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Abstract

The reconstruction of an unknown function f from its line sums is the aim
of discrete tomography. However, two main aspects prevent reconstruction
from being an easy task. In general, many solutions are allowed due to
the presence of the switching functions. Even when uniqueness conditions
are available, results about the NP-hardness of reconstruction algorithms
make their implementation inefficient when the values of f are in certain
sets. We show that this is not the case when f takes values in a field or
a unique factorization domain, such as R or Z. We present a linear time
reconstruction algorithm (in the number of directions and in the size of the
grid), which outputs the original function values for all points outside of the
switching domains. Freely chosen values are assigned to the other points,
namely, those with ambiguities. Examples are provided.

Keywords: discrete tomography; ghost; lattice direction; reconstruction
algorithm; switching function

1. Introduction

Tomography deals with the reconstruction of an object from the knowl-
edge of its projections in a number of given directions. Radon [23] proved
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in 1917 that a differentiable function on R2 can be determined explicitly by
means of integrals over the lines in R2. By approximating this for a large
number of projections and using filtered back projection, so-called comput-
erized tomography provides a quick way to compute a very good represen-
tation of the object. This method has a wide range of applications, from
scans in hospitals to archaeology, astrophysics and industrial environments.
See e.g. [18, 20].

If the number of projection directions is small, discrete tomography may
be advantageous compared to conventional back projection techniques. In
this paper we consider a function f on a finite grid A of Z2 representing
the object. Projections become line sums, i.e. sums of the f -values at grid
points on each line in finitely many given directions. Discrete tomography
finds its origin in the fifties, mainly for only two directions, see e.g. [24]. In
1978, Katz [19] gave a necessary and sufficient condition for the presence
of a nontrivial function with vanishing line sums, known as a switching
function or ghost. The theory started to blossom in the nineties when it
became relevant in the study of crystals. In 1991 Fishburn, Lagarias, Reeds
and Shepp [12] gave necessary and sufficient conditions for uniqueness of
reconstruction of functions f : A → {1, 2, . . . , N} for some positive integer
N .

An important distinction is whether the line sums are exact or may be
inconsistent because of errors, termed noise, in the measurements. In case
of noise the reconstruction can only be an approximation, see e.g. [2, 3, 22].
In what follows, we assume that the line sums are exact.

One of the main goals of discrete tomography is to ensure that the re-
constructed function is equal to the function f from which the line sums
originate. However, in general the problem is ill-posed. Therefore one in-
vestigates which additional constraints can be imposed in order to achieve
uniqueness. For instance, one may use some known information about the
shape of the domain of f such as convexity [13], the values f can attain (for
the binary case see [4, 16], for the integer case see [6]), or the size of the
domain of f , [4, 17]. In this paper we assume that the line sums come from
some function f and are therefore consistent.

In 1999 Gardner, Gritzmann and Prangenberg [14] showed that the prob-
lem of reconstructing a function f : A→ N from its line sums in d directions
is solvable in polynomial time if d = 2, but it is NP-complete if d ≥ 3. The
NP-completeness concerns both consistency and uniqueness, as well as re-
construction. Moreover, a year later they showed that the three mentioned
problems are NP-complete for two and more directions when more than five
types of atoms are involved in the crystal [15].
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We recall that the tomographic problem may be rephrased in terms of
a linear system. If the function to be reconstructed has R as codomain,
then it is known that polynomial-time algorithms exist to solve the linear
system (such as the Gauss elimination, see [1]). The crux of the NP-results
in [14, 15] is therefore the requirement that the range of g is not closed under
subtraction.

In 2001 Hajdu and Tijdeman [17] gave an algebraic representation of
the complete set of solutions over the integers. Their result also holds for
solutions over the reals or any unique factorization domain. They gave a
polynomial expression for the nontrivial switching function with domain of
minimal size, the so-called primitive switching polynomial, and showed that
every switching polynomial is a multiple of the primitive switching poly-
nomial. This implies that every switching function is a linear combination
of domain shifts of the corresponding primitive switching function. Their
result implies that arbitrary function values can be given to a certain set of
points and that thereafter the function values of the other points of A are
uniquely determined by the line sums. This was made explicit by Dulio and
Pagani [11] and serves as a building block in this paper.

In 2015 Dulio, Frosini and Pagani [7, 8] showed that in the corners of
A the function values are uniquely determined and can be computed in
linear time if the number of directions d = 2. Later they proved conditional
results for d = 3 [9, 10]. Recently, Pagani and Tijdeman [21] generalized the
result for any number of directions. In particular the object function can be
reconstructed in linear time if there are no switching functions. Moreover,
they showed that in general the part of A outside the convex hull of the union
of all switching domains is uniquely determined and can be reconstructed
in linear time. This result is another building block of our paper.

We prove that given the line sums of a function f : A → R in the
directions of a set D we can compute a function g : A → R with the same
line sums. Using the theory of [17] this implies that the complete set of such
functions g can be explicitly presented.

Recently Ceko, Petersen, Svalbe and Tijdeman [5] constructed switching
components called boundary ghosts, where the switching domain has the
form of an annulus around a relatively large interior, see e.g. Figure 1. The
values of f for points which do not lie on this annulus can be uniquely
determined by their line sums. This paper introduces a method which makes
it possible to compute these values in linear time.

The present paper relies heavily on [21], which was submitted before
we started the research for the present paper. The above mentioned paper
[5] did us realize that it is important to be able to compute quickly the
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Figure 1: Boundary ghost. The grey pixels form a switching domain. The pixels inside
the ghost have f -values which are uniquely determined by the line sums in the directions
of D = {(0, 1), (1, 0), (1, 1), (−1, 1), (−3,−1), (−1,−3), (5,−1), (7, 5), (−3, 7)}.

function values at the points in the interior of the boundary ghost domain.
To our surprise we discovered that a twofold extension of the method of [21]
worked, even for arbitrary ghosts. We explain this twofold application in the
present paper. For our method it suffices that the range of g is closed under
subtraction. Further we provide a pseudo-code and a better justification of
the linearity for the complexity than we did in [21].

In Section 2 we present notation and definitions, as well as information on
switching functions. Section 3 shows how values of f in a corner region of A
can be obtained from the line sums. The case without switching components
is treated in Section 4, that with switching components in Section 5. A
general algorithm to compute g can be found in Section 6. The justification
of our linear time claim is given in Section 7. Conclusions are in Section 8.

2. Definitions and known results

We consider an m× n rectangular grid of points

A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n}.

In our figures the x-axis is oriented from left to right and the y-axis from
top to bottom. The origin is therefore the upper-left corner point of A. For
each point (p, q) ∈ Z2 we consider the pixel {(x, y) ∈ R2 : p ≤ x < p+1, q ≤
y < q + 1}. In figures the coordinates of a pixel are the coordinates of the
attached point.
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Primitive directions are pairs (a, b) of coprime integers. We agree to
identify directions (a, b) and (−a,−b). Since we only consider primitive
directions, we simply call them directions. The horizontal and the vertical
direction are given by (1, 0) and (0, 1), respectively. We consider a finite set
of directions D = {(ah, bh) : h = 1, . . . , d}. We say that D is valid for A if
M :=

∑d
h=1 ah < m and N :=

∑d
h=1 |bh| < n, and nonvalid otherwise.

A lattice line L is a line containing at least two points in Z2. Let f :
A→ R. The line sum of f along the lattice line L(a, b, c) : ay = bx+ c with
direction (a, b) is defined as

`(a, b, c, f) =
∑

aq=bp+c, (p,q)∈A

f(p, q).

A function F : A→ R is called a switching function or ghost of (A,D) if
all the line sums of F in all the directions of D are zero. Observe that then
f and f + F have the same line sums in the directions of D. The support
of a switching function is called a switching domain.

We say that something can be computed in linear time if the number of
basic operations needed to compute it is O(dmn). Here a basic operation
is an addition, subtraction, multiplication, division, decision about which of
two quantities is larger or an assignment.

2.1. The location of switching domains

M. Katz [19] proved that f : A → R is uniquely determined by the line
sums in the directions of D if and only if (A,D) is nonvalid. Fishburn et
al. [12] showed that (p, q) ∈ A has a unique f -value if and only if (p, q) is not
located in a switching domain. Hajdu and Tijdeman [17] associated to the
function f : A → R the polynomial f∗(x, y) =

∑m−1
i=0

∑n−1
j=0 f(i, j)xiyj . In

this way every switching function corresponds with a switching polynomial.
They defined

g∗(a,b)(x, y) =


xayb − 1 if a > 0, b > 0,
xa − y−b if a > 0, b < 0,
x− 1 if a = 1, b = 0,
y − 1 if a = 0, b = 1,

and

G∗i,j(x, y) = xiyj
d∏

h=1

g∗(ah,bh)(x, y)

for 0 ≤ i < m −M, 0 ≤ j < n − N . They showed that G∗0,0 is a switch-
ing polynomial of minimal degree. We call the corresponding function a
primitive switching function. Furthermore they proved the following result.
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Theorem 1 (Hajdu, Tijdeman [17], Theorem 1). Suppose D is valid for
A. Put M =

∑d
h=1 ah, N =

∑d
h=1 |bh|. Then for every switching function

g : A→ R its switching polynomial g∗ can be uniquely written as

g∗ =

m−1−M∑
i=0

n−1−N∑
j=0

ci,jG
∗
i,j (1)

with ci,j ∈ R for all i, j. Conversely, every function g of which the switching
polynomial is of the form (1) is a switching function.

This result is also valid if R is replaced by Z or any other field or unique
factorization domain. A corollary of the theorem relevant for this paper is
that the lexicographically lowest degree term of G∗i,j is given by xiyj+Nn

where Nn =
∑

bh<0−bh. Thus we have free choice for the values of ci,j for
0 ≤ i < m−M,Nn ≤ j < Nn + n−N and by this choice the function g∗ is
uniquely determined. An illustration of Theorem 1 is given in Figure 2.

3. Uniqueness in the corner regions

Let again A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n}. Let D be a set of
directions (a1,−b1), . . . , (ak,−bk) with k ≥ 2 where a1, . . . , ak, b1, . . . bk are
positive integers ordered such that

b1
a1

<
b2
a2

< . . . <
bk
ak
. (2)

Note that by primitivity all the ratios are distinct. We call the points(
k∑

h=1

ah, 0

)
,

(
k∑

h=2

ah, b1

)
,

(
k∑

h=3

ah,

2∑
h=1

bh

)
, . . . ,

(
0,

k∑
h=1

bh

)

the border points of the upper left region (P0, Q0), (P1, Q1), . . . , (Pk, Qk), re-
spectively. We denote the convex hull of the three points (0, 0), (Ph−1, Qh−1),
(Ph, Qh) by Vh for h = 1, 2, . . . , k (see Figure 3). Let

VUL =

k⋃
h=1

Vh

be the upper left corner region. The other corner regions VUR, VLL, VLR
may be defined similarly (see Figure 2).
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Figure 2: The situation for the 26 by 19 grid A and the set of directions D =
{(5,−2), (4,−3), (3,−4), (6, 1), (3, 2), (2, 5)}. The dark grey and black pixels indi-
cate the union of the switching domains. The black pixels represent the switching
domain related to G∗

0,0. In the dark grey and black pixels the function f is not
uniquely determined by its line sums in the directions of D. The f -values of the
complement, the white and light grey pixels, are uniquely determined by these line
sums. Since M = 23, N = 17, there are six pixels where the choice is free, e.g. the
pixels (0, 9), (0, 10), (1, 9), (1, 10), (2, 9), (2, 10). Any other 3 by 2 block of dark
grey and black pixels can be chosen instead. If the choice is made all the values
of the unique solution satisfying the made choices are determined by the line sums
in the directions of D. The white pixels form four corner regions. The broken line
indicates the convex hull of the union of the switching components.
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Figure 3: The triangles V1, V2, V3 for the set D = {(3,−2), (4,−3), (1,−2)}. The
border points are (P0, Q0) = (8, 0), (P1, Q1) = (5, 2), (P2, Q2) = (1, 5), (P3, Q3) =
(0, 7). For every h the line through (Ph−1, Qh−1) and (Ph, Qh) is a side of triangle
Vh, and intersects each other triangle Vh̃, since the slopes increase with increasing

h̃ by the ordering in (2).

For a point (p, q) ∈ A we define its weight w(p, q) by

w(p, q) = min
h=1,2,...,k

bhp+ ahq

bhPh + ahQh
.

The weight function in VUL equals the quotient of the distance of the point
(p, q) to the origin (0, 0) and the distance from the origin to the intersection
(p′, q′) of the line through (0, 0) and (p, q) and the boundary of the convex
hull. This weight has the property that every point (p, q) in VUL has maximal
weight among the integer points on the line ` through (p, q) parallel to the
line segment of the boundary of the convex hull through (p′, q′).

The following lemma implies that if (p, q) ∈ VUL, then the minimum in
the definition of w(p, q) is reached for h such that (p, q) ∈ Vh (see Figure 4).

Lemma 2 ([21], Lemma 2). For (p, q) ∈ A the weight w(p, q) is reached for
h such that

Qh−1
Ph−1

≤ q

p
≤ Qh

Ph
.

and only for such h. The weight 1 is reached at the border points and not at
other points of A.

The next result states that the corner region VUL except for the border
points has unique f -values which can be computed in linear time.
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Figure 4: The weights (upper number inside each pixel) of the points for directions
(3,−2), (4,−3), (1,−2). The border points are (8, 0), (5, 2), (1, 5), (0, 7). All the
points with weight less than 1 are in the corner region and have uniquely determined
f -values (Theorem 3). The lower numbers enumerate them with increasing weights.
The (dark grey) border pixels are part of the switching domain and their f -values
are therefore not uniquely determined. They have weight 1. All entirely white
pixels have weight > 1.

Theorem 3 ([21], Theorem 4 and Corollary 6). Let A = {(p, q) ∈ Z2 :
0 ≤ p < m, 0 ≤ q < n}. Let D be a set of directions (a1,−b1), . . . , (ak,−bk)
where a1, . . . , ak, b1, . . . bk are positive integers ordered as in (2). Let the line
sums of f : A→ R in the directions of D be given. Then all the points (p, q)
in VUL except for the border points have uniquely determined f -values.

Corollary 4 ([21]). The values of the points as in the previous theorem can
be computed according to increasing weights and, if (p, q) ∈ Vh, by subtract-
ing the sum of the f -values of the other points of A on the line through (p, q)
in the direction of (ah, bh) from its line sum.

Corollary 5. Under the above conditions the f -values of the points (0, 0),

(0, 1), . . . ,
(

0,−1 +
∑k

h=1 bh

)
can all be computed in linear time.

4. The nonvalid case

Suppose we are in the nonvalid case, then M ≥ m or N ≥ n. Without
loss of generality assume that N ≥ n. Then we apply Theorem 3 both to
the upper corner region VUL and to the lower corner region VLL.
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Let A be as above. Let

D = {(a1,−b1), . . . , (ak,−bk), (ak+1, bk+1), . . . , (ad, bd), (0, 1)∗, (1, 0)∗}
where a1, . . . , ad, b1, . . . bd are positive integers ordered such that

b1
a1

<
b2
a2

< . . . <
bk
ak
,

bk+1

ak+1
>
bk+2

ak+2
> . . . >

bd
ad

and the asterisk indicates that (0, 1) and/or (1, 0) may occur in D. Thus we
assume that n ≤∑d

h=1 bh or (n = 1 +
∑d

h=1 bh and (0, 1) ∈ D).
By Corollary 5 applied to VUL, the f -values of the points (0, 0), (0, 1),

. . . ,
(

0,−1 +
∑k

h=1 bk

)
can be computed. In a similar way we can apply the

corollary to VLL and the directions (ak+1, bk+1), . . . , (ad, bd) to conclude that

the f -values of the points (0, n−1), (0, n−2), . . . ,
(

0, n−∑d
h=k+1 bh

)
can be

computed. It follows that the f -values of the points (0, 0), (0, 1), . . . , (0, n−1)
can all be computed except when n = 1 +

∑d
h=1 bh and (0, 1) ∈ D. In the

latter case (p, q) =
(

0,
∑k

h=1 bh

)
is the only point in the column p = 0 with

unknown f -value. However, this value can be found by subtracting from
the line sum of the column p = 0 the f -values of the other points in that
column. In this way we have made our problem of computing the f -values
one column smaller. We can repeat the procedure in order to find the f
values of the next column. Continuing the process we arrive at the following
conclusion.

Theorem 6 ([21]). Let A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n}. Let D
be a set of directions such that A is nonvalid for D. Let the line sums of
f : A → R be given. Then the f -values of all points of A can be computed
in linear time.

In [21] algorithms are given for computing the f -values. These algo-
rithms are more efficient than the procedure described above. The algorithm
in Section 6 is as efficient as these algorithms.

5. The valid case

Let A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n} and

D = {(a1,−b1), . . . , (ak,−bk), (ak+1, bk+1), . . . , (ad, bd), (0, 1)∗, (1, 0)∗}
where a1, . . . , ad, b1, . . . bd are positive integers ordered such that

b1
a1

<
b2
a2

< . . . <
bk
ak
,

bk+1

ak+1
>
bk+2

ak+2
> . . . >

bd
ad
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and the asterisk indicates that (0, 1) and/or (1, 0) may occur in D. As
observed in the previous section, by applying Corollary 5 to VUL the g-

values of the points (0, 0), (0, 1), . . . ,
(

0,−1 +
∑k

h=1 bh

)
can be computed.

In a similar way we can apply the corollary to VLL and the directions
(ak+1, bk+1), . . . , (ad, bd) to conclude that the g-values of the points (0, n −
1), (0, n−2), . . . ,

(
0, n−∑d

h=k+1 bh

)
can be computed. In Section 2.1 it was

observed that the g-values of the points (0, Qk), (0, Qk + 1), . . . , (0, Qk +n−
N − 1) can be freely chosen where g : A → R is a function satisfying the
line sums. Combining these results we see that all the g-values of the points
(0, 0), (0, 1), . . . , (0, n− 1) can be computed or freely chosen, except for the
case that (0, 1) ∈ D and n = 1+

∑d
h−1 bd. In the latter case only the g-value

of
(

0,
∑k

h=1 bh

)
is not determined, but this can be computed by subtract-

ing the g-values of the other points in the leftmost column from the sum of
that column. After this all g-values of the points in the leftmost column are
fixed. In Section 2.1 it was further observed that the g-values of the points
(p,Qk), (p,Qk + 1), . . . , (p,Qk + n−N − 1) for p = 1, 2, . . . ,m−M − 1 can
be freely chosen. Therefore we can repeat the above procedure successively
for columns p = 1, 2, . . . ,m −M − 1. Then M columns remain, for which
the line sums in the directions of D are known. It is obvious that the com-
puted g-values of the points which do not belong to a switching domain have
the original f -value. We are left with a nonvalid case and we can apply an
algorithm for that case to compute the remaining g-values.

We have shown that the following theorem holds.

Theorem 7. Let A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n} and D a set
of primitive directions. Let f : A → R be an unknown function. Suppose
all the line sums in the directions of D are known. Then we can compute
a function g : A → R satisfying the line sums in linear time. The points
which do not belong to any switching domain get their original f -value.

Example 8. Consider the situation in Figure 2. We have m = 26,M =
23, n = 19, N = 17, Qk = 9. We can freely choose the g-values of the points
(0, 9) and (0, 10) and compute the g-values of the other points (0, q). Next
we do so for the columns p = 1 and p = 2. We are left with a 23 by 19
rectangular grid. Since m = M = 23, this is a nonvalid case and we know
that the remaining g-values can be computed in linear time. The found
g-values of the white and light grey pixels are equal to the original f -values.

Remark 9. In this paper we assume that the line sums are correct and
that there is no noise. It is easy to check whether this is true afterwards by
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checking the line sums which have not been used for computing the g-values.
In case the line sums are inconsistent, and it is better to use a method which
treats the unused line sums in a similar way as the used line sums to obtain
a good approximation of the original function.

Remark 10. Theorem 1 states that if g : A→ R has the same line sums as
f , then the associated polynomial g∗ is of the form

f∗ +

m−1−M∑
i=0

n−1−N∑
j=0

ci,jG
∗
i,j

and each such function has the same line sums as f . It is possible to compute
the coefficients ci,j as follows. The point (0, Qk) occurs only in the domain
of G0,0 and therefore c0,0 can be found from the found value for (0, Qk).
The point (0, Qk +1) occurs in G0,1 and maybe in G0,0. Since c0,0 is already
known, c0,1 can be computed. Considering the points with a free choice in
the lexicographic order, each time a point occurs in only one new primitive
switching domain and hence the corresponding coefficient can be computed.

6. An efficient algorithm

In this section we present an algorithm to find a function g : A → R
which satisfies the given line sums of an unknown function f : A→ R. This
algorithm is based on ideas and results in [21]. Its complexity is studied in
the next section.

In this algorithm it is not necessary to compute all weights as in Figure
4. Observe that after the g-values in VUL and VLL have been computed, the
g-value of the next point on each row will be computed. For this the same
direction will be used as used for the integer point immediately left of it,
since everything shifts one place to the right. For the same reason the order
in which the new points will be handled will be the same as for the points
immediately left of them. This process will be continued. Thus, where in the
example of Figure 4 initially on the row q = 1 first the direction (1,−2), next
the direction (4,−3), and finally the direction (3,−2) was used to compute
the g-value, more to the right only the direction (3,−2) would be used.
Suppose there would have been seven more columns p = −1,−2, . . . ,−7
with g-values equal to 0 in A (cf. Algorithm 1B of [21]). Then for p ≥ 0
we would have needed only the rightmost direction on each row and the
direction needed to compute the g-values of points in the original A would
only depend on their row. Therefore it suffices to follow the order in which

12



the rightmost non-border points of VUL and VLL are treated and for each
point (p, q) to use the line sum in the direction (ah, bh) with h such that
the corresponding rightmost point is in Vh. Observe that this h is such that
Qh ≤ q < Qh+1.

Example 11. Let as in Figure 4 the directions be (3,−2), (4,−3), (1,−2).
The border points are (8, 0), (5, 2), (1, 5), (0, 7). Let m > 8, n = 7. Then the
rightmost points with weight < 1 are

(7, 0), (6, 1), (4, 2), (3, 3), (2, 4), (0, 5), (0, 6).

If we order them according to increasing weights, then we get

(0, 5), (0, 6), (4, 2), (7, 0), (3, 3), (6, 1), (2, 4).

If we use the invisible seven columns on the left with g-values 0, then the
enumeration of VUL is given by the lower numbers in Figure 5. Observe that
it differs from the enumeration in Figure 4. For computing the g-values in
rows 0 and 1 direction (3,−2) is used, in rows 2 to 4 direction (4,−3) and
in rows 5 and 6 direction (1,−2).

p
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1 2 4 7 10 14 19 26
(P0, Q0)

3 5 8 12 16 21 28
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11 15 20 27

17 22 29

23
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Figure 5: The weights (upper numbers) of the rightmost points in VUL of each row
and the ordering of points in VUL (lower numbers) of Example 11. On the right, oq
reports the order of the rightmost points in VUL after increasing weights, s(q) tells
which direction has been used in the corresponding row and rq indicates, for each
row, the p-coordinate of the rightmost point in VUL.
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The above example illustrates the first seven steps of the algorithm. The
above procedure is done for both VUL and for VLL. In between g-values 0 are
substituted (or any other values) at the places where the switching domains
offer free choice. Now the g-values in the first column are known and we
can proceed with the next column and so on until we have treated m −M
columns. An M by n grid remains to be handled, but this is a nonvalid
case. This can be treated in a similar way, but starting from upper corner
regions VUL and VUR and then going downwards. In the algorithm we have
g(p, q) = f(p, q) for all the points (p, q) which are not in a switching domain
of (A,D).

The algorithm has 12 steps and is illustrated in Example 13 following it.
For Steps 1-7 see Figure 6, for Steps 8-12 see Figure 7.

In Step 1 the directions are ordered in such a way that the corner regions
become concave. Throughout the algorithm we write bh instead of −bh
(h = 1, . . . , k) so that bh is always nonnegative. In Step 2 the border points
of VUL and VLL are found. In Step 3 a function δ is introduced indicating
whether the g-value of a point has been computed. Step 4 provides a shortcut
for nonvalid cases. If n ≤ N , then this shortcut can be used after rows and
columns have been interchanged. Step 5 serves to find the grid points left
of the border line, measured by the sequence r. The weights of these points
are computed as well, together with the sequence s, which indicates the
direction of the line used to compute the g-value. In Step 6 the points found
in the previous step are ordered after increasing weight by the sequence o.
If weights are equal, the order is irrelevant. In Step 7 the g-values of the
first m−M columns (and of some more points of A) are computed.

Steps 8-12 are essentially equal to Steps 1-7, but with the columns p =
0, 1, . . . ,m −M − 1 omitted, as they have already been treated, and the
roles of the rows and columns interchanged. In Step 8 the directions are
reordered as now VUL is mirrored and VUR takes over the role of VLL. A
similar reordering of border points takes place in Step 9. The weights and the
corresponding directions are found in Step 10. The order of the points found
in the previous step are fixed in Step 11. Finally the remaining g-values are
computed in Step 12 where the u is introduced to make the necessary shift
because of the omitted m−M columns.

In the algorithm, λ(d, p, q) denotes the line sum containing the point
(p, q) in the direction d, and dre denotes the ceiling of r.

Algorithm.

Input: A set A = {(p, q) : 0 ≤ p < m, 0 ≤ q < n} with positive integers
m,n, a finite set of (primitive) directions D and all the line sums in the
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directions of D of a function f : A→ R.
Output: Function g : A→ R which satisfies the line sums.

Step 1: Initial values.

for all d = (a,−b) ∈ D (with a > 0, b > 0) order the directions such that

b1
a1

<
b2
a2

< · · · < bk
ak
.

for all d = (a, b) ∈ D (with a > 0, b > 0) order the directions such that

bk+1

ak+1
>
bk+2

ak+2
> · · · > bd

ad
.

M ←∑d
h=1 ah

N ←∑d
h=1 bh

if (1, 0) ∈ D then M ←M + 1

if (0, 1) ∈ D then
N ← N + 1
d0 ← (0, 1)

Step 2: Border points.

(P0, Q0)←
(∑k

h=1 ah, 0
)

for h← 1 to k do
(Ph, Qh)← (Ph−1 − ah, Qh−1 + bh)

(P ∗k , Q
∗
k)←

(
0, n− 1−∑d

j=k+1 bj

)
(Pk+1, Qk+1)← (P ∗k + ak+1, Q

∗
k + bk+1)

for h← k + 2 to d do
(Ph, Qh)← (Ph−1 + ah, Qh−1 + bh)

Step 3: Fixing switching functions.

for p← 0 to m− 1 do
for q ← 0 to n− 1 do

δ(p, q)← 0

for p← 0 to m−M − 1 do
for q ← Qk to Qk + n−N − 1 do

g(p, q)← 0
δ(p, q)← 1

Step 4: Nonvalid case.

if m ≤M then goto Step 8
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Step 5: Choosing starting points rh, weights w(rh, h) and directions ds(h).

for H ← 1 to k do
for h← QH−1 to QH − 1 do

rh ←
⌈

(QH − h)PH−1 + (h−QH−1)PH

QH −QH−1
− 1

⌉
w(rh, h)← bHrh + aHh

bHPH + aHQH
s(h)← H

for h← Q∗k + 1 to Qk+1 do

rh ←
⌈

(h−Q∗k)Pk+1

Qk+1 −Q∗k
− 1

⌉
w(rh, h)← bk+1rh + ak+1(n− 1− h)

bk+1Pk+1 + ak+1(n− 1−Qk+1)
s(h)← k + 1

for H ← k + 2 to d do
for h← QH−1 + 1 to QH do

rh ←
⌈

(QH − h)PH−1 + (h−QH−1)PH

QH −QH−1
− 1

⌉
w(rh, h)← bHrh + aH(n− 1− h)

bHPH + aH(n− 1−QH)
s(h)← H

if (0, 1) ∈ D then s(Q∗k)← 0

Step 6: Ordering the points.

Order the points (rh, h) for h ← 0, 1, . . . , Qk − 1, Q∗k + 1, Q∗k + 2, . . . , n−
1 after increasing values of w(rh, h) and call these points in this order
(p0, q0), (p1, q1) . . . , (pN−1, qN−1).
if (0, 1) ∈ D then (pN−1, qN−1)← (0, Q∗k)

Step 7: Assignment of f -values.

for t← 1−max(P0, Pd) to m−M − 1 do
for h← 0 to N − 1 do

if 0 ≤ ph + t < m and δ(ph + t, qh) = 0 then
g(ph + t, qh)← λ(ds(qh), ph + t, qh)
for all d ∈ D do

λ(d, ph + t, qh)← λ(d, ph + t, qh)− g(ph + t, qh)

δ(ph + t, qh)← 1

Step 8: Start nonvalid case, initial values, cf. Step 1.

((a1, b1), . . . , (ak, bk))← ((ak, bk), . . . , (a1, b1))
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((ak+1, bk+1), . . . , (ad, bd))← ((ad, bd), . . . , (ak+1, bk+1))
if (1, 0) ∈ D then d0 ← (1, 0)

Step 9: Border points, cf. Step 2.

if M > m then M ← m

((P0, Q0), . . . , (Pk, Qk))← ((Pk, Qk), . . . , (P0, Q0))
((P ∗k , Q

∗
k), (Pk+1, Qk+1), . . . , (Pd, Qd))← ((M − Pd − 1, n−Qd − 1), . . . ,

(M − Pk+1 − 1, n−Qk+1 − 1), (M − P ∗k − 1, n−Q∗k − 1))

Step 10: Choosing starting points rh, weights w(rh, h) and directions ds(h),
cf. Step 5.

for H ← 1 to k do
for h← PH−1 to PH − 1 do

rh ←
⌈

(PH − h)QH−1 + (h− PH−1)QH

PH − PH−1
− 1

⌉
w(h, rh)← aHrh + bHh

aHQH + bHPH
s(h)← H

for h← P ∗k + 1 to Pk+1 do

rh ←
⌈

(h− P ∗k )Qk+1

Pk+1 − P ∗k
− 1

⌉
w(h, rh)← M − 1− h

M − 1− P ∗k
s(h)← k + 1

for H ← k + 2 to d do
for h← PH−1 + 1 to PH do

rh ←
⌈

(PH − h)QH−1 + (h− PH−1)QH

PH − PH−1
− 1

⌉
w(h, rh)← aHrh + bH(M − 1− h)

aHQH−1 + bH(M − 1− PH−1)
s(h)← H

if (1, 0) ∈ D then s(P ∗k )← 0

Step 11: Ordering the points, cf. Step 6.

Order the points (rh, h) for h← 0, 1, . . . , Pk − 1, P ∗k + 1, P ∗k + 2, . . . ,M −
1 after increasing values of w(rh, h) and call these points in this order
(p0, q0), (p1, q1), . . . , (pM−1, qM−1).
if (1, 0) ∈ D then (pM−1, qM−1)← (P ∗k , 0)

Step 12: Assignment of f -values, cf. Step 7.

u← m−M
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for t← 1−max(Q0, Qd) to n− 1 do
for h← 0 to M − 1 do

if 0 ≤ ph + u < m and 0 ≤ qh + t < n and δ(ph + u, qh + t) = 0
then

g(ph + u, qh + t)← λ(ds(ph), ph + u, qh + t)
for all d ∈ D do

λ(d, ph + u, qh + t)← λ(d, ph + u, qh + t)− g(ph + u, qh + t)

δ(ph + u, qh + t)← 1
return g

Remark 12. We are assuming that the line sums are exact. So, the fact that
the output is consistent with the data can be easily checked by observing
whether all the line sums are equal to zero (Steps 7 and 12 update the line
sums by subtracting the value of each point).

Example 13. Let be givenm = 21, n = 16, D = {(0, 1), (1, 0), (1, 1), (−1, 1) ,
(−3,−1), (−1,−3), (5,−1), (7, 5)} and the line sums in the directions of D
of some function f : A→ R (the function itself is irrelevant for the example).
The effect of the steps is the following.

Step 1. Initial values: k = 2, d = 6, d0 = (0, 1), (a1, b1) = (5, 1), (a2, b2) =
(1, 1), (a3, b3) = (1, 3), (a4, b4) = (1, 1), (a5, b5) = (7, 5), (a6, b6) = (3, 1).
M = 19, N = 13.

Step 2. Border points: (P0, Q0) = (6, 0), (P1, Q1) = (1, 1), (P2, Q2) =
(0, 2), (P ∗2 , Q

∗
2) = (0, 5), (P3, Q3) = (1, 8), (P4, Q4) = (2, 9), (P5, Q5) =

(9, 14), (P6, Q6) = (12, 15).

Step 3 Switching functions: δ(p, q) = 1, g(p, q) = 0 for p = 0, 1 and q =
2, 3, 4; δ(p, q) = 0 for all other points (p, q) of A.

Step 4 False: We are in a valid case, since m > M .

Step 5. Choice of starting points, weights and directions: r0 = 5, r1 = 0,
r6 = r7 = r8 = 0, r9 = 1, r10 = 3, r11 = 4, r12 = 6, r13 = 7, r14 = 8,
r15 = 11; w(5, 0) = .833, w(0, 1) = .500, w(0, 6) = .900, w(0, 7) = .800,
w(0, 8) = .700, w(1, 9) = .875, w(3, 10) = .962, w(4, 11) = .923, w(6, 12) =
.981, w(7, 13) = .942, w(8, 14) = .904, w(11, 15) = .917; s(0) = 1, s(1) = 2,
s(6) = s(7) = s(8) = 3, s(9) = 4, s(10) = s(11) = s(12) = s(13) = s(14) =
5, s(15) = 6, s(5) = 0 (See Figure 6).

Step 6. Ordering of the points: (p0, q0) = (0, 1), (p1, q1) = (0, 8), (p2, q2) =
(0, 7), (p3, q3) = (5, 0), (p4, q4) = (1, 9), (p5, q5) = (0, 6), (p6, q6) = (8, 14),
(p7, q7) = (11, 15), (p8, q8) = (4, 11), (p9, q9) = (7, 13), (p10, q10) = (3, 10),
(p11, q11) = (6, 12), (p12, q12) = (0, 5).
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Figure 6: An illustration of Steps 1-7 of Example 13. The light grey pixels indicate
the union of the switching domains. The white pixels indicate the pixels of which
the f -values are unique, and therefore equal to the computed g-value. There are six
primitive switching functions and their lexicographic smallest elements have a 0. In
Step 3 their g-values are fixed as 0, but this may be replaced by any other values.
Step 1 guarantees the concavity of the upper left corner region VUL and the lower
left corner region VLL, left of the broken line. The border points for VUL and VLL

are indicated by the dots along the broken line. They are found in Step 2. Step 4
provides a shortcut in case of a nonvalid case; if m ≤M , then the coordinates can
be switched. For each row the grid point just left of the border line is computed
in Step 5. The weights of these points are indicated in the upper numbers inside
the pixels. The (highlighted) points immediately left of the broken line are ordered
after size as indicated in the column oq (see Step 6). The function s indicates the
directions which are used for the grid points in that row. Finally, in Step 7, the
g-values are computed for the first m −M columns and some more pixels. The
order in which they are calculated is given in black.
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Step 7. Assignment. See Figure 6 for the order in which the f -values are
computed, indicated by the black numbers. After this step the f -values of
the first m−M = 2 columns are known and M = 19 columns are left.

Step 8. We are now in a nonvalid case and apply a switch of coordinate axes.
The new initial values are: d0 = (1, 0), (a1, b1) = (1, 1), (a2, b2) = (5, 1),
(a3, b3) = (3, 1), (a4, b4) = (7, 5), (a5, b5) = (1, 1), (a6, b6) = (1, 3).

Step 9. Border points: (P0, Q0) = (0, 2), (P1, Q1) = (1, 1), (P2, Q2) =
(6, 0), (P ∗2 , Q

∗
2) = (6, 0), (P3, Q3) = (9, 1), (P4, Q4) = (16, 6), (P5, Q5) =

(17, 7), (P6, Q6) = (18, 10).

Step 10. Choice of starting points, weights and directions: r0 = 1, r1 =
r2 = · · · = r5 = 0, r7 = r8 = r9 = 0, r10 = 1, r11 = 2, r12 = r13 = 3,
r14 = 4, r15 = r16 = 5, r17 = 6, r18 = 9; w(0, 1) = .500, w(1, 0) = .167,
w(2, 0) = .333, w(3, 0) = .500, w(4, 0) = .667, w(5, 0) = .833, w(7, 0) = .917,
w(8, 0) = .833, w(9, 0) = .750, w(10, 1) = .904, w(11, 2) = .942, w(12, 3) =
.981, w(13, 3) = .885, w(14, 4) = .923, w(15, 6) = .962, w(16, 5) = .865,
w(17, 6) = .875, w(18, 9) = .900; s(0) = 1, s(1) = s(2) = · · · = s(5) = 2,
s(7) = s(8) = s(9) = 3, s(10) = s(11) = · · · = s(16) = 4, s(17) = 5,
s(18) = 6, s(6) = 0.

Step 11 Ordering of the points: (p0, q0) = (1, 0), (p1, q1) = (2, 0), (p2, q2) =
(0, 1), (p3, q3) = (3, 0), (p4, q4) = (4, 0), (p5, q5) = (9, 0), (p6, q6) = (5, 0),
(p7, q7) = (8, 0), (p8, q8) = (16, 5), (p9, q9) = (17, 6), (p10, q10) = (13, 3),
(p11, q11) = (18, 9), (p12, q12) = (10, 1), (p13, q13) = (7, 0), (p14, q14) = (14, 4),
(p15, q15) = (11, 2), (p16, q16) = (15, 5), (p17, q17) = (12, 3), (p18, q18) = (6, 0).

Step 12. Assignment. See Figure 7 for the order in which the g-values are
computed, indicated by the black numbers. This has to be continued in the
obvious way. When this step has been completed all the g-values are known.

7. Complexity

We state the complexity of each step of the algorithm, where we count
every addition, subtraction, multiplication, division and determining of the
larger of two explicit quantities as one operation.

- Step 1: O(d log d);

- Step 2: O(d);

- Step 3: O(mn);

- Step 4: O(1);
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Figure 7: This figure illustrates Steps 8-12 of Example 13. We have omitted the first
m−M = 2 columns so that the column numbers indicate p− 2. The K’s indicate
the pixels of which the g-values have already been calculated in Step 7. In this stage
the roles of rows and columns are interchanged. Step 8 serves to adjust the order
of the directions. In Step 9 the border points in VUL are reordered, those in VUR

are those of VLL mirrored. Again the broken line connects them. This time the
points which determine the direction to be used are the integer points immediately
above the border points. Their Q-values, their weights (the above number inside
the pixel) and the sequence s are computed in Step 10. They are ordered in Step
11 and the order is indicated in row oh. Finally in Step 12 the remaining g-values
are computed where by using u the original p-values are used instead of p− 2. The
order of the way the g-values are found is indicated by the lower numbers inside
the pixels. This has to be completed downwards to find all g-values.
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- Steps 5 and 10: O(n) and O(m), respectively;

- Steps 6 and 11: O(n log n) and O(m logm), respectively;

- Steps 7+12: O(dmn).

Without loss of generality we may assume m ≤ n. It follows that the
complexity of the algorithm is O(dmn) unless mn = O(log d) or dm =
O(log n) or dn = O(logm). The latter case can not occur since m ≤ n. If
m = O(log d), then we recall that ah ≥ 1 with at most one exception. So
we can delete d − m − 1 directions and still have a nonvalid case. After
deletion we have, denoting by d the new number of directions, m = d − 1
and complexity O(dmn).

It remains to consider dm = O(log n). In this case only the complexity
of Step 6 has to be adjusted. This can be achieved by remembering in Step
5 for every H the location of the point (rh, h) with s(h) = H and minimal
weight for direction (aH , bH). This has complexity O(dn). Now Step 6
proceeds as follows. For each direction (aH , bH) let (rh, h) be the point with
s(h) = H and minimal weight. For H ≤ k we start with the vectors

(rh, h, bH(PH − 1) + aHQH , bHPH + aHQH , RH , SH , TH , UH),

where (RH , SH) = (QH−1, QH−1) and (TH , UH) is the unique pair satisfying
0 ≤ TH < aH and bHTH + aHUH = 1. For k < H ≤ d we start with the
vectors

(rh, h, bH(PH−1)+aH(n−1−QH), bHPH+aH(n−1−QH), RH , SH , TH , UH),

where (RH , SH) = (QH−1+1, QH) and (TH , UH) is the unique pair satisfying
0 ≤ TH < aH and bHTH−aHUH = 1. Observe that in each case the quotient
of the third and fourth entry is the weight. We order such vectors on the
top line according to increasing weight. At each step we increase by one
the third entry of the first (leftmost) vector. If the third entry now is still
smaller than the fourth entry, we replace the first two entries (rh, h) by
(rh + TH , h + UH) or (rh + TH − bH , h + UH − aH) such that the second
entry is in [RH , SH ]. If the third entry becomes equal to the fourth one, we
neglect the vector in the sequel. In any case we order the remaining vectors
on the line again after increasing weight. This procedure runs until there is
no vector left. At every step the two leftmost entries of the leftmost vector
give the next value (ph, qh). The computation of the vectors (TH , UH) has
complexity O(d log n), the computation of each row O(d log d) and there are
n rows. Therefore the total complexity is O(nd log d). This is O(dmn),
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unless m = O(log d). We have already remarked that in this case we can
delete d−m− 1 directions, still have a nonvalid case, and have complexity
O(dmn).

Example 14. [Continuation of Example 13]. The described procedure
yields as the first row the vectors

(0, 1, 1, 2, 1, 1, 0, 1), (0, 8, 7, 10, 6, 8, 0,−1), (5, 0, 5, 6, 0, 0, 1, 0),
(1, 9, 7, 8, 9, 9, 1, 0), (8, 14, 47, 52, 10, 14, 3, 2), (11, 15, 11, 12, 15, 15, 1, 0).

Since the last four entries do not change, we do not mention them in the
table. Then the table becomes as follows (each row represents one step in
the procedure).

(0,1,1,2) (0,8,7,10) (5,0,5,6) (1,9,7,8) (8,14,47,52) (11,15,11,12)
(0,8,7,10) (5,0,5,6) (1,9,7,8) (8,14,47,52) (11,15,11,12)
(0,7,8,10) (5,0,5,6) (1,9,7,8) (8,14,47,52) (11,15,11,12)
(5,0,5,6) (1,9,7,8) (0,6,9,10) (8,14,47,52) (11,15,11,12)
(1,9,7,8) (0,6,9,10) (8,14,47,52) (11,15,11,12)
(0,6,9,10) (8,14,47,52) (11,15,11,12)

(8,14,47,52) (11,15,11,12)
(11,15,11,12) (4,11,48,52)
(4,11,48,52)
(7,13,49,52)
(3,10,50,52)
(6,12,51,52)

The sequence (p0, q0) = (0, 1), (p1, q1) = (0, 8), (p2, q2) = (0, 7), . . . , (p11, q11) =
(6, 12) can be read from the leftmost two entries. At the end (p12, q12) =
(0, 5) has to be added.

8. Conclusions

In this paper we have addressed the tomographic reconstruction problem
for functions with values in a unique factorization domain or field, such as
integers and reals. A key argument is that one may ask for the point values
even when many solutions are admissible, since the values of points outside
the switching domains are common to all functions satisfying the problem.

Starting from the characterization of the switching functions in [17] and
the results in [21], we have shown that all points with uniquely determined
value, namely, not belonging to switching domains, can be recovered once we
give an arbitrary value to (m−M)(n−N) points, where (m−M)(n−N) is
the number of linearly independent switching functions. We have provided
an algorithm which computes the point values systematically and runs in
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time linear in dmn, where d is the number of directions. By the result in
[17] our algorithm provides the complete set of solutions with values in the
unique factorization domain or in the field.

The proposed approach works when line sums are supposed to be exact
and therefore not all projections are necessary to recover a solution. It
underlines the structural difference between unique factorization domains
and other kinds of sets, such as {0, 1} (leading to binary images), since in
the latter case the reconstruction problem has proven to be NP-hard [14, 15].

Two questions arise by this paper. Firstly, does there exist a similar
algorithm for higher dimensions? Secondly, given a system of inconsistent
line sums, is there a fast way to find a best approximation of consistent line
sums so that the algorithm of this paper can be applied to construct the
most likely set of solutions (over Z or R)?
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