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Abstract

Let A and B be finite sets and consider a partition of the discrete box A×B into sub-
boxes of the form A′×B′ where A′ ⊂ A and B′ ⊂ B. We say that such a partition has the
(k, ℓ)-piercing property for positive integers k and ℓ if for every a ∈ A the discrete line
{a}×B intersects at least k sub-boxes and for every b ∈ B the line A×{b} intersects at
least ℓ sub-boxes. We show that a partition of A×B that has the (k, ℓ)-piercing property

must consist of at least (k− 1) + (ℓ− 1) +
⌈
2
√
(k − 1)(ℓ− 1)

⌉
sub-boxes. This bound is

nearly tight (up to one additive unit) for all values of k and ℓ and is tight for infinitely
many values of k and ℓ.

As a corollary we get that the same bound holds for the minimum number of vertices
of a graph whose edges can be colored red and blue such that every vertex is part of a
red k-clique and a blue ℓ-clique.

1 Introduction

Consider the following puzzle: Let k be a positive integer and suppose that an axes-parallel
rectangle R in the plane is partitioned into n rectangles such that every axis-parallel line
that intersects R intersects at least k of these rectangles. Then how small can n be as a
function of k?

Denote this function by n(k) and observe that n(1) = 1 and n(k) = 4k − 4 for k > 1.
Indeed, the two lines that contain the top and bottom sides of R intersect together 2k distinct
rectangles when k > 1. Similarly, the two lines that contain the left and right sides of R
intersect 2k distinct rectangles. There are exactly four rectangles that belong to these two
sets — the ones containing the four corners of R — hence n(k) ≥ 4k − 4. To see that this
bound is tight consider the example in Figure 1 (taken from [2]). For an extension of this
problem to three dimensions see [3].

This puzzle becomes non-trivial when instead of geometric rectangles one considers dis-
crete boxes. A d-dimensional discrete box D is a set of the form A1 × A2 × . . . × Ad where
each Ai is a finite set of size at least two. A set of the form A′

1 × A′
2 × . . . × A′

d such that
A′

i ⊆ Ai for each i ∈ [d] is called a sub-box of D. We say that a family of sub-boxes partitions
D if every member of D is contained in exactly one sub-box. A family of sub-boxes has the
k-piercing property if every discrete line intersects at least k sub-boxes, where a discrete line
is a set of the form A′

1 ×A′
2 × . . .×A′

d where for some i ∈ [d] we have A′
i = Ai and for every

j ∈ [d] \ {i} we have A′
j = {aj} for some aj ∈ Aj .

Bucic, Lidicky, Long and Wagner [2] asked for the minimum size of a family of sub-boxes
that partitions a d-dimensional discrete box and has the k-piercing property. They denoted
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Figure 1: A partition into 4k − 4 rectangles with the k-piercing property.

this number by pbox(d, k) and showed that eΩ(
√
d)k ≤ pbox(d, k) ≤ 15d/2k. It follows from

a result of Alon, Bohman, Holzman and Kleitman [1] that pbox(d, 2) = 2d. Considering the
two-dimensional case, Bucic et al. [2] proved that pbox(2, k) ≥ (4 − ok(1))k, observed that
pbox(2, k) ≤ 4k − 4 (by the example in Figure 1) and conjectured that the latter is a tight
bound. Their conjecture was settled by Holzman [4] using a reduction to edge-coloring of
graphs that was suggested by Bucic et al. [2]. Namely, he proved that if the edges of a graph
can be two-colored such that every vertex belongs to a monochromatic k-clique of each color,
then the graph has at least 4k − 4 vertices. In fact, in his proof Holzman has (implicitly)
reduced the problem on edge-colored graphs back to the problem on pierced boxes and thus
showed that these two problems are equivalent. Moreover, all the graphs for which the bound
is tight were characterized in [4].

In this paper we focus on the asymmetric two-dimensional case. Namely, we say that
a family of sub-boxes that partitions a two-dimensional discrete box A × B has the (k, ℓ)-
piercing property if every row in A×B intersects at least k sub-boxes and every column in
A×B intersects at least ℓ sub-boxes. By a row we mean a discrete line of the form {a}×B
for some a ∈ A and by a column we mean a discrete line of the form A×{b} for some b ∈ B.

It is easy to generalize the above-mentioned arguments and conclude that in the geometric
case (that is, where the boxes are actual rectangles pierced by vertical or horizontal lines) the
number of boxes is at least 2k+2ℓ− 4 and that this bound is tight. However, as opposed to
the symmetric case, in the asymmetric case we get a better bound when considering discrete
boxes.

Theorem 1. For every k, ℓ ≥ 2, every family of sub-boxes that partitions a discrete box and

has the (k, ℓ)-piercing property contains at least (k − 1) + (ℓ− 1) +
⌈
2
√
(k − 1)(ℓ− 1)

⌉
sub-

boxes. Moreover, for every k, ℓ ≥ 2 there is a family of (k−1)+(ℓ−1)+2
⌈√

(k − 1)(ℓ− 1)
⌉

sub-boxes that partitions a two-dimensional discrete box and has the (k, ℓ)-piercing property.

Note that the lower bound and the upper bound in Theorem 1 differ by at most one
unit and they coincide for an infinite number of distinct values of k and ℓ. We also remark
that our proof differs from the proof in [4] and is somewhat simpler. From the reduction
mentioned above we immediately get:

Corollary 2. Let k > 1 and ℓ > 1 be positive integers and let G be a graph whose edges
can be colored with red and blue such that every vertex belongs to a red k-clique and a blue

ℓ-clique. Then G has at least (k − 1) + (ℓ− 1) +
⌈
2
√

(k − 1)(ℓ− 1)
⌉
vertices. This bound is

nearly sharp for every k and ℓ and sharp for an infinite number of distinct values of k and
ℓ.
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2 Proof of Theorem 1

We prove the first part of Theorem 1 in Section 2.1 and then describe the construction that
proves the second part of the theorem in Section 2.2.

2.1 The lower bound

Suppose for contradiction that the first part of the theorem is false. That is, there is a
non-empty set of counter-examples each of which is a family of sub-boxes that partition a
two-dimensional discrete box A×B, has the (k, ℓ)-property for some k, ℓ ≥ 2 and consists of

less than (k − 1) + (ℓ− 1) +
⌈
2
√
(k − 1)(ℓ− 1)

⌉
sub-boxes. Among these counter-examples

consider the ones with the minimum sum k + ℓ, among those consider the ones with the
minimum sum |A|+ |B| and among those let R be a counter-example with the least number

of sub-boxes. Suppose that R consists of less than (k − 1) + (ℓ − 1) +
⌈
2
√
(k − 1)(ℓ− 1)

⌉
sub-boxes with the (k, ℓ)-property that partition the discrete box A×B and assume without
loss of generality that A = [m] and B = [n].

It is easy to verify that at least one of k and ℓ must be greater than two and we leave it
as a small exercise to the reader in order to get a sense of the problem. Note also that the
case k = ℓ = 2 is a direct consequence of the results in [1] and [4].

Let A′×B′ be a sub-box. If |A′| = 1 or |B′| = 1, then we say that A′×B′ is thin. In the
former case we call the sub-box horizontally thin whereas in the latter case it is vertically
thin). If |A′| = |B′| = 1, then we say that A′ ×B′ is a singleton.

Proposition 2.1. Every row and column contains a thin sub-box of R.

Proof. Suppose for example that row i does not contain a (horizontally) thin sub-box. Then
by deleting this row, that is, by removing i from A, no sub-box is deleted and we remain
with a partition of (A \ {i})×B that still has the (k, ℓ) property. However, this contradicts
the minimality of m+ n. In a similar way we can conclude that there is no column without
a thin sub-box. 2

It will be convenient to assume that if a row (resp., a column) contains several thin sub-
boxes, then all of them but possibly one are singletons. Indeed, suppose for example that
there are several thin sub-boxes contained in row i, say, {i} × B′

1, {i} × B′
2, . . . , {i} × B′

s.
Then for every j = 2, . . . , s choose b′j ∈ B′

j and replace the original thin sub-boxes with the

thin sub-boxes {i}×
(
B′

1 ∪
⋃s

j=2B
′
j \ {b′j}

)
, {i}×{b′2}, . . . , {i}×{b′s}. Note that this results

in another partition of A×B with the same number of sub-boxes and this partition still has
the (k, ℓ)-piercing property.

Proposition 2.2. If k ≥ ℓ (resp., ℓ ≥ k), then every column (resp., row) contains exactly
one thin sub-box of R.

Proof. Assume without loss of generality that k ≥ ℓ and column j contains at least two
thin sub-boxes. By deleting column j, that is, by replacing B with B \ {j} we obtain
a partition of A × (B \ {j}) that has the (k − 1, ℓ)-piercing property. Recall that it is
known and easy to prove that the lower bound holds for k = ℓ = 2 (as we mention above).
Therefore, we may assume that k > 2 and it follows from the minimality of R that |R| ≥
2 + (k − 2) + (ℓ− 1) +

⌈
2
√

(k − 2)(ℓ− 1)
⌉
. Thus, to get a contradiction it remains to show

that the following inequality holds:⌈
2
√

(k − 2)(ℓ− 1)
⌉
≥ 2

√
(k − 1)(ℓ− 1)− 1. (1)
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If k = ℓ, then (1) holds since
⌈
2
√

(k − 2)(k − 1)
⌉
≥ 2(k − 1)− 1 for every integer k > 2. If

k > ℓ, then (1) holds if 2
√
ℓ− 1(

√
k − 1 −

√
k − 2) ≤ 1. This inequality indeed holds since

we have:

2
√
ℓ− 1(

√
k − 1−

√
k − 2) = 2

√
ℓ− 1(

√
k − 1−

√
k − 2)

√
k − 1 +

√
k − 2√

k − 1 +
√
k − 2

=

=
2
√
ℓ− 1√

k − 1 +
√
k − 2

≤
√
k − 1 +

√
k − 2√

k − 1 +
√
k − 2

= 1,

where the last inequality holds because k > ℓ. 2

Corollary 3. If some row (resp., column) contains more than one thin sub-box, then every
column (resp., row) contains exactly one thin sub-box.

Proposition 2.3. If a row (resp., column) contains at least two thin sub-boxes, then not all
of them are singletons.

Proof. Note that we may permute the rows and columns without breaking the (k, ℓ)-property,
therefore we may assume without loss of generality that Row 1 contains several singletons
and no other thin sub-boxes and that these singletons are {(1, 1)}, . . . , {(1, s)}, s ≥ 2. It
follows from Proposition 2.2 and Corollary 3 that k > ℓ and none of the Columns 1, . . . , s
contains another thin sub-box. Note that Row 1 intersects exactly k sub-boxes, for otherwise
by deleting Column 1 we can obtain a (smaller) family of sub-boxesR′ with the (k, ℓ)-piercing
property, contradicting the minimality of R. It follows that k ≥ s and in fact k > s. Indeed,
if k = s, then n = s = k and each row must intersect only vertically thin sub-boxes. However,
each column should contain at most one vertically thin sub-box.

Delete Row 1 and Columns 1, . . . , s and obtain a (smaller) family of sub-boxes R′.
It follows from the minimality of R that R′ does not have the (k, ℓ)-piercing property.
Therefore, some (non-thin) boxes that were contained in the union of columns 1, . . . , s
were deleted and there is a row that now intersects less than k sub-boxes. Let t ≥ 1
be the smallest integer such that R′ has the (k − t, ℓ)-piercing property. Notice that
t ≤ s/2 and that the union of the columns 1, . . . , s contains at least s + t sub-boxes.
Since k > s ≥ 2t ≥ t + 1, it follows that k − t ≥ 2. Therefore, by the minimality of R,
we have |R′| ≥ (k − t − 1) + (ℓ − 1) + 2

√
(k − t− 1)(ℓ− 1). Thus, |R| ≥ s + t + |R′| ≥

s+(k−1)+(ℓ−1)+2
√

(k − t− 1)(ℓ− 1), which leads to a contradiction if the last expression is
at least (k−1)+(ℓ−1)+2

√
(k − 1)(ℓ− 1). This happens if 2

√
ℓ− 1(

√
k − 1−

√
k − t− 1) ≤ s

and indeed:

2
√
ℓ− 1(

√
k − 1−

√
k − t− 1) = 2

√
ℓ− 1(

√
k − 1−

√
k − t− 1)

√
k − 1 +

√
k − t− 1√

k − 1 +
√
k − t− 1

=

=
2t
√
ℓ− 1√

k − 1 +
√
k − t− 1

≤ s
√
ℓ− 1√

k − 1 +
√
k − t− 1

<
s
√
ℓ− 1√
k − 1

< s,

where the last inequality holds because k > ℓ. 2

Proposition 2.4. There is no singleton that is the only thin sub-box in both row and column
that contain it.

Proof. Suppose for contradiction that R has a singleton {(i, j)} that is the only thin sub-box
in Row i and Column j. If we remove Row i and Column j, that is, replace A with A \ {i},
replace B with B \ {j} and change the sub-boxes in R accordingly, then we decrease the
number of sub-boxes by exactly one since {(i, j)} is the only thin sub-box in the Row i and
Column j. However, this implies that the new partition still has the (k, ℓ)-piercing property
which contradicts the minimality of R. 2
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Figure 2: A (geometric) partition. Row i is associated with Ri. Column j is associated with
Cj . The number of columns whose associated thin sub-box is not intersected by Row 2 is
x3 = 5 (Columns 1,2,6,7,8). The number of rows that do not intersect C7 is y7 = 3 (Rows
1–3). The number of non-thin sub-boxes that Row 2 intersects is t2 = 2.

In summary, we may assume that R has the following properties: (1) Every row (resp.,
column) contains a thin sub-box; (2) if a row (resp., column) contains several thin sub-boxes
then: all of them but one are singletons and every column (resp., row) contains exactly one
thin sub-box; and (3) there is no singleton which is the only thin sub-box both in its row
and in its column.

Next we associate every row and every column with a unique thin sub-box that is con-
tained in that row or column as follows. If a row or a column contains a non-singleton thin
sub-box, then we assign this sub-box to that row or column. If Row i contains a singleton
{(i, j)} and no other thin sub-box, then by the properties above, Column j must contain a
non-singleton thin sub-box which is associated to it. Therefore, we can assign the singleton
{(i, j)} to Row i. Similarly, if Column j contains only one thin sub-box which is a singleton,
then we can assign this singleton to Column j. See Figure 2 for an example. We conclude
that the number of thin sub-boxes is at least m + n, and hence, |R| ≥ m + n (recall that
A = [m] and B = [n]).

Proposition 2.5. Suppose that Row i intersects a vertically thin sub-box R that is contained
in Column j. Then either R is associated with Column j or R is a singleton which is
associated with Row i.

Proof. Suppose that R is not associated with Column j. Then it must be a singleton by
Property (2) mentioned above and the way vertically thin boxes are associated with columns.
Furthermore, R is the only thin box in Row i and is associated with it. 2

For every i ∈ [m] let xi denote the number of columns whose associated thin sub-boxes
are not intersected by Row i. Let ti denote the number of non-thin sub-boxes that intersect
Row i. For every j ∈ [n] denote by yj the number of rows that do not intersect the thin
sub-box that is associated with Column j. See Figure 2 for an example.

Since the xi’s and the yj ’s both count pairs of a row and column whose vertically thin
sub-box is not intersected by that row, by double counting we get:

m∑
i=1

xi =
n∑

j=1

yj . (2)

For a sub-box S = A′ ×B′ we denote aS = |A′| and bS = |B′|. Thus,
m∑
i=1

ti =
∑

S∈R|aS ,bS≥2

aS . (3)
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Consider Column j and let R be the vertically thin sub-box that is associated with it.
Apart from R there are at least (ℓ− 1) other sub-boxes that intersect Column j. Each such
sub-box S is a witness for aS rows that do not intersect R. Hence,

yj ≥ ℓ− 1 +
∑

S|S ̸=R, S intersects column j

(aS − 1). (4)

Notice that such a box S contributes aS − 1 to the right hand side of (4) for exactly bS
different columns j. Therefore by summing over all the columns we have:

n∑
j=1

yj ≥ n(ℓ− 1) +
∑

S∈R|aS ,bS≥2

(aS − 1)bS . (5)

Consider Row i and let us try to bound from below the number n of columns in A×B.
Row i intersects the horizontally thin sub-box assigned to it and another ti sub-boxes that
are not vertically thin in their column. Therefore, because Row i intersects at least k sub-
boxes in R, it must intersect at least k − (ti + 1) sub-boxes each of which is vertically thin
in its column. By Proposition 2.5 each of these vertically thin sub-boxes is associated with
the column it belongs to. In addition there are xi columns whose vertically thin sub-boxes
are not intersected by Row i. We may therefore conclude that n ≥ xi + k − 1− ti.

Summing over all rows and using (2), (3) and (5) we have

n ≥ 1

m

m∑
i=1

(xi + k − 1− ti) = k − 1 +
1

m

 n∑
j=1

yj −
m∑
i=1

ti


≥ k − 1 +

n

m
(ℓ− 1) +

1

m

∑
S∈R|aS ,bS≥2

((aS − 1)bS − aS)

≥ k − 1 +
n

m
(ℓ− 1), (6)

where the last inequality holds since (aS − 1)bS ≥ aS for aS , bS ≥ 2. By symmetry, we
get that m ≥ ℓ− 1 + m

n (k − 1). Combining this with (6) we obtain

|R| ≥ n+m ≥ (k − 1) + (ℓ− 1) +
n

m
(ℓ− 1) +

m

n
(k − 1)

≥ (k − 1) + (ℓ− 1) + 2
√
(k − 1)(ℓ− 1),

where the last inequality follows by observing that x2 + y2 ≥ 2xy for every x and y and

setting x =
√

n
m(ℓ− 1) and y =

√
m
n (k − 1) (equality is attained when m

n =
√
ℓ−1√
k−1

).

Therefore, |R| ≥ (k − 1) + (ℓ − 1) +
⌈
2
√

(k − 1)(ℓ− 1)
⌉
. This leads to a contradiction

and thus completes the proof of the first part of Theorem 1.

Remark. Inequality (6) can be refined to n ≥ k − 1 + ⌈ n
m(ℓ − 1)⌉ and similarly m ≥

ℓ− 1 + ⌈mn (k − 1)⌉. From here we get

|R| ≥ m+ n ≥ (k − 1) + (ℓ− 1) + min
m,n

{⌈ n

m
(ℓ− 1)

⌉
+
⌈m
n
(k − 1)

⌉}
.

In some cases this bound is better (by one additive unit) than (k − 1) + (ℓ − 1) +⌈
2
√

(k − 1)(ℓ− 1)
⌉
and matches the upper bound construction described below. Still, in

other cases even this refined analysis does not match the upper bound construction.
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(0, 0)

(K2 +KL,L2 +KL)

(K2 +KL,KL)

(KL, 0)

(KL,L2 +KL)

(0,KL)

s3

s2 s1

(a) The initial coloring by light and dark gray.

(0, 0)

(K2 +KL,L2 +KL)

(K2 +KL,KL)

(KL, 0)

(KL,L2 +KL)

(0,KL)

s1

s2 s3

(b) The partition into light gray horizontally thin
sub-boxes and dark gray vertically thin sub-boxes.

Figure 3: The upper bound construction for k = K2 + 1 = 9 and ℓ = L2 + 1 = 3.

2.2 The upper bound construction

Suppose without loss of generality that k ≥ ℓ ≥ 2. We first describe a construction of
a partition that meets the lower bound of (k − 1) + (ℓ − 1) + 2

√
(k − 1)(ℓ− 1) such that√

(k − 1)(ℓ− 1) is an integer (in particular this includes the case k = ℓ). For such k and
ℓ the analysis of the construction is rather simple. Later we describe how to modify the
construction in a simple way for any k ≥ ℓ ≥ 2.

It would be convenient to set L =
√
ℓ− 1 and K =

√
k − 1 and to describe the construc-

tion geometrically. Consider an axis-parallel rectangle R whose bottom-left corner is at the
origin, whose width is K2 +KL and whose height is L2 +KL. Let s1 be the line-segment
whose endpoints are (KL, 0) and (K2 + KL,KL). Let s2 be the line-segment whose end-
points are (0, 0) and (K2 +KL,L2 +KL). Let s3 be the line-segment whose endpoints are

(0,KL) and (KL,L2 + KL). Thus, the slopes of s1, s2, and s3 are KL
K2 ,

L2+KL
K2+KL

and L2

KL
respectively, and therefore these three line segments are parallel. Color the part of R above
s3 light gray and do the same for the part of R below s2 and above s1. The remaining parts
of R we color dark gray (see Figure 3(a) for an example).

The rectangle R can be naturally partitioned into (K2 +KL)× (L2 +KL) unit squares,
{□i,j | 0 ≤ i < K2 + KL, 0 ≤ j < L2 + KL}, where □i,j denotes the unit square whose
bottom-left corner is at (i, j). We color each of these unit squares either by light gray or by
dark gray according to the dominant color within that unit square in the initial coloring of
the rectangle R (see Figure 3(b)). In case of a tie, that is, when some segment si splits a
unit square into two parts of equal area, we use the color of the part above si (we note that
because KL ≥ 2, it is not possible that the same unit square is crossed by more than one of
the segments s1, s2, and s3).

The suggested coloring of the unit squares within the rectangle R induce in a very natural
way a partition of a combinatorial box of dimensions (K2+KL)× (L2+KL) into K2+KL
vertically-thin sub-boxes and L2 + KL horizontally-thin sub-boxes in the following way.
Combine the light gray squares within each ‘row’ of unit squares into a horizontally thin sub-
box and combine the dark gray squares within each ‘column’ of unit squares into a vertically
thin sub-box. Note that this construction can be realized geometrically by rectangles drawn
on a torus. Notice also that in this construction we interchange the roles of rows and columns
as defined in the introduction. The reason of course is because when we fix the first coordinate
in the Euclidean plane we get a geometrically vertical line while combinatorially we are used
to thinking about a row as being horizontal. This is similar to the confusion when referring
to the (i, j) entry in a matrix to be in the i’th row and the j’th column, as opposed to the
way we think about the point with coordinates (i, j) in the plane.

We claim that there are exactly KL light gray unit squares in every ‘row’ of R and there
are exactly KL dark gray unit squares in every ‘column’ of R. This will follow from the
following simple geometric observation.

7



Claim 2.6. Let P be a parallelogram of area g ≥ 1 and height 1 whose vertices are (0, 0),
(g, 0), (t, 1), and (t + g, 1) for some 0 < t ≤ g (in other words we assume here that P
has two horizontal sides whose projections on the x-axis overlap). Let U be an axes-parallel
unit square whose center is (c, 12). Then the area of U ∩ P is greater than 1

2 if and only if
t
2 < c < g + t

2 .

Proof. Notice that the area of U ∩P is unimodal (increasing and then decreasing) in c. For
c = t

2 and for c = g + t
2 the area of U ∩ P is precisely 1

2 (here we use the fact that g ≥ 1
and that the projections of the two horizontal side of P on the x-axis overlap). We leave it
to the reader to verify the details.

Consider now any row of unit squares in R. In the initial coloring of R the light gray
area in each row is, up to a cyclic shift and a translation, a parallelogram P that satisfies the
conditions in Claim 2.6. To verify that indeed the projections of the horizontal edges of P on
the x-axis overlap one has just to verify that the slope of the line segment s1 is greater than
or equal to 1

KL . This is indeed true as the slope of s1 is equal to L
K and L ≥ 1. It follows

now from Claim 2.6 and from the assumption that KL is an integer that there are precisely
KL light gray unit squares in every ’row’ of R. In precisely the same way one concludes that
there are precisely KL dark gray unit squares in every ’column’ of R. Here we apply Claim
2.6 on the vertical parallelograms in each column. We need to verify that the projections of
the two vertical edges on the y-axis overlap. To this end one has to verify that the slope of
s1 is not greater than KL. Once again this is true because the slope of s1 is equal to L

K and
K ≥ 1.

Having shown that there are exactly KL light gray unit squares in every ’row’ of R and
there are exactly KL dark gray unit squares in every ’column’ of R we conclude that there
are K2+KL vertically-thin sub-boxes (one in each ’column’) and L2+KL horizontally-thin
sub-boxes (one in each ’row’) in our partition. Therefore, it is a partition of a discrete box
into K2 +KL+ L2 +KL = (k − 1) + (ℓ− 1) + 2

√
(k − 1)(ℓ− 1) sub-boxes.

It remains to show that our partition has the (K2+1, L2+1)-piercing property. Indeed,
every row contains one horizontally-thin sub-box consisting of KL unit squares and there-
fore the remaining K2 unit squares in this row belong to pairwise distinct vertically-thin
sub-boxes. Altogether every row intersects K2 + 1 sub-boxes of our partition. Similarly,
every column intersects L2 + 1 sub-boxes of our partition, one vertically-thin box and L2

horizontally-thin sub-boxes, as desired.

The construction for general k and ℓ.
Suppose that

√
(k − 1)(ℓ− 1) is not an integer and assume without loss of generality

that k > ℓ. As before, set K =
√
k − 1 and L =

√
ℓ− 1. We modify the construction above

as follows. Consider the axis-parallel rectangle R whose bottom-left corner is at the origin,
whose width is K2+⌈KL⌉ and whose height is L2+⌈KL⌉. Let s1 be the line-segment whose
endpoints are (⌈KL⌉ , 0) and (K2+⌈KL⌉ , ⌈KL⌉). Let s2 be the line-segment whose endpoints

are (0, 0) and (K
2(L2+⌈KL⌉)

⌈KL⌉ , L2 + ⌈KL⌉). Let s3 be the line-segment whose endpoints are

(0, ⌈KL⌉) and (K
2L2

⌈KL⌉ , L
2 + ⌈KL⌉). Thus, s1, s2, and s3 are parallel (see Figure 4).

The three line segments s1, s2 and s3 partition R into four regions that we color by light
gray and dark gray as before. Namely, we color by light gray the region in R above s3 and
the region in R bounded between s1 and s2. We color by dark gray the region in R below
s1 and the region in R bounded between s2 and s3.

As before, R can be naturally partitioned into (K2+ ⌈KL⌉)× (L2+ ⌈KL⌉) unit squares,
{□i,j | 0 ≤ i < K2+ ⌈KL⌉ , 0 ≤ j < L2+ ⌈KL⌉}, where □i,j denotes the unit square whose
bottom-left corner is at (i, j). We color each of these unit squares either by light gray or by
dark gray in precisely the same manner as we did before, that is, according to the dominant
color in that unit square in the initial coloring of the rectangle R.
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s1

s2

s3

s2

s3

s1

(0, 0)

(K2 + ⌈KL⌉, L2 + ⌈KL⌉)

(K2 + ⌈KL⌉, ⌈KL⌉)

(⌈KL⌉, 0)

(K
2L2

⌈KL⌉ , L
2 + ⌈KL⌉)

(0, ⌈KL⌉)

(K
2(L2+⌈KL⌉)

⌈KL⌉ , L2 + ⌈KL⌉)

Figure 4: The upper bound construction for k = K2 + 1 = 7 and ℓ = L2 + 1 = 4.

The coloring of the unit squares in R by light gray and dark gray induces in a natural
way a partition of the combinatorial box of dimensions (K2 + ⌈KL⌉) × (L2 + ⌈KL⌉) into
K2+ ⌈KL⌉ vertically-thin sub-boxes and L2+ ⌈KL⌉ horizontally-thin sub-boxes. As before,
we combine the light gray squares within each ‘row’ of unit squares into a horizontally thin
sub-box and combine the dark gray squares within each ‘column’ of unit squares into a
vertically thin sub-box.

Here again the region colored light gray in every ‘row’ of R is, up to a cyclic shift and
a translation, a parallelogram P that satisfies the conditions in Claim 2.6. To verify that
indeed the projections of the horizontal edges of P on the x-axis overlap, one has just to
verify that the slope of the line segment s1 is greater than or equal to 1

⌈KL⌉ . This is indeed

true as the slope of s1 is equal to ⌈KL⌉
K2 and L ≥ 1. It follows now from Claim 2.6 and from

the fact that ⌈KL⌉ is an integer that there are precisely ⌈KL⌉ light gray unit squares in
every ‘row’ of R (see Figure 4). Therefore, every row contains one light gray sub-box and the
rest of the K2 dark gray unit squares belong to pairwise distinct vertically thin sub-boxes.
Altogether, every row intersects precisely K2 + 1 sub-boxes in our partition.

Let us now consider the number of sub-boxes each column intersects. We wish to show
that this is at least L2 + 1. We notice that the left end of s1 is to the right of the right end
of s3. This is because K2L2

⌈KL⌉ < ⌈KL⌉ (since KL is not an integer). It follows (and we leave

the details to the reader) that the dark gray region within every vertical strip of width 1 in
R is, up to a cyclic vertical shift, contained in a parallelogram P of area ⌈KL⌉ in our initial
coloring of the rectangle R (see Figure 4). We claim that P satisfies the conditions of Claim
2.6 in the sense that the projections of the two vertical edges of P on the y-axis overlap. In
order for this to be true we need to verify that the slope of s1 is not greater than ⌈KL⌉.
This is indeed true because the slope of s1 is equal to ⌈KL⌉

K2 and K ≥ 1.
We can now conclude from Claim 2.6 that every column of unit squares contains a

vertically thin sub-box that consists of at most ⌈KL⌉ unit squares. Consequently, every
column of unit squares intersects at least L2 horizontally thin sub-boxes. We will conclude
the proof once we show that every column of unit squares in R contains at least one dark gray
unit square. Then altogether every column of unit squares in R intersects L2 + 1 sub-boxes
in our partition, as desired.

In order to show that every column of unit squares in R contains at least one dark gray
unit square consider a vertical line m that crosses R. Observe that the set of the light gray
points on m in the initial coloring of R constitute, up to a vertical cyclic shift, a segment of
length at most ⌈KL⌉ times the slope of s1. The slope of s1 is equal to

⌈KL⌉
K2 and therefore the
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length of the light gray segment on m is at most ⌈KL⌉2
K2 . From here we conclude that the light

gray region in each column of R in the initial coloring of R is contained in a parallelogram P

of area at most ⌈KL⌉2
K2 . One can check that P satisfies the conditions of Claim 2.6. It follows

now from Claim 2.6 that there are at most
⌈
⌈KL⌉2
K2

⌉
≤ ⌈KL⌉2

K2 + 1 light gray unit squares

in each column of R. Recall that there are L2 + ⌈KL⌉ unit squares in every column of R.

Hence it is enough to show that L2+ ⌈KL⌉− ( (⌈KL⌉)2
K2 +1) is greater than or equal to 1. Set

α = ⌈KL⌉ −KL. Then

L2 + ⌈KL⌉ −
(
(⌈KL⌉)2

K2
+ 1

)
= (KL+ α)− 1− (KL+ α)2 − (KL)2

K2

≥ KL+ α− 1− 2αKL+ α2

K2

≥ KL− 1− 2αKL

K2

≥ KL− 3. (7)

Hence we are done when KL ≥ 4.
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