 40 40 40 40
5 618 40 0.01 0.00 0.00 8.03 6.06 4.26 40 40 40 40 40 40
5 721 40 0.03 0.00 0.01 9.24 6.95 4.93 40 40 40 40 40 40
5 824 40 0.07 0.00 0.01 9.27 6.75 4.80 40 40 40 40 40 40
6 416 40 0.66 0.04 0.04 12.32 10.15 9.40 40 40 40 40 40 40
6 520 40 2.20 0.04 0.03 12.92 10.13 9.08 40 40 40 40 40 40
6 624 40 15.12 0.22 0.09 14.52 11.66 9.93 40 40 40 40 40 40
6 728 40 2991 0.75 0.37 15.76 12.92 10.68 40 40 40 40 40 40
7 420 40 299.50 36.97 32.10 17.91 16.21 15.24 34 40 40 34 40 40
7 525 40 396.38 106.89 96.68 19.11 16.75 15.54 35 40 40 35 40 40
7 630 40 883.10 231.66 169.60 20.21 18.91 17.29 17 39 40 17 40 40
7 735 40 732.43 507.22 312.16 19.63 18.66 17.02 18 37 40 18 40 40
7 840 40 1332.14 376.94 222.61 20.91 19.83 17.77 10 35 38 10 40 40
7 945 40 2016.98 466.57 470.61 21.46 20.33 18.34 6 30 38 6 40 40
7 10 50 40 1901.81 360.27 327.51 21.46 19.99 17.85 3 32 36 3 39 40
8 636 40 - 1318.63 1796.14 - 22.21 21.72 0 5 8 0 13 34
8 10 60 40 - 1980.76 1928.22 - 22.64 20.77 0 2 4 0 16 37

Total: 760 - - - - - - 523 660 684 523 708 751

the CPU time dramatically decrease on the most challenging categories.

Running PTA for a day of CPU time. We also tried solving the BF and CV instances using a day
of CPU time to gauge whether some solutions were barely out of reach of the one hour timeout. On
the BF dataset, our approach solves 28 more instances to optimality, 2 of them in BF14 and also
2 in BF32. Remarkably, on the CV dataset, PT? is able to solve all the instances in the categories
5-8, 5-9, and 5-10 in 576.53, 1315.64, and 3076.00 seconds on average, respectively. Categories 5-9
and 5-10 represent the size of the largest RMGC systems we are aware of, meaning our algorithm is
able to solve difficult real-world CPMP instances to optimality. Furthermore, it also solves 33 out

of 80 instances of categories 6-6 and 6-10, which pose difficulty even to metaheuristic approaches.

CVX Instances. We now evaluate both algorithms on a “fresh” dataset to ensure we are not
overfitting our approach to the existing instances. The results are shown in Table 5. On this
dataset, our algorithm still outperforms TT#, solving 441 instances to optimality instead of 397
in the category in which all containers have different priorities (CVX1), 468 instead of 442 in
the category with at least two containers of each priority (CVX2), and 486 instead of 468 in the

category with at least three containers of each priority (CVX3). A feasible solution is found for all
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the instances by PT# while TT# does not find any solution on 4 instances. PT# cuts the number
of nodes down by 91% and the CPU time by 65%. These data show the excellent performance of
our approach on a set of instances different to that used for its development.

Table 5: Algorithm performance of the TT# algorithm from Tanaka and Tierney (2018) and PT* on the CVX
dataset from Hottung et al. (2017). The column #Inst. contains the number of instances tested in each group.The
average time and average log nodes include only instances for which an optimal solution was found.

# Avg. Time Avg. Log Nodes # Optimal # Feasible
| |S] C Inst. TTA PPA  TTA PPA TTA PPA TTA PPA
CVX1 7 7 35 250 29334 216.85 18.96 1721 223 241 250 250
7 10 50 250 750.33 414.07 20.58 18.15 174 200 247 250
Total: 500 - - - - 397 441 497 500
CVX2 7 7 35 250 19824 107.78 18.22 16.28 242 248 250 250
7 10 50 250 452.63 314.86 20.01 17.52 200 220 249 250
Total: 500 - - - - 442 468 499 500
CVX3 7 7 35 250 80.88 4330 17.06 15.14 248 250 250 250
7 10 50 250 318.79 21228 19.22 16.67 220 236 250 250
Total: 500 - - - - 468 486 500 500

7. Conclusions and future research

We presented novel lower bounds and dominance rules for solving real-world sized pre-marshalling
problems. Our approach extends the IBF! lower bound from the literature, as well as introduces
two new lower bounds, extended and new dominance rules, and a feasible solution heuristic. Our
lower bounds and dominance rules are computationally inexpensive, allowing them to be imple-
mented as part of an iterative deepening branch-and-bound procedure. Our approach finds feasible
solutions for nearly every CPMP instance it encounters, and optimal solutions on between 80.0%
and 99.2% of the instances in industrially relevant instance categories.

There are several potential avenues for future work. In particular, we intend to investigate
the integration of crane movement costs into the CPMP, so that moves of different distances and
heights take different amounts of time. Furthermore, robust variants of the problem (as in Tierney
and Vof}; 2016) offer a way of preventing the need for multiple iterations of the CPMP due to

delays of outbound transportation.
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Appendix A. Proofs of the new dominance rules provided in Section 4.3

Proof of Proposition 1. The first condition s; > s, is just for tie-breaking. Since s, and d,
are invariant to the sequence (c1,$1,d1),...,(¢n-1,Sn—-1,dn—1), the same layout as the original
sequence is obtained by the sequence (¢, sn,dyn), (c1,$1,d1),. .., (¢n—1,Sn—1,dn—1) Whenever it is
feasible. It is only feasible when the third condition is satisfied, ensuring d, to have enough
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space to allocate the maximum number of temporary containers assigned to it during the sequence
(c1,81,d1), ..., (Cn=1, Sn—1,dn—1). With respect to s,, temporary containers always fit into it. Since

t" 4 ng, 4+ 1 <|T|, therefore t5" ' + n,, < |T).

Proof of Proposition 2.

1. Since stack s; is invariant, the number of containers in s; before the second move is the same
as ng,. The second term ensures that s; has enough space to move the container c; after the
sequence (cg,82,d2), ..., (Cn—1, Sn—1,dn—1). Therefore, the same layout as that of the original
sequence is obtained by another feasible sequence with one less move (cg, s2,d2), ..., (¢n—1, Sn—1,
dn-1), (c1, 81, d,) when s1 # d,, or by another feasible sequence with two less moves (cz, s2,d2), . . .,
(Cn—1,8n—1,dpn—1) when s; = d,,.

2. Since stack d,, is invariant to the sequence (c2, s2,d2), ..., (¢n—1, Sn—1, dn—1) and ng, is the number
of containers stored in d,, after the move (cy, s1,d,,), d, has ng, — 1 containers stored before and
after that sequence. By the second term, d,, has enough space to store the maximum number of
containers that are temporarily allocated to it during the sequence (¢, $2,d2), ..., (¢n—1, Sn—1, dn—1),
although it now has one less free slot. The same layout as that of the original sequence is ob-
tained by the feasible sequence (c1, s1,dy), (¢2, $2,d2), ..., (Cn—1, Sn—1,dn—1) when s1 # d,, or by
(c2,82,d2), ..., (Cn—1, Sp—1,dn—1) When s; = d,.

3. The sequence of moves (c1,s1,5'), (c2,$2,d2), ..., (¢n—1,8p—1,dn—-1), (c1,5",dy) is feasible since
c1 ¢ {ca,...cn} because s’ is invariant to (ca, s2,d2), ..., (¢n—1, Sn—1,dn—1), s’ has enough space
to store the temporarily moves of containers, and it provides the same layout as the orig-
inal sequence. Condition s’ < d; is just for tie-breaking. When s’ = d,, the sequence

(c1,81,dp), (c2,82,d2), ..., (¢n—1, Sn—1, dn—1) is feasible.

Proof of Proposition 3. Let p = group(ci) = group(c,). It suffices to show that the same layout
with respect to group values is obtained by another feasible sequence. It does not matter if the
positions of containers ¢; and ¢, of the same group may be interchanged.

1. In the sequence, the container c¢; of group p is moved from s; first and finally ¢, (also of
group p) is moved to d,, = s1. Since s; is invariant to (co, s2,$2),..., (¢n-1,Sn—1,dn—1), the
number of containers in s; in the initial layout is equal to that of the final layout, ng,. First,
assume that s, is invariant and s, # di, which implies ¢, ¢ {c1,...,cn—1}. Noting that ¢,

is on top of s, in the initial layout, we consider a new sequence (¢, Sn,d1),(ch,s2,d2),...,
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(¢y—1s8n—1,dn—1), where ¢, = ¢, if ¢ = c1, and ¢}, = ¢ otherwise, to move ¢, in place of ¢;
by the second and later moves. In this sequence, ¢; is not moved from s;, which may block
moves from s; and/or cause lack of spare space for moves to s;. However, the former is not
the case because s is invariant, and the latter never occurs from tz;n_l + ns, <|T|. Therefore,
this sequence is feasible and yields the same layout as the original sequence except for the
interchanged positions of ¢; and ¢,. Next, assume that d; is invariant and d; # s,. It implies
that c;, which is moved to d; by (c1,s1,d1), is not moved by (c2,s2,52),. .., (¢p, Sp,dy) and
thus ¢; ¢ {ca,...,cy} holds. This condition together with the above argument on s; ensures
the feasibility of a new sequence (co, s2,52), .., (Cn-1, Sn—1,dn—1), (Cn, Sn,d1). It is not difficult
to verify that it yields the same layout as the original sequence with respect to group values.
Finally, assume that s, = d; is invariant, therefore ¢; = ¢, and ¢1 ¢ {co,...,c,—1} holds, thus
di remains the same at the end of the whole sequence. The same layout is obtained by the
sequence (c2, 82,d32), ..., (Cn1,Sn—1,dn—1) that is feasible because of the above argument on s;.
. Consider a sequence of moves (¢, sp,d1), (¢4, $2,d2), ..., (Ch_1,5n—1,dn—1) Where ¢} = ¢, if
cr = c1 and ¢}, = ¢ otherwise. As already shown in case 1, the sequence is feasible since s; and
s, are invariant and t?’ln71+n81 < |T'| holds. The topmost container of s; after this sequence is ¢;
as s1 is invariant, so that the sequence (cy, sp,d1), (ch, s2,d2), ..., (c\_1sSn—1,dn—1), (¢n, $1,dp)
is also feasible. Obviously, it yields the same layout as the original sequence with respect to the
group values.

. We consider a sequence of moves (cy, s1,dy), (c2, $2,d2), ..., (¢n—1,Sn—1,dn—1). Since d; is in-
variant, ¢; ¢ {ca,...,cn—1} holds. Stack d, is also invariant and tfl;n_l +ng, < |T| holds. These

facts ensure the feasibility of the sequence. It yields the same layout as the original sequence

with regard to group values since d; and d,, are invariant.

Appendix B. Proofs of the Extended lower bounds presented in Section 5

Proof of Proposition 4. The following situations are the only options for solving the CPMP in IBF!

moves when Conditions 1 and 2 hold:

(S1.1) A stack s; with exactly hM + 1 misoverlaying containers is repaired first using BB moves,
and then another stack s} can be repaired using only BG moves.

(S1.2) A stack sy with exactly h™ misoverlaying containers is repaired using BB moves, and
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(S1.2a) the topmost non-misoverlaying container in stack sz is moved by a GB move, and then

another stack s, is repaired only by BG moves, or (S1.2b) another stack ), is repaired by exactly

one BB move before, during or after a BG move sequence.
We now show that for each of these situations there is a condition when it does not hold, and when
all of the conditions hold, there is no way to solve the CPMP in only IBF! moves. First consider
Condition 3 as applied to situation (S1.1). We first incur (AM + 1) BB moves to repair s;. All
remaining moves must be BG moves. However, Condition 3 stipulates there is no upside down
stack that can be placed on top of the repaired stack. Thus, situation (S1.1) is not sufficient for
solving the bay in just IBF! moves. Next, Condition 4 is applied to situation (S1.2a). According to
the condition, even if we perform a GB move to remove the topmost non-misoverlaying container
of so, we will not be able to flip the upside down stack anywhere without causing misoverlays. This
would then require additional BB moves, meaning situation (S1.2a) is also not sufficient in just
IBF! moves. Finally, Condition 5 is used in situation (S1.2b). To repair stack s, € U’, the top
group of so should be at least gzz, granted that a single BG move to another stack is permitted.
Obviously, it is not possible when Condition 5 applies. Thus, when Conditions 3, 4 and 5 hold, the
CPMP cannot be solved using situations (S1.1), (S1.2a) or (S1.2b), and IBF? := IBF! + 1 is valid.

Proof of Proposition 5. To solve the CPMP in IBF! = IBF” +1 moves when Condition 1 holds, two
options for repairing another stack are (S2b.1) the topmost non-misoverlaying container in stack
s is moved by a GB move, and then another stack s’ is repaired only by BG moves, and (S2b.2)
another stack s” is repaired by exactly one BB move before, during or after the BG move sequence.
Since these are similar to (S1.2a) and (S1.2b) in the proof of Proposition 4, respectively, it is easy
to show that (S2b.1) and (S2b.2) are not possible if Conditions 4 and 5 hold, respectively. Thus,
IBF? = IBF! + 1 must hold.

Proof of Proposition 6. The only option for solving the CPMP in IBF! = IBF? + 1 moves is to
repair stack s’ with BG moves to stack s and then another stack s” € SM\ {s'} with BG moves
to stacks s and s’. When ngx > 0, we may perform GG moves from s’ to s unless s becomes full.

Note that GG moves from s to s’ are not possible since s’ was repaired through moves to s. These

sec

moves can change the top group of stack s to wi°. If both the cases are taken into account, the

top groups of stacks s and s’ are given by w} and w/,, respectively. To repair stack s” with only

BG moves to stacks s and s', nB% < 2, ¢BS < max(w}, w’,), and ¢5G < min(w’,w’,) should all be
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satisfied. Condition 4 ensures that no such stack s” exists. Therefore, an extra move is required

and IBF?2 is valid.

Proof of Proposition 7. First, we note that the situations (S3.1) and (S3.2) provide us with the
largest possible group values on stacks s; and so given the GG moves available. We must then
repair one of the misoverlaid stacks using only BG moves to s; and sa. However, when Condition 3
holds, there are no misoverlaid stacks that have containers that fit into s; and so without requiring

an additional move.

Proof of Proposition 8. First, consider situation (S4.1) in which we perform a GG move from s” to
s. Since we are only left with BG moves, we need to be able to place the misoverlaying containers
from one of the misoverlaid stacks s’ on top of s” and s without any extra moves. Furthermore,
stack s” can accept only one container as it was full before the GG move. Thus, s’ € U’ and at least
g% < w; should hold to repair it. Next, for situation (S4.2), we perform a BB move when there is a
stack that would be upside down if one container was removed from it. The same argument is true
in this case, and s’ € U’ and g% < w, are required. Thus, when mingepr g% > ws, IBF? := IBF! +1

is a valid lower bound.

Proof of Proposition 9. Suppose that the procedure in the proposition fails to repair all the stacks
in SM. Then, we will not be able to repair any of the remaining stacks in S™ with only BG moves
even when all misoverlaying containers in the other stacks are removed from the bay. Since GG
moves are taken into consideration by adding empty stacks to SV, at least an additional move is

needed to repair the bay.

Proof of Proposition 10.

1. If the minimum dirty height is larger than clean supply, none of dirty stacks can be repaired
only by BG moves, so that IBF3=LBB¥ is improved by 1.

2. If there is only one clean supply stack and no dirty stack, clean demand containers are moved to
the unique clean supply stack only by BG moves. It is not possible when there is a clean demand

BBF can be increased

stack where demand containers are not upside down, therefore IBF? = L
by 1. To speed up the check, we only search for such a clean demand stack that the group of the
topmost demand container is smaller than the maximum group of demand containers in that

stack.
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3. If there is only one clean stack, at least one of the topmost dirty demand containers is moved
first to that stack. Let g2 be the maximum group of dirty demand containers. A container
with group g2 should also be moved to the clean supply stack if g2 _ is larger than topmost
non-misoverlaying containers in dirty stacks. However, a BG move is not possible if g2 is

larger than the topmost dirty demand containers, thus we can improve IBF? by 1.
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