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Abstract

What does it mean today to study a problem from a computational point of view? We

focus on parameterized complexity and on Column 16 “Graph Restrictions and Their

Effect” of D. S. Johnson’s Ongoing guide, where several puzzles were proposed in a

summary table with 30 graph classes as rows and 11 problems as columns. Several of

the 330 entries remain unclassified into Polynomial or NP-complete after 35 years. We

provide a full dichotomy for the STEINER TREE column by proving that the problem

is NP-complete when restricted to UNDIRECTED PATH graphs. We revise Johnson’s

summary table according to the granularity provided by the parameterized complexity

for NP-complete problems.

Keywords: computational complexity, parameterized complexity, NP-complete,

Steiner tree, dominating set

1. Graph Restrictions and Their Effect 35 Years Later

The 1979 book Computers and Intractability, A Guide to the Theory of NP-complete-

ness by Michael R. Garey and David S. Johnson [54] is considered the single most

important book by the computational complexity community and it is known as The

Guide, which we cite by [GJ]. The book was followed by The NP-completeness Col-

umn: An Ongoing Guide where, from 1981 until 2007, D. S. Johnson continuously

updated The Guide in 26 columns published first in the Journal of Algorithms and then

in the ACM Transactions on Algorithms. The Guide has an appendix where 300 NP-

complete problems are organized into 13 categories according to subject matter. The

first, “A1 Graph Theory”, contains 65 problems and the second, “A2 Network Design”,

contains 51 problems. Category “A13 Open Problems” lists 12 problems in NP, at the

time not classified into polynomial or NP-complete, and it is surprising that since then

5 have been classified into polynomial and 5 into NP-complete. Garey and Johnson

were amazingly able to foresee a list of challenging problems which would evenly split

into tractable and intractable. The goal of the present paper is to propose an answer to
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the question: What does it mean today to study a problem from a computational com-

plexity point of view? In search of an answer, we focus on parameterized complexity

and on Column 16 “Graph Restrictions and Their Effect” [66], which we cite by [OG],

where several puzzles were proposed by D. S. Johnson and many remain unsolved af-

ter 35 years. Consider in Table 1 the summary table from [OG] with 30 graph classes

as rows and 11 columns, the first of which is MEMBERSHIP, followed by 10 well-

known NP-complete problems, listed in The Guide’s appendix as GT20, GT19, GT15,

GT13, Open5, GT37, GT2, ND16, ND12, and Open1. The entries follow the nota-

tion of [OG], where the complexity of the problem restricted to the graph class is N =

NP-complete, P = polynomial, or O = open. Following our convention, reference [GJ]

stands for “The Guide” and [OG] stands for “Column 16”, and we highlight in bold

the reference updates with the corresponding new recent references. Every reference

associated with each entry of Table 1 has been checked, and the updated entries are pre-

cisely those that needed to be updated. It is surprising that several O? entries remain

stubbornly open. At the time, D. S. Johnson proposed only one “O! = famous open

problem”, MEMBERSHIP for PERFECT graphs, which we know today to be in P, and

two entries “O = may well be hard”, HAMILTONIAN CIRCUIT restricted to PERMUTA-

TION graphs, known today to be in P, and CHROMATIC INDEX restricted to PLANAR

graphs, which is still open. We remark that in the original summary table [OG], there

was only one entry co-authored by a Brazilian researcher among 330 entries, namely

HAMILTONIAN CIRCUIT restricted to GRIDS [64], and today we have two additional

such entries: MAXIMUM CUT restricted to STRONGLY CHORDAL [108] and GRAPH

ISOMORPHISM restricted to PROPER CIRCULAR ARC [81].

We depict in Figures 1 and 2 the relations between the graph classes, and use the

convention from [OG] that an arrow from CLASS A to CLASS B means that CLASS A

contains CLASS B. Since the only O! entry was MEMBERSHIP for PERFECT graphs,

the chosen 30 classes were classified into the following four categories: Trees and

Near-Trees, Planarity and its Relations, A Catalog of Perfect Graphs, and Intersection

Graphs. Although very similar to the figures presented in [OG], our Figures 1 and 2

present some additional relations, that were either unknown or unobserved, and about

which we comment next.

Figure 1 highlights the key property that 7 graph classes are subclasses of PARTIAL

k-TREES [17], also known as BOUNDED TREEWIDTH graphs. Also, although Table 1

follows the same organization as the one used in [OG], our proposed new Table 2 is

organized in a way as to highlight this relationship, with the first 8 rows being exactly

PARTIAL k-TREES and its subclasses. In the summary table, D.S. Johnson used entry

“P? = appears to be polynomial-time solvable by standard techniques, but I haven’t

checked the details”. D.S. Johnson is correct, since all P? entries are known today to

be P entries. All former P? entries used to appear in these 8 rows, PARTIAL k-TREES

and the 7 subclasses [17].

Another difference is that we use K3,3-FREE* to denote the graph class referred

to in [OG] by K3,3-FREE. This is to avoid confusion, since nowadays it is standard

to use H -FREE to refer to the class of graphs that do not contain H as an induced

subgraph. However, the class investigated in [OG] is instead the class of graphs that

contain no subgraphs homeomorphic to K3,3; in other words, the class of graphs that do

not contain K3,3 as a topological minor. Observe that, using our notation, we have that
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GRAPH CLASS MEMBER INDSET CLIQUE CLIPAR CHRNUM CHRIND HAMCIR DOMSET MAXCUT STTREE GRAPHISO

TREES/FORESTS P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [GJ] P [T] P [GJ]

ALMOST TREES (k) P [OG] P [OG] P [T] P [16] P [5] P [19] P [5] P [5] P [20] P [76] P [19]

PARTIAL k-TREES P [OG] P [5] P [T] P [16] P [5] P [19] P [5] P [5] P [20] P [76] P [19]

BANDWIDTH-k P [OG] P [OG] P [T] P [16] P [5] P [19] P [5] P [5] P [OG] P [76] P [OG]

DEGREE-k P [T] N [GJ] P [T] N [29] N [GJ] N [OG] N [GJ] N [GJ] N [GJ] N [GJ] P [OG]

PLANAR P [GJ] N [GJ] P [T] N [77] N [GJ] O N [GJ] N [GJ] P [GJ] N [OG] P [GJ]

SERIES PARALLEL P [OG] P [OG] P [T] P [16] P [5] P [19] P [5] P [OG] P [GJ] P [OG] P [GJ]

OUTERPLANAR P [OG] P [OG] P [T] P [OG] P [OG] P [OG] P [T] P [OG] P [GJ] P [OG] P [GJ]

HALIN P [OG] P [OG] P [T] P [OG] P [5] P [19] P [T] P [OG] P [GJ] P [118] P [GJ]

k-OUTERPLANAR P [OG] P [OG] P [T] P [OG] P [5] P [19] P [OG] P [OG] P [GJ] P [76] P [GJ]

GRID P [OG] P [GJ] P [T] P [GJ] P [T] P [GJ] N [OG] N [32] P [T] N [OG] P [GJ]

K3,3-FREE
*

P [OG] N [GJ] P [T] N [77] N [GJ] O? N [GJ] N [GJ] P [OG] N [GJ] P [40]

THICKNESS-k N [OG] N [GJ] P [T] N [77] N [GJ] N [OG] N [GJ] N [GJ] N [119] N [GJ] I Prop. 3

GENUS-k P [OG] N [GJ] P [T] N [77] N [GJ] O? N [GJ] N [GJ] O? N [GJ] P [OG]

PERFECT P [34] P [OG] P [OG] P [OG] P [OG] N [28] N [OG] N [OG] N [20] N [GJ] I [83]

CHORDAL P [OG] P [OG] P [OG] P [OG] P [OG] O? N [92] N [OG] N [20] N [OG] I [83]

SPLIT P [OG] P [OG] P [OG] P [OG] P [OG] O? N [92] N [OG] N [20] N [OG] I [107]

STRONGLY CHORDAL P [OG] P [OG] P [OG] P [OG] P [OG] O? N [92] P [OG] N [108] P [OG] I [111]

COMPARABILITY P [OG] P [OG] P [OG] P [OG] P [OG] N [28] N [OG] N [93] N [101] N [GJ] I [23]

BIPARTITE P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] N [OG] N [93] P [T] N [GJ] I [23]

PERMUTATION P [OG] P [OG] P [OG] P [OG] P [OG] O? P [44] P [OG] O? P [OG] P [OG]

COGRAPHS P [T] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] P [20] P [OG] P [OG]

UNDIRECTED Path P [OG] P [OG] P [OG] P [OG] P [OG] O? N [13] N [OG] N [20] N Thm. 4 I [23]

DIRECTED PATH P [OG] P [OG] P [OG] P [OG] P [OG] O? N [98] P [OG] N [1] P [OG] P [7]

INTERVAL P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] N [1] P [OG] P [OG]

CIRCULAR ARC P [OG] P [OG] P [OG] P [OG] N [OG] O? P [105] P [OG] N [1] P [11] P [79]

CIRCLE P [OG] P [GJ] P [OG] N [73] N [OG] O? N [39] N [71] N [26] P [OG] P [68]

PROPER CIRC. ARC P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] O? P [11] P [81]

EDGE (OR LINE) P [OG] P [GJ] P [T] N [94] N [OG] N [28] N [OG] N [GJ] P [59] N [18] I [OG]

CLAW-FREE P [T] P [OG] N [102] N [84] N [OG] N [28] N [OG] N [GJ] N [20] N [18] I [OG]

Table 1: The updated NP-Completeness Column: An Ongoing Guide table 35 years later. Depicted in bold

are the references that correspond to unresolved entries in [OG] and [GJ]. The references not in bold confirm

resolved entries from [OG] or [GJ], that we updated either because they cited private communications, be-

cause the cited reference is not easily accessible, or could not be confirmed. There is one entry highlighted

in italic that corrects the entry for HAMCIRC restricted to CIRCLE GRAPHS. We keep the abbreviations used

by [OG], namely for entries: P = Polynomial-time solvable; N = NP-complete; I = Open, but equivalent

in complexity to general GRAPH ISOMORPHISM; O? = Apparently open, but possibly easy to resolve; and

O = Open, and may well be hard; and for references [T] = Restriction trivializes the problem; [GJ] = the

Guide [54]; and [OG] = the Ongoing guide [66], please refer to this reference for the entry.

K3,3-FREE* is a proper subclass of K3,3-FREE. Also, we mention that this confusion

does not occur for CLAW-FREE graphs, since we, as well as [OG], use it to denote

the class of graphs that do not contain K1,3 (also known as the claw) as an induced

subgraph.

Finally, we mention two relations that do not appear in [OG], both involving the

class THICKNESS-k. A graph G is said to have thickness at most k if E(G) can be

partitioned into at most k subsets, each of which forms a planar subgraph of G. In the

same way as all the other graph classes that have a parameter in their names such as

the class of PARTIAL k-TREES that is also known as BOUNDED TREEWIDTH graphs,

the class THICKNESS-k means BOUNDED THICKNESS graphs. First, note that if G
has degree at most ∆(G), then by Vizing’s Theorem, we get that E(G) can be colored

with at most ∆(G) + 1 colors. In other words, this means that the edge set of G
can be partitioned into ∆(G) + 1 matchings, which are planar graphs, and hence G
has thickness at most ∆(G) + 1. Therefore, we get that DEGREE-k is a subclass
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of THICKNESS-k. Another non-trivial relation involving this class is with GENUS-k
graphs. A k-book embedding of a graph G is a linear ordering of its vertices along

the spine of a book and an assignment of its edges to k pages so that edges assigned

to the same page can be drawn on that page without crossings. The pagenumber of

a graph G is the minimum k for which G admits a k-book embedding. Clearly, the

pagenumber of G is an upper bound for the thickness of G. Additionally, in [86] the

authors prove that the pagenumber of G is bounded above by a function of the genus

of G. This means that if G has bounded genus, then G also has bounded thickness.

Therefore, GENUS-k is a subclass of THICKNESS-k. On the other hand, to the best of

our knowledge, it is not known whether graphs with bounded thickness have bounded

genus.

PLANAR

K3,3-FREE
*

K3,3-FREETHICKNESS-k

GENUS-k

GRID

DEGREE-k

k-OUTERPLANAR SERIES-PARALLEL

HALIN OUTERPLANAR

TREESALMOST TREES (k) BANDWIDTH-k

PARTIAL k-TREES

Figure 1: Containment relations for classes from [OG], where, in particular, the subclasses of PARTIAL k-

TREES are highlighted. A graph class CLASS A has an arrow to a graph class CLASS B if CLASS A contains

CLASS B. (Adapted from [OG].)

Our contribution. In the summary table, the STEINER TREE column had 6 unresolved

entries: 5 P? entries, all of which are now known to be subclasses of PARTIAL k-

TREES and henceforth are in P, and one O? entry for UNDIRECTED PATH graphs.

Upon close investigation of the references given in [GJ] and [OG], we found that many

consist of “private communication” or could not be confirmed. In the particular case of

the STEINER TREE column, we found that this happens for the lines CIRCULAR ARC,

CIRCLE, PROPER CIRCULAR ARC, EDGE (OR LINE), and CLAW-FREE. We were

able to find a recent reference for EDGE (OR LINE) and CLAW-FREE. Additionally,

based on the facts that CIRCULAR ARC and, consequently, PROPER CIRCULAR ARC

graphs have bounded mim-width and that STEINER TREE is polynomial-time solv-

able for graphs of bounded mim-width, we were able to resolve such entries as well.

However, we could not find any reference for CIRCLE graphs, and therefore we under-
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PERFECT

COMPARABILITY CHORDAL

SPLIT STRONGLY CHORDAL

UNDIRECTED PATH

DIRECTED PATH

BIPARTITE

TREE

PERMUTATION

COGRAPH

CIRCLE CIRCULAR ARC

PROPER CIRCULAR ARC INTERVAL

Figure 2: Containment relations for classes from [OG], our target class is UNDIRECTED PATH. (Adapted

from [OG].)

line the corresponding [OG] reference in Table 1. Moreover, the entry UNDIRECTED

PATH is said to be NP-complete in [106], but again with a “private communication”

reference (we comment more on this in Section 4). Believing in the need to have ex-

plicit proofs for these important problems, we here give a proof of NP-completeness

for UNDIRECTED PATH graphs, which would provide a full dichotomy Polynomial

versus NP-complete for the STEINER TREE column. Actually, we provide a second

dichotomy for the STEINER TREE problem restricted to UNDIRECTED PATH graphs,

according to the diameter of the input graph. For the GRAPH ISOMORPHISM column

we also provide a full dichotomy Polynomial versus NP-complete by giving an explicit

proof of GI-completeness for THICKNESS-k graphs (please refer to Section 3).

Besides providing a full dichotomy Polynomial versus NP-complete for the STEINER

TREE column, in Table 1 we have thoroughly revised the summary table that 35 years

later has 54 new resolved entries depicted in bold. Additionally, there are 36 citations

for references not in bold that confirm resolved entries from [OG] or [GJ], that we up-

dated because they cited private communications, or because the cited reference is not

easily accessible, or could not be confirmed. There is one entry highlighted in italic that

corrects the entry for HAMILTONIAN CIRCUIT restricted to CIRCLE graphs originally

P but that actually is N [39].

In addition, we consider the parameterized complexity of hard problems to revise

Table 1 into a new Table 2, a proposed summary table of what it means today to study

a problem from a computational complexity point of view. This is of course just a

sample of what it means, since we could even consider other classifications (e.g., the

approximability complexity theory and the space complexity theory). We have kept
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the same 30 classes but have drawn the horizontal lines so that the PARTIAL k-TREES

subclasses appear together, and we may focus on the remaining rows, where the NP-

complete entries appear. In Section 2, we discuss in detail Table 2, also presenting

the basic definitions of parameterized complexity, in order to draw the reader’s atten-

tion to the granularity provided by the parameterized complexity for the NP-complete

problems into XP, FPT, W1, W2, and pN. We depict in Table 2 as O* the only N en-

try of Table 1 that constitutes the parameterized puzzle for which so far we were not

able to provide a parameterized complexity classification. This is to show how rich the

original problems posed by Garey and Johnson are, and how their initial classification

continues to develop into ever evolving complexity classes, with the NP-complete class

being now just the beginning of a very interesting story.

2. The Parameterized Complexity of Hard Problems

In this section, we discuss in detail the new Table 2. We also further discuss some

of the differences that arise between our updated Table 1 and the table presented in

[OG] thirty-five years ago. We start by giving some basic definitions of parameterized

complexity and its complexity hierarchy classes. After that, we discuss each of the 11

columns separately.

GRAPH CLASS MEMBER INDSET CLIQUE CLIPAR CHRNUM CHRIND HAMCIR DOMSET MAXCUT κ-STTREE GRAPHISO

PARTIAL k-TREES P [OG] P [5] P [T] P [16] P [5] P [19] P [5] P [5] P [20] P [76] P [19]

TREES/FORESTS P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [GJ] P [T] P [GJ]

ALMOST TREES (k) P [OG] P [OG] P [T] P [16] P [5] P [19] P [5] P [5] P [20] P [76] P [19]

BANDWIDTH-k P [OG] P [OG] P [T] P [16] P [5] P [19] P [5] P [5] P [OG] P [76] P [OG]

SERIES PARALLEL P [OG] P [OG] P [T] P [16] P [5] P [19] P [5] P [OG] P [GJ] P [OG] P [GJ]

OUTERPLANAR P [OG] P [OG] P [T] P [OG] P [OG] P [OG] P [T] P [OG] P [GJ] P [OG] P [GJ]

HALIN P [OG] P [OG] P [T] P [OG] P [5] P [19] P [T] P [OG] P [GJ] P [118] P [GJ]

k-OUTERPLANAR P [OG] P [OG] P [T] P [OG] P [5] P [19] P [OG] P [OG] P [GJ] P [76] P [GJ]

PLANAR P [GJ] FPT [95] P [T] FPT [T] pN [53] O FPT [88] FPT [47] P [GJ] FPT [100] P [GJ]

GRID P [OG] P [GJ] P [T] P [GJ] P [T] P [GJ] FPT [88] FPT [47] P [T] FPT [100] P [GJ]

K3,3-FREE
*

P [OG] FPT [42] P [T] FPT [T] pN [53] O? FPT [88] FPT [99] P [OG] XP [T] P [40]

THICKNESS-k pN [OG] FPT [74] P [T] FPT [T] pN [53] pN [62] FPT [88] XP [T] FPT [85] XP [T] FPT [6]

GENUS-k P [OG] FPT [30] P [T] FPT [T] pN [53] O? FPT [88] FPT [51] FPT [85] FPT [100] P [OG]

DEGREE-k P [T] FPT [48] P [T] FPT [T] pN [53] pN [62] FPT [88] FPT [3] FPT [85] FPT [67] P [OG]

PERFECT P [34] P [OG] P [OG] P [OG] P [OG] pN [28] FPT [88] W2 [103] FPT [85] W2 [103] FPT [6]

CHORDAL P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [88] W2 [103] FPT [85] W2 [103] FPT [6]

SPLIT P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [88] W2 [103] FPT [85] W2 [103] FPT [6]

STRONGLY CHORDAL P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [88] P [OG] FPT [85] P [OG] FPT [6]

COMPARABILITY P [OG] P [OG] P [OG] P [OG] P [OG] pN [28] FPT [88] W2 [103] FPT [85] W2 Prop. 1 FPT [6]

BIPARTITE P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] FPT [88] W2 [103] P [T] W2 Prop. 1 FPT [6]

PERMUTATION P [OG] P [OG] P [OG] P [OG] P [OG] O? P [44] P [OG] FPT [85] P [OG] P [OG]

COGRAPHS P [T] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] P [20] P [OG] P [OG]

UNDIRECTED PATH P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [88] XP [T] FPT [85] XP [T] FPT [6]

DIRECTED PATH P [OG] P [OG] P [OG] P [OG] P [OG] O? FPT [88] P [OG] FPT [85] P [OG] P [7]

INTERVAL P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] FPT [85] P [OG] P [OG]

CIRCULAR ARC P [OG] P [OG] P [OG] P [OG] FPT [55] O? P [105] P [OG] FPT [85] P [11] P [79]

CIRCLE P [OG] P [GJ] P [OG] XP [73] pN [112] O? FPT [88] W1 [24] FPT [85] P [OG] P [68]

PROPER CIRC. ARC P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] FPT [85] P [11] P [81]

EDGE (OR LINE) P [OG] P [GJ] P [T] O* [94] pN [62] pN [28] FPT [88] FPT [38] P [59] XP [T] FPT [6]

CLAW-FREE P [T] P [OG] FPT [38] pN [84] pN [62] pN [28] FPT [88] FPT [38] FPT [85] XP [T] FPT [6]

Table 2: The parameterized NP-Completeness Column: An Ongoing Guide table revised for the 21st century.

The parametrized puzzle is to classify every O entry, every O? entry and every N entry into FPT = Fixed

parameter tractable, W1= W[1]-hard, W2= W[2]-hard, and pN = paraNP-complete, where the considered

parameterization is with respect to the natural parameter of each corresponding problem. We highlight as

O* the N entry of Table 1 that constitutes the parameterized puzzle, for which so far we were not able to

provide a parameterized complexity classification.
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Parameterized Complexity. We refer the reader to [48, 95, 49, 37, 52] for all basic for-

mal definitions, as well as many techniques employed in the parameterized complexity

theory. Formally, given a fixed finite alphabet Σ, a language L ⊆ Σ∗ × N is called a

parameterized problem; given an instance (x, κ) ∈ L, we call κ the parameter. Also,

we denote the size of an instance (x, κ) by |(x, κ)|. Observe that each possible pa-

rameter defines a different parameterized problem; for example, when considering the

CLIQUE problem on graphs, it can be parameterized by the size of the desired clique,

or by the maximum degree of the input graph. In both cases, the input consists of a

graph G, an integer c, and the corresponding parameter, and the problem consists of

deciding whether G has a clique of size at least c, except that in the former the param-

eter is also c, while in the latter the parameter is the maximum degree ∆(G). When

the parameterized problem is a decision problem having as parameter the size of the

solution, we say that the problem is parameterized by the natural parameter. Table 2

is filled taking into account the natural parameter, whenever possible. We give more

details about this when analyzing each of the 11 columns.

We say that a parameterized problem L is fixed parameter tractable (from now on

denoted by FPT) if there exists an algorithm A that solves L on input (x, κ) in time

f(κ) · |(x, κ)|O(1), where f is a computable function. In this case, the algorithm A
is said to be an FPT algorithm for L, and we also use FPT to denote the set of FPT

problems. Observe that P ⊆ FPT.

Intuitively, one could describe the FPT class as the parallel, in the parameterized

complexity theory, of the P class in the traditional complexity theory. Another “ap-

proachable” class is that of the slice-wise polynomial. We say that a parameterized

problem L is slice-wise polynomial (denoted by XP) if there exists an algorithm that

solves L in time f(κ) · |(x, κ)|g(κ), where f and g are two computable functions. Ob-

serve that, for each fixed value of κ, this is a polynomial algorithm.

Concerning a parallel of the NP-complete class, there are two main hard classes in

the parameterized complexity, the paraNP-complete and the W-hard. A parameterized

problem L is paraNP-complete if it is NP-complete for some fixed value of the pa-

rameter κ. For instance, the VERTEX COLORING problem is paraNP-complete when

parameterized by the number of colors. Note that, unless P = NP, a paraNP-complete

problem cannot be XP, hence it cannot be FPT either.

Now, before defining our last parameterized complexity class, we need another

definition. Given an instance (x, κ) of a parameterized problem L, a parameterized

reduction from L to another parameterized problem L′ is an algorithm that computes,

in time f(κ)·|x|O(1) for some computable function f , an equivalent instance (x′, κ′) of

L′ such that κ′ ≤ g(κ) for some computable function g. The class of W-hard problems

can be formally defined based on a hierarchy of nested classes called W[i], for each

i ∈ N \ {0}. However, for our purposes it suffices to define the W[1]-hard and W[2]-
hard classes in terms of their “base” problems; think of it as defining the NP-hard class

in terms of SAT. A parameterized problem L is W[1]-hard if there is a parameterized

reduction from CLIQUE, parameterized by the size of the clique, to L; and it is W[2]-

hard if there is a parameterized reduction from DOMINATING SET, parameterized by

the size of the dominating set, to L. Observe that a parameterized version of an NP-

hard problem can be classified in any of these classes, unless of course P = NP, in

which case all the classes collapse to P.
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Tree decompositions are an important tool in the parameterized complexity the-

ory, as well as in the traditional computational complexity, since good algorithms can

often be obtained for graphs with bounded treewidth, and also because even graphs

with unbounded treewidth can sometimes be approached by applying the bidimension-

ality technique (see e.g. [37]). Since the publication of [OG], in addition to treewidth,

many other width parameters have been introduced (see [113] for a nice Hasse dia-

gram containing 32 graph parameters; we also refer to the survey [58]). In particu-

lar, the clique-width [69] and the mim-width [113] parameters are of special interest

to us, since they are bounded for some of our proposed classes, and because some

of the proposed problems can be solved in polynomial time when these parameters

are bounded. More specifically, PARTIAL k-TREES and COGRAPHS have bounded

clique-width [36], while the following have bounded mim-width: graphs with bounded

clique-width [113], PERMUTATION [10], CIRCULAR ARC [10], DIRECTED PATH [25]

(this is because they are a subclass of leaf powers [65]). Regarding the proposed prob-

lems, the following can be solved in polynomial time on graphs with bounded mim-

width, provided a branch decomposition of bounded mim-width is given: INDEPEN-

DENT SET, DOMINATING SET [27], and STEINER TREE [11]; while the following

can always be solved in polynomial time on graphs with bounded clique-width, since

a construction sequence of bounded clique-width can be found in polynomial (and

even FPT) time [97, 61, 96]: CLIQUE [35], CHROMATIC NUMBER [75], HAMILTO-

NIAN CIRCUIT, MAXIMUM CUT [116], and CLIQUE PARTITION [104]. Although the

problem of finding in polynomial-time a branching decomposition of bounded mim-

width is still open for general graphs with bounded mim-width, it has been proven

to be polynomial-time solvable for some graph classes, including PERMUTATION and

CIRCULAR ARC graphs [10]. These observations help to solve an issue about the

complexity of STEINER TREE restricted to CIRCULAR ARC and PROPER CIRCULAR

ARC, which we discuss later on. Also, because MAXIMUM CUT is NP-complete on

INTERVAL graphs [1], and this is a subclass of CIRCULAR ARC, it follows that the

problem is NP-complete on graphs with bounded mim-width, which is in contrast with

the complexity of the problem restricted to bounded clique-width [116].

We now discuss Tables 1 and 2, dividing the discussion by the problems.

MEMBERSHIP. The entries P are inherited from Table 1; hence the only class that

can be further refined in the parameterized complexity is the class THICKNESS-k.

It is known that deciding whether a given graph G has thickness at most k is NP-

complete even if k = 2 (for k = 1 it coincides with deciding planarity, which is

polynomial) [OG]. We therefore get that, considering k as the parameter, the related

parameterized problem is paraNP-complete.

We mention that the reference cited by [OG] for PARTIAL k-TREES was a technical

report that now has a published version [4].

INDEPENDENT SET. The natural parameter considered is the size of the desired inde-

pendent set. The problem is trivially in XP in general: by enumerating all vertex subsets

of size κ, one can readily check in time O(nκ) whether a graph on n vertices admits an

independent set of size at least κ. Nevertheless, INDEPENDENT SET is unlikely to be

FPT, since it is known to be W[1]-hard [48]. In fact, by considering the complement

8



graph, we obtain that INDEPENDENT SET and CLIQUE, for general graphs, are equiva-

lent to each other from the parameterized complexity perspective. On the positive side,

as can be seen in Table 2, the problem is FPT for PLANAR [95], GENUS-k [30] and

DEGREE-k [48] graphs. More generally, the problem is also FPT for THICKNESS-k
graphs [74]: This follows from the fact that INDEPENDENT SET is FPT when restricted

to graphs with bounded clique number, as first observed in [74] as a special case of a

more general framework c.f. [103, 52]. Additionally, INDEPENDENT SET is also FPT

for K3,3-FREE*. Indeed, it is well known that, if a graph H of maximum degree at

most 3 is a minor of a graph G, then H is a topological minor of G as well c.f. [46, 63].

Thus, K3,3-FREE* coincides with the class K3,3-MINOR-FREE* of graphs that do not

contain K3,3 as a minor. Therefore, since INDEPENDENT SET was proven to be FPT

for K3,3-MINOR-FREE* graphs [42, 43], we obtain that the problem is also FPT for

K3,3-FREE
*. We remark that, although INDEPENDENT SET is FPT for K3,3-FREE

*

graphs, it remains W[1]-hard for the larger class K3,3-FREE. This latter result follows

from the fact that INDEPENDENT SET was proven to be W[1]-hard for another subclass

of K3,3-FREE, the C4-FREE graphs [21], which consists of graphs that do not contain

C4 as an induced subgraph.

We observe that, for the entry PARTIAL k-TREES, we cite the reference [5], which

is different from the reference [2] cited in [OG]. This is because, upon checking [2],

we were not able to find any mention to the INDEPENDENT SET problem restricted to

PARTIAL k-TREES.

An interesting fact is that D.S. Johnson mentions, in the caption of his summary

table, that VERTEX COVER was not included as a column because its complexity will

always be the same as the complexity of INDEPENDENT SET. While this is true for

traditional complexity theory, one could say that VERTEX COVER is a canonical prob-

lem in FPT since it is FPT in general [31] and many of the known techniques can be

successfully applied to it, whereas INDEPENDENT SET can be regarded as a canonical

W[1]-hard problem.

CLIQUE. Analogously, the natural parameter considered is the size of the desired

clique. All entries here are in P, except for CLAW-FREE graphs, which is FPT [38].

PARTITION INTO CLIQUES. The problem has as input a graph G and a positive in-

teger κ, and it consists of deciding whether the vertex set of G can be partitioned

into κ disjoint cliques. The natural parameter considered is the integer κ. One can

straightforwardly verify that PARTITION INTO CLIQUES is polynomially equivalent to

CHROMATIC NUMBER by considering the complement graph G of the input graph G,

i.e. the problem of deciding whether G can be proper colored with at most κ colors.

Nevertheless, it is worth mentioning that the respective particular cases of PARTITION

INTO CLIQUES and CHROMATIC NUMBER restricted to specific graph classes are not

necessarily polynomially equivalent to each other, as usually these graph classes are not

closed under taking the complement. As an example, observe that in Table 1, PARTI-

TION INTO CLIQUES is in P for CIRCULAR ARC graphs, while CHROMATIC NUMBER

remains NP-complete for CIRCULAR ARC graphs.

The problem is trivially FPT for graphs that only contain cliques whose size can be

upper-bounded by a computable function f of κ. Indeed, if the size of the maximum
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clique of G is at most f(κ), then either G contains at most f(κ) · κ vertices, or the

vertex set of the input graph cannot be partitioned into at most κ disjoint cliques, and

thus we are dealing with a no-instance. Based on that, we immediately obtain that

PARTITION INTO CLIQUES is FPT for PLANAR and K3,3-FREE* graphs (observe that

the latter graphs cannot have cliques of size bigger than 5). Additionally, one can verify

that THICKNESS-k, GENUS-k and DEGREE-k graphs also have cliques whose size

depend only on k, and since k is constant by definition, we get that these graphs have

maximum clique bounded by a constant value. As a result, we obtain that PARTITION

INTO CLIQUES is also FPT for THICKNESS-k, GENUS-k and DEGREE-k graphs.

On the other hand, CIRCLE graphs may have cliques of unbounded size. J. Keil

and L. Stewart proved that PARTITION INTO CLIQUES is XP for CIRCLE graphs [73],

however it remains unknown whether the problem is FPT in this class. The paraNP-

completeness of PARTITION INTO CLIQUES for CLAW-FREE graphs follows from the

fact that CHROMATIC NUMBER is NP-complete, even when κ = 3, for TRIANGLE-

FREE graphs (i.e., graphs that do not contain K3 as an induced subgraph) [84] — since

the complement graphs of TRIANGLE-FREE graphs do not have independent sets of

size larger than 2, such complement graphs are CLAW-FREE.

In what follows, we discuss some discrepancies between our Table 1 and the ta-

ble presented in [OG], with respect to the PARTITION INTO CLIQUES entries. First,

[OG] cites [GJ] for the DEGREE-k entry. However it is not immediate how the results

presented in [GJ] (or in the references cited by [GJ]) lead to the NP-completeness of

PARTITION INTO CLIQUES for DEGREE-k. In fact, [GJ] proves that PARTITION INTO

CLIQUES remains NP-complete for graphs that contain no cliques of size larger than 4;

nevertheless the graph constructed in their reduction does not have bounded maximum

degree. For this reason, we cite [29] instead, which gives an explicit NP-completeness

proof for PARTITION INTO CLIQUES restricted to CUBIC graphs. As for PLANAR

graphs, [OG] cites [12], which actually proves that the following problem is NP-hard:

given a planar graph G, and a fixed connected outerplanar graph H with at least three

vertices, maximizes the number of vertices of G that can be covered with copies of H .

This does not immediately imply that PARTITION INTO CLIQUES is NP-complete for

PLANAR graphs since they limit the number of vertices in each clique to 3 (by consid-

ering H = K3) when a planar graph could have a partition into cliques with cliques

also of size 4. We then cite the more explicit construction given in [77]. Note that this

also impacts the entries K3,3-FREE*, THICKNESS-k, and GENUS-k, as these contain

PLANAR graphs. Finally, we remark that the references cited by [OG] for LINE graphs

and CLAW-FREE graphs are actually private communications. Therefore, we cite [94]

for LINE graphs, and [84] for CLAW-FREE graphs, instead of [OG]. We remark that

although the NP-completeness of PARTITION INTO CLIQUES for such graph classes

directly follows from [94], we have decided to cite the oldest known reference for each

result.

A problem closely related to PARTITION INTO CLIQUES is the so-called CLIQUE

EDGE-PARTITION, which is defined as follows: given a graph G and a positive integer

k, decide whether the edge set of G can be partitioned into at most k subsets such

that each subset induces a complete subgraph of G. However, it is worth mentioning

that, since the line graph of a complete graph is not necessarily a complete graph, this

problem is not the same as deciding whether the vertex set of the line graph L(G) of
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a graph G can be partitioned into at most k disjoint cliques. As a matter of fact, while

PARTITION INTO CLIQUES is paraNP-complete [84], CLIQUE EDGE-PARTITION is

FPT in general [91].

CHROMATIC NUMBER. The problem has as input a graph G and a positive integer κ,

with κ being the considered parameter, and it consists of deciding whether the chro-

matic number of G is at most κ. Also one of Karp’s 21 NP-complete problems [70],

CHROMATIC NUMBER is NP-complete for fixed values of κ for very restricted graph

classes. Since it is NP-complete to decide whether a planar graph with maximum de-

gree 4 is 3-colorable [53], we get that CHROMATIC NUMBER is paraNP-complete for

PLANAR, K3,3-FREE*, GENUS-k, THICKNESS-k and DEGREE-k graphs. Addition-

ally, since it is NP-complete to decide whether a circle graph is 4-colorable [112],

we obtain that CHROMATIC NUMBER is paraNP-complete for CIRCLE graphs. Fi-

nally, it is also NP-complete to decide whether the line graph of a 3-regular graph is 3-

colorable [62], implying the paraNP-completeness for LINE and CLAW-FREE graphs.

On the positive side, we mention that, even though the parameterized complexity the-

ory had not yet been defined by the time of publication of [55], the algorithm pre-

sented in [55] for CIRCULAR ARC is actually an FPT algorithm. Therefore, CHRO-

MATIC NUMBER parameterized by κ, the number of colors, is FPT for CIRCULAR

ARC graphs.

As for the differences between our tables and [OG]’s Table, they cite [2] for the

entry PARTIAL k-TREES. However this reference does not mention the CHROMATIC

NUMBER problem, and this is why we cite [5]. As for BANDWIDTH-k graphs, they

cite [89], which treats only the case k = 3. The same happens for the entry k-

OUTERPLANAR [8]. Also, we could not find the reference cited by [OG] for SERIES-

PARALLEL graphs [109], which is the same as the one cited for HALIN graphs. Nev-

ertheless, the polynomial results for all these classes follow from the fact they all have

bounded treewidth; therefore we cite [5].

CHROMATIC INDEX. This is by far the hardest problem of the table, with the largest

number of open entries, remaining open even for classes considered “easy” as for in-

stance COGRAPHS, a graph class for which all problems besides CHROMATIC INDEX

have been classified as P [75]. The problem has as input a graph G, and a positive

integer κ, with κ being the considered parameter, and one wants to decide whether the

chromatic index ofG, denoted by χ′(G), is at most κ. Observe that, since Vizing’s The-

orem tells us that χ′(G) ∈ {∆(G),∆(G)+1}, we can then consider κ as being equal to

the maximum degree of G as otherwise the answer is trivial. As already mentioned, de-

ciding whether χ′(G) = 3 is NP-complete even for CUBIC graphs [62], which implies

that CHROMATIC INDEX is paraNP-complete for DEGREE-k graphs, and that it is also

paraNP-complete for THICKNESS-k graphs. In addition, L. Cai and J. A. Ellis proved

that deciding whether χ′(G) = 3 is NP-complete even for COMPARABILITY graphs

and for LINE graphs [28]. Therefore, CHROMATIC INDEX remains paraNP-complete

when restricted to COMPARABILITY, PERFECT, LINE and CLAW-FREE graphs.

The reference cited by [OG] for SERIES-PARALLEL graphs and HALIN graphs is

the same as the one cited for these graphs on column CHROMATIC NUMBER [109].
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Again, even though we could not find the reference, the results follow from the fact

that these graphs have bounded treewidth [19].

HAMILTONIAN CIRCUIT. Here, the size of any solution is the size of the input graph;

therefore, we consider the problem of deciding whether a given graph G has an hamil-

tonian cycle parameterized by n = |V (G)|. It is known that LONGEST CYCLE param-

eterized by the size κ of the cycle is FPT [88]. If follows that HAMILTONIAN CIRCUIT

is FPT when parameterized by n.

The reference cited by [OG] for SERIES-PARALLEL graphs [109] is the same as

the one cited for these graphs on CHROMATIC NUMBER (see comments above); thus,

we cite [5] instead. Also, we were not able to access the reference for SPLIT and

CHORDAL graphs [33], therefore we cite reference [92]. For CIRCLE graphs, we find

a more serious discrepancy between our Table 1 and the table presented in [OG]. They

cite [13] as providing a polynomial algorithm for CIRCLE graphs. However, the paper

only provides a polynomial algorithm for INTERVAL graphs, a subclass of CIRCLE

graphs. And actually, the problem has been shown to be NP-complete for CIRCLE

graphs in [39].

DOMINATING SET. Given a graph G and a positive integer κ, the problem consists of

deciding whether G has a dominating set of size at most κ (a set D ⊆ V (G) is dom-

inating if, for every vertex v ∈ V (G), v ∈ D or v has a neighbor that belongs to D).

The natural parameter is of course κ, and as previously mentioned, this is the canonical

problem in the class W[2]-hard. Because of this, DOMINATING SET is among the most

investigated problems in the parameterized complexity theory, deserving a survey of

its own. Here, we make a short compilation of the results that concern the classes of

interest. The problem is FPT for: PLANAR graphs [47], and therefore also for GRID

graphs; for K3,3-FREE* graphs [99]; for GENUS-k graphs [51]; for k-DEGENERATE

graphs [3], and therefore also for DEGREE-k graphs; and for CLAW-FREE graphs [38],

and therefore also for LINE graphs. In addition, it is W[2]-hard for SPLIT and BIPAR-

TITE graphs [103], and therefore also for CHORDAL, PERFECT, and COMPARABILITY

graphs. Finally, it is W[1]-hard for CIRCLE graphs [24]. Observe that this problem is

trivially in XP, since it suffices to test all the O(nκ) subsets of size κ. However, this

is not completely refined, and the entries for THICKNESS-k and UNDIRECTED PATH

graphs can be regarded as the only open cases in this column.

Regarding the differences between our Table 1 and the table in [OG], they cite [57]

for ALMOST TREES (k), but the paper does not seem to attack this class. Something

similar happens with entry BANDWIDTH-k, where they cite [89] but the paper attack

domination-related problems, but not DOMINATING SET itself. Nevertheless, we now

know that the problem is indeed polynomial for these classes since they have bounded

treewidth [5]. Also, the entry for GRIDS is cited as a private communication in [OG];

this is why we provide reference [32]. As for the BIPARTITE and COMPARABILITY

entries, we were not able to find reference [45], cited by [OG], this is why we also

provide [93].

MAXIMUM CUT. This is another problem that is FPT in general. Given a graph G,

and an integer κ, we consider the problem of deciding whether there exists S ⊆ E(G)
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that separates G and has size at least κ, parameterized by κ. The best known algorithm

so far runs in time O(m+ n+ κ · 4κ) [85], where m denotes the number of edges and

n denotes the number of vertices of the input graph G.

We were not able to find the reference cited by [OG] for THICKNESS-k graphs [9],

and therefore we provide the same reference given by [GJ] for DEGREE-k graphs [119].

STEINER TREE. Given a graph G, a subset X ⊆ V (G), called terminal set, and

a positive integer t, the problem consists of deciding whether there exists a subset

S ⊆ V (G) \ X such that |S ∪ X | ≤ t and G[S ∪ X ] is connected — and hence

G[S∪X ] contains a tree subgraph T with X ⊆ V (T ), called a Steiner tree of G for X .

The vertices in S are commonly called Steiner vertices. STEINER TREE parameterized

by the number of terminal vertices |X | is well-known to be FPT [50], with the current

best algorithm running in time O(2|X| · nO(1)) [15], where n denotes the number of

vertices of the input graph G. This clearly implies that STEINER TREE parameterized

by the natural parameter, i.e. by the size of the sought solution |S∪X | ≤ t, is also FPT.

Interestingly enough, the problem is W[2]-hard when parameterized by the number of

Steiner vertices |S| as shown in [87]. We denote by κ the maximum number of Steiner

vertices allowed in a given instance of the problem, and then we write κ-STEINER

TREE to denote STEINER TREE parameterized by κ. Since the other parameterized

versions of the problem are already known to be FPT for general graphs, this latter is

the version considered in Table 2.

The κ-STEINER TREE problem is FPT for GENUS-k graphs [100], and therefore

for PLANAR and GRID graphs; and for k-DEGENERATE graphs [67], and therefore for

DEGREE-k graphs. Also, the proof given in [103] for W[2]-hardness of DOMINATING

SET for SPLIT graphs actually holds for CONNECTED DOMINATING SET. Moreover,

in [117], the authors give a parameterized reduction from CONNECTED DOMINATING

SET to κ-STEINER TREE that works for any subclass of CHORDAL graphs, without

changing the input graph. Therefore, based on the results presented in [103], we obtain

that κ-STEINER TREE is W[2]-hard for SPLIT, CHORDAL and PERFECT graphs. In

the next section, we give in Proposition 1 a simple reduction to prove that the prob-

lem is W[2]-hardness for BIPARTITE graphs (and therefore also for COMPARABILITY

graphs). Finally, observe that a simple XP algorithm can be obtained by simply testing

all O(nκ) possible vertex subsets S ⊆ V (G) \X of size at most κ.

Regarding the differences between our tables and [OG]’s Table, the reference [114]

cited in [OG] for OUTERPLANAR graphs could not be found, but we mention that the

reference cited in [OG] for SERIES-PARALLEL [115] is indeed correct, and that it can

be used for OUTERPLANAR as well. Also, [OG] cites a private communication with

Schäffer for the entries CIRCLE, LINE, and CLAW-FREE graphs, and cites [117] for

CIRCULAR ARC graphs and PROPER CIRCULAR ARC. We were not able to find any

mention to CIRCULAR ARC graphs in [117]. Also, in his book [106], Spinrad writes:

“The status of STEINER TREE is slightly unclear; Schäffer sketched a

proof that this is polynomially solvable (for both CIRCLE and CIRCULAR

ARC graphs), and thus it appeared as polynomial in the table of ‘[OG]’,

though no algorithm solving the problem appears in the general literature”.

Nevertheless, because CIRCULAR ARC graphs have bounded mim-width and a
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branch decomposition with bounded mim-width of these graphs can be computed in

polynomial time [10], it follows from [11] that STEINER TREE can be solved in poly-

nomial time for CIRCULAR ARC, and consequently also for PROPER CIRCULAR ARC.

As for entries LINE and CLAW-FREE, they have been recently filled [18], while the sit-

uation remains the same for CIRCLE graphs. We add that in [71], J. Keil proves that

CONNECTED DOMINATING SET is NP-complete for CIRCLE graphs. Thus if a proof

of polynomiality of STEINER TREE indeed exists for CIRCLE graphs, this will be a

nice example of class that separates CONNECTED DOMINATING SET from STEINER

TREE.

GRAPH ISOMORPHISM. This is problem Open1 from [GJ], and perhaps the most con-

troversial problem in Graph Theory, being regarded as the only naturally defined prob-

lem with a high chance to be an NP-intermediate problem, thus having deserved a

classification of its own. Given two graphs G and H , it consists of deciding whether

G and H are isomorphic, i.e., whether there exists a bijection of the vertex sets that

preserves adjacencies. A problem is GI-complete if it is equivalent in complexity to

general GRAPH ISOMORPHISM. As it happened with HAMILTONIAN CIRCUIT, the

natural parameter here is the size of the input graph. This problem is FPT in general,

with the best known algorithm running in time O∗(2
√
n log n) [6].

There are again some discrepancies between our Table 1 and the table presented in

[OG]. In [OG], they cite [GJ] as a reference for the entries PERFECT and CHORDAL

graphs to be GI-complete; however, CHORDAL graphs are cited as an open case in [GJ].

Nevertheless, these classes are indeed GI-complete as proven in [83] for CHORDAL

graphs; this construction was noticed to work also for SPLIT graphs [107]. Something

similar happens in entries BIPARTITE and UNDIRECTED PATH graphs, with them being

cited as open cases in [GJ], instead of GI-complete, as cited in [OG]. Nevertheless, these

are indeed GI-complete as proven in [23]. This also impacts the COMPARABILITY

graphs entry. Finally, GRAPH ISOMORPHISM is also GI-complete for THICKNESS-k
c.f. [41]. Since [41] cites an unpublished paper due to De Biasi, we provide a proof in

Proposition 3, for the sake of completeness.

3. Some Simple Reductions

For the sake of completeness, here we present two simple proofs. First, we prove

that κ-STEINER TREE is W[2]-hard when restricted to BIPARTITE graphs. Indeed,

this result follows from a standard parameterized reduction from DOMINATING SET,

described in Proposition 1. We remark that Raman and Saurabh present a similar re-

duction to prove that DOMINATING SET is W[2]-hard for BIPARTITE graphs [103].

Proposition 1. κ-STEINER TREE remains W[2]-hard for BIPARTITE graphs.

Proof. Let I = (G, κ) be an instance of DOMINATING SET. We let I ′ = (G′, X, κ)
be the instance of κ-STEINER TREE such that G′ is defined as follows:

• V (G′) = {r}∪ {v′ : v ∈ V (G)}∪V (G), where r denotes a new vertex, and we

add a new vertex v′ for each v ∈ V (G);
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• E(G′) = {rv : v ∈ V (G)} ∪ {v′u : u ∈ NG[v], u, v ∈ V (G)}; and

the terminal set is defined as X = {r} ∪ {v′ : v ∈ V (G)}. Note that X and V (G) are

independent sets of G′. Thus, G′ is a bipartite graph.

Suppose that G admits a dominating set D ⊆ V (G) of size at most κ. It is not

hard to check that D ∪ X induces a connected subgraph of G′. Therefore, I ′ is a

yes-instance of κ-STEINER TREE.

Conversely, suppose thatG′ admits a Steiner tree T forX such that |V (T )\X | ≤ κ.

Note that neighbors of X in G′ belong to V (G). Thus, V (T ) ∩ V (G) is a dominating

set of G, otherwise either T would not be connected, or there would exist some terminal

vertex belonging to X \ {r} that is not in T . Moreover, since |V (T ) \ X | ≤ κ, we

obtain that |V (T ) ∩ V (G)| ≤ κ. Therefore, V (T ) ∩ V (G) is a dominating set of G of

size at most κ, and I is a yes-instance of DOMINATING SET.

Now, we present a proof that GRAPH ISOMORPHISM is GI-complete when re-

stricted to THICKNESS-k graphs. This result actually follows from a simple adaptation

of an argument described in [14] by De Biasi, which we present in Proposition 3. The

subdivision of a graph G is defined as the graph s(G) obtained from G by replacing

each edge e = uv ∈ E(G) with the path 〈u,we, v〉, where we denotes a new vertex.

More formally, s(G) is the graph with vertex set V (s(G)) = V (G)∪{we : e ∈ E(G)}
and edge set E(s(G)) = {uwe, wev : e = uv ∈ E(G)}.

Lemma 2. For each graph G, the subdivision s(G) of G has thickness at most 2.

Proof. Assume without loss of generality that V (G) = {v1, . . . , vn}, for some positive

integer n. Let H1 and H2 be the spanning subgraphs of s(G) defined as follows: for

each edge e = vivj ∈ E(G) with i < j, add the edge viwe toH1 and add the edgewevj
to H2. Note that, for each e ∈ E(G), the degree of we in H1, and in H2, is exactly

1. Moreover, V (G) is an independent set in H1, and in H2. Thus, H1 and H2 are

forests whose components are stars, which implies that H1 and H2 are planar graphs.

Therefore, since s(G) = H1 ∪H2, we obtain that s(G) has thickness at most 2.

Proposition 3. GRAPH ISOMORPHISM is GI-complete for THICKNESS-k.

Proof. Let G1 and G2 be two arbitrary graphs. It follows from Lemma 2 that s(G1)
and s(G2) have thickness at most 2. Moreover, one can easily verify that G1 and G2

are isomorphic if and only if s(G1) and s(G2) are isomorphic.

4. Steiner Tree for Undirected Path Graphs

In this section, we prove that the STEINER TREE problem is NP-complete for

UNDIRECTED PATH graphs, which provides a full dichotomy Polynomial versus NP-

complete for the STEINER TREE column. Our proof holds even if the input graph has

diameter 3, and we show that STEINER TREE is in P when restricted to UNDIRECTED

PATH graphs of diameter 2, thus getting another dichotomy for the problem in terms of

the diameter.

We mention that Spinrad writes in his book [106] that he was unable to find any

work on the STEINER TREE problem restricted to UNDIRECTED PATH graphs, but

15



that Dieter Kratsch told him this should be NP-complete as a simple extension of a

proof that CONNECTED DOMINATING SET is NP-complete for UNDIRECTED PATH

graphs. Haynes et al. cite a paper [72], submitted in 1997, in their book [110], where

the NP-completeness proof of CONNECTED DOMINATING SET supposedly appears.

However, we were not able to find any version of [72]. Thus, in order to fill this gap,

we provide a non-trivial adaptation of the NP-completeness proof presented in [22]

for the DOMINATING SET problem restricted to UNDIRECTED PATH graphs, which

finally explicitly shows that the CONNECTED DOMINATING SET problem restricted to

UNDIRECTED PATH graphs is indeed NP-complete. Then, we use a transformation by

White et al. [117] between the STEINER TREE and the CONNECTED DOMINATING

SET problems to obtain the desired result as a corollary.

A closely related variant of CONNECTED DOMINATING SET that should be men-

tioned is the so-called TOTAL DOMINATING SET problem, which, rather than a dom-

inating set inducing a connected subgraph, simply requires a dominating set having

no isolated vertices. Through a different non-trivial adaptation of the proof presented

in [22], TOTAL DOMINATING SET restricted to UNDIRECTED PATH graphs was proven

to be NP-complete [80]. However, it is worth noticing that the construction described

in [80] cannot be used so as to further obtain the NP-completeness of CONNECTED

DOMINATING SET for UNDIRECTED PATH graphs. Therefore, we emphasize the merit

of our contribution.

We start by giving some formal definitions. A chordal graph can also be described

as the intersection graph of subtrees of a tree: given a tree T , each vertex u of G cor-

responds to a subtree Tu of T , and uv ∈ E(G) if and only if V (Tu) ∩ V (Tv) 6= ∅.

We call (T, {Tu}u∈V (G)) a tree model of G. One can verify that a tree decomposition

of G of width ω(G) can be obtained from this tree model. The subclasses of UNDI-

RECTED PATH, DIRECTED PATH and INTERVAL graphs can be derived from this def-

inition as follows. An undirected path graph is a chordal graph that has a tree model

(T, {Tu}u∈V (G)) where each u ∈ V (G) corresponds to a subpath of T . A directed

path graph is an undirected path graph that has a tree model (T, {Tu}u∈V (G)) such

that T is rooted at a vertex r, and every subpath Tu is from a node t ∈ V (T ) to a

node t′ ∈ V (T ) where t belongs to the (r, t′)-path of T . Finally, an interval graph is a

chordal graph that has a tree model (T, {Tu}u∈V (G)) where T is a path. From Figure 2,

we know that these classes are nested.

We recall that, given a graph G, a subset D ⊆ V (G) is a dominating set of G if, for

every vertex v ∈ V (G)\D, NG(v)∩D 6= ∅. Additionally, D is said to be connected if

G[D] is a connected subgraph of G. Given also a subset X ⊆ G of terminals, a Steiner

tree of G for X is a tree subgraph T of G such that X ⊆ V (T ). Next, we formally

state the STEINER TREE and CONNECTED DOMINATING SET problems. Although

the usual question for STEINER TREE asks for the minimum tree, it is more convenient

for our reduction to ask for the minimum set of non terminal vertices. Notice that this

gives a polynomially equivalent problem.
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STEINER TREE

Input: A connected graph G, a non-empty subset X ⊆ V (G), and a posi-

tive integer k.

Question: Does there exist a subset S ⊆ V (G) \ X with |S| ≤ k, such that

G[S ∪X ] is connected?

CONNECTED DOMINATING SET

Input: A graph G and a positive integer k.

Question: Does there exist a subset D ⊆ V (G) with |D| ≤ k, such that

NG[D] = V (G) and G[D] is connected?

As we said before, we first prove that CONNECTED DOMINATING SET is NP-

complete for UNDIRECTED PATH graphs. We do this with a reduction from the follow-

ing problem, which is one of Karp’s 21 NP-complete problems [70].

3D-MATCHING

Input: Disjoint sets P , Q and R each of cardinality n, for some positive

integer n, and a subset S ⊆ P ×Q×R.

Question: Does there exist a subset D ⊆ S such that |D| = n and s ∩ s
′ = ∅

for every two triples s, s′ ∈ D?

Theorem 4. CONNECTED DOMINATING SET remains NP-complete when restricted

to undirected path graphs of diameter at most 3.

Proof. Let P = {p1, . . . , pn}, Q = {q1, . . . , qn} and R = {r1, . . . , rn} be disjoint

sets each of cardinality n, for some positive integer n, and let S = {s1, . . . , sm}
be a subset of P × Q × R of cardinality m, for some positive integer m. We let

I = (P,Q,R,S) be the instance of 3D-MATCHING constituted by P , Q, R and S.

Then, we let G be the graph obtained from I as follows (Figure 3 shows a tree model

of the constructed graph):

• For each sj ∈ S, we let Vj = {aj , bj, cj , xj , yj , z
1
j , z

2
j , z

3
j }. We remark that, for

each two sets sj , sℓ ∈ S, Vj ∩ Vℓ = ∅ if and only if j 6= ℓ;

• V (G) = ∪m
j=1Vj ∪ P ∪Q ∪R;

• K =
⋃

sj∈S{aj , bj, cj , xj} is a clique of G;

• for each sj ∈ S, {aj, bj , xj , yj}, {aj , yj, z1j }, {bj, yj , z2j } and {cj , xj , z
3
j } are

cliques of G;

• for each pi ∈ P , {pi} ∪ {aj : pi ∈ sj, sj ∈ S} is a clique of G;

• for each qi ∈ Q, {qi} ∪ {bj : qi ∈ sj , sj ∈ S} is a clique of G;

• for each ri ∈ R, {ri} ∪ {cj : ri ∈ sj, sj ∈ S} is a clique of G.

Figure 3 illustrates a tree model (T, {Tu}u∈V (G)) associated with the graph G.

We depict inside a node t ∈ V (T ), the set of vertices of G that contains node t in

its corresponding subtree; more formally, denoting by Xt the subset of V (G) drawn

inside node t, and given v ∈ V (G), we define Tv as the subtree of T induced by {t ∈
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V (T ) : v ∈ Xt}. Based on (T, {Tu}u∈V (G)), one can verify that G is an undirected

path graph. Indeed, for each vertex u ∈ V (G), we get that Tu is a path of T . Moreover,

one can readily verify that K is a dominating clique of G. Therefore, G has diameter

at most 3.

∪sj∈S{aj , bj , cj , xj}K

{aj , bj , xj , yj}

{aj , yj , z
1

j} {bj , yj , z
2

j }

{cj , xj, z
3

j }
{pi}∪

{aj : pi ∈ sj}
∀ pi ∈ P

{qi}∪
{bj : qi ∈ sj}

∀ qi ∈ Q

{ri}∪
{cj : ri ∈ sj}

∀ ri ∈ R

∀ sj ∈ S

Figure 3: A tree model (T, {Tu}u∈V (G)) associated with the graph G, constructed from a given instance

I = (P,Q,R,S) of the 3D-MATCHING problem.

We now prove that I is a yes-instance of 3D-MATCHING if and only if G admits

a connected dominating set D of size at most 2m+ n.

First, suppose that I is a yes-instance of 3D-MATCHING, and let M be a 3d-

matching of I . Then, we define D = {aj , bj, cj : sj ∈ M} ∪ {xj , yj : sj 6∈ M}. Note

that |D| = 3n+ 2(m− n) = 2m+ n. We claim that D is a connected dominating set

of G. Indeed, since M is a 3d-matching of I , we have that the following holds:

• for each pi ∈ P , there exists (exactly) one triple sj ∈ M such that pi ∈ sj ,

which implies that aj ∈ D and that pi is dominated in G by aj ;

• for each qi ∈ Q, there exists (exactly) one triple sj ∈ M such that qi ∈ sj ,

which implies that bj ∈ D and that qi is dominated in G by bj ;

• for each ri ∈ R, there exists (exactly) one triple sj ∈ M such that ri ∈ sj , which

implies that cj ∈ D and that ri is dominated in G by cj .

Additionally, it directly follows from the construction of G that {aj , bj, cj} dominates

all vertices belonging to Vj for each sj ∈ M , and that {xℓ, yℓ} dominates all vertices

belonging to Vℓ for each sℓ ∈ S\M . Consequently,D is a dominating set of G. To ver-

ify that D induces a connected subgraph of G, first note that K ′ =
⋃

sj∈M{aj, bj , cj}
induces a connected subgraph of G since K is a clique of G and K ′ ⊆ K . In addition,

it follows from the facts that
⋃

sj∈S{xj} ⊆ K , and xjyj ∈ E(G) for each sj ∈ S, that

the set K ′′ =
⋃

sj∈S\M{xj , yj} induces a connected subgraph of G. Therefore, the

result follows since D = K ′ ∪K ′′ is a connected subgraph of G.

Conversely, suppose now that G admits a connected dominating set D of size at

most 2m + n. By the construction of G, for each sj ∈ S, the following holds (see

Figure 4):

• D ∩ {aj, yj , z1j } 6= ∅, otherwise z1j would not be dominated in G by D;

• D ∩ {bj, yj, z2j } 6= ∅, otherwise z2j would not be dominated in G by D;
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• D ∩ {cj, xj , z
3
j } 6= ∅, otherwise z3j would not be dominated in G by D.

We recall that Vj = {aj , bj, cj , xj , yj , z
1
j , z

2
j , z

3
j } for each sj ∈ S. Then, based on

z1

j yj z2

j

aj bj

xj cj

z3

j

Figure 4: Subgraph of G induced by Vj , for sj ∈ S .

the above, one can verify that |D ∩ Vj | ≥ 2. Moreover, we prove that if |D ∩ Vj | = 2
for some sj ∈ S, then D ∩ Vj = {xj , yj}. This follows from the fact that the only

other possibilities for D ∩ Vj with |D ∩ Vj | = 2 would be D ∩ Vj = {cj, yj} and

D ∩ Vj = {z3j , yj}. However, note that, {aj , bj, xj} is a separator of cj and yj in G
for each sj ∈ S. Thus, if D ∩ Vj = {cj, yj}, then D would not induce a connected

subgraph of G. Analogously, {cj, xj} is a separator of z3j and yj in G for each sj ∈ S.

Thus, if D ∩ Vj = {z3j , yj}, then D would not induce a connected subgraph of G. As

a result, we have that D ∩ Vj = {xj , yj} whenever |D ∩ Vj | = 2.

We prove now that we can assume that D ∩ Vj = {aj, bj, cj} for each sj ∈ S
with |D ∩ Vj | ≥ 3. Indeed, for each sj ∈ S, {aj , bj, cj} dominates at least the same

vertices of G as any other subset of Vj , which implies NG[D∩Vj ] ⊆ NG[{aj, bj , cj}].
Moreover, since by hypothesis D induces a connected subgraph of G, we obtain that

(D \ Vj)∪ {aj, bj , cj} also induces a connected subgraph of G for each sj ∈ S. Thus,

assume without loss of generality that D ∩ Vj = {aj, bj , cj} whenever |D ∩ Vj | ≥ 3.

Now, let M = {sj ∈ S : |D ∩ Vj | = 3}. Based on the definition of M , we obtain

that |D| ≥ 3|M |+2(m−|M |) = 2m+|M |. On the other hand, we have by hypothesis

that |D| ≤ 2m + n. Consequently, |M | ≤ n. Towards a contradiction, suppose that

|M | < n. Let D′ =
⋃

sj∈S(D ∩ Vj). Note that, for each U ∈ {P,Q,R}, there are at

most |M | vertices from U that are dominated in G by some vertex in D′. As a result,

there exist at least 3(n− |M |) distinct vertices from P ∪Q∪R that are not dominated

in G by any vertex belonging to D′, i.e. |(P ∪Q ∪R) \NG[D
′]| ≥ 3(n− |M |). This

implies that D must further contain each of such vertices from P ∪Q ∪R that are not

dominated in G by D′. Then, we obtain that actually

|D| ≥ 3|M |+ 2(m− |M |) + 3(n− |M |) = 2m+ n+ 2(n− |M |) > 2m+ n,

which contradicts the hypothesis of D being a connected dominating set of G of size at

most 2m+ n. Consequently, |M | = n and |D| = 2m+ n. This implies that, if u is a

vertex in D, then u ∈ Vj for some sj ∈ S. Hence, we obtain that M is a 3d-matching
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of I , otherwise there would exist a vertex v ∈ P ∪ Q ∪ R such that, for every triple

sj ∈ S with v ∈ sj , |D ∩ Vj | = 2, which would imply that v is not dominated in G by

any vertex belonging to D. Therefore, I is a yes-instance of 3D-MATCHING.

As previously mentioned, in [117], the authors give a reduction from CONNECTED

DOMINATING SET to STEINER TREE that works in any subclass of CHORDAL graphs

without changing the input graph. We then get the following corollary.

Corollary 5. STEINER TREE is NP-complete when restricted to undirected path graphs

of diameter at most 3.

In [78], the author proves that deciding whether an undirected path graph has a

dominating clique of size at most k can be done in polynomial time. We apply his

result to get a dichotomy for STEINER TREE restricted to UNDIRECTED PATH graphs

in terms of the diameter of the input graph. For this, we first need some definitions and

tool lemmas, which are presented below.

Let G be a connected graph and X ⊆ V (G) be a non-empty set. We denote by

ST (G,X) the minimum size of a subset S ⊆ V (G) \ X such that S ∪ X induces a

connected subgraph of G. Throughout the remainder of this section, we assume with-

out loss of generality that |X | ≥ 3 and that X does not induce a connected subgraph

of G, as otherwise ST (G,X) would be easily determined: if |X | = 1 or G[X ] is con-

nected, then trivially ST (G,X) = 0; and, if X = {u, v}, then ST (G,X) is equal to

the number of vertices in any minimum path between u and v in G.

We say that two distinct vertices u, v ∈ V (G) are twins in G if they have the same

neighborhood in G, i.e. either NG(u) = NG(v) or NG[u] = NG[v]. We prove in the

next lemma that we can suppose without loss of generality that G has no twins. Observe

that the hypothesis involving u and v can be assumed without loss of generality. It is

included in order to write the equation in a more concise way.

Lemma 6. Let G be a connected graph, containing twin vertices u and v, and X ⊆
V (G) with |X | ≥ 3. Also, suppose that u ∈ X implies v ∈ X . Then,

ST (G,X) = ST (G− u,X − u).

Proof. First, let S ⊆ V (G− u) \X be a minimum set such that S ∪ (X − u) induces

a connected subgraph of G − u. We want to prove that S ∪ X induces a connected

subgraph of G, in which case we get ST (G,X) ≤ ST (G− u,X − u). Suppose first

that v ∈ S. Since X \{u} 6= ∅, v must have some neighborw ∈ S∪X in G−u. Then,

it follows from the hypothesis that u and v are twins in G that w is also a neighbor of u
in G. This implies that S ∪X induces a connected subgraph of G. A similar argument

can be applied when v ∈ X . Indeed, since |X | ≥ 3, X \{u, v} 6= ∅. Thus, v must have

some neighbor w ∈ S ∪ (X −u), which is also a neighbor of u in G, and consequently

S ∪X induces a connected subgraph of G. Finally, if v /∈ S ∪X , then by hypothesis

we also know that u /∈ X , in which case trivially S ∪X induces a connected subgraph

of G.

Now, let S ⊆ V (G) \X be a minimum set such that S ∪ X induces a connected

subgraph of G. SinceS is minimum, |S∩{u, v}| ≤ 1. If u ∈ S, then, by the minimality
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of S, v 6∈ S and (S \ {u}) ∪ {v} witnesses ST (G − u,X − u) ≤ ST (G,X). On

the other hand, if u /∈ S, then we trivially get that S ∪ (X − u) induces a connected

subgraph of G− u, and therefore ST (G− u,X − u) ≤ ST (G,X).

Based on Lemma 6, we assume from now on that the input graph G has no twin

vertices. Also, in the remainder of the text, (T, {Tu}u∈V (G)) is a tree model of G.

Moreover, given a node t ∈ V (T ), we denote by Vt the set {u ∈ V (G) : t ∈ V (Tu)}.

We say that u ∈ V (G) is a leafy vertex if V (Tu) = {ℓu} and ℓu is a leaf in T ; denote

by L the set of leafy vertices, and for every u ∈ L, denote by ℓu the unique node in

Tu. We also say that (T, {Tu}u∈V (G)) is minimal if there are no two adjacent nodes

t, t′ ∈ V (T ) such that Vt ⊆ Vt′ . It is known that such a tree model can be computed

in polynomial time [56]. We prove in the following lemma that, for any minimal tree

model (T, {Tu}u∈V (G)), there is a one-to-one correspondence between the leaves of T
and the leafy vertices associated with T .

Lemma 7. Let G be a connected undirected path graph without twin vertices, and

(T, {Tu}u∈V (G)) be a minimal tree model for G. Then, for every leaf ℓ of T , there

exists a unique u ∈ L such that L ∩ Vℓ = {u}.

Proof. Since G has no twin vertices, for every leaf t of T , there exists at most one

leafy vertex u of G associated with T such that ℓu = t. On the other hand, suppose

that there exists a leaf t of T such that there is no leafy vertex of G associated with T
corresponding to t, i.e., for every leafy vertex u of G associated with T , we have that

ℓu 6= t. Then, let t′ be the parent of t in T . One can readily verify that Vt ⊆ Vt′ ,

contradicting the fact that we are on a minimal tree model.

A vertex u is called simplicial if NG(u) is a clique in G. Note that every leafy

vertex is simplicial. Moreover, note that a simplicial vertex that is not in X certainly

is not contained in any minimum Steiner tree for X ; therefore we can suppose that X
contains every simplicial vertex of G and, in particular, L ⊆ X . In the next lemma, we

prove that we can suppose that every x ∈ X is either leafy, or is such that Tx contains

no leaf of T .

Lemma 8. Let G be a connected undirected path graph without twin vertices. Also, let

(T, {Tu}u∈V (G)) be a minimal tree model of G, L be the set of leafy vertices associated

with T , and let X ⊆ V (G) be a set of terminals such that L ⊆ X ⊆ V (G). Suppose

that x ∈ X \ L is such that ℓ ∈ V (Tx) for some leaf ℓ of T . Then, ST (G,X) =
ST (G− u,X − u), where L ∩ Vℓ = {u}.

Proof. By Lemma 7, G− u is the graph related to the tree model T − ℓ. Suppose that

there exists a set S ⊆ V (G−u)\X such that S∪(X−u) induces a connected subgraph

of G− u. Since ℓ ∈ Tu ∩ Tx, ux ∈ E(G). Thus, S ∪X induces a connected subgraph

of G, and consequently ST (G,X) ≤ ST (G − u,X − u). Conversely, suppose that

there exists a set S ⊆ V (G) \X such that S ∪X induces a connected subgraph of G.

Since u is a simplicial vertex of G, we obtain that S ∪ (X − u) induces a connected

subgraph of G− u, and therefore ST (G,X) ≥ ST (G− u,X − u).

In the proof, we modify a subset S that gives a solution in order to ensure that the

new set is a clique. The following lemma will help us do that.
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Lemma 9. Let G be a connected undirected path graph, (T, {Tu}u∈V (G)) be a tree

model ofG, X ⊆ V (G) be a set of terminals, S ⊆ V (G)\X be a set such thatG[S∪X ]
is connected, and let u, v ∈ S. If y, z ∈ V (G) are such that NG(u) ∪ NG(v) ⊆
NG(y) ∪NG(z), then S′ ∪X is connected, where S′ = ((S \ {u, v}) ∪ {y, z}) \X .

Proof. Suppose otherwise, and let H,H ′ be distinct components of G[S′ ∪ X ]. This

means that there exist w ∈ V (H) and w′ ∈ V (H ′) such that every path P between

w and w′ goes through u and/or v; but since NG(u) ∪ NG(v) ⊆ NG(y) ∪ NG(z), it

means that u and/or v can be replaced by y and/or z.

We are now ready to prove our theorem. In [78], the author proves that deciding

whether an undirected path graph has a dominating clique of size at most k can be done

in polynomial time. We make a polynomial reduction from CONNECTED DOMINAT-

ING SET to DOMINATING CLIQUE, thus getting the desired polynomial algorithm by

the equivalence given in [117]. This and Theorem 4 give a dichotomy of both CON-

NECTED DOMINATING SET and STEINER TREE in terms of the diameter of the input

graph G. We observe that, in order to prove that DOMINATING CLIQUE is polynomial-

time solvable for UNDIRECTED PATH graphs, it is used in [78] an alternative notion

of tree model called characteristic tree, where the nodes of the model are the maximal

cliques of the graph G (see [56, 90]).

Theorem 10. STEINER TREE and CONNECTED DOMINATING SET can be solved in

polynomial time when restricted to undirected path graphs of diameter at most 2.

Proof. In view of the reduction from CONNECTED DOMINATING SET to STEINER

TREE presented in [117], it suffices to prove that STEINER TREE can be solved in

polynomial time. Thus, let G be a connected undirected path graph with diameter at

most 2, X ⊆ V (G) be a terminal set such that |X | ≥ 3, and let κ be a positive integer.

As usual, we consider a minimal tree model (T, {Tu}u∈V (G)) ofG. There is no loss

of generality making these assumptions, since, as previously mentioned, it is known

that such a tree model can be computed in polynomial time [56]. Let L denote the set

of leafy vertices associated with T , and assume that L ⊆ X .

In what follows, we prove that: ST (G,X) ≤ κ if and only if there exists a clique

S ⊆ V (G) \ X in G of size at most κ that dominates L. Our theorem follows since

this is exactly what is computed in the algorithm presented in [78].

For the sufficiency part of our claim, we just note that if S is a clique of G that

dominates L, then
⋃

u∈S V (Tu) = V (T ), which means that in fact S is a dominating

clique of G and therefore S∪X induces a connected subgraph of G. Because |S| ≤ κ,

it follows that ST (G,X) ≤ κ.

Now, to prove necessity, suppose first that ST (G,X) ≤ κ, and let S ⊆ V (G) \X
be a set such thatS∪X induces a connected subgraph of G. Suppose that S is minimum

and that, among all such subsets of minimum cardinality, S maximizes the number of

edges in E(G[S]). In addition, by Lemma 8, we can suppose that there are no edges in

G between the vertices belonging to X \ L and the vertices belonging to L. Moreover,

note that L is an independent set. Thus, since G[S ∪X ] is connected, we get that every

vertex in L must be adjacent to some vertex in S; in other words, S dominates L. Thus,

it remains to prove that S is a clique of G. Suppose for the sake of contradiction that
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there exist two distinct vertices u, v ∈ S such that uv /∈ E(G). We prove that one can

find a pair x, y of adjacent vertices in G such that NG(u)∪NG(v) ⊆ NG(x)∪NG(z).
Then, based on Lemma 9, by letting S′ = ((S \ {u, v}) ∪ {y, z}) \ X , we obtain a

contradiction, since in this case either |S′| < |S|, or |E(G[S′])| > |E(G[S])|.

ℓ1u

ℓ2u

tu

P 1

u

P 2

u

ℓ1v

ℓ2v

tv

P 1

v

P 2

v

Figure 5: The bold lines represent the paths Tu and Tv .

Let tu ∈ V (Tu) and tv ∈ V (Tv) be nodes whose distance from each other in T is

the smallest possible (observe Figure 5). Note that tu 6= tv since V (Tu) ∩ V (Tv) = ∅.

Also, let P 1
u , P

2
u be the two subpaths defined by tu in Tu, and define P 1

v , P
2
v similarly.

For each i ∈ {1, 2}, let ℓiu be the end vertex of P i
u different from tu, if it exists;

otherwise, let ℓiu be equal to tu. Define ℓ1v, ℓ
2
v similarly. Note that, if ℓ1u 6= tu, then we

can suppose that there exist w1
u ∈ V (G) such that ℓ1u ∈ Tw1

u
, and t /∈ Tw1

u
, where t

is the neighbor of ℓ1u in P 1
u (otherwise, we could contract the edge ℓ1ut and still have

a tree model of G). Define w2
u, w

1
v, w

2
v similarly. There are two possible cases to be

considered.

Case 1. Suppose that all the vertices w1
u, w

2
u, w

1
v, w

2
v exist and are well-defined. Since

G has diameter at most 2, there must exist vertices y ∈ NG(w
1
u)∩NG(w

1
v) and

z ∈ NG(w
2
u)∩NG(w

2
v). Clearly, the path between tu and tv in T is contained

in the paths Ty and Tz (which means that y and z are adjacent in G), and

V (P 1
u ∪P 1

v ) ⊆ V (Ty), and V (P 2
u ∪P 2

v ) ⊆ V (Tz). Thus, NG(u)∪NG(v) ⊆
NG(y) ∪NG(z), as desired.

Case 2. Now, suppose that some of the vertices w1
u, w

2
u, w

1
v, w

2
v do not exist or are not

well-defined. Note that, since S∪X induces a connected subgraph of G, there

must exist a path in G[S ∪X ] between u and v, which means that there must

exist w ∈ (S ∪X) \ {u} such that tu ∈ V (Tw). This implies that at least one

of the vertices w1
u, w

2
u is well-defined, as otherwise V (Tu) = {tu} ⊆ V (Tw)

and we could just remove u from S. The same argument can be applied with

respect to w1
v, w

2
v . Thus, suppose without loss of generality that w1

u, w
1
v are

well-defined, and that w2
u is not well-defined (which means that V (P 2

u ) =
{tu}). Pick y as before, and note that V (Tu) ⊆ V (Ty), and that yv ∈ E(G)
since ℓ1v ∈ V (Ty) ∩ V (Tv). We can then apply Lemma 9 to {u, v} and {y, v}
since NG(u) ∪NG(v) ⊆ NG(y) ∪NG(v).
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5. Stubborn Puzzles 35 Years Later

After 40 years, two open problems from [GJ] are still unsolved, namely: Open1

GRAPH ISOMORPHISM, and Open8 Precedence constrained 3-processor schedule. In

STOC 2016, László Babai announced that GRAPH ISOMORPHISM could be solved in

Quasipolynomial Time. Only one O entry from [OG] remains stubbornly open for 35

years: the complexity of CHROMATIC INDEX for PLANAR graphs. It is a puzzle to

understand why still today the CHROMATIC INDEX column has the majority of thir-

teen O? entries, for instance CHROMATIC INDEX for COGRAPHS is a long-standing

open problem, as mentioned in [75]. We invite the reader to find a reference or a proof

for the underlined [OG] entry in Table 1 corresponding to a “private communication”

which would classify as polynomial STEINER TREE restricted to CIRCLE graphs. Our

proposed Table 2 leaves as open the parameterized complexity classification of PARTI-

TION INTO CLIQUES for LINE graphs. We invite the reader to further study the eight

XP entries, observing that five of them belong to our target STEINER TREE column.

In particular, we highlight that, even though the closely related problem CONNECTED

DOMINATING SET is known to be FPT for CLAW-FREE graphs [60], it is open whether

κ-STEINER TREE is also FPT for LINE and CLAW-FREE graphs. Regarding the ob-

tained second dichotomy for the STEINER TREE problem restricted to UNDIRECTED

PATH graphs, according to the diameter of the input graph, we should mention that

CONNECTED DOMINATING SET was proven to be NP-complete and W[2]-hard even

when restricted to SPLIT graphs of diameter 2 [82]. A straightforward modification of

their proof leads to the NP-completeness of STEINER TREE (and to the W[2]-hardness

of κ-STEINER TREE) when restricted to SPLIT graphs of diameter 2.
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