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Abstract

We consider Kempe changes on the k-colorings of a graph on n vertices. If the graph
is (k − 1)-degenerate, then all its k-colorings are equivalent up to Kempe changes.
However, the sequence between two k-colorings that arises from the proof may be
exponential in the number of vertices. An intriguing open question is whether it can
be turned polynomial. We prove this to be possible under the stronger assumption
that the graph has treewidth at most k− 1. Namely, any two k-colorings are equiv-
alent up to O(kn2) Kempe changes. We investigate other restrictions (list coloring,
bounded maximum average degree, degree bounds). As a main result, we derive that
given an n-vertex graph with maximum degree ∆, the ∆-colorings are all equiva-
lent up to O(n2) Kempe changes, unless ∆ = 3 and some connected component is
a 3-prism.

Keywords: reconfiguration, coloring, graph theory, treewidth

Given a k-colored graph, aKempe chain is a connected component in the subgraph induced by

two given colors. A Kempe change consists in swapping the two colors in a Kempe chain, thereby

obtaining a new k-coloring of the graph. Two k-colorings of a graph are Kempe equivalent if one

can be obtained from the other through a series of Kempe changes. This elementary operation

on the k-colorings of a graph was introduced by Kempe in 1879, in an unsuccessful attempt to

prove the four color theorem [Kem79].

The study of Kempe changes has a vast history, see e.g. [Moh06] for a comprehensive overview

or [BBFJ19] for a recent result on general graphs. We refer the curious reader to the relevant chap-

ter of a 2013 survey by Van Den Heuvel [vdH13]. Kempe equivalence falls within the wider set-

ting of combinatorial reconfiguration, which [vdH13] is also an excellent introduction to. Beyond

the intrinsic interest of theoretical results, the study of Kempe changes is motivated by practical

applications in statistical physic and approximate counting of colorings (see e.g. [Sok00, MS09]

for nice overviews). Closer to graph theory, Kempe equivalence can be studied with a goal of

obtaining a random coloring by applying random walks and rapidly mixing Markov chains, see

e.g. [Vig00].

Kempe changes were introduced as a mere tool, and are decisive in the proof of Vizing’s edge

coloring theorem [Viz64]. However, the equivalence class they define on the set of k-colorings
is itself highly interesting. In which cases is there a single equivalence class? In which cases

does every equivalence class contain a coloring that uses the minimum number of colors? Vizing

conjectured in 1965 [Viz68] that the second scenario should be true in every line graph, no matter

the choice of k.
Our main interest is the study of the reconfiguration graph Rk(G), whose vertices are the

k-colorings ofG and in which two colorings are adjacent if and only if they differ by one Kempe

change. We are interested in the following questions: in which setting is the reconfiguration
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graph connected, that is, any two k-colorings are Kempe equivalent ? When this is the case, can

we bound the length of the shortest sequence of Kempe changes between any two colorings, i.e.

the diameter of the reconfiguration graph ?

A graph is said to be d-degenerate if all its (non-empty) subgraphs contain a vertex of degree

at most d. Note that if G has maximum degree ∆ then it is trivially ∆-degenerate, and even

(∆−1)-degenerate ifG is not regular. Las Vergnas andMeyniel [LM81] showed in 1981 that there

exists a sequence of Kempe changes between any two k-colorings of a d-degenerate graph G
when k> d+1. In other words, the corresponding reconfiguration graph is connected. However,
the sequence they provided may have exponential length.

Reconfiguration restricted to trivial Kempe changes — Kempe changes involving only one

vertex — is another well-studied topic, known as vertex recoloring. The lemma of Las Vergnas

andMeyniel echoes a result proved by Cereceda [Cer07] in the setting of vertex recoloring: all the

k-colorings of a d-degenerate graph are equivalent up to trivial Kempe changes when k > d+2.
However, the sequence between two k-colorings that arises from the corresponding proof may

once again be exponential in the number n of vertices. Cereceda conjectured that there exists

one of length O(n2). In a breakthrough paper, Bousquet and Heinrich proved that there exists

a sequence of length O(nd+3) [BH19]. However, Cereceda’s conjecture remains open, even for

d = 2.
Obtaining similar bounds with regular Kempe changes on d-degenerate graphs with one

fewer color would have many consequences, as the lemma of Las Vergnas and Meyniel is used as

a base ground in several proofs. Unfortunately, the bound of Bousquet and Heinrich [BH19] does

not extend to this setting, and even a polynomial upper-bound on the number of changes would

be highly interesting. With this in mind, we prove three polynomial bounds on the diameter of

the reconfiguration graph in closely related settings.

Kempe equivalence of ∆ colorings

Any graph G can be greedily colored with (∆ + 1) colors, where ∆ is the maximum degree of

G. Brooks’ theorem states that if G is not a clique or an odd cycle, then ∆ colors suffice. Many

different proofs of this theorem exist, see [CR14] for a collection of proofs of Brooks’ theorem

using various techniques — for that matter, some of them using Kempe changes.

In the more restrictive setting of Brooks’ theorem, Mohar [Moh06] conjectured that all the

k-colorings of a graph are Kempe equivalent for k > ∆. Note that the result of Las Vergnas

and Meyniel [LM81] settles the case of non-regular graphs. Feghali et al. [FJP17] proved that

the conjecture holds for all cubic graphs but the 3-prism (see Fig. 1). The conjecture does not

hold for the 3-prism, as can be seen through the lenses of frozen colourings. A colouring is

frozen if any bichromatic subgraph is connected, hence performing any Kempe change leaves

the color partition unchanged. Since the 3-prism admits two frozen 3-colorings with different

color partitions, they are not Kempe equivalent. To our knowledge, this is the only argument at

our disposal to prove that a reconfiguration graph is disconnected.

Figure 1: Two frozen 3-colorings of the 3-prism

Bonamy et al. [BBFJ19] later showed that the conjecture also holds for∆-regular graphs with

2



∆> 4. Both paper heavily rely on the lemma of Las Vergnas and Meyniel and provide sequences

that possibly have exponential length.

In Section 3, we give a polynomial upper bound on the diameter of the reconfiguration graph

in this setting.

Theorem 0.1. All the k-colorings of an n-vertex graph G with maximum degree at most ∆ 6 k
are equivalent up to O(n2) Kempe changes, unless k = 3 and G is the 3-prism.

The main idea of the proof is to improve the result of Las Vergnas and Meyniel [LM81] by

showing that there exists a sequence of Kempe changes of length O(n2) between any two k-
colorings of a d-degenerate graph when k > d+ 1, under the additional assumption that all the

vertices but one have degree at most d+ 1 (see Section 2).

Kempe equivalence in graphs of boundedmad

The maximum average degree of a graph G is a measure of the sparsity of G, defined as the

maximum of the

mad(G) = max
∅6=H⊆G

2|E(H)|

|V (G)|
.

For all d> 1, if a graph hasmad strictly less than d, then it is (d−1)-degenerate: all its subgraph
have average degree less than d, so admit a vertex of degree at most d− 1.

We prove that themad of a graph, while related to its degeneracy, proves to be easier to work
with in this setting.

Theorem 0.2. Let G be a graph with mad(G) 6 k − ε. All the k-colorings of G are Kempe

equivalent up to O(Polyε(n)) Kempe changes.

We prove the above theorem by giving an upper bound on the number of Kempe changes

when lists are involved (see Section 2), and by adapting ideas developed by Bousquet and Perar-

nau in [BP16] in the setting of single vertex recoloring (see Section 4).

Kempe equivalence in bounded treewidth graphs

Another way to strengthen the degeneracy assumption involves the treewidth of a graph (the

treewidth is a graph parameter that measures how close a graph is from being a tree, see Section 1

for a definition). A graph of treewidth k is k-degenerate, while there are 2-degenerate graphs
with arbitrarily large treewidth. Bonamy and Bousquet [BB18] confirmed Cereceda’s conjecture

for graphs of treewidth k. In Section 5 we extend this result to non-trivial Kempe changes with

one fewer color.

Theorem 0.3. Let tw and n be to integer. Any two k-colorings of an n-vertex graph G with

treewidth tw are equivalent up to O(tw n2) Kempe changes, when k > tw+1.

Additionally, the proof of Theorem 0.3 is constructive and yields an algorithm to compute

such a sequence in time f(k) · Poly(n). Given a witness that the graph has treewidth at most k,
the complexity drops to k · Poly(n).

1 Preliminaries

A k-coloring of a graph G is a map α : V (G)→ [k] such that for every edge uv ∈ E(G), α(u) 6=
α(v). Given a k-coloring α of a graph G and c ∈ [k], we denoteKu,c(α,G) the connected com-

ponent of the subgraph of G induced by the colors c and α(u), that contains u. With a slight
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abuse of notation, we will also use Ku,c(α,G) to denote the corresponding Kempe change. We

may drop the parameter G when there is no ambiguity. When describing algorithms, we will

denote α̃ (or β̃, etc) the current coloring, obtained from the original coloring α (or β, etc). We

denote Ck(G) the set of k-colorings ofG andRk(G) the reconfiguration graph, whose vertex set
is Ck(G) and in which two colorings are adjacent if they differ by one Kempe change.

We denote N(u) and N [u] the open and closed neighborhoods of a vertex u, respectively.
Given an ordering v1 ≺ . . . ≺ vn of the vertices of G, we denote N+(vi) = {vj ∈ N(vi)|j > i}
and N−(vi) = {vj ∈ N(vi)|j < i}.

A graphG is d-degenerate if all its (non-empty) subgraphs contain a vertex of degree at most

d. This is equivalent to admitting a d-degeneracy sequence: an ordering of the vertices such that

for all v ∈ V , N+(v) is of size at most d. A d-degenerate graph is trivially (d+ 1)-colorable, by
doing a decreasing induction on the vertices. We will extensively use the lemma of Las Vergnas

and Meyniel:

Lemma 1.1 ([LM81]). All k-colorings of a d-degenerate graph are Kempe equivalent when k >

d+ 1.

For completeness, we include a proof of it.

Proof. We proceed by induction on the number of vertices. Let G be a d-degenerate graph on n
vertices and k > d+ 1. Since G is d-degenerate, there exists a vertex v of degree at most d. Let
G′ =G\{v}. Letα and β be two k-colorings ofG. We claim that we can apply a series of Kempe

changes on α inG so as to obtain a coloring γ whose restriction toG′ is equal to β|G′ . Assuming

this claim, if γ(v) 6= β(v), then neither γ(v) nor β(v) appears in γ(N(v)) since γ|G′ = βG′ . As

a result, performing the trivial Kempe change Kv,β(v)(γ,G) yields β.
It remains only to prove the above claim. By the induction hypothesis, all k-colorings of G′

are Kempe equivalent, so there exists a sequence S of Kempe changes inG′ leading from α|G′ to

β|G′ . Our goal is to extend S to a series of Kempe changes inG. Each Kempe changeKu,c(α̃, G
′)

in S is either applied directly or preceeded by an appropriate trivial Kempe change, as follows.

If α̃(v) 6∈ {c, α̃(u)} or no neighbor of v belongs to the corresponding chain, we directly apply

the same change in G. Otherwise, the issue is that adding v to G′ might result in merging two

connected bichromatic components of G′. Assume from now on without loss of generality that

α̃(v) = α̃(u).
IfKu,c(α̃, G) andKu,c(α̃, G

′) agree except on v (in particular, if v has at most one neighbor

of color c), we also apply directly the same Kempe change. Indeed, the change will impact the

color of v in G but the restriction to G′ behaves as expected. Therefore, we can assume that v
has at least two neighbors colored c. Since v has degree at most d and k > d + 1, there exists
a color cv that is not used in N [v]. After the trivial Kempe change Kv,cv(α̃, G), the vertex v is

colored cv . We can now apply the desired Kempe change.

This concludes the proof of the claim, hence of the lemma. �

A graph H is chordal if every induced cycle is a triangle. Equivalently, there is an ordering

of the vertices such that N+[v] is a clique for any vertex v. As a consequence, the chromatic

number χ(H) of a chordal graphH is equal to the size ω(H) of a largest clique in H . Note that

we also have ω(H) = d+ 1 where d is the degeneracy ofH .

Proposition 1.2 ([BHI+20]). Given an n-vertex chordal graph G and an integer p, any two p-
colorings of G are equivalent up to at most n Kempe changes.

The proof presented in [BHI+20] for Proposition 1.2 is constructive and the corresponding

algorithm runs in linear time.

The treewidth of a graph measures how much a graph “looks like” a tree. Out of the many

equivalent definitions of treewidth, we use the following: a graph G has treewidth at most k if
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there exists a chordal graph H such that G is a (not necessarily induced) subgraph of H , with

ω(H) = χ(H) 6 k + 1. For example, if G is a tree, we note that G is chordal and 2-colorable.
By takingH = G, we derive thatG has treewidth at most 1. If G has treewidth at most k, there
is a chordal graph H with ω(H) = k + 1 that admits G as a subgraph. Therefore, H and thus

G are k-degenerate. The converse does not hold, as rectangular grids have degeneracy 2 yet

unbounded treewidth.

2 Kempe recoloring with list assignments

LetG be a graph andL : V (G)→P(N) be a list assignment. A coloringα ofG is anL-coloring if
α(u) ∈ L(u) for every vertex u. Kempe changes can be defined as before, although the resulting

coloring may not be an L-coloring. Possible obstructions will be defined later on.
We strengthen the lemma of Las Vergnas andMeyniel under two different additional assump-

tion:

Proposition 2.1. Let G be a graph and let v1 ≺ . . . ≺ vn be an ordering of V (G).

1. If the ordering yields a (d − 1)-degeneracy sequence and deg(vi) 6 d for every i < n, then
any two k-colorings ofG are Kempe equivalent up toO(n2) Kempe changes, for k > d. More

precisely, the color of each vertex is changed a linear number of times.

2. Given a list assignment L ofG, if |L(vi)|> deg(vi)+1 for all i < n then any twoL-colorings
of G are equivalent up to O(n) Kempe changes.

Let α be a L-coloring ofG, v a vertex and a color c ∈ L(v) \α(N+(v)). LetK =Kv,c(α,G)
We say that a vertex u ∈ K \ {v} is blocking the Kempe change if c or α(v) does not belong
to L(u). If a Kempe chain admits at least one blocking vertex, then we say it is not feasible. To

further analyze how possible obstructions can appear, we introduce the following definitions.

We say that a vertex u ∈ K \ {v} is

• branching if u has degree at least 3 in the Kempe chainK ,

• problematic if u has at least two greater neighbors in the Kempe chainK .

We say that u is a bad vertex for K if it is either branching, problematic or blocking K . It is a

first bad vertex if there exists a path from v to u in K that contains no other bad vertex than u.
Note that a first bad vertex is necessarily smaller than v.

We use the same algorithm to prove both parts of Proposition 2.1.

2.1 Recoloring (d−1)-degenerate graphswith an additional assumption on the
degree

Assume that G is (d − 1)-degenerate, with corresponding degeneracy sequence v1 ≺ · · · ≺ vn,
and that all the vertices but possibly vn have degree at most d. To prove the first point of Propo-

sition 2.1, we prove the following lemma:

Lemma 2.2. Let α be a k-coloring of G, let 1 6 j 6 n and 1 6 c 6 k such that c 6∈ α(N+(vj)).
Algorithm 1 applied on (α, vj , c) with list assignment L(vi) = {1, . . . , k} for every i returns a
k-coloring β such that β(vj) = c and ∀ℓ > j, β(vℓ) = α(vℓ). Furthermore, the smaller vertices

are recolored at most |N−(vj)| times, vj is recolored at most once, and the bigger vertices are not

recolored.
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Algorithm 1:

Input : An L-coloring α of G, a vertex v, a color c ∈ L(v) \ α(N+[v]).
Output: An L-coloring β of G which agrees with α on {w|w ≻ v}, with β(v) = c.
Let β = α;

1 while ∃u ∈ Kv,c(β,G) \ {v} that is bad do

2 Let u be the greatest first bad vertex;

3 if there exists a color c′ in L(u) \ β(N [u]) then
// In particular, this is the case if u is blocking or branching.

Let β be the result of the trivial Kempe change Ku,c′(β,G);

4 else

Let c′ be a color in L(u) \ β(N+[u]);
// The set is non-empty as u is problematic.

Let β be the result of Algorithm 1 on input (β, u, c′);

end

PerformKv,c(β,G) in β;
Return β;

Proof.We proceed by induction on j. If j = 1, then the algorithm does not enter the while loop,

and recolors vj with a trivial Kempe change. Assume now that 1 < j < n. Figure 2 shows an

example of the execution of Algorithm 1. Since L is constant, there is no blocking vertex.

Consider a k-coloring γ of G that agrees with α on all vertices greater or equal than vj .
Assume thatKvj ,c(γ,G) \ {vj} contains a bad vertex, in other words the condition of the while

loop is satisfied for γ. Let u be the greatest bad vertex as in the line 2. For every neighbor

w ∈ N−(vj) such that γ(w) = c we define

Cγ(w) = Kw,γ(vj)(γ,G \ {vj}) ∪ {vj}.

We haveKvj ,c(γ,G) =
⋃

w∈N−(vj)|γ(w)=c Cγ(w). A neighbor w ∈ N−(vj) is a safe neighbor in

γ if w ≻ u and either γ(w) 6= c or γ(w) = c and Cγ(w) is a decreasing path ending at a vertex

greater than u. A neighbor w ∈ N−(vj) is unsafe if it is not safe.

Claim 1. An iteration of the while loop on γ results in a coloring γ′ with more safe neighbors.

Moreover, either Kvj ,c(γ
′, G) has no bad vertex or the greatest bad vertex u′ is smaller than the

greatest bad vertex u forKvj ,c(γ,G).

Proof. The Kempe changes in the while loops operate on vertices smaller or equal than u. Hence
safe neighbors in γ remain safe in γ′ if u′ ≺ u. We only need to show that u′ ≺ u and that some

unsafe neighbor becomes safe.

We first prove that u′ ≺ u. In either case of the if condition, only the vertices smaller or

equal than u are modified. Furthermore u is not bad anymore in γ′. Hence either γ′ has no bad

vertex or the greatest first one is smaller than u.
We now prove that some unsafe neighbor becomes safe. Let w ∈ N−(vj) be on a shortest

path P from vj to u inKvj ,c(γ,G). Then w is an unsafe neighbor with γ(w) = c. We prove that

w is safe in γ′.
If u = w then w is safe in γ′ since it is recolored with a color c′ different from {c, γ(vj)}.

If u 6= w, then at the end of the while loop the vertex u is recolored and Cγ′(w) = P \ {u}. In
particular, since u′ ≺ u, w is safe in γ′. �
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Apply Claim 1 to α, then to the coloring obtained after each new iteration of the while loop

(if any). If the resulting coloring has only safe neighbors, thenK is a generalized star, rooted at

vj , in which each branch is decreasing. In such a scenario, the while condition is not satisfied.

The Kempe change K colors vj with c and does not affect the colors of the vertices bigger than

vj , as desired.
Since the number of safe neighbors increases at each step, the number of iterations is at most

the number of unsafe neighbors in α, which is at most |N−(vj)|. Note that bigger vertices are
not recolored. It remains to arguemore carefully that smaller vertices are not recolored toomany

times. We observe that in each iteration of the while loop, a smaller vertex is recolored at most

once. This is trivial if u satisfies the if condition on line 3. If it does not, we observe that u has at

most one bad neighbor, and apply the induction hypothesis to obtain that every vertex smaller

than u is recolored at most once. The conclusion follows. �

v12v10v8v7v5v4v2

Initial coloring α. The aim is to recolor v8 in pink. The bad neighbors are v4
and v7. K(v4) consists only of v4 and v8, and is a decreasing path. K(v7)
consists of v2, v5, v7, v8, v10. No vertex is branching, but v2 is problematic.

All colors appear in N [v2], so we apply induction on v2 with color orange.

v12v10v8v7v5v4v2

Kv8,pink(β̃) is now a generalized star, centered at v8, whose branches are de-
creasing paths..

v12v10v8v7v5v4v2

The vertex v8 has been recolored pink, after a total of 2 Kempe changes.

Figure 2: Example of recoloring on a 3-degenerate graph, following the steps of the proof of

Lemma 2.2.

2.2 List recoloring

We now prove the second point of Proposition 2.1. Let L be a list assignment of G such that

|L(vi)| > deg(vi) + 1 for all i < n. We prove the following claim:
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Claim 2. Let α be a L-coloring ofG, let 1 6 j 6 n and c ∈ L(v)\α(N+(v)). Algorithm 1 applied

on (α, vj , c) returns an L-coloring β such that β(vj) = c and ∀ℓ > j, β(vℓ) = α(vℓ). Furthermore,

Algorithm 1 performs at most |N−(vj)| + 1 Kempe changes and each vertex is recolored at most

once.

Proof. First note that the condition line 3 is always satisfied. Indeed, because u is different from

vn we have |L(u)| > deg(u) + 1 and

• if u is problematic, |β(N [u])| = 1 + |β(N(u))| 6 deg(u),

• if u is blocking, |β(N [u])| 6 deg(u)+1 but at least one of c and α(vj) belongs to β(N(u))
but not to L(u),

• if u is branching, |β(N [u])| = 1 + |β(N(u))| 6 deg(u)− 1.

Now the bound on the number of Kempe changes follow from the exact same analysis as in

the previous proof. �

2.3 Proof of Proposition 2.1

Proof of Proposition 2.1. Let α and β be two colorings satisfying one of the two settings. Let

1 6 j 6 n be the largest such that α(vj) 6= β(vj). We note v = vj and proceed by induction on

j. DenoteL′(v) =L(v)\α(N+(v)), whereL(v) = {1, . . . , k} in the first setting. Note thatL′(v)
is not empty. For c in L′(v), denote pc = |α

−1(c) ∩N−(v)| + |β−1(c) ∩N−(v)|. If pc > 2 for

all c ∈ L′(v), we have 2 deg−(v) > 2|L′(v)|. However, |L′(v)| > |L(v)| − deg+(v) > deg−(v),
hence 2 deg−(v) > 2 deg−(v), a contradiction.

Let c ∈ L′(v) be such that pc 6 1. By applying Algorithm 1 on v for color c in α (resp.

β), we obtain a coloring α′ (resp. β′). We have α′(w) = α(w) = β(w) = β′(w) for all w ≻ v
and α′(v) = c = β′(v), hence α′(w) = β′(w) for all w < v. Furthermore, at most O(n) Kempe

changes are performed in the first setting, and at mostO(1) in the second. We obtain the claimed

bounds on the length of the sequence of Kempe changes. �

3 Recoloring with graphs of bounded degree

We recall Theorem 0.1:

Theorem 0.1. All the k-colorings of an n-vertex graph G with maximum degree at most ∆ 6 k
are equivalent up to O(n2) Kempe changes, unless k = 3 and G is the 3-prism.

To prove Theorem 0.1, we adapt the proof [BBFJ19, FJP17] by handling separate cases de-

pending on whether G is 3-connected. The problem is then reduced to (∆(G) − 1)-degenerate
graphs, with all vertices but possibly one of degree at most ∆(G). We proved in Section 2 that

in that case, Rk(G) has diameter O(n2) whenever k > ∆(G) (see Proposition 2.1).

3.1 Naive bounds for Mohar’s conjecture

Let G be a graph of maximum degree ∆ other than the 3-prism and let k > ∆. Bonamy et.

al. [BBFJ19] and Feghali et. al. [FJP17] proved that Ck(G) forms a single Kempe class. If k > ∆
or if G is not regular, Proposition 2.1 states that diam(Rk(G)) = O(n2). Assume that k = ∆
and that G is regular. Let u be a vertex of G. Given any ∆-coloring of G, there are at least two

neighbors of u that are colored alike. DenoteGv+w the graph where two non-adjacent neighbors
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v and w of u are identified and C∆v,w(G) the set of k-colorings of G in which v and w are colored

alike. We have

C∆(G) =
⋃

v,w∈N(u)

vw/∈E(G)

C∆v,w(G).

u

v

w

u v + w

Figure 3: The graph Gv+w (right) obtained from the 4-regular graph G (right) is 3-degenerate

with all its vertices but v + w of degree less than 4

There is a one-to-one correspondence between the colorings of Gv+w and the colorings of

G in which v and w are colored alike. Performing a Kempe change in Gv+w corresponds to

performing one or two Kempe changes inG, to maintain identical colors on v and w. As a result,

diam(R∆(G)) 6 2
∑

v,w∈N(u)

vw/∈E(G)

diam(R∆(Gv+w)). (1)

Note thatGv+w is (∆− 1)-degenerate and all its vertices but the identification of v and w are of

degree less than ∆ (see Figure 3). By Proposition 2.1, R∆(Gv+w) has diameter at most O(n2).
Together with Equation (1), this proves that diam(R∆(G)) = O(∆2n2). As a result, we obtain
the following theorem :

Theorem 3.1. Let G be a graph of maximum degree ∆, different from the 3-prism and k > ∆.

Then Rk(G) has diameter O(∆2n2).

To obtain Theorem 0.1, one needs to improve this bound to O(n2). As explained before, we
only need to consider the case k = ∆. Without loss of generality, we may only consider the case

k > 4, by including the ∆2 obtained for k = 3 inside the O. The proof is very similar to the

one developed in [BBFJ19], where we simply replace the use of the Las Vergnas and Meyniel’s

lemma [LM81] with Proposition 2.1 and count the number of Kempe changes performed (see Ap-

pendix A for an adaptation of this proof).

4 Recoloring graphs of bounded maximum average degree

A t-layering of a graph G is an ordered partition V = V1 ⊔ . . . ⊔ Vt of its vertices into t subsets.
We call layers the atoms Vi of the partition. Given a t-layering, we denote Gi = G[

⋃
j>i Vj] for

1 6 i 6 t and we define the level ℓ(v) of any vertex v as the index i of the subset Vi it belongs

to. We say that a t-layering has degree k if v has degree at most k in Gℓ(v) for all v ∈ V .

We recall Theorem 4.1:

Theorem 4.1. Let G be a graph with mad(G) 6 k − ε. All the k-colorings of G are Kempe

equivalent up to O(Polyε(n)) Kempe changes.
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The proof of Theorem 4.1 can be decomposed in two main steps. First, proving that if G has

mad less than k−ǫ, then it admits a t-layering of degree k−1with t being logarithmic in n. This
is achieved by Proposition 4.2, see [BP16]. Second, proving that if αi and βi are two colorings

of G[Vi] that differ by only one Kempe change, then any extension α of αi to G differs by at

most O(Polyε(n)) kempe changes from an extension β of βi to G, see Proposition 4.3 applied

with t as above. Finally, by the list coloring version of Proposition 2.1, each layer G[Vi] can be

be recolored one by one with O(|Vi|) Kempe changes, starting from G[Vt] down to G[V1].

Proposition 4.2 ([BP16]). For every k> 1 and every ε > 0, there exists a constantC =C(k, ε)> 0
such that every graph G on n vertices that satisfies mad(G) 6 k− ε admits a (C logk n)-layering
of degree k − 1.

Consider a graph G and a t-layering of degree k − 1 of it. Consider an arbitrary total order

≺ on the vertices that satisfies:

∀i < j,∀(u, v) ∈ Vi × Vj , u ≺ v.

Note that every vertex has at most k − 1 greater neighbors. We say a sequence S1 of vertices is

lexicographically smaller than another sequence S2 if

• S2 is empty and S1 is not, or

• the first vertex of S1 is smaller than the first vertex of S2, or

• S1 = x⊕ S′
1 and S2 = x⊕ S′

2 for some vertex x, and S′
1 is lexicographically smaller than

S′
2.

We then denote S1 ≺lex S2. Note that in particular, the empty sequence is the biggest element for

this order. A sequence of vertices S = (v1, . . . , vp) is said to be level-decreasing if the sequence

of levels (ℓ(v1), . . . , ℓ(vp)) is decreasing. We will say that two colorings agree on a set of vertices

X if their restrictions toX are equal.

Given a coloring α, a vertex v and a color c, we say in this subsection that a vertex u is

problematic for the pair (v, c) if there exists a level-decreasing path of vertices in Kv,c(α,G)
going from v to u, such that u has at least two neighbors inKv,c(α,Gℓ(v)). Note that if the pair
(v, c) has no problematic vertices and c is not used in α(NGℓ(v)

[v]), then the coloring β resulting

from the Kempe changeKv,c(α,G) agrees with α on V (Gℓ(v)) \ {v} and has β(u) = c.

Proposition 4.3. Let α be a k-coloring of G and K a Kempe chain in Gi with α|Gi
. Let γ be the

coloring of Gi obtained from α|Gi
by performing the Kempe change onK in Gi.

There exists a k-coloring β of G within n2 · (2k)t Kempe changes of α such that β|Gi
= γ.

4.1 Freeing one color at a single vertex

Lemma 4.4. Let α be a k-coloring of G and v be a vertex of G. For any color c, Algorithm 2 on

input (α, (v), c) yields a k-coloring β of G within n(2(k − 1))t Kempe changes of α, such that α
agrees with β on Gℓ(v), and the pair (v, c) admits no problematic vertices for β.

Proof of correctness of Algorithm 2. We prove correctness of the algorithm by induction on ℓ(v).
If ℓ(v) = 1, then V (Gℓ(v)) = V , so (v, c) does not admit any problematic vertex. For ℓ(v) > 1,
at each iteration of the while loop, line 1 is possible since u has at least two neighbors in Gℓ(u)

that are colored identically. By induction hypothesis, the Kempe change line 2 does not modify

the color of the vertices in Gℓ(u) \ {u}. Thus, ℓ(v) decreases at each iteration of the loop and at

10



Algorithm 2:

Input : A k-coloring α of G, a level-decreasing sequence of vertices S, a color c.
Output: A k-coloring β of G which agrees with α on V (Gℓ(v)) where v is the last

vertex of S. Moreover, the pair (v, c) admits no problematic vertices with

respect to β.
Let v be the last vertex of S;
Let β = α;
while the pair (v, c) admits problematic vertices with respect to the coloring β do

Let u be the largest problematic vertex for (v, c) with respect to β;
1 Let cu be a color in [k] \ β(NGℓ(u)

[u]);

Let β be the result of Algorithm 2 on input (β, S ⊕ u, cu);
2 PerformKu,cu(β,G) in β;

end

Return β;

most n calls are generated by the current call. �

To conclude the proof of Lemma 4.4, we need to bound the number of Kempe changes per-

formed by Algorithm 2.

Given a call C of Algorithm 2, we will denote SC the sequence provided in input, and uC its

last vertex.

Observation 4.5. If Algorithm 2 is called on (α, S, c) where S is a level-decreasing sequence, and

makes some recursive call C , then the sequence SC is longer than S and is of the form S ⊕ uC .
Moreover, SC is also a level-decreasing sequence by construction.

Claim 3 (analog to [BP16]). If a call D is initiated after a call C , then SD ≺lex SC .

Proof. IfD is called by C , then by Observation 4.5, SD is of the form SC ⊕ uC thus SD ≺lex SC .

By applying this argument inductively, we have also have SD ≺lex SC if the callD is generated

by C .

Now, assume that D is not generated by C . Denote I the initial call of Algorithm 2 and recall

that the recursive calls generated by I have a natural tree structure, rooted at I . There exists a
unique sequence SC = C1, C2, . . . Ct1 such that Ci calls Ci+1 for each i < t1, with C1 = I and

Ct1 = C ; and a unique sequence SD = D1,D2, . . . Dt2 such thatDi callsDi+1 for each i < t2,
with D1 = I and Dt2 = D. Denote B the last common ancestor of C and D. Since neither C
nor D is generated by the other, B is distinct from C and D and thus is not the last element of

the sequences SC and SD . We have :

• BC and BD are both called by B and BC is initiated before BD ,

• BC = C or BC generates C ,

• BD = D or BD generatesD.

It follows from Observation 4.5 that SBC
≺lex SC , so we just need to show that SD ≺lex SBC

.

By Observation 4.5 applied inductively, SD can be written as SBD
⊕TD with SBD

= SB ⊕uBD
.

Furthermore, SBC
can be written as SB ⊕ uBC

. Since BC is called before BD , we have uBD
≺

uBC
, so SD = SB ⊕ uBD

⊕ TD ≺lex SB ⊕ uBC
= SBC

. �

Claim 4 ([BP16]). Given that the t-layering V = V1⊔· · ·⊔Vt has degree at most k−1, the number

of level-decreasing paths between two vertices u and w in different levels is at most (k−1)i−1 where

i = |ℓ(u)− ℓ(v)|.
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Lemma 4.6. The number of Kempe changes performed by Algorithm 2 on input (α, (v), c) is

bounded by n(2(k − 1))t.

Proof.Observe that the sequences of vertices considered in the recursive calls are subsequences of

level-decreasing paths. Thus, each level-decreasing path betweenv andw has atmost 2ℓ(v)−ℓ(w)−1

subsequences that contain v and w. As a result, each vertex w with level ℓ(w) less than ℓ(v) is
the origin of at most 2ℓ(v)−ℓ(w)−1(k − 1)ℓ(v)−ℓ(w)−1 Kempe changes. �

4.2 Performing a Kempe change

Algorithm 3:

Input : A k-coloring α of G with k > ℓ+ 1, a level i, a Kempe chainK of G[Vi]i.
Output: A k-coloring β of G, whose restriction to G[Vi] is the coloring resulting from

the Kempe changeK in α|G[Vi].

Let c1, c2 be the colors involved inK ;

Let β = α;
while there exists a vertex v ∈ K such that (v, c1) or (v, c2) admits problematic vertices

in β do
Among all problematic vertices for some (v, c1) or (v, c2) with v ∈ K , let u be the

largest one;

Let v ∈ K and j ∈ {1, 2} be such that u is problematic fr (v, cj) in β;
Update β with the result of Algorithm 2 on input (β, (v), cj ).

end

Perform the Kempe changeK on β;
Return β;

Proof of Proposition 4.3. The coloring β is obtained by applying Algorithm 3. The correctness of

Algorithm 3 follows from the correctness of Algorithm 2, which holds by Lemma 4.4. After each

iteration of the loop the largest possible vertex that is problematic for a pair of vertex and a color

ofK decreases. Therefore, the loop is executed at most n times and at the end, the Kempe chain

K is a proper Kempe chain ofG. Combined with the cost analysis of Algorithm 2 by Lemma 4.6,

this proves that Algorithm 3 performs at most n2(2(k − 1))i + 1 Kempe changes and is correct.

�

4.3 Combining the arguments

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let V1 ⊔ . . . Vt be a t-layering of G of degree (k − 1), with t = C logk n
(see Proposition 4.2).

We claim that G can be recolored layer by layer, starting from G[Vt], with a polynomial

number of Kempe changes. We prove this by decreasing induction on the level of the layer. Let

1 6 i 6 t, let α and β be two k-colorings of G and assume that α and β agree on all vertices

of level more than i. For v ∈ Vi, let L(v) = [k] \ α(N(v) ∩ Gi+1). We have for all v ∈ Vi,

|L(v)|> degG[Vi](v)+1, so by applying the second case of Proposition 2.1, there exist a sequence
S of Kempe changes in G[Vi] of size O(|Vi|) leading from α|Vi

to β|Vi
. Moreover, each of the

Kempe change in S is a proper Kempe change in Gi. By Proposition 4.3, each of these Kempe

changes can be performed inG, afterO(Polyε(n)) Kempe changes affecting the vertices of level

less than i. �
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5 Recoloring bounded treewidth graphs

LetG be an n-vertex graph of treewidth tw. LetH be a chordal graph such thatG is a (not nec-

essarily induced) subgraph of H , with ω(H) = χ(H) 6 tw+1 and V (H) = V (G). Computing

H is equivalent to computing a so-called tree decomposition of G, which can be done in time

f(tw) · n [Bod96].

Since G and H are defined on the same vertex set, there may be confusion when discussing

neighbourhoods and other notions. When useful, we write G or H in index to specify. There is

an ordering v1 ≺ . . . ≺ vn of the vertices ofG such that for all v ∈ V (G), N+
H [v] induces a clique

inH . The ordering can be computed from H in O(n) using Lex-BFS [JRTL75].

The core of the proof lies in Proposition 5.1: for k > tw+1, any k-coloring ofG is equivalent

up to O(tw ·n2) Kempe changes to a k-coloring of G that yields a k-coloring ofH .

Proof of Theorem 0.3 assuming Proposition 5.1. Let α and β be two k-colorings of G. By Proposi-

tion 5.1, there exists a k-coloring α′ (resp. β′) that is equivalent to α (resp. β) up to O(tw ·n2)
Kempe changes. Additionally, both α′ and β′ yield k-colorings of H . Since H is chordal, by

Proposition 1.2, there exists a sequence of at most n Kempe changes inH from α′ to β′. Each of

these Kempe changes inH can be simulated by at most n Kempe changes inG, which results in

a sequence of length O(tw ·n2) between α and β. �

Proposition 5.1. Given any k-coloring α of G with k > tw+1, there exists a k-coloring α′ of

G that is equivalent to α up to O(tw ·n2) Kempe changes and such that α′(u) 6= α′(v) for all
uv ∈ E(H). The algorithm 4 computes β and a sequence of Kempe changes leading to it.

To prove Proposition 5.1 and obtain a k-coloring ofH , we gradually “add” toG the edges in

E(H) \ E(G). To add an edge, we first reach a k-coloring where the extremities have distinct

colors, then propagate any later Kempe change involving one extremity to the other extremity.

We formalize this process through Algorithm 4. Let v1w1 ≺ . . . ≺ vqwq be the edges in E(H) \
E(G) in the lexicographic order, where vi ≺ wi for every i.

We will prove the following three claims. Note that Proposition 5.1 follows from Claims 1

and 2, while Claim 3 simply guarantees that the proof of Theorem 0.3 is indeed constructive.

Claim 5 (1). Algorithm 4 outputs a k-coloring α′ ofG that is Kempe equivalent to α and such that

α′(u) 6= α′(v) for all uv ∈ E(H).

Claim 6 (2). Algorithm 4 performs O(tw ·n2) Kempe changes in G to obtain α′ from α.

Claim 7 (3). Algorithm 4 runs in O(tw ·n4) time.

In Algorithm 4, the variable G̃ keeps track of how close we are to a k-coloring of H . Before

the computations start, G̃ = G. When the algorithm terminates, G̃ = H . At every step, G is a

subgraph of G̃. To refer to G̃ or α̃ at some step of the algorithm, we may say the current graph

or current coloring. The Kempe changes that we discuss are performed in G̃. Consequently, the

corresponding set of vertices might be disconnected in G, and every Kempe change in G̃ may

correspond to between 1 and n Kempe changes in G.

Proof of Claim 1. By construction, at every step α̃ is Kempe equivalent to α. We prove the

following loop invariant: at every step, α̃ is a k-coloring of G̃. Since G̃ = H at the end of the

algorithm, proving the loop invariant will yield the desired conclusion.

The invariant holds at the beginning of the algorithm, when G̃ = G.

Assume that at the beginning of the j-th iteration of the loop 1, α̃ is a proper coloring of G̃.

All the Kempe changes in the loop are performed in G̃, so we only need to prove that at the end

of the iteration, α̃(vj) 6= α̃(wj).
This follows from the validity of comments 4 and 5. The latter is a direct consequence of
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Algorithm 4: Going from α to α′

Input : G a graph of treewidth tw, a k-coloring α of G with k > tw+1 and
v1w1 ≺ . . . ≺ vqwq such thatG+ {v1w1, . . . , vqwq} is a tw+1-colorable
chordal graphH

Output: A k-coloring α̃ of H , that is Kempe equivalent to α
Let G̃← G and α̃← α;

1 for j from 1 to q do
if α̃(vj) = α̃(wj) then

Let c ∈ [k] \ α̃(N+
H [vj]);

// Possible because α̃(vj) = α̃(wj) and |N+
H [vj ]| 6 tw 6 k − 1.

Let U = N−

G̃
(vj) ∩N−

G̃
(wj) = {u1 ≺ . . . ≺ up};

2 for i = p down to 1 do

if α̃(ui) = c then
Let ci ∈ [k] \ α̃(N+

G̃
[ui]);

// Possible because α̃(vj) = α̃(wj) and |N+

G̃
[ui]| 6 tw 6 k − 1.

3 α̃← Kui,ci(α̃, G̃);

end

4 // Now c /∈ α̃({x ∈ N
G̃
(vj)|x > ui})

end

5 // Now c /∈ α̃(N
G̃
(vj))

6 α̃← Kvj ,c(α̃, G̃);

end

G̃← G̃ ∪ {vjwj};

end

the former, so we focus on arguing that after the step i of the inner loop 2, we have c /∈ α̃({x ∈
N

G̃
(vj)|x > ui}). The key observation is that at the i-th step of the inner loop 2, the Kempe

changes performed at line 3 involve only vertices smaller than ui. We prove by induction the

stronger statement the Kempe chain T involved in the Kempe change Kui,ci(α̃, G̃) is a tree

rooted at ui in which all the nodes are smaller than their father.

• ci 6∈ α̃(N+

G̃
(ui)) so all the vertices at distance 1 in T from ui are smaller than ui.

• Let x at distance d + 1 from ui in T . Let y be a neighbour of x at distance d from ui.
Assume by contradiction that x≻ y. By induction hypothesis, there is a unique neighbour
z of y at distance d − 1 from ui, with y ≺ z. Both z and x are in N+

H (y) and since H is

chordal, this implies zx ∈ E(H). We have z ≺ ui ≺ vj so zx ≺ vjwj and zx ∈ E(G̃). In
particular, x is at distance d from ui in T , which raises a contradiction and proves x ≺ y.
Assume by contradiction that x is adjacent to two vertices y, z at distance d from ui in
T . Then y and z are identically colored so yz /∈ E(G̃). Moreover y, z ∈ N+

H (x) and H is

chordal, hence yz is an edge of H . Since y, z ≺ vj , we have yz ≺ vjwj . Thus, yz belongs

to G̃, raising a contradiction.

As a result, the Kempe change of line 6 does not recolor any vertex larger than ui with color c,
and the comment 5 is true. Therefore at the beginning of line 6, α̃(vj) = α̃(wj) and c /∈ α(N(vj)).
At the end of line 6, vj and wj are colored differently. �
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Proof of Claim 2. We now prove that the number of Kempe changes in G performed by the

algorithm is O(tw ·n2).
We first prove that for each vertex x, there exists at most one step j of the loop 1 for which

vj = x and we enter the conditional statement α̃(vj) = α̃(wj). Indeed, the first time we enter

the conditional statement, the vertex x is recolored with a color c not in N+
H (x) at line 6. Note

that all the edges xy with y ≻ x are consecutive in the ordering of E(H) \ E(G). Therefore,
once the vertex x is recolored, all the remaining edges xy are handled without Kempe change,

as the conditional statement is not satisfied. This implies directly that line 6 is executed at most

n times.

Now, we bound the number of times x plays the role of ui in the Kempe change at line 3. For

each step j of loop 1 for which it happens, we have vj , wj ∈ N+
H (x). Since |N+

H (x)| 6 tw and

each vj is involved at most once by the above argument, we obtain that x plays this role at most

tw times.

Consequently the overall number of Kempe changes performed in G̃ by the algorithm is

O(tw ·n). Performing a Kempe change in G̃ is equivalent to performing a Kempe change in

all the connected component of G of the Kempe chain of G̃. Therefore, the number of Kempe

changes performed in G by the algorithm is O(tw ·n2). �

Proof of Claim 3. In total, the loop 2 is executed at most once for every pair of vertices inN+
H (u)

for each u ∈ V (G), that is O(tw2 n) times. However, we also take into account the number of

Kempe changes that need to be performed. By Claim 2, only O(tw ·n2) Kempe changes are per-

formed inG. As a result, the total complexity of the algorithm isO(tw2 n+tw ·n4) =O(tw ·n4)
(performing Kempe changes in a naive way in G). �
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A Proof of Theorem 0.1

This section is an adaptation of the proof provided in [BBFJ19] for k > 4. The proof handles

separately the cases of graphs not 3-connected, 3-connected graphs with diameter at most 2 and

3-connected graphs of diameter at least 3.

A.1 G not 3-connected

We first need a few lemmas.

Lemma A.1 (Adapted from Lemma 3.2 in [LM81]). Let G1 and G2 be two (k − 1)-degenerate
graphs of maximum degree k, such that S = G1 ∩G2 is a complete graph. Let α be a k-coloring of
G and β|G1

be a k-coloring ofG1. There exists a k-coloring γ ofG withinO(|S|n2) Kempe changes

of α such that γ|G1
= β|G1

and γ|G2
is equal to α|G2

up to a permutation of colors.

Proof. By Proposition 2.1, there exists a series of Kempe changes in G1, leading from α|G1
to

β|G1
, such that the color of each vertex of G1 is modified at most O(n1) times. We will adapt

this sequence toG to ensure that at all times, the current coloring α̃ differs from α onG2 only by

a permutation of colors. For eachKempe changeKu,c(α̃, G1) in the sequence, ifKu,c(α̃, G)∩S =
∅, then simply perform Ku,c(α̃, G). If Ku,c(α̃, G) ∩ S 6= ∅, then swap the colors α̃(u) and c in
each Kempe chain of G2 in addition to performingKu,c(α̃, G).
The latter case occurs at most O(|S|n1) times, each time resulting in O(n2) Kempe changes in

G2. The sequence we obtain has length O(n2
1 + |S|n1n2) = O(|S|n2). �

Corollary A.2 (Adapted from Lemma 3.3 in [LM81] and in [BBFJ19]). Let G1 and G2 be two

(k − 1)-degenerate graphs of maximum degree k, such that S = G1 ∩G2 is a complete graph. Let

G = G1 ∪G2, any two k-colorings of G are equivalent up to O(|S|n2).

Proof. Let α and β be two k-colorings of G. By Lemma A.1 applied to α and β|G1
, there exists

γ within O(|S|n2) Kempe changes of α, such that γ|G1
= β|G1

and γ|G2
is equal to α|G2

up to

a permutation of colors. By Lemma A.1 applied to γ and β|G2
, there exists δ within O(|S|n2)

Kempe changes of γ, such that δ|G2
= β|G2

and δ|G1
is equal to γ|G1

= β|G1
up to a permutation

of colors σ. Note that if a color c is used in S, then c = σ(c) and δ−1(c) = β−1(c), even on G1.

By iteratively swapping the other colors with their image by σ in each Kempe chain of G2, one

obtains the coloring β within at most O(kn) Kempe changes. �

Proposition A.3 (Adapted from Proposition 3.1 in [BBFJ19]). Let k > 3 and G be a k-regular
graph that is neither 3-connected, nor a clique or the 3-prism. Any two k-colorings of G are equiv-

alent up to O(n2) Kempe changes.

Proof. Let S be a separator of minimal size, |S| = 1 or |S| = 2. Consider G1 and G2 such that

G1 ∪G2 = G and G1 ∩G2 = S. Two cases can occur:

• S is a complete graph, then the result stems from Corollary A.2.

• S is composed of two non-adjacent vertices u and v. If both u and v have only one neigh-

bor in G1, consider w the unique neighbor of u in G1. Note that w is not adjacent to v,
otherwise, {w} would be a separator of G. SinceG is k-regular with k > 3, w has at least

two neighbors in G1. As a result, we can assume that u or v has at least two neighbors in

G1 (respectivelyG2). We prove the two following claims.

Claim 8. There is a sequence Kempe changes of length at most O(n2) between any two

k-colorings α and β of G, such that α(u) 6= α(v) and β(u) 6= β(v).
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LetG′
1 (respectivelyG

′
2 andG

′) the graphs obtained fromG1 (respectivelyG2 andG), by

adding an edge between u and v. The graph G′
1 (respectively G′

2) has maximum degree

k and is (k − 1)-degenerate because either u or v has at most k − 2 neighbors in G1

(respectively G′
2). By Corollary A.2, Rk(G′) has diameter O(n2). As a result, Rk(G) has

also diameterO(n2).

Claim 9. [BBFJ19] Given any k-coloring α of G, such that α(u) = α(v), there exists a k-
coloring β within at most 3 Kempe changes from α such that α′(u) 6= α′(v).

Assume that α(u) = α(v) = c. If there exists a color c′ that is unused in the closed neigh-

borhood of u or v, say u, then one obtains the desired property after the trivial Kempe

change Ku,c′(α). Henceforth, assume that both u and v have a neighbor of each color.

Two cases may occur:

– u or v has at least two neighbors in both G1 and G2. Note that this case can only

happen if k> 4. By symmetry, assume that u has at least two neighbors in each ofG1

andG2. By assumption, each color but one is used exactly once in the neighborhood

of u. As a result, there exists c1 /∈ α(N [u]∩G1) and c2 /∈ α(N [u]∩G2). The (c1, c2)-
Kempe chain containing the neighbor of u colored c2 is fully contained in G1. After

performing it, the color c2 does not appear any more in the neighborhood of u and

one can conclude in one trivial Kempe change.

– u has only one neighbor u′ inG1 and v only one neighbor v
′ inG2 (or the other way

around). If u′ and v′ are colored differently, the Kempe chainKu′,α(v′)(α) is contains
neither u, v nor v′. Therefore, after performing the corresponding Kempe change, u′

and v′ are both colored c′. Consider a third color c′′, u has no neighbor colored c′′

in G1 and v has no neighbor colored c′′ in G2, so Ku,c′′(α̃) does not contain v, and
after performing it, u and v are colored differently.

�

A.2 G 3-connected

In this subsection, G is a 3-connected k-regular graph of diameter. Given a vertex u ∈ V (G),
we say that a pair of vertices (t1, t2) is an eligible pair of u if t1 and t2 are two non-adjacent

neighbors of u and denote the set of such pairs P (u) = N(u)2 \ E.

LemmaA.4 (Adapted from Lemma 4.3 in [BBFJ19]). Assume that there exists two vertices u and x
and an eligible pair (t1, t2) of u such that for each eligible pair (w1, w2) of x, there exist a k-coloring
that colors t1 and t2 alike and w1 and w2 alike. That is :

∀(w1, w2) ∈ P (x), Ckw1,w2
(G) ∩ Ckt1,t2(G) 6= ∅.

Then Ck(G) forms a single Kempe class and Rk(G) has diameter O(n2).

Proof. Let α and β be two colorings of G. Since G is k-regular, there exists an eligible pair

(w1, w2) (respectively (w3, w4)) of x that is colored identically by α (respectively β). By as-

sumption, there exists a k-coloring α′ ∈ Ckw1,w2
(G) ∩ Ckt1,t2(G) and β′ ∈ Ckw3,w4

(G) ∩ Ckt1,t2(G).
By applying Proposition 2.1 on Gw1+w2 (respectivelyGw3,w4), there exists a sequence of O(n2)
Kempe changes between α and α′ (respectively β and β′). Finally by applying Proposition 2.1 in

Gt1+t2 , we get that α
′ is Kempe equivalent to β′ up to O(n2) Kempe changes. As a result, α and

β are equivalent up to O(n2) Kempe changes. �
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Lemma A.5 (Adapted from Lemma 4.4 in [BBFJ19]). IfG admits a vertex cut S of size 3 such that

one of the components of G \ S is isomorphic toKk . Then Rk(G) has diameter at most O(n2).

Proof. LetC be the aforementioned component. SinceG is k-regular, each vertex ofC has exactly

one neighbor in S and all the others inC , namely, S weakly dominates V (C). |S|= 3 and d> 4,
hence at least one vertex u of S is adjacent to two or more vertices ofC . Letw1 be a neighbor of u
inC . Note that S \{u} is not a vertex cut ofG, otherwiseGwould not be 3-connected, therefore

there exists a neighbor w2 of u that does not belong to C . By Proposition 2.1, Rk(Gw1+w2) has
diameter O(n2) and so does Rk

w1,w2
(G). Thus, if we prove that from any coloring α of G, one

can reach a coloring where w1 and w2 are colored alike with a bounded number of moves, then

we obtain diam(Rk(G)) = O(n2).
Let α be a k-coloring of G such that α(w1) 6= α(w2). Since C is a clique on d vertices, one

of them is colored α(w2), say w3. Two cases may occur:

• If w3 is adjacent to u, then it is not adjacent to any other vertex of S and {w1, w3} forms a

Kempe chain. After performing the corresponding Kempe change, w1 and w2 are colored

alike.

• Otherwise, let v be the neighbor of w3 in S. From what precedes, u has at least two

neighbors in C so one of them, say w4, is colored differently from v (it is possible that

w4 = w1). Then {w3, w4} forms a Kempe chain and after performing the corresponding

move, either we had w4 = w1 thus w1 and w2 are now colored alike, or w4 and w1 were

distinct and we are now in the first case.

This proves that any coloring ofG is within at most 2 Kempe changes of a coloring in which w1

and w2 are colored alike, thus diam(Rk(G)) = O(n2) by applying Proposition 2.1. �

Lemma A.6 (Adapted from Lemma 4.5 in [BBFJ19]). Let u, v be two vertices of G and (w1, w2)
be an eligible pair in P (v) such that neither w1 nor w2 is adjacent to u. Assume that there exists an

eligible pair (t1, t2) in P (u) such that there is no k-coloring of G that colors w1 and w2 alike and

t1 and t2 alike. Then G contains a subgraph weakly dominated by both {t1, t2} and {w1, w2}, that
is isomorphicKk−1.

Proof. The proof of Lemma 4.5 presented in [BBFJ19], results in the same outcome by assuming

the stronger hypothesis that Ck(G) does not form a single Kempe class, but it only uses the fact

that there is no k-coloring ofG that colors w1 and w2 alike and t1 and t2 alike, therefore we can
use it directly. �

Proposition A.7 (Adapted from Lemma 4.6 in [BBFJ19]). Assume that there are two non-adjacent

vertices u, v ofG and an eligible pair (w1, w2) in P (v) such that neither w1 nor w2 is adjacent to u
– note that this is in particular the case in graphs of diameter at least 3. Then Ck(G) forms a single

Kempe class and Rk(G) has diameter O(n2).

Proof. If for all eligible pair (t1, t2) in P (u), Ckt1,t2(G) ∩ Ckw1,w2
(G) 6= ∅, then the results holds

by Lemma A.4. Otherwise, there exist an eligible pair (t1, t2) in P (u) such that Ckw1,w2
(G) ∩

Ckt1,t2(G) = ∅. By Lemma A.6, G contains a subgraph C isomorphic to Kk−1 and weakly dom-

inated by both {t1, t2} and {w1, w2}. Each vertex of C is adjacent to the k − 2 others and to

one vertex of {t1, t2} and one of {w1, w2}. The clique C does not contain u nor v since they are
adjacent to both {t1, t2} and {w1, w2}.

At least three vertices of {t1, t2, w1, w2} are adjacent to at least one vertex ofC , otherwiseG
is not 3-connected. If exactly one vertex, say t1, is not adjacent to a vertex inC , then {u,w1, w2}
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is a cut set between the clique C ∪ {t2} and the rest of the graph, so one can apply Lemma A.5.

We will show that this is the only possible case, thereby completing the proof.

Assume towards contradiction that all the vertices of {t1, t2, w1, w2} are adjacent to at least
one vertex of C . Assume, without loss of generality that w1 has at least as many neighbors in C
as w2. Without loss of generality, assume that t1 and w1 have a common neighbor x in C . Then

(x, v) is a eligible pair of w1, such that neither w1, nor x, nor v is adjacent to u. If for all eligible
pair (t3, t4) in P (u), Ckt3,t4(G) ∩ Ckx,v(G) 6= ∅, we can once again conclude by Lemma A.4.

Otherwise, there exists an eligible pair (t3, t4) ofu such thatC
k
x,v(G)∩Ckt3,t4(G)= ∅. By LemmaA.6,

there exists a (k − 1)-clique C ′ in G weakly dominated by both {t3, t4} and {x, v}. With the

same reasoning, each of the vertices {t3, t4, x, v} is adjacent to at least one vertex of C
′.

Assume towards contradiction that neither t1 nor t2 belong toC
′. ThenN(x)=C\{x}{t1, w1}

and at least one neighbor of x belongs to C . By assumption, t1 /∈ C ′ and w1 neither since it is

adjacent to both x and v. So there is a vertex y 6= x ∈ C ∪ C ′ and (k − 2) other neighbors of
y belong to C ′. As none of {t1, t2, w1, x} belong to C ′, we have C ′ = C \ {x} ∪ {w2} so w2 is

adjacent to all the vertices of C \ {x}. By assumption, w1 has at least as many neighbors in C
as w2 so C must be a clique on 2 vertices, and k = 3 which is a contradiction and proves that,

exactly one of t1 and t2 belong to C
′ (t1 and t2 are non-adjacent by definition).

For i∈{1, 2}, if ti belongs toC
′, then it has k−2 neighbors inC ′ and two other neighbors. By

definition, ti is adjacent u and to one of {x, v}. But neither of t3 and t4 belongs to C
′ ∪{u, x, v}

which contradicts the definition of C ′ and proves that {t1, t2, w1, w2} cannot all have at least
one neighbor in C . This concludes the proof. �

We denoteN2(u) the second neighborhood of a vertex u, that is the set of vertices at distance
exactly two from u.

Proposition A.8. LetG be a 3-connected k-regular graph of diameter at most 2, with k > 4. Then
Ck(G) forms a single Kempe class and diam(Rk(G))) = O(n2).

Proof. IfG is of diameter less than 2, the result is obvious, thus we can assume that diam(G) = 2.
If there exists two non-adjacent vertices u, v in G and an eligible pair (w1, w2) in P (v), such
that neitherw1 nor w2 is adjacent to u, then the results holds by Proposition A.7. Otherwise, the
second neighborhood of any vertex can contain no path on three vertices, thus is a collection of

disjoint cliques.

Assume that the second neighborhood of a vertex v consists of at least two disjoint cliquesC1

and C2. Let x and y be two vertices of C1 and C2 respectively. If x is adjacent to a neighbor z of
v that is not adjacent to y, then {x, y, z} induce a path in the second neighborhood of y, and one
can conclude by Proposition A.7. As a result, we can assume thatN(x)∩N(v) = N(y)∩N(v).
By repeating this argument for all of pair of vertices in C1 × C2, we obtain that all the vertices

in C1 ∪ C2 have the same set of neighbors in N(v). Given a coloring α of G, if x and y have

distinct colors, say 1 and 2, the {1, 2} Kempe chain containing x cannot contain any vertices

of C2, thus, after performing it, x and y are colored identically. Since they have at least one

common neighbor, we can conclude by Proposition 2.1.

Therefore, we can assume without loss of generality that the second neighborhood of each

vertex consist in a single clique. Let v ∈ V and let α and β be two colorings of G. Denote by C
the second neighborhood of v. Up to a Kempe change, one can assume that α(v) = β(v) = 1.

If the color 1 is not used by α in C , then let x be the vertex of C colored 1 in β (or any vertex

inC if the color is also not used by β inC). The only vertex ofC in the Kempe chainKx,1(α,G)
is x, and as no vertices of N(v) can be colored 1, Kx,1(α,G) is a trivial Kempe change. We can

apply it to color identically x and v with color 1. If no vertex of C is colored 1 by β, we can

recolor x with 1 using the same argument, without changing the color of v. By Proposition 2.1,
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the two colorings obtained are equivalent up to at most O(n2) Kempe changes.

Therefore, one can assume without loss of generality that there exists two vertices u,w in

C such that α(u) = β(w) = 1. Once again if u = w, we can conclude by Proposition 2.1, so one

can assume that u 6= w. We will require the following definition: a vertex x is said to be locked

in γ if all the colors are present inN(x), making a trivial Kempe change on x impossible.

Claim 10. If any of the vertices in N [u] \ {w} is not locked or if the color α(w) does not appear
twice in the neighborhood of u, then Rk(G) is connected and of diameter O(n2).

If u is not locked, then a trivial Kempe change on u removes the color 1 from C and we

can conclude with the aforementioned argument. So one can assume that u is locked. If v /∈
Ku,α(w)(α,G), then performing the corresponding Kempe change yields a coloring in which

both w and v are colored 1 and since this is also the case in β, one can conclude with Proposi-

tion 2.1. Assume that v ∈ Ku,α(w)(α,G), as all the vertices are adjacent to u or v, w cannot be

adjacent to any vertex colored 1 other than u, so there must be a vertex y adjacent to both v and
u colored α(w). To sum up, all the colors except color 1 are present in the neighborhood of u,
and the color α(w) is used by both w and y.

If y is not locked, one can performa trivial Kempe change on y, afterwhich v /∈Ku,α(w)(α̃, G)
and we are back it the previous situation. If any vertex of N(u) \ {w, y} is not locked, after a
trivial Kempe change, u is not locked anymore.

This proves the claim. From now on, we assume that v belongs to Ku,α(w)(α,G), that the
vertices of N [u] \ {w} are locked in α, and that the color α(w). We make the symmetric as-

sumptions for β. To conclude this proof, we discuss the two following cases :

• If |C| > 3, let z ∈ C \ {u,w}. Each vertex in G is adjacent to u or v, so u is the only

neighbor of w colored 1 in α. Likewise, w is the only neighbor of u colored 1 in β. By
assumption, z is the only neighbor of u colored α(z) in α, so Kz,1(α,G) = {z, u}. The
same argument applied in β gives us Kz,1(β,G) = {z, w}. By performing each of these

Kempe changes, we obtain two colorings that both color z and v with color 1 and we can

conclude with Proposition 2.1.

• Otherwise, if |C| = 2, G contains v, its k neighbors and u and w. The vertices u and w are

adjacent to one another and are each adjacent to k−1 neighbors of v. So S =N(u)∩N(w)
contains at least k − 2 vertices. By assumption, there exists a vertex z in N(u) ∩ N(v)
that is colored α(w) by α and thus is not adjacent to w. Likewise, there exists a vertex z′

in N(w) ∩ N(v) that is colored β(u) by β and thus is not adjacent to u. As a result, S
contains exactly k − 2 vertices. By assumption, all the vertices of S are locked in α and

since both v and u are colored 1 in α, the vertices of S each have exactly one neighbor of

each other color. But the vertices of S are adjacent to w, so they cannot be adjacent to z
which is colored alike. So z has at most three neighbors : v, w and z′, contradicting k > 4.
As a result, the assumptions of Claim 10 are always met when |C| = 2.

�
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